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Abstract We propose a new framework for human genetic association studies: at each locus, a 
deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for 
two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces 
the original genotype in association studies. Applying the HFS framework to 14 complex traits in 
the UK Biobank, we identified 3619 independent HFS–trait associations with a significance of p < 
5 × 10−8. Fine- mapping revealed 2699 causal associations, corresponding to a median increase of 
63 causal findings per trait compared with single- nucleotide polymorphism (SNP)- based analysis. 
HFS- based enrichment analysis uncovered 727 pathway–trait associations and 153 tissue–trait asso-
ciations with strong biological interpretability, including ‘circadian pathway- chronotype’ and ‘arachi-
donic acid- intelligence’. Lastly, we applied least absolute shrinkage and selection operator (LASSO) 
regression to integrate HFS prediction score with SNP- based polygenic risk scores, which showed 
an improvement of 16.1–39.8% in cross- ancestry polygenic prediction. We concluded that HFS is a 
promising strategy for understanding the genetic basis of human complex traits.

eLife assessment
This valuable paper presents a new approach for association testing, using the output of neural 
networks that have been trained to predict functional changes from DNA sequences. As such, 
the approach is an interesting addition to statistical genetics, and the evidence for the presented 
method being able to identify trait- associations in regions where GWASs are typically underpowered 
is solid. A limitation is, however, that it is unclear how the quality of these associations compares to 
those detected using conventional methods. Additional work assessing this method's power and 
characterizing false positives / false negative regions would be critical to ensure that the method is 
broadly adopted by the field.

Introduction
Genome- wide association studies (GWAS) have witnessed remarkable advancements over recent 
years, both in terms of sample size and genetic discovery. However, the elucidation of downstream 
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mechanisms and subsequent applications still face certain limitations (Visscher et al., 2017). One 
caveat is that the statistical power of GWAS on a variant relies on its population frequency (Li et al., 
2020; Null et al., 2022; Zhou et al., 2022), whereas most variants with large effect size are rare 
(Zeng et al., 2021), leading to insufficient discoveries. Moreover, linkage disequilibrium (LD) among 
neighboring variants can significantly inflate false positive results (Nowbandegani et al., 2022). The 
variability of LD structure among different populations further compounds the challenges associated 
with training predictive models and discovering causal genes. Lastly, most trait- relevant variants reside 
in non- coding regions (Watanabe et al., 2019), which lack direct functional annotations as coding 
variants. The prevalent approach to addressing this issue is to annotate each variant based on its 
location within functionally significant regions (Finucane et al., 2015; Grotzinger et al., 2022; Iotch-
kova et al., 2019; Weissbrod et al., 2020; Zheng et al., 2022), such as transcription factor- binding 
sites or enhancers. While this strategy has considerably advanced the analysis, it is not optimal, as a 
variant’s placement within a functionally important region does not inherently signify that the variant 
has substantial functional impacts.

The central dogma, proposing that DNA alterations’ effects on phenotype are mediated via 
RNA and protein changes, offers a novel strategy to address these challenges. More precisely, 
by replacing the original genotypes in association studies with the aggregated impact of vari-
ants on transcription or functional genomics, the central dogma ensures the preservation of the 
majority of genetic information. This ‘aggregated impact’ offers several benefits for GWAS anal-
ysis: it provides direct biological interpretations, bypasses the effects of LD and population genetic 
history, and amalgamates information from both common and rare variants. One successful imple-
mentation of this strategy is Polygenic Transcriptome Risk Scores (PTRS) (Hu et al., 2022; Liang 
et al., 2022), which employ genetically determined transcription levels rather than genotypes to 
predict complex trait, and achieved remarkable portability. Nonetheless, the accuracy of imputing 
transcription levels from genotypes, given the sample size of currently available cohorts such as 
the Genotype- Tissue Expression project, GTEx (Aguet et al., 2020), remains limited (R2 around 0.1 
for most genes) (Barbeira et al., 2018). Thus, the performance of PTRS is yet to reach its optimal 
potential.

eLife digest Scattered throughout the human genome are variations in the genetic code that 
make individuals more or less likely to develop certain traits. To identify these variants, scientists carry 
out Genome- wide association studies (GWAS) which compare the DNA variants of large groups of 
people with and without the trait of interest.

This method has been able to find the underlying genes for many human diseases, but it has limita-
tions. For instance, some variations are linked together due to where they are positioned within DNA, 
which can result in GWAS falsely reporting associations between genetic variants and traits. This 
phenomenon, known as linkage equilibrium, can be avoided by analyzing functional genomics which 
looks at the multiple ways a gene’s activity can be influenced by a variation. For instance, how the 
gene is copied and decoded in to proteins and RNA molecules, and the rate at which these products 
are generated.

Researchers can now use an artificial intelligence technique called deep learning to generate func-
tional genomic data from a particular DNA sequence. Here, Song et al. used one of these deep 
learning models to calculate the functional genomics of haplotypes, groups of genetic variants inher-
ited from one parent. The approach was applied to DNA samples from over 350 thousand individ-
uals included in the UK BioBank. An activity score, defined as the haplotype function score (or HFS 
for short), was calculated for at least two haplotypes per individual, and then compared to various 
complex traits like height or bone density.

Song et al. found that the HFS framework was better at finding links between genes and specific 
traits than existing methods. It also provided more information on the biology that may be under-
pinning these outcomes. Although more work is needed to reduce the computer processing times 
required to calculate the HFS, Song et al. believe that their new method has the potential to improve 
the way researchers identify links between genes and human traits.

https://doi.org/10.7554/eLife.92574
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Following the success of PTRS, we made one step forward to utilize functional genomics in this 
strategy. Compared with transcription levels, predicting genetically determined functional genomic 
levels has achieved much higher accuracy by multiple recent deep learning (DL) studies (Avsec et al., 
2021; Chen et al., 2022; Kelley, 2020; Yan et al., 2021; Zhou et al., 2018). These DL models utilize 
segments of the human reference genome as training samples, substantially increasing the sample 
size. Furthermore, functional genomics serve as a mediator between DNA and transcription, thus 
lessening the influence of non- genic factors such as the environment. Given these advancements, 
we propose that using the outputs of one of the state- of- the- art DL models, Sei (Chen et al., 2022), 
as the ‘aggregated impact’ in this novel strategy could effectively address the challenges aforemen-
tioned. Sei accepts a DNA sequence and computes multiple sequence class scores that represent 
different facets of the functional genomic activities of that sequence. This score integrates impacts 
from all variants, even those as rare as singletons, into one continuous variable, and is, in theory, unaf-
fected by LD. In line with this notion, a recent similar strategy called cistrome- wide association study 
integrated variant–chromatin activity and variant–phenotype association to boost power of genetic 
study of cancer (Baca et al., 2022).

In this study, we present an analytical framework founded on this strategy (Figure 1) and imple-
ment it on complex traits in the UK Biobank to pinpoint causal loci and genes, decipher biolog-
ical mechanisms, and devise cross- ancestry prediction models. We segmented the human reference 
genome into multiple 4096 bp loci, generated DNA sequences for each locus for two haplotypes 
per individual, and employed Sei to compute the functional genomic activities of these sequences. 
We designated this activity score as the Haplotype Function Score (HFS) and analyzed the associa-
tion between the HFS and each trait. Our findings confirm that the HFS framework offers a unique 
improvement in the biological interpretation and polygenic prediction of complex traits compared to 
classic SNP- based methods, thereby demonstrating its value in genetic association studies.

Results
Overview of genome-wide HFS
We used the HFS framework to analyze imputed genotype data from the UK Biobank (Figure 1). We 
segmented the human genome (hg38) into 617,378 discrete, non- overlapping loci, each 4096 base 
pairs long. Of these, 590,959 loci carried at least one non- reference haplotype in the UKB cohort 
(see Method and Supplementary file 1a). After quality control, these loci contained approximately 
1.2 billion haplotypes, with a median count of 819 per loci (Figure 1—figure supplement 1). We then 
employed the DL framework, Sei (Chen et al., 2022), to compute sequence class scores for each 
haplotype. In its sequence mode, Sei accepts DNA sequences in fasta format and produces multiple 
distinct sequence class scores, 39 of which were included in our study (Method). Our analysis identified 
significant variation in sequence class scores across different loci. In fact, 49.7% of loci housed haplo-
types whose sequence class (as defined by the maximum of the 39 sequence class scores) differed 
from the reference haplotype sequence class. Using the reference sequence class as a benchmark, we 
noted that 16.8% of loci showed a difference between the maximum and minimum haplotype scores 
that surpassed the score of the reference haplotype. Moreover, the correlation between sequence 
class scores of adjacent loci was low, with a median R2 value of 0.013 (Figure 1—figure supplement 
2), effectively reducing the impact of LD in association studies. Further evaluation indicated that this 
low LD was led by two factors: integration of rare variant impacts and segmentation. Firstly, excluding 
rare variants from HFS caused the LD raised to median = 0.14 (Method; Figure 1—figure supplement 
2C). Secondly, median LD of SNPs from adjacent loci was 0.06, which was significantly higher than HFS 
LD (paired Wilcoxon p = 1.76 × 10−5) but significantly lower than HFS LD without rare variants (paired 
Wilcoxon p < 2.2 × 10−16).

Expanding on the sequence class scores, we defined HFS for each locus. Specifically, we computed 
the mean sequence class score of two haplotypes per individual, reflecting an additive model. We 
selected the score corresponded to the sequence class of reference sequence as the HFS of the corre-
sponding locus, and its association with each trait was computed using a generalized linear model. 
Simulation analysis revealed that when a non- reference sequence class score was associated the trait, 
reference class score could still capture median 70% of HFS–trait association R2. We applied this 
framework to 14 polygenic traits in the UKB British ancestry training set (n = 350,587; Supplementary 

https://doi.org/10.7554/eLife.92574
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Figure 1. Flowchart of the study. Ind: individual.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Distribution of number of haplotypes per locus.

Figure 1 continued on next page

https://doi.org/10.7554/eLife.92574
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file 1b and Method), identifying 16,597 significant HFS–trait associations at a threshold of p < 5 × 
10−8 (n = 15 for insomnia, n = 7573 for height; Supplementary file 1b), equating to roughly 3619 
independent associations. The most significant associations were between the ‘promotor’ score of 
chr7:121327898–121331994 (WNT16) and bone mineral density (BMD; regression beta = −0.02, p < 
10−300), and the ‘promotor’ score of chr9:4760952–4765048 (AK3) and platelet count (beta = 3.20, p = 
2.79 × 10−262; Supplementary file 1c).

When comparing HFS association with the standard SNP- based GWAS on the same data, we found 
that 98% of significant HFS loci also harbored a significant SNP. There were a few cases (n = 0–5) 
where significant HFS loci did not harbored even marginal SNP association (GWAS p > 0.01), which 
were due to the lack of common SNP in these loci. HFS association p- value was higher than GWAS 
p- value in 95% of significant loci, suggested that HFS did not improve power to detect marginal 
effect. The genomic control inflation factor (λGC) for the HFS association test varied between 0.99 for 
asthma and 1.50 for height, closely resembling the SNP GWAS (Pearson correlation coefficient [PCC] 
= 0.91, paired t- test p = 0.16; Method and Figure 1—figure supplement 3). We concluded that HFS- 
based association tests had adequate power and do not introduce additional p- value inflation.
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Figure 2. Fine- mapping result summary. Gray bar plots indicated the number of loci with posterior inclusion probability (PIP) >0.95 in Haplotype 
Function Score (HFS) + SUSIE (causal loci). Black bar plots indicated number of SNP with PIP >0.95 in PolyFun or SbayesRC analysis (the larger number 
was shown). Each grid of heatmap showed the odds ratio of each sequence class loci being causal loci for each trait. ‘All_OR’ indicated odds ratio for 
pooling all traits together. Enh: enhancer. TF: transcription factor- binding site.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Heritability enrichment within causal loci estimated Linkage Disequilibrium Score regression (LDSC).

Figure supplement 2. Linkage disequilibrium (LD) among Haplotype Function Score (HFS).

Figure supplement 3. Comparison of inflation factor between Haplotype Function Score (HFS) and SNP association tests.

Figure 1 continued

https://doi.org/10.7554/eLife.92574
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Fine-mapping based on HFS
Based on these data, we applied SUSIE to fine- map the causal loci that were associated with each 
of the 14 traits. We divided hg38 genome into 1361 independent blocks as defined by MacDonald 
et al., 2022, and applied SUSIE (Wang et al., 2020) to loci HFS in each of these blocks (number of 
loci per block = 4–2392). As shown in Figure 2 and Supplementary file 1d, we identified a total of 
2699 causal loci–trait associations at the threshold of posterior inclusion probability (PIP) >0.95, here-
after referred to as ‘causal loci’. Compared with SNP- based functionally aware fine- mapping methods 
PolyFun (Weissbrod et al., 2020) and SbayesRC (Zheng et al., 2022), HFS- based SUSIE detected 
−11 to 334 more causal signals (median = 63, Supplementary file 1e) for each trait. We cautioned 
that these methods use summary statistics as input and are by nature less sensitive than individual 
data- based methods. Yet, we suggested that such impact would be mild, since we used in- sample LD 
reference (from UKB European sample).

Among these causal loci, only 22% were also lead loci in association analysis (loci with the lowest 
p- value in 200 kb region), and 58% had association p- value >5 × 10−8. In line with previous SNP- based 
analysis (Weissbrod et al., 2020), this result highlighted the importance of using causal signals instead 
of lead signals in post- GWAS analysis. We found 67 causal loci showing pleiotropic effects on at least 
two independent traits, including ‘CTCF- Cohesin’ score of chr9:89596537–89600633 that was asso-
ciated with age at menarche, body mass index (BMI) and height (PIP >0.97; Supplementary file 1d). 
We also found that rare variants played an important role in the good find- mapping performance of 
HFS: when variants with MAF <0.01 were removed, 55.3% of the causal signals would be missed in 
HFS + SUSIE analysis.

When looking at the reference sequence class of loci, those with functional importance were more 
likely to be causal loci, including ‘Promoter’ (odds ratio [OR] = 2.33, p = 1.41 × 10−14), ‘Bivalent stem 
cell enhancer’ (OR = 2.22, p = 1.11 × 10−8), and ‘Transcribed region 1’ (OR = 1.71, p = 1.581 × 10−10, 
Figure 2). Such functional enrichment was even higher for pleiotropic loci (‘Promoter’: OR = 7.20, p 
= 3.35 × 10−5). We also observed trait- specific patterns of such sequence class enrichment, such as 
‘CEBPB- binding site’ (Insomnia: OR = 5.25, p = 0.01) and ‘FOXA1/AR/ESR1- binding site’ (intelligence: 
OR = 4.69, p = 0.01, Figure 2 and Supplementary file 1f). These results demonstrated the expected 
functional patterns of causal loci, and indicated that HFS- based fine- mapping was biologically inter-
pretable and reliable.

Despite the functional enrichment, we applied several secondary analyses to verify the reliability 
of HFS- based SUSIE result. Firstly, we took causal SNP fine- mapped by PolyFun (Weissbrod et al., 
2020) as positive control, and find that compared with genomic region- matched control loci, causal 
loci were significantly enriched for causal SNP (OR = 1.33–5.08, Fisher’s test p = 0.12–4.72 × 10−52, 
Supplementary file 1e). Secondly, we calculated the heritability tagged by causal loci and PolyFun 
causal SNP in independent test set (defined as the R2 of linear regression; Method), and found that 
causal loci tagged 38–251% more heritability than causal SNP (median = 151%; Supplementary file 
1e). This was not an artifact of larger number of causal loci, since the Akaike information criterion 
(AIC) was similar between causal loci and causal SNP (paired t- test p = 0.36; Supplementary file 1e). 
Thirdly, for traits with sufficient causal loci coverage, we also applied Linkage Disequilibrium Score 
regression (LDSC) on independent GWAS summary statistic to evaluate heritability enrichment in 
causal loci. On average, causal loci showed 124- fold enrichment of heritability, significantly larger than 
genomic region- matched control loci (124- vs 101- fold; p = 0.0002, Method and Figure 2—figure 
supplement 1). Lastly, we applied simulation analysis and found that HFS + SUSIE showed similar 
advantages over SNP- based methods as in real data, with high accuracy and low false- positive rate 
(FDR) (Supplementary materials).

We further applied a sliding- window analysis (step = 2048 bp, Method) to test whether HFS- based 
result is robust against the choice of sequence interval. 29.4% of causal loci (PIP >0.95) in the original anal-
ysis were still causal in sliding- window analysis. 31.1% and 29.3% of causal loci whose 5′ and 3′ overlap-
ping locus had PIP >0.95 in sliding- window analysis, respectively, while themselves were no longer causal. 
Besides, HFS + SUSIE was also robust when the predefined number of causal loci (L = 2–10) was changed, 
and the number of detected loci was not changed. Lastly, removing insertion and deletion would reveal 
9% more significant association (p < 5 × 10−8) but 4.7% less causal association (PIP >0.95), and slightly 
increased inflation factor (Wilcoxon p = 0.0001, Figure 2—figure supplement 1). Taken together, HFS- 
based SUSIE is a powerful and robust strategy for individual data- based genetic fine- mapping.

https://doi.org/10.7554/eLife.92574
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Biological interpretation based on HFS
Pinpointing causal loci of complex traits provides the opportunity of analyzing the biological mech-
anism of them. Thus, based on the HFS- based fine- mapping result, we applied a linear regression 
model to analyze the underlying pathways, cell types, and tissues of each complex trait. For each 
locus, we annotated its relevance to a pathway by combined SNP to Gene (CS2G) strategy (Gazal 
et al., 2022), and regressed the PIP against this annotation, with a set of baseline annotations included 
as covariates, similar to the LDSC framework (Finucane et al., 2018) (Method). After p- value correc-
tion and recurrent pathway removal (Method), we detected a total of 727 pathway–trait associa-
tions (Figure 3A and Supplementary file 1g). The most significant associations were ‘megakaryocyte 
differentiation’ with platelet count (p = 2.26 × 10−34), ‘Insulin- like growth factor receptor signaling 
pathway’, ‘Endochondral ossification’ with height (p = 4.95 × 10−33 and 1.17 × 10−27), ‘PD- 1 signaling’ 
with allergic disease (p = 5.55 × 10−25), and ‘major histocompatibility complex pathway’ with asthma 
(p = 1.22 × 10−23). In fact, asthma and allergic disease were predominantly associated with more than 
80 immune- related pathways. These associations were all in line with existing knowledge of trait 
mechanism, and extended the understanding of their genetic basis. For example, PD- 1 has recently 
been suggested as potential targets of allergic diseases like atopic dermatitis (Galván Morales et al., 
2021), but such association has not been highlighted by previous genetic association studies.

For other traits, the most significant associations also replicated known mechanisms, such as 
‘osteoblast differentiation’, ‘Wnt ligand biogenesis and trafficking’ with BMD (p = 4.59 × 10−13 and 
2.78 × 10−12); ‘circadian pathway’ with chronotype (p = 4.25 × 10−12); ‘calcium regulated exocytosis of 
neurotransmitter’, ‘Arachidonic acid metabolism’ with intelligence (p = 5.52 × 10−7 and 2.78 × 10−6); 
‘GPCR pathway’ and ‘adipogenesis’ with BMI (p = 4.97 × 10−10 and 2.02 × 10−7) and ‘physiological 
cardiac muscle hypertrophy’ with systolic blood pressure (p = 6.32 × 10−11). We also highlighted less 
significant association which provided novel insights, such as ‘synaptic vesicle docking’ and ‘neuron 
migration’ with chronotype (p = 4.00 × 10−7 and 4.55 × 10−7), ‘Prostaglandins synthesis’ with insomnia 
(p = 5.30 × 10−9), ‘behavioral response to cocaine’ with alcohol intake (p = 3.39 × 10−8) and ‘roof of 
mouth development’ and ‘glycoside metabolism’ with forced vital capacity (FVC) (p = 2.19 × 10−12 and 
5.73 × 10−11).

For cell type and tissue analysis (Figure 3B and Supplementary file 1h), we applied the same 
linear model to evaluate whether causal loci enriched in active chromatin regions of each cell type 
(Method). We found 153 biologically interpretable associations with complex traits. For example, fetal 
megakaryocyte (p = 5.67 × 10−22) and child spleen (p = 2.15 × 10−13) were found to be key cell type 
and tissue of platelet count. Systolic blood pressure was significantly associated with multiple heart 
and artery tissues and fetal cardiomyocyte (p < 1.63 × 10−5), whereas allergic disease was associated 
with multiple immune cells including natural killer, Treg, and B cells (p < 4.79 × 10−16). For brain- 
related traits, we found 21 significant associations, 14 of which were from central nervous system. For 
example, adult hippocampus and cingulate gyrus were both linked to alcohol intake, smoking, and 
insomnia (p < 1.11 × 10−5), whereas chronotype was associated with embryonic brain germinal matrix 
(p < 8.68 × 10−6) and intelligence with embryonic neuron- derived stem cell (p < 6.89 × 10−7).

We also applied other modified strategies for this task but did not get satisfying result. For 
example, using cS2G to link locus to gene lists specifically expressed in each cell type suffered from 
scRNA dataset batch effect, whereas linear mix model was less sensitive than standard linear model 
(Supplementary Materials).

Taken together, our result suggests that fine- mapping results based on HFS could pinpoint the 
causal pathways, cell types, and tissues underlying complex traits, and is valuable for the biological 
interpretation of genetic association study.

Highlighted genes for complex traits
Enhanced power of fine- mapping and biological enrichment could reveal novel key genes for trait 
mechanism study. Below we integrated fine- mapping result and their functional annotation in several 
case studies to find causal signals and trait- relevant genes in regions not resolved by previous genetic 
association studies.

In our study, platelet count had large number of causal loci (Figure 2) which showed significant 
functional enrichment (Figure 3). To find key loci and genes underlying platelet count, we focused on 
causal loci that overlapped with active regions in ‘fetal megakaryocyte’ and ‘child spleen tissue’, and 

https://doi.org/10.7554/eLife.92574
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Figure 3. Biological enrichment analysis based on Haplotype Function Score (HFS) fine- mapping. x- axis indicated 
t statistics of the analyzed term in a multivariate linear regression (Method). Cell: single- cell ATAC peak for 222 cell 
types from Zhang et al., 2021a. Tissue: active chromatin regions of 222 tissues from epimap (Boix et al., 2021). 
For each trait, we showed the most significant term plus one or two terms with high biological interpretation that 

Figure 3 continued on next page
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applied cS2G (Gazal et al., 2022) to link them to two key pathways (‘megakaryocyte differentiation’ 
and ‘platelet morphogenesis’, Method and Figure 4A). We chose these annotations based on p- value 
in biological enrichment analysis in Figure 3. A total of 25 loci were highlighted (Figure 4A), which 
were recurrently linked to well- known platelet- regulating genes like MEF2C, SH2B3, FLI1, RUNX1, 
THPO, and NFE2. Among them we noticed a less- studied gene RBBP5, a target of key transcriptome 
factor MEF2C during megakaryopoiesis (Kong et  al., 2019). Specifically, in 1q32.1 region, HFS + 
SUSIE identified two loci with PIP  >0.9 (Figure  4B). SNP- based association also found significant 
association in this region, but SNP fine- mapping (Weissbrod et  al., 2020) could not resolve this 
signal and only found seven signals between PIP = 0.1–0.5. This was unlikely a statistical inflation, 
since HFS- based association test p- value was actually higher than SNP- based one (Figure 4—figure 
supplement 1). One of the causal loci, chr1:47401806–47405902 (PIP = 1), overlapped with spleen 
active chromatin and harbored a cCRE in megakaryocyte, and was linked to RBBP5 and three other 
genes. RBBP5 is known to be involved in megakaryocyte differentiation during megakaryopoiesis and 
was regulated by MEF2C (Kong et al., 2019), but previous genetic association studies provided little 
evidence for its association with platelet count.

The major histocompatibility complex (MHC) region has long been a challenge of genetic associa-
tion study due to its long- range LD, and is often excluded in fine- mapping tools. However, many disor-
ders like schizophrenia (Sekar et al., 2016) and immune diseases (Nawijn et al., 2011) are robustly 
associated with MHC region. In our HFS- based fine- mapping of asthma, we found 15 loci within MHC 
region had PIP >0.95, 11 of which overlapped with active chromatin regions in Treg or natural killer 
cells (Figure 4C and Supplementary file 1j). This result showed good discrimination between causal 
and non- causal loci: despite these 15 likely causal loci, only six loci had PIP between 0.25 and 0.95. 
Since MHC region harbored a large number of genes, these causal loci were linked to as much as 105 
potential target genes, which hindered the discovery of true targets. We further filtered them based 
on the involvement in pathway ‘TNFR2- NFKB pathway’ and ‘innate lymphocyte [ILC] development’, 
since these pathways were most significantly associated with asthma (Figure 3), even after excluding 
MHC region (p = 2.57 × 10−13 and 1.39 × 10−17). We found five genes (LTA, LTB, TNF, PSMB8, and 
PSMB9) that were predicted to be regulated by five causal loci overlapped with active chromatin 
regions (Figure 4C), which could be considered as potential key genes for further validation.

Similarly, we fine- mapped MHC region for other allergic diseases (Figure 4—figure supplement 2 
and Supplementary file 1j) and found potential key genes including HLA family and AGER. We also 
highlighted other gene–trait association not previously emphasized by GWAS, including GATA4 and 
NPPA (cardiac muscle hypertrophy) with SBP, ALOX5 (arachidonic acid metabolism) with intelligence 
and CRY1 (circadian pathway) with chronotype, as further discussed in Supplementary file 1k, l, m 
and supplementary information.

On the other hand, HFS perform worse than SNP- based fine- mapping on exonic regions. Taking 
height as an example, PolyFun detected 125 causal SNPs (PIP >0.95) in the exonic regions, but only 
16% (20) of loci that harbored them also reached PIP >0. 5 (11 reached PIP >0.95) in HFS + SUSIE 
analysis. Among the 105 loci that missed such signals (HFS PIP <0.5), 12 had a nearby loci (within 
10 kb) showing HFS PIP >0.95, which likely reflected false positive led by LD. Thus, SNP- based analysis 
should be prioritized over HFS in coding regions.

HFS-based polygenic prediction
Lastly, we analyzed the potentiality of HFS in polygenic prediction accuracy. Compared with state- of- 
the- art SNP- based polygenic risk score (PRS) algorithm LDAK- BOLT (Zhang et al., 2021b), HFS- based 
PRS (weighted by SUSIE posterior effect size) reached 47–90% of R2 in independent European test set 
(meta- analyzed proportion = 75.6%, 95% confidence interval = 75.3–75.8%, Figure 5—figure supple-
ment 1). The gap between performance of HFS- and SNP- based PRS reflected the fact that HFS only 
captured (the majority of) functional genomic alterations and missed the information of amino acid 
sequence and post- translational modification. We thus proposed that integrating information from 
HFS and SNP could provide better performance. Specifically, in the large European training set we 

also passed significance threshold. Full enrichment result is shown in Supplementary file 1g and Supplementary 
file 1h.

Figure 3 continued
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Figure 4. Haplotype Function Score (HFS) linked trait to causal genes. (A) Target genes of causal loci identified by HFS + SUSIE for platelet count. Only 
genes that showed functional convergence were shown. (B) Regional plot for RBBP5. HFS: loci posterior inclusion probability (PIP) calculated by HFS + 
SUSIE. SNP: SNP PIP calculated by PolyFun. cCRE: credible cis- regulation elements. (C) Regional plot of major histocompatibility complex (MHC) region 
for asthma. Thickened curve linked highlighted causal loci to its target genes predicted by cS2G (Gazal et al., 2022).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure 4 continued on next page
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trained SNP PRS model by LDAK. Then, in a small tuning sample of target ancestry, we calculated 
per- locus HFS prediction score of height (sum of HFS within this block, weighted by SUSIE poste-
rior effect size), then used machine learning to integrate them with LDAK PRS into a final polygenic 
prediction score, hereafter referred to as ‘HFS + LDAK’. To choose the proper machine- learning tools 
to achieve this goal, in British European test set we applied LASSO, ridge regression, and elastic net 
and compared the result (Figure 5B). They gave comparable result with only difference of R2 around 
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Figure 5. Haplotype Function Score (HFS)- based polygenic prediction. (A) Prediction R2 of HFS- based polygenic risk score (PRS) using different 
threshold of posterior inclusion probability (PIP). allSNP: SNP- based PRS calculated by LDAK- BOLT (Zhang et al., 2021b). n: number of features 
included in the corresponding PRS. (B) Prediction R2 of per- block HFS score in British European test set by different methods. EN: elastic net. 
(C) Prediction R2 of different tools in non- British European (NBE), South Asian (SAS), East Asian (EAS), and African (AFR) groups in UK Biobank.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Proportion of heritability captured by Haplotype Function Score (HFS) polygenic risk score (PRS).

Figure supplement 1. p- value comparison within RBBP5 region between Haplotype Function Score (HFS) and SNP association test.

Figure supplement 2. Locus analysis for allergic diseases.

Figure 4 continued
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0.01, and all of them were profoundly better than simple linear regression. We chose LASSO as the 
algorithm in the formal analysis.

Using height as a representative trait, we first estimated the proportion of variance captured by top 
loci, and found that HFS of loci with PIP >0.4 (n = 5101) captured roughly 80% of variance explained 
by all genome- wide loci (n = 1,200,024 corresponded to sling- window strategy; Figure  5A). We 
then calculated HFS + LDAK in non- British European (NBE), South Asian (SAS), East Asian (EAS), and 
African (AFR) population in UK Biobank, and observed 17.5%, 16.1%, 17.2%, and 39.8% improvement 
over LDAK alone (p = 3.21 × 10−16, 0.0001, 0.002, and 0.001, respectively. Figure 5C). As a compar-
ison, we integrated LDAK with PolyFun- pred (Weissbrod et al., 2022) and SbayesRC (Zheng et al., 
2022) using Polypred framework (Weissbrod et al., 2022), but did not observe significant improve-
ment over LDAK alone (difference in R2 < 0.01, p = 0.001–0.07, Figure 5C). Since PolyFun- pred + 
BOLT- LMM has been shown to significantly outperformed BOLT- LMM alone (Weissbrod et al., 2022), 
we reasoned that the improvement of LDAK over BOLT- LMM might have attenuated the improvement 
brought about by PolyFun- pred, making it difficult to reach significance threshold. Taken together, we 
concluded that HFS could bring about mild but significant improvement to classic SNP- based PRS in 
the task of cross- ancestry polygenic prediction.

Discussion
In this study, we designed the new HFS framework for genetic association analysis and demonstrated 
that it could improve classic SNP- based analysis in terms of causal loci and gene identification, biolog-
ical interpretation and polygenic prediction. We suggest that HFS is a promising strategy for future 
genetic studies, but more progresses in algorithm and computation and data resources are still 
desired.

Compared with SNP, HFS has several compelling features. For instance, LD between adjacent HFS 
is much lower than SNP, which enhances the precision of statistical fine- mapping. For those false- 
positive variants caused by LD, they are expected to make little impacts on functional genomics, thus 
their HFS would be close to reference and would not influence downstream analysis significantly. In 
line with these advantages, we showed that HFS- based fine- mapping had high statistical power, and 
downstream enrichment analysis was capable of revealing biologically interpretable mechanisms. As a 
typical example, our findings of enrichment of intelligence- associated loci in arachidonic acid metab-
olism pathway is in line with the well- known role of polyunsaturated fatty acid in neurodevelopment 
(Helland et  al., 2003). Nonetheless, previous GWAS provided little evidence on this association. 
Secondly, HFS could integrate effects of all variants within a locus, regardless of their population 
frequency. Thus, HFS could capture information from rare variants overlooked by classic association 
study and improve polygenic prediction, as shown by our result. In fact, HFS framework could directly 
extend to whole- genome sequencing data and capture all mutations as rare as singleton, making one 
step forward to fill in the ‘missing heritability’.

Despite its potential, the current HFS framework carries several drawbacks and necessitates signif-
icant enhancements. A key limitation is the substantial computational cost. In this study, the transfor-
mation phase of the genotype–haplotype sequence for UK Biobank SNP data required hundreds of 
thousands of CPU core hours. This computation cost would increase exponentially when analyzing 
whole- genome sequencing data or employing a sliding- window strategy. A potential solution could 
involve developing a new algorithm that bypasses the variant calling stage and directly generates 
DNA sequences per locus from raw sequencing or SNP array data. For the sequence- to- HFS step, Sei 
(Chen et al., 2022) required about 1.8 GPU hours per one million sequences. Intriguingly, the majority 
of Sei’s output is unused in the HFS framework, since Sei predicts over 20,000 functional genomic 
features, while the HFS only represents one of their integrated scores. Future development of novel 
DL models that predict functional genomics in a manner more fitting to the HFS framework could 
considerably reduce computation costs. Lastly, it is currently unfeasible to incorporate all genome- 
wide HFS into a single LASSO model. This limitation forced us to first integrate HFS into pre- locus 
score, which inevitably sacrificed the accuracy.

Another hurdle arises in integrating HFS with other genomic features. Intrinsically, HFS captures 
only the variant effect mediated by functional genomics, while a genetic variant might also influence 
amino acids, post- transcriptional modifications (PTMs) (Park et al., 2021), and 3D chromosomal struc-
tures (Zhou, 2022). Therefore, HFS alone cannot wholly replace SNP without any loss, as our results 
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demonstrate that the HFS- based prediction model captured approximately 70% of the variance 
explainable by the SNP- based prediction model. One potential solution is to extend the concept of 
HFS, applying DL to quantify the genetically determined values of PTMs, protein biochemical proper-
ties (Pejaver et al., 2020), and protein and chromosomal structures, potentially employing AlphaFold 
(Jumper et al., 2021)- derived features (Liu et al., 2022). Analyzing HFS in conjunction with these 
multi- modal function scores could provide a comprehensive depiction of the genetic architecture of 
complex traits. However, the colossal computational cost is currently prohibitive. As a compromise, we 
simply performed joint analysis of HFS with SNP PRS in our prediction model analysis. This approach 
is far from optimal, as it led to only moderate improvement and did not enhance fine- mapping and 
biological enrichment analysis.

The challenge of using sequence- based DL models in HFS applications is further compounded 
by their difficulty in predicting variations between individuals. Recent studies (Huang et al., 2023; 
Sasse et al., 2023) indicate that DL models, trained on the reference human genome, demonstrate 
limited accuracy in predicting gene expression levels across different individuals. This limitation is 
likely due to the models' inability to account for long- range regulatory patterns, which are crucial for 
understanding the impact of variants on gene expression and vary across genes. In contrast, our study 
leveraged sequence- determined functional genomic profiles in association studies, which mitigates 
this issue to an extent. For instance, although sei cannot identify the specific gene regulated by a 
given input sequence, it can predict changes in the sequence’s functional activity. Future improve-
ments in DL models' ability to predict interindividual differences could be achieved by incorporating 
cross- individual data in the training process. An example of such data is the EN- TEX (Rozowsky et al., 
2023) dataset, which aligns functional genomic peaks with the specific individuals and haplotypes 
they correspond to.

In summary, our results demonstrate that incorporating HFS to represent genetically determined 
functional genomic activities in genetic association studies offers robust improvements in both the 
biological interpretation and polygenic prediction of complex traits. Thus, the application of the HFS 
framework in future genetic association studies holds considerable promise.

Methods
Sample description
This study analyzed UK Biobank data, with application ID 84436, and was adhered to the ethics and 
privacy policy of UK Biobank. We only included participants with array imputed genotype data in 
bgen format that passed UKB quality control, and removed related individuals. We randomly selected 
350,587 self- identified British ancestry Caucasians as training sample. The remaining participants were 
grouped according to their ancestry, where non- British European, South Asian, East Asian, and African 
groups serve as test samples.

All phenotypes analyzed (Supplementary file 1b) were collected from UKB table browser, which 
came from self- report or physical measurement. Phenotypes were first adjusted by age, sex, top 10 
principal components, Townsend index, and genotype array quality metrics by linear regression. We 
then applied inverse- normal transformation on the residuals. Binary phenotypes were adjusted in the 
same way except by generalized linear regression.

Genotype data processing
We first segmented hg38 genome into 4096 bp loci. To do so, we downloaded chromatin state anno-
tation of 222 human tissues at different developmental stage (embryo, newborn, and adult) from 
epimap (Boix et al., 2021) database. For each tissue, all chromosomal regions annotated as ‘tran-
scription start site (TSS), transcription region (TX), enhancer, promoter’ in at least half of the samples 
were marked as active regions. The union of active regions across all tissues was taken, and regions 
annotated as genomic gaps (centromere, ambiguous base pairs, etc.) in the Hg38 genome were 
removed. Then, for this series of active regions, if the length is less than 4096 bp, the locus is defined 
as a 4096- bp area centered around the active region. If the length is greater than 4096 bp, 4096- bp 
length loci are gradually delineated from the midpoint outward. Finally, non- overlapping 4096 bp 
blocks were used to cover the remaining genomic regions. This resulted in about 617,378 genomic 
regions in total. In the sliding- window analysis, all these blocks were shifted 2048 bp toward 5′ end, 
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generating another 617,378 blocks. We repeated the fine- mapping analysis and applied polygenic 
analysis on these combined blocks, using height as a representative trait.

For each of the loci, we obtained ID of variants within this locus by bedtools (Quinlan and Hall, 
2010), then extracted genotypes from  UKB. bgen file by bgenix, finally used Plink (Purcell et  al., 
2007) to remove all variants with INFO <0.8, Hardy–Weinberg p < 10−6, allele count <10 or missing 
rate >10%, and removed individual that missed more than 10% of retained variants in this locus. The 
output vcf file was liftover to hg38 by Crossmap (Zhao et al., 2014) and phased by SHAPEIT4 (Dela-
neau et al., 2019). Phased vcf was transformed  to. haps format by Plink, which in turn gave rise to two 
files: a vcf file containing information of each haplotype, and an n x 2 matrix in plain text that recorded 
the id of two haplotypes per individual.

HFS calculation
There has been several DL models that predict functional genomic profiles based on DNA sequence 
(Avsec et al., 2021; Chen et al., 2022; Kelley, 2020; Yan et al., 2021; Zhou et al., 2018). Among 
them, we chose sei (Chen et al., 2022) to calculate HFS for the following reasons: (1) the required 
input length (4096 bp) is moderate; (2) it represents 21,906 functional genomic tracks, more compre-
hensive than other models; (3) it integrated information of the entire sequence, not only the few bp 
at the center. For each haplotype at each locus, we generated its corresponding DNA sequence by 
bcftools (Danecek et al., 2021) consensus option. At each locus, the start point of each sequence was 
matched to the start point of reference sequence. When insertion variants made the sequence longer 
than 4096 bp, we discarded base pairs at the 3′ end. Likewise, with deletion variants, we added N to 
the 3′ end. We applied sei to predict 21,906 functional genomic tracks for each sequence, without 
normalizing for histone mark (divided each track score by the sum of histone mark score) as suggested 
by the sei author. We then used the projection matrix provided by sei to calculate forty sequence class 
scores, which could be regards as the weighted sum of these tracks and represented different aspect 
of functional genomic activities. We discarded the last score (heterochromatin 6 [centromere]), since 
its proportion is too low and is functionally trivial, leading to 39 scores per haplotype.

On each individual, we derived from each sequence class score the mean of two haplotypes, corre-
sponding to additive model. For HFS LD calculation, we extracted the mean value of sequence class 
score corresponding to reference sequence class of adjacent loci, and calculate R2 value between 
them. The sequence class score of the reference sequence class was defined as the HFS for this locus, 
and was used for downstream trait association analysis.

HFS–trait association
For each locus, we calculated the association between trait- specific HFS and adjusted, normalized 
trait value by linear regression, without any covariates (this is because all selected covariates have 
been adjusted at the normalization step). For uniformity, we set the significance threshold at p < 5 
× 10−8, even if it was over- stringent for n = 590,959 loci. Among significant associations, we defined 
an independent association as the locus with the lowest p- value in the 200 kb regions. As a positive 
control, we applied quantitative and binary GWAS with REGENIE (Mbatchou et  al., 2021), using 
default settings and the same British training sample. The main difference is that we used raw trait 
values in REGENIE, and provided the same covariates. We calculated the genomic control inflation 
factor, λGC, as the median of Χ2 statistics, separately for HFS association test and GWAS only those 
SNPs in hapmap3 (Altshuler et al., 2010) project were calculated. We compared the λGC between HFS 
and SNP by Pearson correlation analysis and paired t- test.

Fine-mapping analysis
We divided hg38 genome into 1361 independent blocks as defined by MacDonald et al., 2022, and 
applied SUSIE to HFS of all loci within each block, separately for each trait (parameters: maximum 
number of causal signal = 10, coverage = 0.95). We subtracted reference HFS value for each locus 
prior to analysis, such that homozygous reference haplotype corresponded to HFS = 0. To avoid 
influence of sei prediction noise, we rounded the HFS value at two decimals. This is due to the fact 
that even if a variant actually makes no impact on functional genomics, Sei would still output a value 
that are close to but not equal to reference sequence class score. Rounding procedure would set such 
HFS to zero and remove the random value from sei. Loci whose HFS had PIP >0.95 were defined as 
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causal loci, and loci that had causal association with multiple traits were defined as pleiotropic loci. As 
a positive control, we applied PolyFun (Weissbrod et al., 2020) and SbayesRC (Zheng et al., 2022) 
on the GWAS summary statistics by REGENIE on the same training set, and extracted the reported 
PIP to define causal SNP.

To analyze the functional characteristics of causal loci, we first defined the sequence class of each 
locus by the maximum sequence class score of reference haplotype. We then tested whether each 
sequence class contained excess causal loci of each trait by Fisher’s test. For each causal locus, we also 
defined a ‘control’ locus as the nearest locus that matched the p- value of this causal locus, and tested 
whether causal loci carried more PolyFun causal SNP than control loci by Fisher’s test. Furthermore, 
For traits whose causal loci covered >0.1% of genome- wide SNP, we applied LDSC (Finucane et al., 
2015) to quantify the heritability enrichment in causal and control loci, and compare their difference 
by jackknife method. To avoid winner’s curse, we used external GWAS summary statistics for this 
analysis (Mikaelsdottir et al., 2021; Yengo et al., 2022). As an alternative method to quantify the 
heritability captured by causal loci, we ran multivariate linear regression in independent British test 
set where HFS of causal loci were independent variables and trait value were dependent variable, and 
calculated the R2 and AIC. We applied the same analysis on causal SNP, and compared AIC between 
HFS and SNP multivariate regression.

Functional enrichment analysis
Similar to the idea of LDSC (Finucane et al., 2015), we first generated a series of baseline annota-
tion of each locus, then tested whether locus PIP was associated with functional annotations after 
controlling the impact of these baseline annotations. Specifically, we defined the following baseline 
annotations:

1. Number of haplotypes, range of HFS distribution of all haplotypes (scaled by reference HFS), 
and 39 sequence class score of reference haplotype.

2. Genomic regions of conserved base, high Phastcons score (Siepel et al., 2005) in mammals, 
primates and vertebrate, exon, intron, untranslated regions at 3′ and 5′ and 200 bp flanking 
regions of TSS. We used bedtools intersect -f 0.1 option to annotate each locus by these 
annotations.

3. Maximum B statistics (McVicker et  al., 2009), minimum allele age, and ASMCavg (Palamara 
et al., 2018) of all variants within this locus.

Type 2 and 3 annotations were directly obtained from LDSC (Finucane et al., 2015) baseline anno-
tations. We did not include annotations related to functional genomics, since 39 sequence class scores 
were used to capture functional genomic characteristics. Conditioned on these baseline annotations, 
we analyzed the enrichment of PIP in the following functional annotations:

1. Biological pathways: We downloaded all pathways from MsigDB (Subramanian et al., 2005), 
C2: canonical pathways category (including Reactome (Fabregat et al., 2018), Pathway Interac-
tion Database (PID) (Schaefer et al., 2009), Biocarta and Wikipathway) and C6: Gene ontology 
(Ashburner et  al., 2000) (biological process) category. We retained only pathways with  >5 
and <500 genes. We generated a gene × pathway binary matrix and applied hierarchical clus-
tering so that similar pathways were placed close to each other. We sequentially compared 
adjacent pathways, and removed the smaller one if the fraction of overlap >30%. A total of 3219 
pathways were retained. We then linked each locus to these pathways by cS2G (Gazal et al., 
2022) strategy. Specifically, a locus L would be annotated as 1 for pathway P only if L contained 
a SNP that was link to P with cS2G score >0.5.

2. Tissue- specific chromatin activity: We downloaded chromHMM (Ernst and Kellis, 2012) chro-
matin state annotation for 833 samples from epimap (Boix et al., 2021), and grouped them 
according to developmental stages and second- level tissue types. For each group, all chromo-
somal regions annotated as ‘transcription start site (TSS), transcription region (TX), enhancer, 
promoter’ in at least half of the samples were marked as active regions. We used bedtools 
intersect -f 0.1 option to annotate whether each locus was active in each tissue.

3. Cell type- specific open chromatin regions: We downloaded scATAC- seq peak data from Zhang 
et al., 2021a, and annotated each locus by bedtools intersect -f 0.1 option.

We applied multivariate linear regression of PIP against baseline annotations +one of the functional 
annotations. Regression coefficient >0 and Bonferroni- adjusted regression p- value <0.05 were used 
as significance threshold. From the final results, we manually removed those pathways and cell types 
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that reached significance threshold in more than half of the traits, since these pathways likely reflected 
unrecognized confounders.

Polygenic prediction
We used the posterior effect size estimated by SUSIE on sliding- window strategy (doubling the 
number of loci) as weights, and calculated the weighted sum of HFS as the PRS of each trait, and 
calculated R2 in independent British test sample with simple linear regression. As a positive control, 
we applied LDAK- BOLT (Zhang et al., 2021a) algorithm on the SNP array data (about seven hundred 
thousand variants) with tenfold cross- validation and max iteration = 200 in the same training sample, 
and calculated SNP- based PRS with the output SNP weights. Normalized trait values were analyzed, 
without any covariates provided. Array data were filtered by Plink with option --geno 0.1 --hwe 1e- 6 
--mac 100 --maf 0.01 --mind 0.1.

To train the refined model that predict height, we first calculated per- block HFS- based prediction 
score of height as the weighted sum of HFS within this block. Then, within each target ancestry group 
(non- British European (NBE), South Asian (SAS), East Asian (EA), and African (AFR) participants in UK 
Biobank), we randomly selected half as tuning sample and half as test sample. In the tuning sample, 
we applied LASSO regression that included both LDAK PRS and genome- wide per- block HFS score 
(1361 in total). The choice of LASSO regression was based on a comparison on British European test 
set (Figure 5B), where LASSO, ridge, and elastic net gave similar results and LASSO was relatively 
better. In the tuning sample of target ancestry, LASSO estimated the weights to combine per- block 
HFS score and LDAK PRS. We calculated the final prediction score in the test sample using these 
weights, and evaluated its prediction by linear regression R2. Since the outcome (height) has already 
been adjusted and standardized, no covariates were included in this step. Additionally, we applied 
PolyFun- pred (Weissbrod et al., 2022) and SbayesRC (Zheng et al., 2022) to the summary statistics 
of height (calculated by REGENIE in the same training sample), and integrated their effect size with 
LDAK weight in the tuning sample using Polypred (Weissbrod et al., 2022) method. PRS for LDAK, 
LDAK + PolyFun and LDAK + SbayesRC were calculated by plink score option, excluding variants with 
INFO <0.8, Hardy–Weinberg p < 10−6, allele count <2 or missing rate >10% in the target test set.

Simulation analysis
We simulated trait levels using HFS data from chromosome 1 in a randomly selected 50,000 samples 
from UKB EUR training data. We randomly selected 1% (500) loci, assigned effect size from standard 
normal distribution, and calculated the aggregated genetic liability. We then simulated trait levels with 
h2 = 0.1. We applied HFS + SUSIE as well as REGENIE + PolyFun on simulated traits and calculated the 
area under curve (AUC), FDR at PIP >0.95 for HFS + SUSIE. We repeated this procedure for 30 times.

On average, HFS + SUSIE showed high accuracy in identifying causal loci (median AUC = 0.92) and 
the FDR at PIP >0.95 is median 0.059. In line with real data analysis, the number of causal loci identi-
fied by HFS + SUSIE is 1.12- fold more than PolyFun on average. Furthermore, HFS + SUSIE showed 
good discrimination between causal and non- causal loci: the number of PIP >0.95 loci is larger than 
0.5 < PIP < 0.95 loci.

Alternative strategy on biological enrichment analysis
Despite the standard linear regression as we applied in the main text, we also applied a linear mixed 
regression which took independent blocks as random effect. For each regression, we included one 
biological term plus all baseline annotations. The regression coefficient and p- value of each biological 
term were estimated by mgcv R package. After p- value correction, most of the significant terms were 
those recurrently appeared in more than half of the traits, which were considered artifacts of hidden 
covariates. When removing these recurrent terms, less than five significant terms remained for each 
trait. We concluded that linear mixed regression was less sensitive than standard linear regression for 
identifying trait- specific biological association.

We also tried another strategy for cell type- specific analysis. We first downloaded C8 category 
from MsigDB, which contained gene lists specifically expressed in about 800 cell types, derived 
from multiple single- cell RNA sequencing studies. We then linked each locus to these gene lists 
by CS2G method, then applied linear regression, similar to pathway analysis. We found that most 
traits predominantly linked to nearly all cell types from a specific study, which showed study 
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batch effect instead of biological functions. For example, smoking was associated with all neuron 
subtypes, pericytes and immune cells from one brain scRNA data, but did not showed association 
with immune cells and pericytes from other scRNA studies. We reasoned that the curated cell type- 
specific gene lists contained batch effects that were not yet corrected. Thus, in the main text, we 
reported association between PIP and single- cell ATAC peak from one study, which reduced the 
batch effect.

Highlighted genes for complex traits
For chronotype, we found one circadian gene CRY1 that were predicted to be target of locus 
chr12:1070930221107097118, which had PIP = 0.56. This locus was active in cingulate gyrus, and 
belong to sequence class ‘enhancer- multi tissue’. CRY1 was known to participate in circadian pathway, 
and was not highlighted by previous GWAS. SNP- based fine- mapping also found no SNP with PIP >0.1 
that was predicted to link to CRY1. We suggested that it was a novel promising target gene for under-
standing mechanisms of chronotype.

For systolic blood pressure, we found chr8:11726583–11730679 (PIP = 0.999) that resided on gene 
GATA4. This locus was active in both adult heart ventricle and in fetal cardiomyocyte. GATA4 took 
part in physiological myocardial hypertrophy. SNP fine- mapping got PIP <0.34 for all SNPs linked to 
GATA4. Previous GWAS has found its homolog GATA2 as a key gene in blood pressure, and our new 
result supported GATA4 as another key genes.

For intelligence, we found chr10:45559452–45563548 that was active in caudate nucleus and was 
associated with intelligence at PIP >0.5. It was predicted to regulate ALOX5, a key enzyme in the 
arachidonic acid metabolism. It is known that supplement of Arachidonic acid is beneficial for child 
intelligence development, and that arachidonic acid takes part in neurodevelopment. However, few 
genes related to arachidonic acid has been associated with intelligence.

Statistical analysis
All p- values were two- sided and adjusted by Bonferroni unless otherwise specified. For group compar-
ison, we used Fisher’s test for count data and paired t- test for continuous data. For R2 of PRS compar-
ison, we applied r2redux (Momin et al., 2023) R package to estimate 95% confidence interval and its 
p- value for the difference of R2.
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