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Abstract Nondestructive pathology based on three-dimensional (3D) optical microscopy holds 
promise as a complement to traditional destructive hematoxylin and eosin (H&E) stained slide-based 
pathology by providing cellular information in high throughput manner. However, conventional 
techniques provided superficial information only due to shallow imaging depths. Herein, we devel-
oped open-top two-photon light sheet microscopy (OT-TP-LSM) for intraoperative 3D pathology. An 
extended depth of field two-photon excitation light sheet was generated by scanning a nondiffrac-
tive Bessel beam, and selective planar imaging was conducted with cameras at 400 frames/s max 
during the lateral translation of tissue specimens. Intrinsic second harmonic generation was collected 
for additional extracellular matrix (ECM) visualization. OT-TP-LSM was tested in various human 
cancer specimens including skin, pancreas, and prostate. High imaging depths were achieved owing 
to long excitation wavelengths and long wavelength fluorophores. 3D visualization of both cells and 
ECM enhanced the ability of cancer detection. Furthermore, an unsupervised deep learning network 
was employed for the style transfer of OT-TP-LSM images to virtual H&E images. The virtual H&E 
images exhibited comparable histological characteristics to real ones. OT-TP-LSM may have the 
potential for histopathological examination in surgical and biopsy applications by rapidly providing 
3D information.

eLife assessment
This important work by Park et al. demonstrates an open-top two-photon light sheet microscopy 
(OT-TP-LSM) for lesser invasive evaluation of intraoperative 3D pathology. The authors provide 
convincing evidence for the effectiveness of this technique investigating various human cancer cells. 
This article will be of broad interest to biologists and, specifically, pathologists utilizing 3D optical 
microscopy.
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Introduction
Precise intraoperative cancer diagnosis is crucial for achieving optimal patient outcomes by enabling 
complete tumor removal. The standard method is the microscopic cellular examination of surgically 
excised specimens following various processing steps, including thin sectioning and hematoxylin 
and eosin (H&E) cell staining. However, this examination method is laborious and time-consuming. 
Furthermore, it has inherent artifacts that disturb accurate diagnosis, including tissue loss, limited two-
dimensional (2D) information, and sampling error (Liu et al., 2021). High-speed three-dimensional 
(3D) optical microscopy, which can visualize cellular structures without thin sectioning, holds promise 
for nondestructive 3D pathological examination as a complement of 2D pathology limitation (Liu 
et al., 2021; Almagro et al., 2021; Bishop et al., 2022; Serafin et al., 2023). Various high-speed 
3D microscopy techniques have been developed (Filler and Peuker, 2000; van Royen et al., 2016; 
Verhoef et al., 2019; Yoshitake et al., 2016; Tao et al., 2014; Baugh et al., 2017; Patel et al., 
2022; Voleti et al., 2019), and open-top light sheet microscopy (OT-LSM) is a promising technique 
that enables high-throughput imaging with light sheet illumination and planar imaging on uneven 
tissue surfaces (McGorty et al., 2015; Glaser et al., 2017; Glaser et al., 2022; Gao et al., 2023). 
OT-LSM is a specialized form of LSM for large tissue specimens such as biopsy specimens with all the 
optical components placed below the sample holder. However, fluorescence 3D microscopy tech-
niques including OT-LSM have shallow imaging depths in turbid tissue owing to light scattering and 
absorption, limiting the applicability of 3D histopathology. As a deep tissue imaging method, two-
photon microscopy (TPM) has been used in both biological and optical biopsy studies (Denk et al., 
1990; So et al., 2000; Helmchen and Denk, 2005). TPM is based on nonlinear two-photon excitation 
of fluorophores and achieves high imaging depths down to a few hundred micrometers by using long 
excitation wavelengths, which reduce light scattering. Moreover, TPM provides additional intrinsic 
second harmonic generation (SHG) contrast for visualizing collagen fibers within the extracellular 
matrix (ECM). This feature proved advantageous for high-contrast imaging of cancer tissue and micro-
environmental analysis (Zipfel et al., 2003; Fast et al., 2020; Park et al., 2022). However, TPM has 
low imaging speeds due to point scanning-based imaging. To address this limitation, two-photon LSM 
(TP-LSM) techniques were developed for high-speed imaging (Fahrbach et al., 2013; Mahou et al., 
2014; Wolf et al., 2015; Maioli et al., 2020; de Vito et al., 2022). Although TP-LSM facilitated rapid 
3D imaging of cancer cells and zebrafish, its applications were limited to small samples and biolog-
ical studies due to geometric limitations. Conventional TP-LSM had a configuration of a horizontally 
oriented illumination objective and a vertically oriented imaging objective. This geometry imposed 
limitations on the sample size, rendering it unsuitable for the examination of centimeter-scale speci-
mens. TP-LSM with open-top configuration is needed for 3D histological examination.

In this study, we present the development of an open-top TP-LSM (OT-TP-LSM) with a Bessel 
beam for high-throughput and high-depth 3D pathological examination of large tissue specimens. A 
nondiffractive Bessel beam was used and scanned in one-dimensional (1D) to generate an extended 
depth of field (EDOF) excitation light sheet with minimal side lobe effects (Planchon et al., 2011; Fan 
et al., 2020). High imaging depths were achieved by using long excitation wavelengths and fluores-
cent nuclear probes emitting relatively long wavelengths. After development and characterization, 
the system was applied to high-throughput 3D imaging of various human cancer specimens, including 
skin, pancreas, and prostate in comparison with conventional H&E stained histological images for veri-
fication. Moreover, OT-TP-LSM images were converted to virtual H&E images using the deep learning-
powered style transfer. We demonstrated that OT-TP-LSM images were comparable to histological 
images of H&E stained slides from several human cancer types, and OT-TP-LSM 3D imaging might 
have the potential for rapid and accurate nondestructive 3D pathology.

Results
Open-top two-photon light sheet microscopy (OT-TP-LSM) for 3D 
pathology
Schematics and characterization results of OT-TP-LSM are presented in Figure 1. OT-TP-LSM is an 
orthogonally arranged dual objective LSM with a liquid prism interface (Figure 1A). All optical compo-
nents of OT-TP-LSM were positioned underneath a sample holder to accommodate large size spec-
imens without physical interference with the illumination and imaging optics. Two 20x air objective 

https://doi.org/10.7554/eLife.92614
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lenses with a moderate numerical aperture (NA) of 0.42 were used to deliver a thin excitation light 
sheet and to collect emission light efficiently. The custom liquid prism was used to transmit exci-
tation light into the specimen and to collect emission light out with minimal aberration by refractive 
index (RI) matching with different mediums where the sample was immersed (Figure 1B). The liquid 
prism was filled with diluted glycerol in distilled water, whose RI was matched to that of a quartz (RI: 
1.45) window in a sample holder. A Ti-Sapphire laser beam was expanded and converted to a Bessel 
beam using an axicon lens. The Bessel beam was reflected on a galvanometer scanner and relayed 
to the sample through the liquid prism by a combination of a tube lens and the illumination objective 
lens. The scanner scanned the Bessel beam to form an EDOF excitation light sheet. Emission light 
generated by the sample was collected by the imaging objective lens through the liquid prism, split 
into two channels, one for fluorescence and the other for SHG, using a dichroic mirror, and imaged 
simultaneously by two scientific complementary metal-oxide–semiconductor (sCMOS) cameras with 
individual gain control.

The excitation light sheet was designed to have a DOF of 180 μm with a thickness of 0.9 μm 
(Figure 1—figure supplement 1). The imaging field of view was 600 μm × 170 μm with 1,850 × 512 
pixels and was limited by the DOF of the Bessel beam. Emission light scattering in the specimen 
further limited the imaging depth. Selective planar images along the oblique excitation light sheet 
were acquired sequentially with a stepwise X-axis translation of the specimen by the motorized stage 
(Figure 1C). A graphical user interface based on LabVIEW was used to generate trigger signals for 
both the cameras and the motorized stage. OT-TP-LSM was characterized by imaging fluorescent 
microspheres (0.5 μm in diameter) embedded in agarose gel, whose RI was matched to that of the 
solution in the liquid prism (Figure 1D). The image throughput was 0.24 mm2/s at an acquisition rate 

Figure 1. Schematics and characteristics of open-top two-photon light sheet microscopy (OT-TP-LSM). (A) Overall design of OP-TP-LSM. L: lens; M: 
mirror; DM: dichroic mirror; SPF: short pass filter; BPF: band pass filter; OBJ: objective lens. (B) Detailed schematic of the sample interface, including 
the liquid prism filled with refractive index (RI)-matching solution. (C) Illustration of sequential light sheet imaging with stepwise lateral translation. 
(D) Image resolution characterized by three-dimensional (3D) imaging of 0.5 µm fluorescent microspheres. (E) Imaging depth characterized by imaging a 
proflavine-labeled fresh human skin specimen in comparison with that of one-photon light sheet microscopy (1PLSM) using Gaussian excitation sheet.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Detail optical configuration of illumination arm in open-top two-photon light sheet microscopy (OT-TP-LSM).

https://doi.org/10.7554/eLife.92614
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of 400 fps and step size of 1 μm. The image resolution was measured to be 0.9 μm in all dimensions. 
The lateral resolution in the Y-Z' plane was approximately 128% of the theoretical value due to spher-
ical aberration induced by the RI mismatch between air and the immersion medium, but this was 
sufficient for detecting cellular features.

The imaging depth of OT-TP-LSM was evaluated using freshly excised human skin specimens. 
Proflavine was topically instilled onto the specimen for nuclear labeling before imaging. A represen-
tative Y-Z' plane image is shown in Figure 1E. The imaging depth in the skin was approximately 90 
μm in the 45°-tilted image plane, and the actual depth was 64 μm from the surface. To compare the 
imaging depth, the same skin specimen was imaged using conventional one-photon excitation-based 
LSM (1PLSM). The imaging depth was approximately 28 μm in the 45°-tilted image plane and 20 μm 
from the surface, which was approximately three times less than that of OT-TP-LSM. While the imaging 
depth of OT-TP-LSM was sufficient for visualizing 3D cell structures in the skin, it was relatively low 
compared to that of conventional point-scanning based TPM due to emission photon scattering.

3D OT-TP-LSM imaging of human skin cancers
After development and characterization, the performance of OT-TP-LSM was assessed in human skin 
cancer specimens. Representative OT-TP-LSM images of two basal cell carcinoma (BCC) specimens 
are presented along with H&E stained histology images in Figure 2. The H&E images were obtained 
from the same specimens at slightly different depths. The OT-TP-LSM images visualized both cell 
structures and ECM in the cross-sectioned skin specimens, where proflavine-labeled cell nuclei and 
SHG-emitting collagen were depicted in green and blue, respectively. A mosaic image of the first 
BCC specimen visualized the epidermis as a thin layer on the top and the underlying dermis, most 
of which was occupied by BCC nests (Figure  2A). The epidermis and dermis were easily identifi-
able with SHG contrasts. Two regions of interest (ROI) were selected in the epidermis and BCC, and 
magnified images of these ROIs are presented to show the detailed cell structures. Magnified image 
in the epidermis (ROI 1) showed layered keratinocytes (Figure 2B). Keratinocytes in the basal layer 
were relatively large and individually resolved, while those in the upper layers were unresolved and 

Figure 2. 3D OT-TP-LSM images of fresh human skin cancer (basal cell carcinoma, BCC) specimens. (A) Large-sectional OT-TP-LSM and hematoxylin 
and eosin (H&E) stained slide images of a BCC case 1. Red solid line indicates BCC area. (B and C) Two magnified images of regions of interest (ROIs) 
with corresponding H&E images. ROI 1 and 2 were in the epidermis and superficial dermis and the BCC region below, respectively. (D) Large-sectional 
OT-TP-LSM and H&E images of a BCC case 2. Red solid line indicates BCC area. (E and F) Two magnified images of ROIs with corresponding H&E 
images. ROI 3 and 4 were in eccrine and sebaceous glands, respectively. Superficial cell layers of both glands are marked with a white arrow. In the OT-
TP-LSM images, proflavine fluorescence and second harmonic generation (SHG) are displayed in green and blue, respectively.

The online version of this article includes the following video for figure 2:

Figure 2—video 1. Three-dimensional (3D) visualization of basal cell carcinoma (BCC) structures and normal cell structures.

https://elifesciences.org/articles/92614/figures#fig2video1

https://doi.org/10.7554/eLife.92614
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appeared as a band. It could be attributed to the upper layers being comprised of flat cells with rela-
tively small cytoplasm, resulting in little space between nuclei. Additionally, strong autofluorescence 
signal in the stratum corneum might prevent visualization of the cells in the superficial layer. Magnified 
images of BCC (ROI 2) showed many irregularly shaped tumor nests composed of densely packed 
monomorphic tumor cells of the same size (Figure 2C).

The mosaic image of the second BCC specimen mainly showed two different cell structures in 
the dermis (Figure 2D). The structures on the right side were BCCs, while those on the left side had 
intact ECM composition and differed from BCCs. The corresponding H&E stained histology image 
confirmed these as BCCs and normal gland structures in the dermis, respectively. Two ROIs were 
selected in the nontumorous skin region, and magnified images at two different depths are presented 
along with their corresponding H&E stained images. Magnified images of ROI 3 visualized clusters of 
small round tubular structures (Figure 2E). The image at depth 2 showed a ductal structure composed 
of single-layered cuboidal epithelial cells, which is typical of eccrine glands. Magnified images of 
ROI 4 at two different depths showed pear-shaped clusters consisting of cells with clear and bulging 
cytoplasm, which is typical of sebaceous glands (Figure 2F). Using 3D visualization, normal glandular 
structures in the dermis were distinguished from BCC tumor nests (Figure 2—video 1). Both eccrine 
and sebaceous glands could appear similar to BCC nests in 2D images at certain depths. Hence, 
nondestructive 3D visualization of cell structures would be important for distinguishing them, serving 
as a complement to the traditional 2D H&E images.

3D OT-TP-LSM imaging of human pancreatic cancers
We then used OT-TP-LSM to visualize human pancreas specimens including those with pancreatic 
cancer. Instead of proflavine, propidium iodide (PI) was used as a nuclear labeling agent to increase 
the imaging depth (Figure  3—figure supplement 1). The proflavine-labeled pancreas specimens 

Figure 3. 3D OT-TP-LSM images of two human pancreas specimens: normal and premalignant lesion. (A) Large-area OT-TP-LSM and H&E stained 
images of normal human pancreas. (B and C) Magnified two-depth OT-TP-LSM images of ROI 1 and 2 in the normal pancreas and the corresponding 
H&E stained slide images. ROI 1 and 2 were on the acini and islets of Langerhans and the pancreatic duct, respectively. 3D morphological change of 
the duct was marked with a white arrow. (D) Large-area OT-TP-LSM and H&E stained images of a pancreatic premalignant lesion. Red box indicates the 
intraductal papillary mucinous neoplasm (IPMN). (E) Magnified two-depth OT-TP-LSM images of ROI 3 and corresponding H&E image of pancreatic 
intraepithelial neoplasia (PanIN). 3D morphological change of papillary in the PanIN was marked with a cyan arrow. In OT-TP-LSM images, propidium 
iodide (PI)-labeled cells and SHG-emitting collagen are displayed in green and blue, respectively.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Comparison of imaging depth between propidium iodide (PI) and proflavine in human pancreas.

Figure supplement 2. PI cell staining characteristics in human pancreas.

https://doi.org/10.7554/eLife.92614
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had a relatively shallow imaging depth (up to 30 µm approximately) owing to the dense desmoplastic 
stromal cell composition. PI labeling allowed for deeper imaging up to approximately 55 µm from the 
surface due to the longer peak emission wavelength of 640 nm compared to proflavine. PI cytoplasmic 
labeling also occurred in addition to nuclear labeling of both acinar and neoplastic cells, probably 
owing to PI labeling of both DNA and RNA (Figure 3—figure supplement 2 ; Rieger et al., 2010; 
Niu et al., 2015). Cell nuclei were identified with relatively strong fluorescence in the membrane and 
weaker fluorescence in the core. Representative OT-TP-LSM images and corresponding H&E stained 
slide images of normal pancreas and premalignant lesion specimens, and a pancreatic cancer (also 
known as pancreatic ductal adenocarcinoma, PDAC) specimen are shown in Figures 3 and 4, respec-
tively. The mosaic image of the normal pancreas visualized a dense distribution of acini composed of 
exocrine acinar cells in good correlation with the corresponding H&E image (Figure 3A). Two ROIs 
were selected, and magnified images are presented to show detailed cytologic features of the normal 
pancreas. Magnified images of ROI 1 visualized the cellular structure of acini and islets of Langerhans 
expressing different fluorescence intensities (Figure 3B). Acini were composed of lobules of acinar 
cells, and the boundaries of the acini were identified with relatively low PI fluorescence. The islets 
of Langerhans expressed relatively low PI fluorescence, probably due to the high composition of 

Figure 4. 3D OT-TP-LSM images of human pancreatic ductal adenocarcinoma (PDAC). (A) Large-area OT-TP-LSM and H&E stained slide images of 
PDAC arising from IPMN specimen. Red and pink solid line indicates the PDAC and the IPMN area, respectively. (B and C) Magnified two-depth OT-TP-
LSM images of ROI 1 and 2 in the PDAC region and the corresponding H&E stained images. ROI 1 was on the PDAC, and ROI 2 was on the boundary 
region between nonneoplastic pancreatitis and PDAC, respectively. A nonneoplastic duct and a PDAC were marked with green and red arrows, 
respectively. A white dashed line indicated the boundary between nonneoplastic pancreatitis and PDAC. In the OT-TP-LSM images, PI-labeled cells and 
SHG-emitting collagen are displayed in green and blue, respectively.

https://doi.org/10.7554/eLife.92614
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crystallized insulin in beta cells (Lemaire et al., 2012). Magnified images of ROI 2 visualized a duct 
in the normal pancreas (Figure 3C). The duct was composed of single-layered cuboidal epithelial 
cells with round nuclei and was surrounded by dense fibrous tissue expressing SHG. The mosaic 
image of the pancreatic premalignant lesion exhibited different and irregular structures, including 
dilated ducts with intraductal proliferation of papillary structures (Figure  3D). Two different types 
of precursor lesions, intraductal papillary mucinous neoplasm (IPMN) and pancreatic intraepithelial 
neoplasia (PanIN), were observed (Hruban et al., 2001; McGinnis et al., 2020), and tumor cells were 
tall columnar containing intracytoplasmic mucin (Adsay et al., 2004). A corresponding H&E histology 
image confirmed the precursor lesions. Magnified images of PanIN (ROI 3) at two different depths 
showed proliferation of papillary epithelial cells with intracytoplasmic mucin, and 3D morphology of 
the PanIN (Figure 3E). OT-TP-LSM images were very similar to the corresponding H&E images, indi-
cating OT-TP-LSM provided comparable histopathological information to that of H&E stained slides 
without thin sectioning.

A mosaic image of the PDAC arising from the IPMN specimen showed various abnormal ductal 
structures including cancer glands, IPMN, and surrounding pancreatitis, which were confirmed by the 
corresponding H&E stained slide image (Figure 4A). More desmoplastic fibrous stroma and a few 
abnormal cancer glands were observed compared to normal pancreas tissue (Drifka et al., 2015; Ray 
et al., 2022). Two ROIs were selected in the PDAC region and the boundary region with nonneoplastic 
pancreatitis, and magnified images are presented to show detailed cellular structures. Magnified 
images of ROI 1 (PDAC) at two different depths showed irregularly shaped glands with sharp angles 
and 3D structural complexity including unstable bridging structure inside (Figure 4). An irregular and 
distorted architecture amidst desmoplastic stroma is one of the important diagnostic factors for PDAC 
Adsay et al., 2004. The cancer glands exhibited disorganized cancer cell arrangement with nuclear 
membrane distortion. Magnified images of ROI 2 showed both nonneoplastic ducts and cancer glands 
in different cell arrangements (Figure 4C). The nonneoplastic ducts showed single-layered epithelium 
with small, evenly distributed cells expressing relatively high nuclear fluorescence. Cancer glands, on 
the other hand, had disorganized and multilayered structure with large nuclei. OT-TP-LSM visualized 

Figure 5. 3D OT-TP-LSM images of human prostate specimens: benign and adenocarcinoma. (A) Large-area OT-TP-LSM and H&E stained slide images 
of a benign prostate specimen. (B) Magnified two-depth OT-TP-LSM images of ROI 1 in the benign gland and a corresponding H&E image. (C) Large-
area OT-TP-LSM and H&E images of a prostatic cancer specimen. A white solid line indicated the boundary between adenocarcinoma and benign 
regions. (D) Magnified two-depth OT-TP-LSM images of ROI 2 in adenocarcinoma glands and a corresponding H&E image. In OT-TP-LSM images, PI-
labeled cells and SHG-emitting collagen were visualized in green and blue, respectively.

https://doi.org/10.7554/eLife.92614
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the 3D invasiveness of cancer glands within tissues nondestructively, which could not be identified 
from limited 2D information.

3D OT-TP-LSM imaging of human prostatic cancers
OT-TP-LSM was used to visualize human prostatectomy specimens, and two representative OT-TP-LSM 
images of benign and adenocarcinoma specimens are presented in Figure 5. The mosaic image of 
the histologically confirmed benign prostate showed benign glands dispersed throughout the spec-
imen with relatively weak SHG composition between the glands (Figure 5A). An ROI was selected on 
benign glands, and magnified images are presented to show cytologic features alongside the corre-
sponding H&E stained slide image (Figure 5B). Multiple cell layers, consisting of secretory cells and 
basal cells, lined the central lumen in the ducts of benign glands. Although images at two different 
depths are presented, the cell distribution was similar because of the relatively small depth difference 
compared to the gland size. The mosaic image of the prostate adenocarcinoma in Figure 5C showed 
both the benign and cancer regions, whose boundary was marked with a white solid line, and they 
were confirmed by the corresponding H&E stained image. The cancer region was full of crowded 
small gland structures, whereas the benign region consisted of relatively large glands surrounded by 
fibrous stroma. Magnified images of ROI 2 in the cancer region showed small glands composed of 
monolayered cell walls (Figure 5D). The cancer glands had single-layered malignant secretory cells 
only due to the loss of basal cell layers. The corresponding H&E histology was diagnosed as Gleason 
score 3+3 prostatic adenocarcinoma. OT-TP-LSM provided histological 3D information equivalent to 
that of the H&E stained image without the need for sectioning.

Deep learning-based style transfer for virtual H&E
OT-TP-LSM images visualized histological features with high similarity to those in H&E images, but 
they may be unfamiliar to pathologists and clinicians accustomed to traditional H&E stained slide 
histology. PI-labeled OT-TP-LSM images were converted to virtual H&E images using Cycle-consistent 
generative adversarial network (CycleGAN; Zhu et al., 2017). Representative virtual H&E images of 
pancreatic premalignant (PanIN) and PDAC are presented along with the corresponding real H&E 
stained images for comparison in Figure 6. Mosaic virtual H&E images of both PanIN and PDAC 
showed similar patterns to the corresponding real H&E stained histology images (Figure 6A and C). 
Although the normal region in the lower left corner of the virtual PanIN image was not transformed 
properly possibly due to insufficient image data of normal acini for training (Figure 6A), the magni-
fied virtual H&E images clearly displayed distinct cell distributions of PanIN and PDAC by labeling 

Figure 6. Style transfer of OT-TP-LSM images for virtual H&E by cycle-consistent generational adversarial networks (CycleGAN). (A and C) Large-area 
virtual H&E images and corresponding H&E stained slide images of PanIN and PDAC specimens, respectively. (B and D) Magnified virtual H&E images 
and corresponding H&E stained images of PanIN and PDAC, respectively.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Cycle-consistent generational adversarial networks (CycleGAN) workflow for style transfer of OT-TP-LSM image to virtual 
hematoxylin and eosin (H&E) image.

https://doi.org/10.7554/eLife.92614
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cell cytoplasm and nuclei in pink and purple, respectively (Figure 6B and D). PanINs were visualized 
as slightly dilated, irregularly clustered ducts with preserved structural integrity (Figure 6B), whereas 
PDAC had disorganized cell arrangement with haphazard patterns, infiltrating into the surrounding 
tissue with desmoplastic stroma (Figure 6D). Histological features found in the virtual H&E images 
were diagnostic factors for the discrimination of PDAC and PanIN. Virtual H&E staining of OT-TP-LSM 
via CycleGAN could provide comparable cellular information to conventional H&E stained histology.

Discussion
OT-TP-LSM was developed for the rapid and precise nondestructive 3D pathological examination 
of excised tissue specimens during both biopsy and surgery, as a compliment to traditional 2D H&E 
pathology by visualizing 3D cell structures. OT-TP-LSM generated a two-photon excitation light sheet 
using one-dimensional Bessel beam scanning, and planar images were acquired by collecting emis-
sion light from the excitation light sheet with sCMOS cameras at 400 fps maximum. Proflavine and 
PI were used for nuclear labeling and cell structure visualization, and intrinsic SHG contrast was used 
for ECM visualization. The performance of OT-TP-LSM was characterized in comparison with histo-
pathologic images of H&E stained slides in various human cancer specimens including skin, pancreas, 
and prostate. 3D OT-TP-LSM images were well matched with the corresponding 2D H&E histological 
images in all the human tissue specimens evaluated. The relatively high imaging depths of OT-TP-LSM 
enabled the nondestructive visualization of detailed 3D cell structures with high contrast and without 
distortion and allowed a distinction between cancer and normal cell structures as well as the detection 
of cancer invasiveness within tissues. These have been challenging with 2D histological images. The 
high-quality images of OT-TP-LSM might be partially attributed to the use of the nondiffractive Bessel 
beam for the generation of an EDOF excitation light sheet (Olarte et al., 2012).

OT-TP-LSM could visualize 3D cell structures in the skin down to 60 μm deep from the surface by 
using long wavelength excitation light and proflavine labeling. Although the imaging depth was not 
high compared to the one of conventional TPM, it was sufficient to visualize 3D cell structures in the 
skin without sectioning artifacts. The imaging depth varied depending on the tissue type, and the 
imaging depths of both pancreas and prostate were relatively low in comparison to that of the skin. 
This low imaging depth could be attributed to the dense cell composition and higher RI than the 
current immersion medium. To increase the imaging depth, PI with a relatively long emission wave-
length was used. Additionally, an immersion medium with 1.5 RI could improve the imaging depth 
(Young et al., 2011), and a quick optical clearing method could also be used to enhance the imaging 
depth (Aoyagi et al., 2015).

We trained and applied CycleGAN to PI-labeled OT-TP-LSM images of pancreas specimens to 
generate virtual H&E images, and the cytoplasm and cell nuclei, which exhibited intensity differences 
in greyscale, were transformed to H&E-like pseudo colors. Virtual H&E images in pancreatic cancer 
provided histological features equivalent to the conventional H&E. Although CycleGAN showed the 
potential for virtual H&E staining, further development is needed to have robust performance and 
universal application. Therefore, CycleGAN will be trained by using more OT-TP-LSM images from 
various tissue types such as skin and prostate.

The current OT-TP-LSM has several limitations. One issue is spherical aberration arising from the 
RI mismatch between the liquid prism and air by using air objective lenses in both illumination and 
imaging arms. Spherical aberration degraded the image resolution, particularly in the imaging arm. 
An immersion objective lens with a high NA would be desirable to improve both image resolution 
and emission light collection efficiency. The excitation light sheet was produced by swiftly scanning a 
single Bessel beam, yielding a shorter pixel dwell time compared to that of a traditional single-photon 
2D light sheet. Employing multiple Bessel beams for excitation light sheet generation would enhance 
pixel dwell time and image contrast [Minamikawa et al., 2009; Chen et al., 2016]. The relatively 
short excitation wavelength of 770 nm was used for all the imaging to efficiently collect intrinsic SHG 
light [20], but the imaging depth was limited. Longer excitation wavelengths with long emission wave-
length probes would increase the imaging depth beyond those presented here. Although OT-TP-LSM 
enabled high-speed 3D imaging, the post-processing time of the OT-TP-LSM image datasets was 
relatively long due to the large data size, sequential processing of dual channel images, and manual 
stitching. The long post-processing time needs to be resolved for intraoperative applications. To 
speed up processing, these processing steps can be performed using field-programmable gate array 

https://doi.org/10.7554/eLife.92614
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(FPGA)-based data acquisition with graphics processing unit (GPU)-based computing. The processing 
time can be further reduced by coding the algorithm in a C++-based environment. Furthermore, 
ImageJ-based software such as the Bigstitcher plugin can be used for automatic 3D image processing 
(Hörl et al., 2019).

In conclusion, OT-TP-LSM was developed for high-throughput and high-depth tissue examination. 
OT-TP-LSM was tested with various human cancers including skin, pancreas, and prostate by visual-
izing 3D cell structures. Intrinsic SHG contrast was used for visualizing ECM and detecting fibrosis. 
Normal glands and BCC nests were clearly distinguished, and both pancreatic and prostate cancers 
were clearly identified using 3D visualization of cell structures with OT-TP-LSM. Furthermore, virtual 
H&E staining of OT-TP-LSM using CycleGAN provided histopathologic information comparable to 
that from H&E stained slides. Therefore, OT-TP-LSM could be useful for rapid and precise nondestruc-
tive 3D pathology.

Materials and methods
OT-TP-LSM setup
The schematics of OT-TP-LSM are shown in Figure 1A. As the light source, OT-TP-LSM used a 
titanium–sapphire pulse laser (Chameleon II, Coherent) with 140-fs pulse width and 80-MHz pulse 
repetition rate. The excitation wavelength was set at 770 nm for imaging human tissue speci-
mens. In the illumination arm, the laser beam was expanded from 1.4 mm to 1.86 mm and then 
converted to a Bessel beam by using an axicon lens (131-1270 + ARB825, Eksma). The Bessel 
beam was relayed onto the specimen through two lens pairs of L1 (AC254-045-B, Thorlabs) and 
L2 (AC254-080-B, Thorlabs), and L3 (AC254-150-B, Thorlabs) and a 20× air illumination objective 
lens with 0.42 NA (MY20X-804, Mitutoyo). The Bessel beam diameter at the back aperture of the 
objective lens was approximately 6.8 mm to prevent beam clipping, and the effective illumination 
NA was 0.34. The excitation light sheet was generated by Y-axis scanning of the Bessel beam with 
a galvanometric scanner (GVS102, Thorlabs), which was positioned between L1 and L2. The liquid 
prism transmitted the excitation light normally through a coverslip (HSU-0101122, Marienfeld 
Superior), RI-matching solution, and a 0.25 mm thick round quartz window (26043, Ted Pella) at 
the bottom of the sample holder, and then to the sample (Fig. 1B). Diluted 85% glycerol (Samchun) 
in distilled water was used for RI-matching with the quartz window (RI: 1.45). The sample holder 
was connected to an x-y motorized translation stage (XY MS-2000, Applied Scientific Instrumen-
tation) for sample translation during imaging. To remove air gaps between the quartz window of 
the sample holder and irregular-shaped tissue specimen, the specimen was partially immersed 
in the RI-matching solution and light pressure was applied on the top of the specimen. In the 
imaging arm, emission light was collected by the imaging objective lens (MY20X-804, Mitutoyo) 
through the liquid prism, spectrally separated into two channels by a dichroic mirror (T425lpxr, 
Chroma), and collected at two sCMOS cameras (pco-edge 4.2, PCO) after passing through a tube 
lens (AC254-200-A, Thorlabs), respectively. SHG light was collected in the short pass channel with 
an emission filter (ET376/30x, Chroma), and fluorescence was collected in the long pass channel 
with an emission filter (ET680SP, Chroma). Both fluorescence and SHG images were simultaneously 
acquired with individual gain control.

Human skin cancer specimen collection and imaging protocol
Fresh skin cancer specimens were collected under the Institutional Review Board (IRB) of Yonsei 
University, Severance Hospital, approved protocol (approval # 4-2021-0128). The study was conducted 
according to the Declaration of Helsinki Principles. OT-TP-LSM imaging was conducted within 12 hr 
post-excision. Patient information was deidentified. Before imaging, fresh skin specimens were cut 
cross-sectionally to approximately 4 mm thickness and topically instilled with 400 µg/mL proflavine 
solution (Sigma) for 5 min, and then rinsed in phosphate-buffered saline. OT-TP-LSM imaging was 
conducted in 3D on the sectioned surface. After imaging, the skin specimens were fixed and processed 
for histopathological evaluation with H&E stained slides. Microscopic images were obtained by using 
a wide-field microscope (Leica Z16 APO, Leica Microsystems).

https://doi.org/10.7554/eLife.92614
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Human pancreatic and prostate cancer specimen collection and imaging 
protocol
Formalin-fixed, paraffin-embedded (FFPE) tissue blocks of pancreatic and prostate cancers were 
collected under approval (approval #, 2021-0393) from the IRB of Asan Medical Center, University of 
Ulsan College of Medicine. Four μm thickness sections were made for H&E stained slides, and the 
remaining blocks were used for OT-TP-LSM imaging. The FFPE tissue blocks were deparaffinized with 
xylene (99%, Daejung) solution overnight, 1:1 xylene-100% methanol (Optima grade, Fisher scientific) 
mixture solution for 1 hr with shaking, followed by sequentially decreasing the methanol concentra-
tion in the xylene and methanol mixture to 90%, 80%, and 50% for 1 hr each. After deparaffinization, 
specimens were stained with 80 µg/mL PI solution (Sigma) for 5 min, and then OT-TP-LSM imaging 
was conducted on the sectioned surface.

Image acquisition and post-processing
Raw image datasets from dual sCMOS cameras were acquired and processed on a workstation with 
128 Gb RAM and a 2 TB SSD drive. The imaging time and data size per 1cm2 area with 400 fps was 7 
min and 318 GB ( = (7 × 60) s × 400 fps × (1850 × 512 × 2) byte) for each channel, respectively. The 
raw image strip was sheared at 45° with respect to the sample surface, and a custom image processing 
algorithm was used to transform the image data in the XYZ coordinate. The processing for en-face 
image was conducted in MATLAB and took ~1.7 s Gb−1 after loading the image dataset at ~6.8 s Gb−1 
in the current laboratory setting. Mosaic images were generated by joining the image strips manually.

Virtual H&E staining of OT-TP-LSM via deep learning network
CycleGAN is an unsupervised deep learning network without the need for well-aligned image pairs (Zhu 
et al., 2017) and was used for style transfer of OT-TP-LSM images to virtual H&E images (Chen et al., 
2021; Cao et al., 2023; Abraham et al., 2020). CycleGAN model consisted of two generators (G: real 
OT-TP-LSM → fake H&E and F: real H&E → fake OT-TP-LSM), and two corresponding discriminators 
(DOT-TP-LSM and DH&E) to identify each fake image (Figure 6—figure supplement 1). Cycle-consistent 
loss was combined with adversarial loss to prevent the well-known problem of mode collapse, where 
all input images mapped to the same output images (Zhu et al., 2017). For CycleGAN training, PI-la-
beled OT-TP-LSM and real H&E images were collected from pancreas specimens, including each of 
normal, premalignant lesions, and cancer. Collected images were cropped into 512×512 pixels patch 
images, and augmented by applying rotation (90°, 180°, 270°) and flip (vertical, horizontal). The total 
training dataset was 14,322 and 22,644 patches for OT-TP-LSM and H&E, respectively. Adam solver 
was used as an optimizer (Kingma and Ba, 2014). Hyper-parameters were set with a batch size of 1 
and an initial learning rate of 0.0002 and 100 epochs. Once the training was completed, generator G 
was used to transform OT-TP-LSM patches into virtual H&E ones. The CycleGAN training and testing 
were performed using a Nvidia GeForce RTX 3090 with 24  GB RAM. The network was implemented 
using Python version 3.8.0 on a desktop computer with a Core i7-12700K CPU@3.61  GHz and 64  GB 
RAM, running Anaconda (version 22.9.0). The inference time for converting OT-TP-LSM patch image 
into virtual H&E patch image was measured as 160ms.
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