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eLife assessment
This important study develops a machine learning method to reveal hidden unknown functions 
and behaviors in gene regulatory networks by searching parameter space in an efficient way. Solid 
evidence is presented for the method, which should be of broad interest to anyone working in 
biology, as the ideas put forward by the authors extend beyond gene regulatory networks to reveal 
hidden functions in any complex system with many interacting parts.

Abstract Many applications in biomedicine and synthetic bioengineering rely on understanding, 
mapping, predicting, and controlling the complex behavior of chemical and genetic networks. The 
emerging field of diverse intelligence investigates the problem-solving capacities of unconventional 
agents. However, few quantitative tools exist for exploring the competencies of non-conventional 
systems. Here, we view gene regulatory networks (GRNs) as agents navigating a problem space 
and develop automated tools to map the robust goal states GRNs can reach despite perturba-
tions. Our contributions include: (1) Adapting curiosity-driven exploration algorithms from AI to 
discover the range of reachable goal states of GRNs, and (2) Proposing empirical tests inspired 
by behaviorist approaches to assess their navigation competencies. Our data shows that models 
inferred from biological data can reach a wide spectrum of steady states, exhibiting various 
competencies in physiological network dynamics without requiring structural changes in network 
properties or connectivity. We also explore the applicability of these ‘behavioral catalogs’ for 
comparing evolved competencies across biological networks, for designing drug interventions in 
biomedical contexts and synthetic gene networks for bioengineering. These tools and the emphasis 
on behavior-shaping open new paths for efficiently exploring the complex behavior of biological 
networks. For the interactive version of this paper, please visit https://developmentalsystems.org/​
curious-exploration-of-grn-competencies.

Introduction
Developing methods to recognize, map, predict, and control the complex, context-sensitive behavior 
of chemical and genetic networks is an essential frontier of research in science and engineering. These 
systems, such as gene regulatory networks and protein pathways, are known to be instructive drivers 
of embryogenesis, cell behavior, and complex physiology (Sanz-Ezquerro et  al., 2017; Padilla-
Longoria Enrique Balleza et al., 2008; Huang et al., 2005). Understanding the control properties 
of these systems is critical not only for the study of evolutionary developmental biology (Davidson, 
2010; Peter and Davidson, 2011; Ten Tusscher and Hogeweg, 2011; Kim and Sayama, 2018; 
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Srivastava, 2021), but also for comprehending and intervening in various disease states, including 
cancer (Singh et al., 2018; Qin et al., 2019; Fazilaty et al., 2019), and for the construction of novel 
synthetic biologicals in bioengineering contexts (Davies and Levin, 2022; Toda et al., 2018; Toda 
et al., 2020; Ho and Morsut, 2021; Santorelli et al., 2019).

Thus, much work has gone into mathematical modeling and computational inference of both 
protein pathways and gene regulatory network models (de Jong, 2002; Schlitt and Brazma, 2007; 
Fetrow and Babbitt, 2018; Delgado and Gómez-Vela, 2019), which has resulted in the development 
of large collections of publicly-available models such as the Biomodels database (Glont, 2018; Malik-
Sheriff et al., 2020). Yet, despite the wealth of available models, scientists still largely lack an effective 
understanding of the range of possible behaviors that these models can exhibit under different initial 
conditions and environmental stimuli, and are in search of systematic methods to reveal and optimize 
those behaviors via external interventions. The full extent of the computational and control properties 
of such networks are not yet well-understood; while dynamical systems theory has been extensively 
used to characterize their behavior (Kauffman, 1993; Kauffman, 1995), it is not known what other 
sets of tools might reveal and exploit interesting properties of this ubiquitous biological substrate. 
The field of diverse intelligence (also known as basal cognition) has suggested that strong functional 
symmetries between pathway networks and neural networks could imply the existence of learning and 
other kinds of behavior in this unconventional substrate (Abramson and Levin, 2021; Baluška and 
Levin, 2016; Dodig-Crnkovic, 2022; Dodig-Crnkovic, 2022; Timsit and Grégoire, 2021; Katz et al., 
2018). Specifically, it has been hypothesized that gene regulatory networks (GRNs) and other molec-
ular networks could be endowed with surprising navigation competencies allowing them to robustly 
reach diverse homeostatic or allostatic states despite a wide range of perturbations (Csermely et al., 
2020; Gyurkó et al., 2013; Fields and Levin, 2022; Watson et al., 2010), and that exploiting these 
innate competencies could provide a promising roadmap for the design of interventions in regenera-
tive medicine and bioengineering contexts (Mathews et al., 2023; Lagasse and Levin, 2023).

However, significant challenges remain in practice for the exploration and behavior-shaping of 
these innate competencies, which presents a barrier to the use of these ideas in regenerative medi-
cine and bioengineering. Because of the non-linearity and redundancy in pathway dynamics, passive 
exploration strategies such as random screening are likely to either fail in uncovering the full range of 
potential behaviors or require time and energy beyond the available resources. Here, we formalize and 
investigate a view of gene regulatory networks as agents navigating a problem space. We propose a 
framework and automated tools, leveraging (1) curiosity-driven goal-directed exploration algorithms 
coming from recent advances in machine learning and (2) a battery of empirical tests inspired by 
behaviorist approaches, for mapping the repertoire of robust goal states that GRNs can reach within 
this problem space despite various perturbations. A key novelty of this work is the use of AI-based 
exploration tools to map the space of possible behaviors in biological networks, which opens inter-
esting avenues for efficient mapping of unfamiliar system behaviors, yielding transferable insights for 
diverse problem-solving once such a map is discovered.

The challenge of exploring and mapping spaces of complex and self-organized behaviors appears 
in many fields such as diverse intelligence in biological systems, minimal active matter, and robotics: 
many systems in these areas provide a rich space of evolved, engineered, and hybrid systems that 
offer many of the same fundamental problems of behavior and control regardless of specific compo-
sition or provenance (Clawson and Levin, 2023). These span many orders of spatio-temporal scale, 
from molecular assemblies to swarms of complex organisms (Timsit and Grégoire, 2021; Krist et al., 
2021; Čejková et al., 2017; Hanczyc et al., 2011). One set of approaches seeks to develop tools to 
identify the optimal level of control, ranging from physical rewiring to various methods from cyber-
netics and behavioral sciences, to reveal and exploit the native competencies and computational 
capacities of these systems (Davies and Levin, 2022). Specifically, it is increasingly realized that the 
level of competency (and thus the appropriate level of control) often cannot be guessed by inspec-
tion of a system’s components, and that its position on a spectrum ranging from passive matter to 
complex metacognition must be determined empirically (Rosenblueth et al., 1943; Bongard and 
Levin, 2021Levin, 2022), (Clawson and Levin, 2023). This is critical not only for fundamental under-
standing of evolution of bodies and minds (Lyon, 2006; Barandiaran and Moreno, 2006; Müller and 
Lengeler, 2000; Baluška and Levin, 2016; McGivern, 2020; Levin, 2023b), but also for the design of 
interventions in biomedicine and synthetic morphology contexts (Pezzulo and Levin, 2015; Pezzulo 
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and Levin, 2016). Yet, a common property in many of these systems is that it is expensive in time and 
energy to conduct experiments: empirical exploration needs to be made under limited resources. 
Thus, methods for automating efficient exploration and discovery of a diversity of behaviors in these 
spaces may be widely useful. As explained below, we will here leverage methods from developmental 
artificial intelligence initially designed for the specific purpose of exploring a diversity of behaviors 
using a limited budget of experiments.

One especially fascinating set of systems concerns cellular molecular pathways, or GRNs. In the lab 
or clinic, these pathways are usually treated as simple machines, with intervention strategies focusing 
on rewiring their structure to achieve a desired outcome: adding or removing nodes (gene therapy), or 
changing connection weights (by targeting promoter sequences or protein structures) (Wong et al., 
2008; Samuel et al., 2018; Krzysztoń et al., 2021; Baum, 2007). However, the emergent, generative 
nature of development and physiology ensures that it is often very hard to know which genes/proteins 
to modify, and how, in order to reach a complex desired system-level outcome (Lobo et al., 2014). 
Moreover, the responses of cells and tissues to drugs changes over time, making it even more difficult 
to infer specific interventions (e.g. drugs) that will induce a stable improvement in pathway state in 
vivo. Indeed, with the exception of antibiotics and surgery, most available treatment modalities do 
not solve the underlying problem – they seek to mitigate symptoms, which recur (or expand) once 
the drug is withdrawn. This is because current therapeutics function bottom-up, attempting to force 
specific molecular states, as it has been challenging to develop methods for shifting complex tissues 
and organs towards a stable health profile. Next-generation solutions, which would offer true healing 
(stable correction), require an understanding of the homeostatic and allostatic properties of networks 
with respect to how they traverse the space of transcriptional, physiological, and anatomical states. 
An understanding of the behavior policies of networks as they dynamically navigate these problem 
spaces is essential for predicting what stimuli can be used to re-set their setpoints and guide them 
to autonomously maintain a healthy state. In the language of behavioral neuroscience, this strategy 
corresponds to exploiting their native robustness, decision-making, and navigational competencies to 
induce predictable, long-lasting changes in functionality.

Significant challenges remain in revealing and controlling the range of behaviors that can self-
organize in these cellular and molecular pathways. To characterize steady-state concentrations and 
responses to small perturbations, conventional methods rely on piecewise-linear approximation of the 
system behavior (Stucki, 1979; Ingalls, 2004; Ingalls, 2008; Donzé et al., 2010; Dang et al., 2011), 
but struggle with higher-dimensional systems or wider parameter ranges which limits their applica-
bility (Donzé et al., 2011). Other works have proposed the porting of tools from network control 
theory to identify sets of control nodes allowing to drive the network behavior toward target steady 
states (Rozum and Albert, 2022). These methods typically exploit the network topology (Rozum and 
Albert, 2022; Steinway et al., 2015; Zañudo and Albert, 2015; Zañudo et al., 2017; Fontanals 
et al., 2020) or regulatory structure (Murrugarra et al., 2016; Choo et al., 2018; Choo et al., 2019) 
to identify control strategies based either on permanent knockout/activation of genes or on tempo-
rary perturbations, the latter being preferable in biomedical context.

However, these approaches often require prior knowledge of target attractor states or are limited 
to Boolean network models. Other works have explored the use of machine learning tools, such 
as evolutionary search (Paladugu et al., 2006; François, 2014; Noman et al., 2015) and gradient-
descent optimization (Hiscock, 2019; Shen et  al., 2021), for controlling continuous ODE biomo-
lecular networks with high-dimensional parameter spaces, mainly in the context of synthetic circuit 
engineering (Camacho et al., 2018; Volk et al., 2020). While providing powerful optimization tools, 
these approaches tend to focus on rewiring network structure and connectivity. Moreover, the choice 
of a predefined fitness function and parameter range initialization is not only critical to the success of 
optimization (François, 2014) but largely restricts the exploration of the behavior space (Shen et al., 
2021).

In contrast, an alternative line of research proposes exploring and leveraging the inherent molec-
ular mechanisms of adaptivity and robustness in cellular pathways as a promising approach for drug 
interventions that do not rely on genomic editing or gene therapy (Csermely et al., 2020; Kitano, 
2007a). Recently, a broad, substrate-independent behavior science perspective suggests novel prop-
erties of GRNs and other biological networks (Abramson and Levin, 2021; Manicka and Levin, 
2019). This perspective views GRNs as agents that convert activation levels of specific genes (inputs) 
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to those of effector genes (outputs), with intermediate nodes in between, leading to strategies for 
controlling network behavior based on a specific history of inputs (experience) rather than through 
network rewiring. Notably, the concept of training a chemical pathway using pulsed input stimuli 
(node activation or suppression drugs) has been formalized, and several networks have been analyzed 
to establish a taxonomy of memory types found in biological GRNs and pathways (Biswas et  al., 
2021; Biswas et al., 2023).

Here, building upon recent research (Fields and Levin, 2022; Biswas et al., 2021; Biswas et al., 
2023), we take the next step and investigate a view of gene regulatory networks as agents navigating 
a problem space toward target goal states with varying degrees of competency (Figure 1a). We seek 
to implement a definition of goal that abstracts it from conventional associations with human or other 
advanced brains and facilitates the use of tools from cybernetics, behavior science, and control theory 
to understand broader aspects of biological regulation. Here, we use the term ‘goal’ state to refer to 
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Figure 1. Overview of the proposed framework. (a) MOTIVATION: We often focus on studying the navigation and behavior of organisms in conventional 
three-dimensional environments, neglecting the intelligence underlying competencies at sub-organismal scales (Fields and Levin, 2022). To better 
understand navigation competencies in unconventional organisms solving problems in unconventional spaces (e.g., embryos in morphological space), 
it is essential to construct comprehensive ‘behavioral catalogs’ for these novel entities, which in turn requires sophisticated exploration methods to 
discover the extent of possible behaviors. Images are taken and adapted with permissions from Figure 2C in Levin, 2022, Figure 6A in Levin, 2023a 
(image made by Alexis Pietak), graphical abstract of Murugan et al., 2021, Figure 3D of Kriegman et al., 2020 (image made by Douglas Blackiston) 
and Figure 4A of Bongard and Levin, 2023. (b) EXPERIMENTAL DESIGNS: We formalize gene regulatory network (GRN) behavior as a navigation task 
and propose to investigate it by defining abstract and observer-dependent ‘problem spaces’ that we use to organize the observed biological behaviors 
and their exploration in practice. (c) AUTOMATED EXPERIMENTATION: Pseudo-code of the curiosity-driven goal exploration process we use to 
automate the discovery of behavioral abilities that the GRN can exhibit in behavior space. (d) EMPIRICAL TESTS: We use a battery of empirical tests to 
identify the robust goal states of the systems, i.e., the one that can be attained under a wide variety of perturbation (including noise in gene expression, 
and pushes or walls during traversal of transcription space). (e) PERSPECTIVES: We explore several potential reuses of the discovered ‘behavioral 
catalog’ and proposed framework across evolutionary biology, biomedicine, and bioengineering contexts.

© 2021, John Wiley and Sons. Part of Panel A is reproduced from Murugan et al., 2021 with permission from John Wiley and Sons. It is not covered 
by the CC-BY 4.0 licence and further reproduction of this panel would need permission from the copyright holder.
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a system’s steady state, which it expends effort to reach despite interventions or barriers - a definition 
appropriate to the study of basal (or minimal) proto-cognitive regulatory systems. Our definition of 
goal does not imply ‘purpose’ (high-level goals where an agent has the meta-cognition to think about 
having goals and what they might be), and we do not attribute high-level competencies (such as 
re-setting one’s own goals) to GRNs.

Our particular focus lies in investigating two types of navigation competencies: versatility, which 
refers to the capacity to reach diverse goal states under different interventions, and robustness, which 
refers to the ability to reach a goal state despite various perturbations. The primary scientific ques-
tion we aim to address is: What is the repertoire of robust goal states that a GRN can actively reach 
through minimal and non-genetic interventions within a navigation task context, and can we develop 
systematic methods and automated tools to aid scientists in discovering this repertoire?

To address this question in practice, our experimental framework revolves around the definition of 
‘problem spaces,’ which we use as tractable components of the GRN’s overall state space (Figure 1b), 
and on a set of methodological contributions which we organize around three sub-questions:

1.	 Automated discovery of diverse behavioral abilities with autotelic curiosity search (Figure 1c): 
What is the range of possible goal states that GRNs can exhibit and how can we devise effi-
cient exploration strategies to automatically identify these goal states? Defining goal states as 
attractor states of the underlying gene regulatory network, we show that traditional screening 
methods can be very inefficient in discovering the range of possible goal states. To address this, 
we propose to use intrinsically-motivated goal exploration processes (IMGEP) (Baranes and 
Oudeyer, 2013; Forestier et al., 2022), a recent family of diversity-driven machine learning 
approaches also known as autotelic curiosity search which was recently shown to form a useful 
discovery assistant for revealing the behavioral diversity of unfamiliar systems such as chemical 
oil-droplet systems (Grizou et al., 2020), physical non-equilibrium systems (Falk et al., 2024) 
and models of continuous cellular automata (Reinke et  al., 2020; Etcheverry et  al., 2020; 
Hamon et al., 2024).

2.	 Evaluation of the navigation competencies (Figure 1d): How competent is the GRN, in terms 
of robustness to perturbations, in attaining the diverse previously-identified goal states? Prior 
studies have offered definitions of robustness in biological networks, characterized as the 
degree of variation in functionality (Kitano, 2007b) or phenotypic trait (Félix and Barkoulas, 
2015) under specific environmental or genetic changes. However, these studies often consider 
a predefined functionality and random perturbations in network parameters (Ingolia, 2004; Ma 
et al., 2006; Noman et al., 2015) or specific gene knockouts (Deutscher et al., 2006). Environ-
mental perturbations on the other hand are often limited to random variations in initial condi-
tions within a predefined range (Donzé et al., 2011; von Dassow et al., 2000). Here, inspired 
by behaviorist approaches, we test hypotheses about non-genetic resistance with respect to 
various navigation competencies that living agents often exhibit, and that do not require struc-
tural changes of network properties or connectivity. Those tests assess the system’s ability to 
maintain robustness despite various perturbations encountered during traversal, including 
developmental noise in gene expression levels, sudden ‘pushes’ within transcriptional space, 
and the presence of energy barriers or ‘walls’ acting as force fields in the environment.

3.	 Potential reuses of the discovered ‘behavioral catalog’ and framework (Figure  1e): Can the 
constructed behavioral catalogs be useful for fundamental research and practical therapeutic 
applications, and can the framework be easily applied to other systems and problem spaces? 
We propose that the discovered competencies may provide valuable insights for understanding 
evolvability and developmental robustness, and provide a fertile source for the design of inter-
ventions in biomedicine and synthetic morphology contexts. We also suggest that the frame-
work and automated tools, which are observer-focused and substrate-independent, could be 
transposed to other systems and problem spaces.

The overall framework is summarized in Figure 1. Applying it on a database of 30 continuous (ODE) 
models from the Biomodels website, consisting of a total of 432 systems defined as GRN model-
behavior space tuples, revealed several interesting insights. First, results suggested that most of the 
surveyed systems are capable of reaching a surprisingly wide spectrum of steady states depending 
on their initial state. Interestingly, random screening strategies were not able to reveal this diversity 
of reachable states (or at least not in a sample efficient way), confirming the need for more advanced 
exploration strategies like curiosity search. Second, among the discovered steady states, we were able 
to identify several robust goal states i.e., ones that the system consistently reaches despite various 
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perturbations during traversal of transcriptional space. Altogether, these findings seem to suggest 
that cell phenotype and functionality could be the result of a multi-step program (Steinway et al., 
2015) that could be flexibly and robustly reprogrammed by appropriate stimuli (Levin, 2022). Finally, 
we demonstrate possible reuses of this ‘behavioral catalog’ for comparing the network’s competen-
cies across different classes of organisms, as well as for the design of non-genetic drug interventions. 
We also demonstrate an alternative reuse of the framework to reveal new kinds of reachable ‘goals’ 
in synthetic gene networks, suggesting alternative strategies for the design of gene networks in a 
bioengineering context.

An interactive executable version of the paper, as well as step-by-step tutorials and notebooks, 
can be found online at https://developmentalsystems.org/curious-exploration-of-grn-competencies. 
The full codebase of the proposed automated experimentation pipeline is written end-to-end in JAX, 
a high-performance numerical computing library that we leverage for parallel experimentation and 
computational speedups of the ODE models time-course simulations.

Results
Generalizing GRN behavior as a navigation task
The GRNs analyzed in this study are biological pathway networks taken from the BioModels repos-
itory (Glont, 2018; Malik-Sheriff et al., 2020). The term ‘GRN’ is used broadly to include protein 
interaction, gene regulatory, and metabolic networks. In these mathematical models, the dynamic 
interactions between nodes of the network (molecular species) are modeled with a system of ordinary 
differential equations, enabling to quantitatively simulate time-course behavior (model rollouts) and 
observe the dynamics of node activities over time (Figure 2a). Here, following a terminology which 
aims to integrate concepts from dynamical complex systems with concepts from behavioral sciences, 
we propose to conceptualize GRN behavior as a navigation task (Table 1). Model rollouts are viewed 
as ‘trajectories’ in transcriptional space where network steady states are ‘goal states’ (endpoints) that 
the ‘agent’ (GRN) can reach with varying levels of competencies. As for living agents, these competen-
cies may range from unstable locomotion patterns to more advanced forms of goal-directed behavior 
like path following, obstacle avoidance, or even forms of spatial memory and foresight. In this paper, 
we are particularly interested in investigating two forms of navigation competencies that we refer to 
as versatility, the capacity to reach diverse goal states under various interventions, and robustness, 
the capacity to reach a goal state despite various perturbations. Note that versatility and robustness 
are studied with respect to different sources of incoming environmental variation, respectively inter-
ventions and perturbations.

To investigate these competencies in practice, our experimental framework is based on the defi-
nition of ‘problem spaces,’ which include the observation space (O), behavior space (Z), intervention 
space (I), and perturbation space (U) as defined in Table 2. To be consistent with our navigation task 
terminology introduced in Table 1, we refer to a behavior z as the reached ‘goal state’ of a GRN trajec-
tory. However these ‘goals’ may lie on a continuum between complete robustness and high sensitivity, 
and our primary interest lies in identifying robust goals of the system. Whereas several choices could 
be made for the intervention space I and perturbation space U, we intentionally consider minimal and 
non-genetic interventions to investigate the ‘native’ goal states of the GRN, and environmental obsta-
cles to investigate for navigation competencies classically observed in other living agents. Examples 
of simulations, interventions, and perturbations are illustrated in Figure 2.

Then, a typical analysis using our framework relies on a 2-step procedure, detailed in the subse-
quent sections. First, to assess the versatility of the GRN, we define an exploration strategy which 
organizes the sequence of interventions ‍i1, . . . , iN ‍ used to drive the system toward a maximally diverse 
set of reachable endpoints ‍

{
zk ∈ Z

}
k=1..N ‍ , while being given a limited budget of experiments N. 

Second, to assess the robustness of the discovered goal states ‍
{

zk ∈ Z
}
‍, we conduct a battery of 

empirical tests to characterize their degree of sensitivity to novel perturbations, with a fixed exper-
imental budget of P perturbations per selected behavior z. At the end of this two-step procedure, 
we obtain the ‘behavioral catalog’ (H) of the studied GRN, which includes the history of experiments 

‍H =
{(

ik, ok, zk,
{(

up, op, zp
)

, p = 1...P
})

, k = 1 . . .N
}
‍.

Following this framework, the behavioral catalog is constructed for a database of 30 biological 
networks consisting of a total of 432 systems, where a system is defined as a (GRN model, intervention 

https://doi.org/10.7554/eLife.92683
https://developmentalsystems.org/curious-exploration-of-grn-competencies


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Etcheverry et al. eLife 2024;13:RP92683. DOI: https://doi.org/10.7554/eLife.92683 � 7 of 32

space (I), behavior space (Z)) tuple, as described in Materials and Methods and Supplementary file 
1. These catalogs provide valuable empirical observations and insights into the navigation compe-
tencies of the studied GRNs, particularly in their ability to consistently achieve diverse goal states 
under various tested perturbations. Statistical analyses of the results are presented in Figure 3; Figure 
5; Figure 7, and specific results for the RKIP-ERK signaling pathway (Kwang-Hyun et al., 2003) are 
shown in Figure 2; Figure 4, Figures 6, 8.

Curiosity search uncovers a diversity of reachable goal states
One advantage of modeling GRN behavior within a tractable behavior space Z is that we can then 
deploy strategies to efficiently discover and map that space. Notably, recent diversity-driven machine 
learning techniques such as Novelty Search (Lehman and Stanley, 2008; Lehman and Stanley, 2011), 
Quality Diversity (Cully et al., 2015; Pugh et al., 2016) and Intrinsically-Motivated Goal Exploration 
Processes (IMGEP) (Baranes and Oudeyer, 2013; Forestier et al., 2022) are explicitly designed to 
efficiently explore a so-called ‘behavior space’ or ‘goal space’ which is basically a (predefined or 
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Figure 2. Illustration of the experimental setup and chosen problem spaces on an example gene regulatory network (GRN) model which has 10 nodes 
and models the influence of RKIP on the ERK Signaling Pathway (Lehman and Stanley, 2011). (a) Time-course evolution of the different nodes y1, …, 
y10 (one color per node) when starting from the default initial conditions (as provided in Lehman and Stanley, 2011). The observation captures the 
states taken through time o=[y(t=0), …, y(t=T)] where y=[y1, …, y10]. (b) Corresponding trajectory in transcriptional space (phase space), for two target 
nodes (ERK, RKIPP_RP), from t=0 (A, in red) to T=1000 s (B, in cyan). We can see that the trajectory converges to endpoint B in less than 100 s, and then 
stay there. The behavior (or reached goal state) is the endpoint ‍B =

[
yERK

(
T
)

, yRKIPRP
(
T
)]

‍, where T is chosen big enough to ensure convergence. 
(c) The intervention is setting the initial state of the system trajectory (for all nodes): i = [y1(t=0), …, y10(t=0)]. (d-e) Example of perturbations used in 
this paper. (d) Noise perturbation, here applied to all 10 nodes every 5 s until t=80 s. (e) Push perturbation, here applied to the two target nodes (ERK, 
RKIPP_RP) at t=3 s. (f) Wall perturbation, also applied to the two target nodes (ERK, RKIPP_RP), here at 10% and 90% of the total distance traveled. 
Figure supplement shows examples of other possible ‘drug’ or ‘genome’ interventions that can be implemented in the accompanying software, as well 
as the possibility to perform interventions (or perturbations) in parallel using batched computations.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Examples of interventions that can be implemented within the accompanying AutodiscJax software.

https://doi.org/10.7554/eLife.92683
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learned) model of the overall state space. In particular IMGEPs, which were originally developed 
for the learning of inverse models of highly-redundant mapping in robotics context (Baranes and 
Oudeyer, 2013), were recently shown to successfully assist discovery in complex self-organizing 
systems (Grizou et al., 2020; Falk et al., 2024; Reinke et al., 2020; Etcheverry et al., 2020).

Here, we propose to use an IMGEP to control GRN initial states and maximize the diversity of 
discovered endpoints ‍

{
z ∈ Z

}
‍ within a limited budget of ‍N ‍ experiments. The IMGEP operates in two 

phases: initially, ‍N
´
‍ interventions are sampled randomly from ‍I ‍ to populate history ‍H ‍, then remaining 

interventions are generated through a goal-directed process which relies on several key internal 
models. Those including a goal-embedding module ‍

(
R
)
‍ that encodes observations ‍

(
o
)
‍ into the IMGEP 

goal space ‍
()

‍, a goal generator module ‍
(
G
)
‍ that samples goals from the goal space based on intrinsic 

motivation incentives (e.g. to promote novelty or learning progress), and a goal-conditioned optimi-
zation policy ‍

(
Π
)
‍ that generates candidate intervention parameters to achieve the current goal. Given 

those internal models, the goal-directed phase iterates through (1) sample a target goal ‍g ∼ G
(
H
)
‍, 

(2) infer intervention parameters to achieve that goal ‍i ∼ Π
(
g, H

)
‍, (3) conduct an experiment with the 

intervention i, observe the outcome o, and compute the reached goal ‍z = R
(
o
)
‍, and (4) store the tuple 

Table 1. Glossary of terms used in this paper, with the proposed isomorphism which investigates 
concepts from dynamical complex systems and behavioral sciences under a common navigation task 
perspective.

Dynamical systems 
terminology

Behavioral science 
terminology Proposed isomorphism

Navigation task 
terminology

system: a set of 
interconnected elements 
that interact to produce 
emergent behavior

organism: a living being that 
responds to stimuli and adapts 
to its environment

Both are collections of 
lower-level elements that 
interact to produce emergent 
behavior and can adapt at 
the system level agent or GRN

phase-space trajectory: 
set of states taken by 
the system when starting 
from one particular initial 
condition

behavioral trajectory: the 
sequence of states that an 
organism exhibits in response 
to stimuli

Both represent the sequence 
of states or behaviors that 
a system or individual 
experiences over time trajectory

initial condition: initial 
state of a system’s 
variables and parameters 
that condition its 
dynamics

stimuli: events that might (or 
might not) trigger a response in 
an organism

Both represent incoming 
variations that set a system or 
organism in motion

intervention or 
perturbation

critical parameter: a 
parameter or condition 
that, if changed, can 
cause a system to 
undergo a qualitative 
change or phase 
transition

salient stimuli: stimuli that 
are particularly relevant or 
meaningful to an organism, 
either because they are 
associated with reward or 
punishment or because they are 
novel or unexpected

Both represent the incoming 
variations that have a 
significant impact on a 
system’s steady-state or 
organism’s response salient intervention

steady-state (or 
attractor): a stable state 
(or set of states), towards 
which the system tends to 
evolve over time

observed response: outcome 
or endpoint of a behavioral 
trajectory towards which an 
organism converges

Both represent the endpoint 
that a system or organism is 
moving towards

reached endpoint or 
goal

robust attractor: stable 
attractor toward which 
the system tends to 
evolve under various 
initial conditions and 
perturbations

target goal: it is assumed that 
an organism engages in a goal-
directed manner when it exhibits 
new ways or actions to achieve a 
similar outcome when faced with 
novel circumstances

Both represent a stable 
endpoint or goal that the 
system successfully attains 
under various perturbations robust goal

controllability: degree 
to which the system’s 
dynamics (and resulting 
steady states) can 
be controlled or 
manipulated

trainability: degree to which 
an organism’s behavior can 
be modified or shaped by 
experience or conditioning

Both measure the extent of 
states that can be reached by 
a system or individual under 
a distribution of stimuli/
conditions versatility

https://doi.org/10.7554/eLife.92683
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‍
(
i, o, z

)
‍ in history ‍H ‍. Here, we use the GRN behavior space Z as the IMGEP goal space ‍= Z ‍. Hence 

‘target goal’ refers to a goal sampled by IMGEP while ‘reached goal’ refers to an actual endpoint of 
the GRN trajectory, discovered by IMGEP while targeting a potentially different point in Z. Throughout 
exploration, the IMGEP dynamically refines its Z-traversal strategy based on the knowledge acquired 
by its discoveries. Here, we opt for a simple IMGEP variant such that the exploration process can be 
seen as performing novelty search in behavior space Z (Doncieux et al., 2019). The pseudocode of 
our IMGEP pipeline is shown in Figure 1c and details about the internal models are provided in Mate-
rials and Methods. The final outcome is a ‘behavioral catalog’ of the GRN, containing the diverse goal 
states discovered by IMGEP: ‍H =

{(
ik, ok, zk

)
, k = 1 . . .N

}
‍.

We deploy the IMGEP, also known as ‘curiosity search,’ on all 432 systems in the biological network 
database. Our evaluation focuses on two related competencies: the IMGEP agent’s ability to empir-
ically reveal a diversity of reachable goal states in the (GRN, I, Z) system, referred to as ‘discovered 
diversity,’ and the GRN agent’s competency to naturally reach diverse goal states, referred to as 
‘versatility.’ The true versatility of the GRN is unknown and can only be inferred through empirical 
exploration and proxy metrics.

For evaluating diversity, we measure the area covered in Z by the IMGEP discoveries using the 
threshold-coverage metric (Benureau, 2015) and compare it with the area covered by the diversity 
of a naive random screening strategy (which uniformly samples interventions in ‍I ‍). In Figure 3, the 
diversity discovered by the two exploration variants is shown for the 432 ‍

(
GRN, I, Z

)
‍ systems, where 

random search is given a budget of experiments ‍N ‍ which is twice bigger (n=900) as the one given 
to the curiosity-search algorithm (n=450). Interestingly we see that, on average, at n=290 the curi-
osity search already significantly outperforms the final diversity achieved by random search, while 
only utilizing one-third of its experimental budget (n=900). Whereas we are dealing with numerical 
systems and our codebase allow for efficient and parallel execution, each experiment still consists of 

‍
T
∆T = 25000‍ model steps, where each step integrates the ODE system. Repeating that N times for 
each of the 432 systems starts to be very costly, which is why having efficient exploration strategies 
is very valuable (and would be even more valuable when scaling the framework to larger databases). 
Even more critical, as illustrated in Figure 3b, it seems that, for some systems, random search is not 
able to discover the ‘latent’ regions revealed by the IMGEP in Z, or it would need an extremely large 
budget of experiments. On the other hand, as illustrated in Figure 3c, there are some systems for 
which random search is already quite efficient in revealing diverse behaviors in Z, and for which IMGEP 
performs equivalently.

In fact, the goal-directed strategy of the IMGEP is particularly beneficial for ‍
(
GRN, I, Z

)
‍ systems 

with high nonlinearity or redundancy in their ‍I → Z ‍ mapping, as seen in Figure  4 and studied in 
robotics contexts (Benureau, 2015). Redundancy implies that many interventions in ‍I ‍ lead to similar 
effects in ‍Z ‍, as illustrated in Figure 2 where various interventions and perturbations converge to the 
same endpoint. In these systems, random search will preferentially discover points in areas of high 

Table 2. Problem spaces used in this study.

Problem space Generic definition Specific definition in this study

Observation space 
(O)

Space of raw observations made during the GRN model 
rollout to measure its state or behavior.

Records node activities over time as ‍o =
(
y
(
0
)

, . . . , y
(
T
))

‍, where y(t) 
is an n-dimensional vector (n=number of nodes) and T is the measured 
reaction time.

Behavior space (Z)

A projection of the observation space used by the 
experimenter to encode the ‘goal states’ of a model 
rollout into a tractable (lower-dimensional) space.

Encodes the trajectory endpoint of a model rollout. Represents a 
cell phenotype defined by the state values of some nodes (relevant 
biological markers), such that ‍z =

(
yi1

(
T
)

, · · · yI
(
T
))

‍ (we use m=2 in 
this study for simplicity and visualization).

Intervention space 
(I)

A space where interventions represent controlled 
sources of incoming variation that the experimenter can 
exert on the GRN model rollout to drive it toward novel 
or targeted states.

Sets the initial state ‍i =
(
y1

(
0
)

, . . . , yn
(
0
))

‍ of a model rollout. Defined 
as a hyper-rectangle I ⊆ ℝⁿ where the boundaries are proportional to the 
min and max values taken by the respective nodes from default initial 
conditions.

Perturbation space 
(U)

A space where perturbations represent external sources 
of incoming variation, used by the experimenter to 
characterize the robustness of a given goal state.

Includes three classes of (stochastic) perturbations including noise 
perturbation ‍Un‍, push perturbation ‍Up‍, and wall perturbation ‍Uw‍.

https://doi.org/10.7554/eLife.92683
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(a) Diversity discovered by random and curiosity search
  

(b) Examples where curiosity search is useful 

 Model 69, Nodes (0,4) Model 455, Nodes (4,5) Model 647, Nodes (0,6)

(c) Examples where random search is sufficient 

 Model 272, Nodes (2,3) Model 240, Nodes (1,4) Model 641, Nodes (1,2)

n=450 n=900n=450 n=900

***
***

Behavior Space Z Behavior Space Z Behavior Space Z

Behavior Space Z Behavior Space Z Behavior Space Z

Figure 3. Curiosity search uncovers a wide spectrum of reachable states in behavior space Z. (a) Diversity of endpoints discovered by random search 
(pink) and curiosity search (blue) for the 432 systems. Diversity is measured as the volume of the union of the set of hyperballs of radius ‍ϵ‍ that have 
for centers the discovered endpoints ‍

{
z ∈ Z

}
‍ as depicted by the shaded area in (b–c) with ‍ϵ = 0.05‍. (a-left) Mean and standard deviation curves of 

the diversity of behaviors discovered throughout exploration (with random search having twice more experiments n=900). Dots indicates significance 
(p<0.05) when testing curiosity search (n) against random search (n) in brown, and against random search (n=900) in black, with a Welch’s t-test. Standard 
deviation is divided by 4 for visibility. (a-right) Detail of the diversity obtained in the left plot for all 432 systems at n=450 and n=900, where *** indicates 
significance (p<0.001). (b–c) Discovered endpoints at the end of exploration (n=450) by random search (pink) and curiosity search (blue) for 6 example 
systems of our database. (b) Examples of systems for which curiosity search is much more sample-efficient than random search in finding a diversity of 
reachable states in behavior space Z. (c) Examples of systems with low-redundancy mapping I ->Z such that random search in ‍I ‍ is already quite efficient 
in covering behavior space Z, and curiosity search performs equivalently.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Sanity Check.

https://doi.org/10.7554/eLife.92683
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redundancy in Z whereas the IMGEP, whose exploration is directed uniformly in goal space, should 
cover different levels of redundancy equally. In general, when dealing with large intervention spaces 
and limited experimental budgets, curiosity search can be particularly useful for efficiently navigating 
Z-space.

cluster 1

cluster 2

cluster 3

cluster 4

N/A

cluster 1

cluster 2

N/A

(a) Curiosity Search

(b) Random Search

Behavior Space ZIntervention Space I

Behavior Space ZIntervention Space I

Figure 4. Illustration of the non linearity and redundancy of the I->Z mapping, and of the interest of using goal-directed exploration strategies. Plot 
shows the reachable points discovered by curiosity search (a) and by random search (b) in the behavior space Z and their corresponding starting points 
in the intervention space I, for the RKIP-ERK signaling pathway system (Kwang-Hyun et al., 2003). The intervention space is 10-dimensional, and here 
we show the TSNE reduction in 2D. We apply HDBSCAN clustering (McInnes et al., 2017) on the points discovered in Z, which produced four clusters 
for curiosity search (displayed in gray, green, purple, and orange; non-assigned points are displayed in light blue) and two clusters for random search 
(displayed in light and dark orange). We then visualize where those regions in behavior space are mapped back in the intervention space, by applying 
the same coloring. (a) Looking at the curiosity search discoveries, we can see the non-linearity of the I->Z mapping, where small regions of intervention 
space can map to large regions of the behavior space (like the orange area) and reversely (gray area). We can also see the redundancy of the behavior 
space which is clearly concentrated in the left border of the space (ERK close to zero) which can seemingly be reached from very large portions of the 
intervention space (gray area). (b) Looking at random search discoveries, we can understand that it is very inefficient as it spends most of its exploration 
budget in the region of intervention space that converges to the left border in Z, and fails to explore the orange, purple, and green regions discovered 
by curiosity search which seemingly lead to the more novelty in Z.

https://doi.org/10.7554/eLife.92683
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Finally, as the IMGEP efficiently drives the GRN into diverse goal states with minimal interventions, 
we propose that the diversity achieved by the IMGEP can serve as a good proxy metric of the GRN 
versatility. Notably, analysis of example systems in Figure 3 reveals that many GRNs can reach a broad 
spectrum of steady states. Whereas our database is limited to certain systems (see Materials and 
methods) and might not be representative of all biological pathways, this observation underlines the 
existence of various phenotypes that can be realized. It also highlights the critical importance of iden-
tifying salient interventions that can effectively control cellular states within this spectrum of possibili-
ties, notably as many cancer types are due to epigenetically non-identical cells (Bell and Gilan, 2020).

Empirical tests reveal robust navigation competencies
We are then interested in characterizing the degree of robustness of the previously-discovered ‘goal 
states’ in order to identify the ones that can consistently be reached by the GRN despite encountering 
various perturbations. Whereas many studies have proposed rigorous analysis of the ‘robustness’ of 
biological networks (Kitano, 2007b; Félix and Barkoulas, 2015), the generated perturbations often 
target variations in the regulatory rules (i.e. variations at the hardware level) and variations are often 
sampled independently (and prior) to observations of the GRN dynamical behaviors (von Dassow 
et al., 2000; Ingolia, 2004; Ma et al., 2006; Noman et al., 2015; Rizk et al., 2009; Donzé et al., 
2011). Here instead, we propose to conduct a battery of empirical tests that draw inspiration from 
classical ‘displacement experiments’ (Walcott, 1996; Luschi et al., 2001) and ‘barrier experiments’ 
(Bisch-Knaden and Wehner, 2001) commonly used in behavioral sciences to assess the navigation 
competencies of various animals. As illustrated in Figure 2, we consider environmental perturbations 
that perturb the GRN trajectory with (1) various degree of noise in the gene expression levels, (2) 
sudden ‘pushes’ during the GRN traversal of transcriptional space, and (3) energy barriers or ‘walls’ 
acting as new force fields that constrain the GRN traversal. Importantly, those perturbations are condi-
tioned on the observed behavior of the GRN. The magnitude of the noise and of the pushes is scaled 
proportionally to the extent of the observed trajectories, and the walls are generated in locations of 
the space that the GRN would ‘naturally’ visit without the induced perturbation. While intuitive from 
a behaviorist point of view, where one would adapt experimentation when testing animals in different 
contexts (e.g. to study homing behavior of an ant and of a sea turtle, or of an ant in food deprivation 
and in reproduction phase) (Abramson, 1994), robustness studies in systems biology often neglect 
those aspects. We propose that a behaviorist lens on robustness can help in understanding forms of 
non-genetic resistance in transcriptional space, which is crucial for the development of therapeutic 
strategies (Bell and Gilan, 2020).

To assess the degree of robustness of the discovered goal states, our evaluation procedure 
is the following. For each (GRN, I, Z) system of the database, we retrieve a representative set of 
trajectories previously discovered using the curiosity-search algorithm and subject these trajectories 
to ‍P = s × r‍ perturbations conditioned on the GRN goal-reaching trajectory ‍i → z‍ prior perturba-
tion. Here, s represents the different perturbation distributions which correspond to various ‘tests’ 
and ‘levels of difficulty’ (e.g. noise magnitude and frequency, number of walls, etc.) and ‍r‍ is the 
number of (stochastic) perturbations sampled per family. The pseudocode is illustrated in Figure 1c 
and details about the different family of perturbations are provided in Materials and Methods. 
At the end of this process, the behavioral catalog is augmented with the perturbed trajectories 

‍H =
{(

ik, ok, zk,
{(

up, op, zp
)

, p = 1...P
})

, k = 1 . . .K
}

.‍
As the use of ‘spaces’ comes with the notion of similarity and distance, we can then easily evaluate 

the sensitivity of a goal state ‍z‍ with respect to a set of perturbation ‍
{

up, p = 1...P
}
‍ as the average 

distance in behavior space Z between the original trajectory endpoint ‍z‍ and the perturbed trajecto-
ries endpoints ‍

{
zp
}
‍. Here our distance is simply the Euclidean distance, normalized by the extent of 

the trajectory prior perturbation in Z. We can then identify the so-called ‘robust goals’ of the systems 
as the ones that have the lower sensitivity to perturbations. These sensitivity analyses can be useful 
in two important ways. On the one hand, they allow us to quickly identify the ‘extreme’ examples of 
robustness, both at the system-level and at the goal-level, providing several insights into the degree 
of ‘competencies’ that some biological networks might exhibit in their relative space (Figure 5). On 
the other hand, these analyses also allow us to map the heterogeneity of cellular responses and to 
better understand how non-genetic perturbations might modulate the landscape of reachable cell 
phenotypes (Figure 6).

https://doi.org/10.7554/eLife.92683
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Figure 5. Identification of robust traversal strategies in transcriptional space. (a) Violin plots show, for each of the 432 systems (one point per system), 
the median sensitivity (over the K representative goal states) to the noise (green), push (gray), and wall (yellow) perturbation families. Violin plots on 
the right detail the median sensitivity for the 18 sub-families. (b–g) Each row provides examples of perturbed trajectories of either extremely-robust or 
extremely-sensitive example (gene regulatory network. GRN, Z) system (on average over the K goal states) for the three families of perturbations, as 

Figure 5 continued on next page
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Figure 5 shows the median sensitivity, over the representative goal states, for the 432 systems 
of our database and for the noise, push, and wall perturbations families (as well as for the s=18 sub-
families which correspond to varying degrees of perturbations). Overall, even though we observe 
varying degrees of sensitivity between systems (and between magnitudes of perturbations, which is 
expected), one first and interesting observation is that the median sensitivity remains relatively low, 
suggesting that GRNs could not only exhibit versatility (with respect to the considered interventions) 
but also robustness (with respect to the considered perturbations). In fact, looking at the ‘extreme’ 
examples, we can identify quite impressive examples of complex and yet highly-robust space traversal 
strategies, with non-linear trajectories exhibiting many ‘detours’ and ‘loops’ but yet consistently 
reaching the same endpoint despite several pushes (Figure 5e) or walls (Figure 5g) on the way.

shown by annotations in (a). For instance, the first row (b) shows perturbed trajectories of the (model #10, nodes (3, 7)) system which has the highest 
sensitivity to noise whereas the last row (g) shows trajectories of the (model #272, nodes (2, 3)) system which has a nearly perfect robustness to walls. 
Each image contains an example trajectory for a given ‍

(
i, u

)
‍, and one ‍u‍ per sub-family is shown per column. For instance, in the first row (b), the 

trajectories are perturbed with the different sub-families of noise ‍
(
σn ∈

[
0.001, 0.005, 0.1

]
, pn ∈

[
10, 5, 1

])
‍ which can be seen as various levels of 

difficulty. For each trajectory we annotate the starting position (A), endpoint prior perturbation (B), and endpoint after perturbation (B’), and show the 
original trajectory in black. The perturbed trajectory is shown in color scale (from red at t=0 to cyan at t=3000 s). (b) Except for few cases (trajectory 
#43), the system (model #10, nodes (3, 7)) system is not robust to noise as its trajectories are easily deviated from the original endpoint. (c) The (model 
#52, nodes (4, 7)) system however, except for rare cases (trajectory #35), consistently reaches its original target despite encountering various amounts 
of noise. Interestingly, trajectories #36 and #40 consistently follows a complex up->right-down->left path, despite the induced noise. (d) The (model 
#647, nodes (2, 10)) system, except for few cases (trajectory #0), is typically deviated from its original trajectory when being pushed away. Interestingly 
though, it seems to follow similar (parallel) trajectories. (e) The (model #284, nodes (4, 6)) system, is an example of an extremely robust system which, 
despite many push configurations (in magnitude and number), consistently returns to its original trajectory. Interestingly, the trajectories of this system 
are relatively complex with several loops and detours. (f) The (model #84, nodes (4, 6)) system is not very robust to walls, and typically deviates or 
blocked when it encounters a wall. (g) The (model #272, nodes (2, 3)) system is another example of an extremely robust system which, despite many 
wall configurations (in length and number), consistently returns to its original path. Once again interestingly, the trajectories of this system are relatively 
complex with several loops and detours.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Wall implementation.

Figure 5 continued

(a) Energy landscape constructed
from random search experiments

(b) Energy landscape constructed
from curiosity search experiments

(c) Energy landscape constructed
from robustness tests experiments

Single valley found
by random search

New valley
 revealed by the IMGEP

Robust regions
 in transcriptional space

Figure 6. Visualization of the system-level energy landscape. Energy landscape visualization based on the trajectory-based landscape generation 
method (Li and Wang, 2013), and constructed from different sets of gene regulatory network (GRN) trajectories, respectively trajectories generated 
(a) by the random search exploration, (b) by the curiosity-driven exploration, and (c) by the robustness tests experiments.

https://doi.org/10.7554/eLife.92683
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Figure 6 shows how the constructed catalog ‍H ‍ can be used to generate the energy landscape 
of the studied system. In biology, landscape formalisms have been used to comprehend the under-
lying dynamics of several systems, such as cell cycles and cell differentiation (Li and Wang, 2014; Li 
and Wang, 2013). It is believed that such system-level visualizations could be particularly useful to 
apprehend non-genetic heterogeneity in the context of cancer treatment and stem cell differentiation 
(Bell and Gilan, 2020; Venkatachalapathy et  al., 2021). A recent landscape-generation method 
only proposes to approximate the pseudopotential energy through simulation trajectories obtained 
throughout exploration of the system (Venkatachalapathy et al., 2021), making it a widely applicable 
method which we can directly apply here. However, the paper relied on Monte Carlo simulation to 
generate the trajectories. Due to the previously mentioned non-linearity and redundancy of the I->Z 
mapping, this can lead to poor estimation of the overall energy landscape (Figure 6a). Instead, when 
generating the landscape from the trajectories discovered by our curiosity search exploration, we are 
able to reveal a new and wide ‘valley’ of reachable states (Figure 6b). Interestingly, the landscape-
generation method can also be used to better comprehend the effect of external cues on the gene 
regulatory network, by visualizing how much they deform the energy landscape for instance leading 
to new shaped valleys (Figure 6c). For the example system RKIP-ERK pathway (Kwang-Hyun et al., 
2003), results highlighted a specific region of behavior space (with low RKIP and high ERK activation 
levels) that seems to be particularly robust, i.e., consistently reached by the GRN from certain initial 
conditions, and that might be associated with tumor development (Lee et al., 2006).

Possible reuses of the behavioral catalog and framework
Our framework generated a catalog of stimuli, responses, and navigation tests for the different GRN 
models contained in our database. Creating and sharing such a ‘behavioral catalog’ with the scientific 
community is possibly one of the more exciting aspects of the work with new organisms. Furnished 
with such an empirically based data-set and detailed observations, one can (1) conduct statistical anal-
ysis across the population of studied organisms to inform fundamental research questions and (2) reuse 
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Figure 7. Analysis and comparison of the degree of sophistication, in terms of versatility and robustness, between different classes of gene regulatory 
network (GRN). We categorize the GRNs by class of organism they belong to: plant, bacteria, slime mold, amphibian, rodent, Homo sapiens, or 
generic. ‘n/a’ refers to network models for which this information is not available. (a) Violin plots show the versatility of the 432 systems (one point per 
system) for each class. Versatility of one system is measured as the area covered by all the goal states discovered by curiosity search (equivalent to 
what we call diversity in Figure 3). (b) Trade-off (aka Pareto) mean and standard deviation curves that represent the trade-off among versatility and wall 
robustness performances as taken by the different classes of GRNs (standard deviation is divided by 4 for visibility). For each system, versatility (y-value) 
is measured as the area covered by the set of robustly achieved goal states, where the criterion of goal-achievement is a binary which tests whether the 
goal-reaching sensitivity (on average overall wall perturbations) is below a certain threshold (x-values). Violin plots in (a) are ordered in ascending order 
according to the class mean y-value at x=0.4 in (b).
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the acquired knowledge to design specific behavior-shaping experiments in organisms of interest. As 
our framework focuses on observable behavior and is agnostic about the internal construction of the 
organism, another exciting perspective is to deploy it to different problem spaces and other classes of 
natural, chimeric, or synthetic organisms. This section illustrates preliminary experiments along those 
three types of reuse.

To develop insights on the degree of sophistication of the different 
GRNs
The first use-case we explore is to conduct statistical analysis to categorize versatility and robustness 
in the surveyed networks on the basis of species in evolutionary strata. We consider seven catego-
ries, namely, plant, bacteria, slime mold, amphibian, rodent, Homo sapiens, or generic. Here, generic 
corresponds to the networks not associated with any species but related to generalized biological 
processes. Please note that the surveyed database is relatively small with respect to the wealth of 
available models and biological pathways, so we can hardly claim that these results represent the true 
distribution of competencies across these organism categories. Still, as shown in Figure 7, results 
suggested interesting patterns.

First, on average, generic and Homo sapiens GRNs exhibit higher versatility (mean 0.228 and 0.238) 
compared to rodent and amphibian GRNs (mean 0.163 and 0.169), which in turn show higher versa-
tility than bacteria and plant GRNs (mean 0.136 and 0.117). These findings are particularly intriguing 
in the context of the recently-formulated hypothesis of multi-scale competency architecture (Levin, 
2022): could the observed variation in versatility among different classes of GRNs contribute to the 
degree of versatility observed at higher-level scales? Collecting such experimental data for broader 
classes of organisms and GRNs will be crucial to understand how competencies at the molecular scale 
can impact the overall functionality and adaptability of organisms at higher scales, and to understand 
how evolution might have exploited this modular architecture for shaping the observed adaptivity and 
reprogrammability of biological systems.

Second, when comparing with the versatility of random networks (in black), generated to follow 
the same distributions of network size and connectivity as biological networks (as proposed in Biswas 
et al., 2023, see Materials and Methods), we observe that random network versatility is much lower 
(<0.026) than the versatility observed in biological networks. Once again, it is difficult to draw strong 
conclusions as the gene circuit model used for the random networks is relatively limited, whilst generic 
and studied across a range of biological contexts (Reinitz and Sharp, 1995; Jaeger et al., 2004; 
Cotterell and Sharpe, 2010; Molinelli et al., 2013), and it will be interesting to scale the comparison 
to a broader and more complex range of ODE-based random models. Still, these findings hint that 
versatility prevalence might be a strong invariant of biological intelligence shaped by evolutionary 
processes.

Finally, we categorize the versatility-robustness tradeoff in the different categories of organisms. 
The idea is to compare the GRN competencies to robustly achieve diverse goal states, for different 
robustness thresholds. In Figure  7b, we plot the mean and standard deviation pareto curves for 
the different categories of organisms and observe that, in average, the pareto-optimal solutions are 
mostly achieved by generic cell GRNs, even though bacteria GRNs can robustly reach more goal 
states for exigent robustness criteria (high x-values). The slime mold GRN can reach highly diverse 
goal states but the tradeoff quickly drops with wall perturbations, and there is only one system in our 
database belonging to this category so results might be not representative. Once again, those results 
are very interesting as generic cells GRNs are a building block that has been extensively reused by 
evolution across several organisms and contexts, bacteria have evolved to be very resistant (e.g. to 
antibiotics), and slime molds are an unicellular organism well known for its diverse capabilities, espe-
cially navigational ones (Vallverdú et al., 2018; Beekman and Latty, 2015; Saigusa et al., 2008; 
Nakagaki and Guy, 2008).

For the development of therapeutic interventions
Understanding forms of non-genetic resistance and non-genetic heterogeneity is crucial across a 
wide range of cancer and treatment contexts (Bell and Gilan, 2020). Here, we illustrate how the 
constructed behavioral catalog can provide a fertile source for the design of therapeutic strate-
gies, notably in the context of network control, using again the example of the RKIP-ERK signaling 

https://doi.org/10.7554/eLife.92683
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pathway (Kwang-Hyun et al., 2003). In Figure 4, we saw that curiosity search revealed four clus-
ters of reachable steady states for this system. From a clinical perspective, one might denote the 
green cluster as ‘healthy’ region of behavior space and the orange cluster as ‘disease’ region of the 
behavior space, as high levels of ERK and low-levels of RKIP are often linked to tumor development 
(Lee et  al., 2006). In Figure 8a, we plot those two clusters as well as the 10 more robust goal-
reaching behaviors from the behavioral catalog of this system, i.e., the goal states with the lower 
average sensitivity to the induced perturbations. We see that 6 out of the 10 more robust trajectories 
end up in the ‘disease’ region, suggesting that certain configurations of initial state are very likely to 
reach that region despite chemical blockers (here pushes, walls, and noise), which was also visible 
on the system’s energy landscape in Figure 6c. Looking at the six trajectories, it seems that they all 
follow similar patterns where RKIP activation level increases past a certain threshold, and only then 
converge toward the disease region. This might already provide an interesting biomarker for predic-
tion of tumor development, but what we are really interested here is to build upon that knowledge to 
develop stimuli-based interventions allowing to re-set the gene regulatory network (GRN) setpoints 
from the identified ‘disease’ steady states back to steady states within the identified ‘healthy’ region. 
To do so, we define a parameterized stimuli-based intervention and a performance function, and 
search for parameters that optimize this performance. For the intervention function, we use a piece-
wise constant function that determines which nodes to intervene on (here MEKPP), when to apply the 
intervention (here every 10 s for 100 s), and with what amplitude (which are the parameters that we 
are seeking to optimize). The choice of the intervention function, which is arbitrary in this example, 
would typically depend on the experimental constraints, e.g., which nodes can be targeted with 
drugs and at which precision. For the performance function, we define the centroid of the ‘healthy’ 
region as the target setpoint and compute performance of the stepwise intervention as the average 
distance of the novel setpoints (after intervention when starting from the 6 disease setpoints) to the 
target setpoint, and under a distribution of stochastic walls, pushes and noise perturbations. Hence 
a successful intervention should re-set the disease setpoints to healthy setpoints for all discovered 
disease states and robustly across the various tested perturbations. For optimization, we simply 
perform random search as this was sufficient here to discover one intervention (as shown in Figure 8b) 
that successfully reset the setpoints (as shown in Figure 8c) under various tested perturbations (as 
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Figure 8. Identification of stimuli-based stepwise intervention triggering robust re-set of disease states into healthy physiological states. (a) The 10 most 
robust identified goal states (average sensitivity <0.05) and the corresponding reaching trajectories are displayed for the example RKIP-ERK signaling 
pathway (Kwang-Hyun et al., 2003). We can see that most of them converge toward attractors in the ‘disease’ region (orange). (b) Discovered stepwise 
stimuli intervention on MEKPP which we apply on states stuck in the ‘disease’ region for 100 s. (c) The discovered intervention successfully brings back 
all points from the ‘disease’ region closer to the target endpoint in the ‘healthy’ region, and this is under various tested perturbations (as shown in figure 
supplement). The optimization procedure that led to the discovery of this intervention is described in the main text.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Resulting trajectories after applying the discovered stimuli-based intervention, as shown in Figure 8b, to the example RKIP-ERK 
signaling pathway (Kwang-Hyun et al., 2003) for the 6 ‘disease’ trajectories originally discovered in the behavioral catalog (shown in Figure 8a).

https://doi.org/10.7554/eLife.92683
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shown in Figure 8—figure supplement 1). Here random search was sufficient to find a successful 
intervention, but more advanced optimization strategies like evolutionary algorithms or stochastic 
gradient descent could be envisaged for harder problems. Overall, mapping the ‘latent’ behavioral 
abilities of GRNs in healthy physiology and disease states may have important implications for the 
identification of robust stimuli-based interventions that focus on behavior shaping instead of micro-
managing all molecular states, and that can be exploited in therapeutic contexts.

As an alternative strategy to gene circuit engineering
The final type of reuse we explore is not a direct reuse of the constructed behavioral catalogs, but 
rather a reuse of the proposed automated tools to reveal different kinds of behaviors in a bioengi-
neering context. A common problem in synthetic biology is to optimize the configuration and param-
eters of a gene model network to optimally perform a desired functionality, also known as gene circuit 
engineering (Volk et  al., 2020). Recent approaches rely on optimization-driven machine-learning 
strategies, such as evolutionary algorithms and stochastic gradient descent. However, choosing 
the right loss function and parameter initialization for these optimization methods is a well-known 
problem in machine learning. These issues can lead to optimization algorithms getting trapped in local 
minima within the complex landscape of possibilities. In response to these challenges, we propose 
to investigate whether the curiosity-driven exploration strategy can be employed as an alternative 
(diversity-driven) strategy. Whereas traditionally-employed for exploratory purposes, these explora-
tion strategies were also shown to facilitate the resolution of external, pre-defined tasks characterized 
by sparse or deceptive rewards (Colas et al., 2018), by effectively exploring solution space.

Here, we consider the target application of oscillator circuit engineering followed in Hiscock, 
2019, where parameters of a gene circuit model are optimized to produce oscillation patterns with 
target amplitude ‍A‍, frequency ‍w‍ and offset ‍b‍. This time, the intervention space includes both genetic 
interventions (setting kinematic parameters of regulatory rules) and environmental interventions 
(setting the initial state ‍y0‍). We then compare several exploration strategies: a random search, two 
optimization-driven strategies, one using gradient descent as proposed in Hiscock, 2019 and one 
using an evolutionary algorithm, and finally a diversity-driven strategy using the proposed curiosity 
search. All algorithms are given the same experimental budget ‍

(
N = 5000

)
‍. For curiosity search, the 

behavior space ‍Z ‍ is defined as the image space of the discrete Fourier transform of the observation. 
We then use the exact same IMGEP algorithm as before, but operating within the novel problem 
spaces ‍

(
I, Z

)
‍. For gradient descent, we follow the procedure proposed in Hiscock, 2019. We define a 

loss function which measures the mean square error between the observed node activation levels ‍y‍ 
and the target oscillation (represented as a cosine wave). We then randomly initialize the parameters 

‍i ∼ U
(
I
)
‍ and use Adam optimizer for n=5000 optimization steps. For the evolutionary algorithm, we 

use the CMA-ES algorithm (Hansen et al., 2003), with the negative of the loss as fitness function. In 
addition, we also use gradient descent for local refinement of the best discoveries made by the other 
exploration strategies (curiosity search and random search), this time with a limited budget of ‍N = 100‍ 
optimization steps.

In Figure 9, we show that curiosity search is again significantly more efficient than random search 
in revealing a diversity of possible oscillator behaviors. Out of 5000 trials, random search was able 
to find only 42 configurations leading to sustained oscillations whereas curiosity search was able to 
find 1167 (and gradient descent did not find any). Without focusing on the target objective, curiosity 
search is able to efficiently cover the analytic ‍

(
A,ω, b

)
‍ space (Figure 9a-c), thus discovering oscillators 

close to the target one (Figure 9d). Instead, when starting from a random initial condition, gradient 
descent is very likely to get trapped in a local minimum where it converges to the target offset ‍b‍ but 
fails to produce oscillations (Figure 9h-f). While CMA-ES explores more the solution space at the 
beginning of optimization than SGD does, it also ultimately converges into a similar local minima. 
However, whereas the global optimization strategies are unsuccessful in this example, they seem to 
be useful to locally refine close-enough solutions, as can be seen here when refining the best discov-
eries made by curiosity search and random search with gradient descent (Figure 9i-j). These results 
suggest that a diversity-driven exploration strategy, eventually combined with a more advanced local 
optimization strategy, can offer promising and cost-effective alternatives for the design of synthetic 
gene networks. More generally, as our framework only relies on empirical investigation for inferring 
the mapping between interventions and behaviors (treating them as abstract variables in observable 

https://doi.org/10.7554/eLife.92683
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problem spaces), we believe it offers an exciting perspective to be deployed across various problem 
spaces and classes of organisms.

Discussion
This paper presents a novel framework aimed at uncovering the navigation competencies of GRNs. 
The framework conceptualizes GRNs as agents actively navigating the transcriptional space and 
provides a set of tools, leveraging computational models of curiosity-driven learning and exploration, 
with a battery of empirical tests inspired from behaviorist tradition, for automated experimentation 
and behavioral characterization. The proposed framework is novel in two central ways. First, it intro-
duces a novel AI-based toolbox to the field of biological network analysis. We show how this toolbox, 
leveraging the successful ingredients of recent intrinsically motivated learning algorithms - originally 
developed to enable robotic AI agents to explore and learn diverse skills in novel and unstructured 
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Figure 9. Comparison of four alternative strategies for the design of oscillator circuits: curiosity search (blue), random search (pink), gradient descent 
(orange), and an evolutionary algorithm (green). (a–c) Given a budget of 5000 experiments, curiosity search is able to find 1167 oscillator circuits 
(ones showing sustained oscillations), whereas random search only finds 42 oscillators and optimization-driven search fail to discover them (only one 
discovered by CMA-ES and none for gradient descent when starting from a single random initialization). (a) 3D scatter plot of the 42 random search 
discoveries (pink) and 1167 curiosity search ones (blue) in the (amplitude, main frequency, offset) analytic behavior space. (b) Box plots projecting points 
from the 3D scatter plot into the respective (amplitude, main frequency, offset) axes. (c) Diversity is discovered throughout exploration, where diversity 
is measured with a binning-based space coverage metric (20 bins per dimension). (d-e-f-g) Best discoveries (for which is minimal) made by the four 
exploration strategies. (h) Evolution of the optimization loss ‍L‍ for the four algorithm variants. (i) Evolution of the local training loss when finetuning of 
the best Intrinsically-Motivated Goal Exploration Processes (IMGEP) (blue) and RS (pink) discoveries with gradient descent, with the finetuned results 
displayed in (j–k).
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environments (Baranes and Oudeyer, 2013; Forestier et al., 2022) - can be transposed to assist 
efficient discovery of behavioral abilities within biological pathway models like GRNs. Second, rather 
than merely mapping the attractor states (Kauffman, 1993; Kauffman, 1995; Dang et al., 2011) or 
analyzing their sensitivity to model parameter changes (Ingalls, 2004; Ingalls, 2008) as extensively 
proposed in conventional GRN analysis methods, our framework investigates the dynamic adapt-
ability of these networks' navigation competencies in response to various changing environmental 
conditions. With this approach, our aim is to uncover whether diverse competencies, analogous to the 
ones exhibited by living agents, can be found within physiological network dynamics. Notably, these 
competencies are discovered without necessitating structural alterations to network properties or 
connectivity. Importantly, our framework and its associated tools do not make any assumptions about 
the structure or origin of the biological network, making it in theory adaptable to the study of diverse 
unconventional intelligences across various domains.

By applying this framework to a curated database of GRN models, we discovered a diverse range 
of behavioral responses that GRN can exhibit under different initial conditions and characterized their 
robustness to various perturbations. Notably, our analysis revealed a number of interesting aspects of 
navigation of the state space which can be leveraged in several contexts. These automated tools form 
the first step towards cost-effective in silico simulation and interrogation platforms; as the ‘behavioral 
catalogs’ produced by this process can be a first stepping stone for better understanding the GRN 
functionalities as well as for designing drug-driven interventions in a biomedical or bioengineering 
context.

There are several limitations and avenues for future work on this study. First, these networks are 
studied as a model in isolation and it is possible that some of the ODE models (or solvers) provide 
spurious behaviors within certain parameter ranges which might not map to observable phenotypes 
in vitro. Interestingly, this limitation also suggests an interesting further direction to this work: using 
the automated discovery toolbox to assist model inference, allowing to efficiently identify the rare 
or unexpected behaviors of the ODE model and suggest whether further refinement is needed or 
not. Another interesting direction for future work, as our framework considers the GRN model as a 
black-box and works with limited experimental budget, would be to directly apply it to in vitro GRN 
models at the bench. One could for instance integrate experimental constraints to the search by 
defining families of empirically-testable interventions and perturbations, as well as specify clinically-
relevant goal spaces and perturbations. Even if in a biological setting versatility and robustness 
phenomena may be harder to detect, or harder to alter, these results can be used to (1) design 
synthetic biology circuits with advanced capabilities (Pandi et  al., 2022), and (2) conduct studies 
of subcellular proto-cognitive phylogenetics, to help understand the evolutionary pressures for and 
against reprogrammability in cell regulatory machinery. Another limitation of our work is that we 
consider predefined problem spaces, here the space of GRN steady states (or Fourier descriptors of 
the dynamics in the bioengineering example). The dynamics of gene regulatory networks are rela-
tively simple (usually converge to stable points or periodic orbits) allowing such hand-defined descrip-
tors. To scale the framework to higher-dimensional and more complex problem spaces, recent works 
from the IMGEP literature suggest using unsupervised learning of goal space representations (Reinke 
et al., 2020; Etcheverry et al., 2020). Whereas these works were applied to abstract models of multi-
cellular patterning, similar works could be envisaged in more realistic systems, such as sophisticated 
model of multicellular morphogen and/or bioelectrical patterning which were used to suggest in-vitro 
experimental manipulations (Libby et al., 2019; Pietak and Levin, 2016; Pietak and Levin, 2016).

The tools presented here, and the behavioral repertoire we identified, are just the beginning, 
and much work remains. Future efforts must test additional competencies across the spectrum of 
cognition (memory, creative problem-solving, valence, etc.) and extend the tools we presented here 
to explore them. The predictions made by our computational tools can now be tested in real cells, 
using emerging tools for physiological profiling in the living state and a diverse set of biochemical, 
biomechanical, and bioelectrical perturbations. We anticipate a tight and productive feedback loop 
between computational theory that suggests new experiments, and results in living cells that greatly 
extend our computational perspective on what they can do (Koseska and Bastiaens, 2017; Baluška 
et al., 2022; Baluška et al., 2023; Reber and Baluška, 2021; Baluška and Reber, 2021). Such inter-
disciplinary work, pulling together concepts and techniques across fields, is likely to have major impli-
cations for fundamental understanding of evolution, intelligence, and dynamical control, as well as 
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drive novel kinds of therapeutics that leverage the innate behavioral competencies of living matter 
(Levin, 2023b; Bernheim-Groswasser et al., 2018).

Methods
GRN models and numerical simulation
This study employs ordinary differential equation (ODE) models to represent molecular pathways, 
with nodes representing pathway components and edges capturing their interactions. The continuous 
node states, encompassing variables like gene expression levels and protein concentrations, are inter-
connected through a system of ODEs, enabling the modeling of complex regulatory dynamics. ODE 
models are often available in the Systems Biology Markup Language (SBML), a standardized format 
that contains essential information about variables, parameters, equations, and model metadata in 
XML files.

To perform numerical simulations of ODE SBML models, we rely on the SBMLtoODEjax python 
library, a recent development that automates the parsing and conversion of SBML models into Python 
models written entirely in JAX (Scheiner, 2019). Taking advantage of JAX computing capabilities, 
SBMLtoODEjax enables efficient and parallel numerical solutions for gene expression levels and other 
node states by recursively invoking the generated Python models to integrate the ODE equations with 
current gene expression levels. Additionally, we have developed a Python library (copy archived at 
Etcheverry et al., 2023a) comprising additional modules and pipelines that facilitate interventions on 
the GRN models such as genome or drug interventions, as well as other perturbations such as noise, 
pushes, and walls that can be applied to the states and kinematic parameters of gene regulatory 
networks.

Given the model species initial state ‍y
(
t = 0

)
‍, the desired rollout length ‍T

(
secs

)
‍ and step size 

‍∆T ‍, as well as the chosen intervention ‍i‍ and/or perturbation ‍u‍, the model rollout iteratively (1) inte-
grates the system of ODE-governed equations that specifies the rate of species changes ‍

dy
dt ‍ using 

JAX odeint solver to update model species ‍y
(
t
)
→ y

(
t + ∆T

)
‍, (2) calls the model assignment rules 

to update kinematic parameters if needed, and (3) apply the intervention and/or perturbation func-
tion to update ‍

(
y
(
t + ∆T

)
, w

(
t + ∆T

)
, c
)
‍ accordingly. In this paper, we use ‍T = 2500s‍ and ‍∆T = 0.1‍ 

(25,001 time points per rollout including ‍t0‍). The ODE solver uses an absolute tolerance of ‍1e−6‍ and 
relative tolerance of ‍1e−12‍, with maximum number of solver steps of 1000. For a step-by-step guide 
on utilizing these libraries within the proposed framework, we refer interested readers to our tuto-
rial (https://developmentalsystems.org/curious-exploration-of-grn-competencies/tuto1.html), which 
offers practical examples and detailed instructions.

Experimental setup
In our computational models, we are able to record the activities of all nodes during a model rollout. 
The observation space ‍O ⊂ R+n× T

∆T ‍ is such that ‍o =
(
y
(
0
)

, . . . , y
(
T
))

‍ where y(t) represents the n-di-
mensional vector of node states at each time step, with T being the total reaction time. The bound-
aries of the observation space are not known.

Regarding the exploration of problem spaces, namely the intervention space I and behavior space 
Z, we specify them as follows.

For the main experiments on biological networks, the intervention space ‍I ⊂ R+n‍ consists of 
initial node states sampled from the hyper-rectangle ‍

[
y0,min, y0,max

]
‍ where ‍y0,min = 1

r × yd,min‍ and 

‍y0,max = r × yd,max‍ with ‍r = 20‍ and ‍
(
yd,min, yd,max

)
‍ the minimum and maximum of each node of the 

model over the default time course simulation (with initial conditions provided in the SBML file and 
T=25000). On the other hand, the behavior space ‍Z ⊂ R+2‍ endpoint states ‍z =

(
yi
(
T
)

, yj
(
T
))

‍ where 

‍
(
i, j
)
‍ corresponds to the target phenotype nodes. We ensure that most trajectories have reached 

stable states at T=2500 (as elaborated in the next section) such that Z can be viewed as the space of 
reachable endpoints, whose boundaries are not known.

Database creation
Biological networks database
All the ODE models we use in this work are downloaded from the BioModels database (Glont, 2018, 
Malik-Sheriff et  al., 2020) in SBML format. From all models referenced on the website, we only 
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consider the ones that are curated, that have at least three nodes, and that are handled by the 
SBMLtoODEjax simulator (as SBMLtoODEjax does not handle models with discrete events, custom 
functions, or other specific cases as detailed in Etcheverry et  al., 2023b). Note that the original 
models 37, 262, 263, 284, 454, 455, 459, 461, and 624 have been previously analyzed while clamping 
certain nodes at fixed values (as detailed in Supplementary file 1). Here, we relaxed this condition for 
a more realistic simulation in which all of the nodes' concentration are free to vary.

To ensure the inclusion of models suitable for our analyses, we then applied specific filters to the 
collected models.

First, we simulated the default model rollout for each model to obtain the concentration profiles 
of the pathway components over a short time span (T=10 s and ‍∆T = 0.1‍). We discarded simulation 
results containing invalid values (NaN or negative concentrations) or those that took an excessive 
amount of time (>1 s). While it is acceptable that a rollout sometimes returns NaN values (when there 
are no solutions given ODE tolerance options for specific initial conditions), we consider the model 
invalid if this occurs for the default initial conditions provided in the SBML file.

For the remaining models, we conducted further simulations with an extended time span (T=2500) 
and 50 random initial conditions uniformly sampled within the model’s intervention space ‍I ‍ (as defined 
before). Once again we discarded models whose batch simulations took an excessive amount of time 
(>15 s). From the remaining models, we derived the resulting 50 trajectories for each node pair (i, 
j) and subjected them to additional filters to refine the database. We removed node pairs where 
either (1) [filter F1] a substantial proportion of trajectories (20%) exhibited invalid concentrations (NaN 
or negative) or unsettled behaviors ‍

(
∃t ≥ 2400 such that

��y (t
)
− y

(
T
)�� ≥ 0.02 ×

��y (T
)
− y

(
0
)��)

‍ or peri-

odic patterns  
‍

(
∃f > 0suchthat

��S (f
)�� ≥ 40whereS = DFT

([
y
(

T
2

)
, · · · , y

(
T
)]))

‍
; or [filter F2] the reached 

space in ‍Z ‍ was too small 
‍

((
max

k=1···50
yk(T) − min

k=1···5
yk(T)

)
< 0.1

)

‍
 to discard cases where ‘diversity’ could 

result from floating point rounding errors; or [filter F3] the number of attractors was less than four 

‍

({
yk (T

)}
k=1···50

cover ≤ 4 bins
a 20 × 20binningofZ

)
‍
.

Upon completion of the filtering process, our final database comprised 30 models, consisting of a 
total of 432 systems, as detailed in Supplementary file 1. These curated models and systems served 
as the foundation for our subsequent analyses and investigations into the navigation competencies of 
the molecular pathways.

Random networks database
Following the methodology proposed in Biswas et  al., 2023, we aimed to create a database of 
synthetic networks with topologies similar to those of the biological networks, but with random regu-
latory rules instead of evolved ones. The objective was to compare the versatility and robustness 
competencies between biological and random networks, akin to the approach used for memory 
competencies in Biswas et al., 2023. To achieve this, we initially generated 300 networks based on the 
transcriptional gene circuit model (Reinitz and Sharp, 1995), ensuring that they had the same distri-
bution of network size (number of nodes) and connectivity (nodes in-degree) as the biological network 
database (using fitted Gaussian distributions). The kinematic parameters ‍W, b, τ ‍ of these networks 

were randomized 
‍

(
W ∼

[
−30, 30

]n×n , B ∼
[
−10, 10

]n , τ ∼
[
1, 15

])
‍
 where model step is defined as 

‍
y
(
t + 1

)
= ∆T

τ × sigmoid
(
Wy + B

)
+
(

1 − ∆T
τ

)
× y

‍
 and in-degree connectivity is enforced by setting 

some weights of ‍W ‍ to zero. However, during the creation process, we observed that none of the 
generated networks met the criterion for exhibiting a sufficient number of steady states (criterion F3). 
This limitation arose from the inherent constraints imposed by the gene circuit model’s shape of ODE 
equations, limiting the diversity of possible dynamical behaviors. As our focus was on networks with a 
possible spectrum of steady states, akin to the biological network database, we decided not to pursue 
further analyses on these networks.

Instead, we selected the systems (models and pairs of nodes) that demonstrated the highest versa-
tility (metric detailed below) from among all the generated systems that passed the filters F1 and 
F2. The selected networks' versatility is presented in Figure 7, but for future research, it would be 
interesting to explore broader and more complex classes of equations to assess their potential for 
achieving higher behavioral diversity.

https://doi.org/10.7554/eLife.92683


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Etcheverry et al. eLife 2024;13:RP92683. DOI: https://doi.org/10.7554/eLife.92683 � 23 of 32

Sanity check
We also tested our exploration pipeline on two simple models, namely BIOMD0000000341 as 
described in the paper ‘A model of beta-cell mass, insulin, and glucose kinetics: pathways to diabetes’ 
(Topp et al., 2000) and BIOMD0000000454 as described in the ‘Example One’ of the ‘Metabolic 
Control Analysis: Rereading Reder’ paper (Smallbone, 2013). For both these models, the ground 
truth goal states (attractors of the models) are already known, because easy to find analytically or 
numerically as described in the corresponding papers. As a sanity check, we validate that our explo-
ration pipeline is able to re-discover those goal states and added those results in Figure 3—figure 
supplement 1 for completeness. Note that a more complex variant of BIOMD0000000454 is also 
included in our main biological networks database where we let the metabolite concentrations y1(t),...
y5(t) evolve in time. We also illustrate results of our curiosity-driven exploration method and of a 
random search method on this more complex variant in the figure.

Curiosity-driven exploration
This section provides additional information about the internal models and hyperparameters of the 
intrinsically-motivated goal exploration process. The overall IMGEP pipeline is illustrated in Figure 1c. 
To sample a goal, the IMGEP uses a uniform sampling strategy within the bounding hyper-rectangle 
of currently reached goals (scaled by a factor 1.3). Hence sampling bounds adapt to the discov-
eries and do not need to be predefined via expert knowledge. The volume of the hyper-rectangle 
is larger compared to the cloud of currently-reached goals, which incentivizes targeting unexplored 
areas outside of the cloud and promotes diversity in the exploration process. Then, to generate 
an intervention for achieving the sampled goal, the IMGEP selects the nearest previously reached 
goal in ‍Z ‍, identifies its associated intervention, and performs a local random step from that point 

‍stepsize ∼ N
(
0, 0.1 ∗

[
y0,max − y0,min

])
‍ in the intervention space.

While our implementation choices for the IMGEP goal representation, goal generation, and goal-
conditioned optimization are relatively straightforward, it is worth noting that alternative strategies 
could be considered for each of these components for more complex problems. The Python library 
AutoDiscJax (copy archived at Etcheverry et al., 2023a) that accompanies this paper can be used to 
implement this and other IMGEP variants in JAX.

Robustness tests
We define three family of perturbations: (1) the noise perturbation ‍Un

(
σn, pn ∨ y

)
‍ which is parametrized 

by its standard-deviation (scaled proportionally to the extent of the observed trajectory ‍y‍ prior pertur-
bation) and period (secs); (2) the push perturbation ‍Up

(
mp, np ∨ y

)
‍ parametrized by its magnitude 

(proportional to the extent of ‍y‍) and number of occurrences; (3) the wall perturbation ‍Uw
(
lw, nw ∨ y

)
‍ 

parametrized by its length (proportional to the extent of ‍y‍) and number, and where walls are gener-
ated in locations of the space that the GRN would ‘naturally’ visit without the induced perturbation. 
Details about the implementation of walls are provided in Figure 5—figure supplement 1.

To assess the robustness of the GRN systems in our database, we employ an evaluation procedure, 
as depicted in Figure 1d. For each system ‍

(
I, Z

)
‍ in the database with its corresponding behavioral 

catalog ‍H ‍ discovered using the curiosity-search algorithm, we perform the following steps. We first 
retrieve ‍K ‍ representative trajectories out of the ‍N ‍ discoveries, i.e., ones that cover well the reachable 
space. To do so, we randomly sample tuples of K discoveries (among N) 500 times, and select the one 
with the maximum diversity. One could test all trajectories with K=N but here we use K=N/10 mainly 
for compute reasons, as we run the experimental campaign on all 432 systems. Next, we subject each 
of these K trajectories ‍

{
yk, k = 1..K

}
‍ to s=18 different perturbation distributions, each representing 

various levels of difficulty:‍
(
σn, pn

)
∈
{(

0.001, 5
)

,
(
0.005, 5

)
,
(
0.1, 5

)
,
(
0.005, 10

)
,
(
0.005, 5

)
,
(
0.005, 1

)}
,‍ 

‍
(
mp, np

)
∈
{(

0.05, 1
)

,
(
0.1, 1

)
,
(
0.15, 1

)
,
(
1, 0.1

)
,
(
2, 0.1

)
,
(
3, 0.1

)}
,‍ 

‍
(
lw, nw

)
∈
{(

0.05, 1
)

,
(
0.1, 1

)
,
(
0.15, 1

)
,
(
1, 0.1

)
,
(
2, 0.1

)
,
(
3, 0.1

)}
‍. In each perturbation distribution, we 

sample r=3 random perturbations, resulting in ‍P = s ∗ r‍ perturbations. For each perturbation in the 
set ‍

{
up, p = 1...P

}
‍, we re-run the trajectory starting from the same initial state ‍i‍ but with the sampled 

perturbation applied ‍
(
i, up

)
‍, and observe the resulting outcome ‍

(
op
)
‍ and reached endpoint ‍

(
zp
)
‍.

At the end of this process, the behavioral catalog is augmented with the perturbed trajectories 

‍H =
{(

ik, ok, zk,
{(

up, op, zp
)

, p = 1...P
})

, k = 1 . . .K
}

.‍
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Evaluation metrics
Diversity measure
Diversity is measured by the area that explored observations cover in behavior space Z. Each single 
exploration results in a new point in this space, such that diversity measures how much area the algo-
rithms explored in those spaces.

In general, existing approaches in the NS, QD, and IMGEP literature use binning-based metrics 
(Reinke et  al., 2020; Etcheverry et  al., 2020; Pugh et  al., 2015) or distance-based metric from 
ecology (Scheiner, 2019) to quantify the diversity of a set of explored instances. However, those 
metrics are sensitive to the binning strategy, or fail to discriminate between qualitatively significantly 
different explorations (Benureau, 2015). Another approach, called the threshold coverage, measures 
diversity as the volume of the union of the set of hyperballs of radius ‍ϵ‍ that have for centers the 
observed effects ‍

{
z ∈ Z

}
‍. This diversity measure, while difficult to compute in high-dimensional spaces, 

avoids the pitfalls of bin-based and distance-based metrics and is easily computable in 2-dimensional 
spaces (Benureau, 2015).

Threshold coverage quantifies the area of the space that has been reached at a given precision 
‍ϵ‍(the threshold), and is what we used in Figure 3 to compare random search and curiosity-driven 
exploration strategies.

Sensitivity measure
In general, existing approaches in systems biology and evolutionary genetics measure sensitivity 
(opposite of robustness) in a relative manner with respect to (1) a functionality (Kitano, 2007b) or 
phenotypic trait (Félix and Barkoulas, 2015) of interest, (2) specific perturbations (environmental or 
genetic changes), and (3) a measure of the degree of variation. Here, we adopt a similar metric where 
(1) the phenotypic trait of interest is defined as a goal state ‍z ∈ Z ‍ discovered by curiosity search, (2) 
the set of perturbation ‍

{
up
}
‍ is defined in previous section and conditioned on the GRN goal-reaching 

trajectory ‍i → z‍, and (3) variation is measured as the Euclidean distance in behavior space, normalized 
by the extent of the trajectory prior perturbation in Z.

This distance-based sensitivity measure proves straightforward as we explicitly use ‘spaces’ to 
observe and analyze behaviors. The results of this sensitivity analysis are presented in Figure 5.

Versatility-robustness measure
In this study, we introduce the terms ‘diversity’ and ‘versatility’ to characterize the competencies of 
the exploration agent (IMGEP) and the GRN agent, respectively. Diversity refers to the ability of the 
IMGEP agent to reveal a wide range of behaviors in the GRN, while versatility refers to the capability 
of the GRN agent to reach diverse goal states. The GRN versatility is unknown, and can only be 
approximated via proxy metric. Here, we consider that the diversity of the IMGEP (measured with the 
threshold coverage metric) is a good approximation of the versatility of a given GRN, as the IMGEP 
was shown to efficiently drive the GRN into diverse possible goal states. In Figure 7a, we employ this 
diversity metric to categorize the versatility of surveyed networks based on the class of organism they 
belong to. For the random networks, as they all have less or equal than 4 attractors, the versatility 
remains below 

‍
0.026 = 4 × πϵ2(

1+2ϵ
)2

‍
.

Figure 7b, we introduce the versatility-robustness metric, which conditions the diversity metric 
on a sensitivity threshold. Only goal states with sensitivity to perturbations below this threshold are 
considered when computing the reached area of the space. A high versatility-robustness score indi-
cates that diverse goal states are achieved with a high level of precision.

Experiments on the RKIP-ERK signaling pathway
This section details the additional experiments conducted on the RKIP-ERK signaling pathway (Lehman 
and Stanley, 2011). We refer to the accompanying notebook tutorial for reproducing these experi-
ments: https://developmentalsystems.org/curious-exploration-of-grn-competencies/tuto1.html.

For Figure 4, clustering in behavior space was performed using the HDBSCAN algorithm (McInnes 
et al., 2017) with hyperparameters set as min_cluster_size = 10 and cluster_selection_epsilon = 0.1. 
Points in the 10-dimensional intervention space are visualized by applying a TSNE 2-dimensional 
reduction. To visualize the clusters in behavior space (and corresponding clusters in intervention 

https://doi.org/10.7554/eLife.92683
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space), we fitted polygons on the cluster points using shapely library unary_union, dilatation, and 
erosion operations (Pugh et al., 2015; Gillies, 2022).

In Figure 6, we generated trajectory-based energy landscapes following the method proposed in 
Venkatachalapathy et al., 2021. Energy landscapes provide an intuitive way to understand how a 
system with multiple steady states behave, by picturing it as a ball rolling downhill towards low-energy 
valleys (steady states). Given a set of trajectories in behavior space Z, we constructed a probability 
distribution (P) of system states and converted it into a pseudopotential energy surface (U = −ln(P)). 
This energy surface was smoothed using cubic spline interpolation and visualized using Plotly 3D 
surface plots. Figure 6a, b, c differed by the input set of trajectories used for generating the land-
scape: (a) employed the set of trajectories discovered by random search, (b) used the set of trajec-
tories discovered by curiosity search, and (c) utilized the set of trajectories generated by robustness 
tests.

In Figure 8, the ‘healthy’ and ‘disease’ clusters were the same as in Figure 4 and visualized similarly. 
We displayed trajectories with the lowest sensitivity (averaged over all ‍P = 3 × 18‍ perturbations). The 
stimuli-based intervention shown in Figure 8b was found using a simple random search procedure. 
First, we defined an arbitrary target node and a stepwise node-activation function, clamping MKEPP 

values to desired values 
‍
x =

[
y
(

1
)

MEKPP, · · · , y
(

10
)

MEKPP

]

‍
 every 10 s for 100 s. Then, we randomly sampled 

x within a range of values near the MKEPP current steady states (endpoints from the 6 ‘disease’ 
trajectories, assuming that the drug intervention cannot drastically remodel those values). For each 
candidate x, we ran new trajectories starting from the disease states and applying the intervention 
x under a distribution of noise, push, and wall perturbations. Finally, we selected the intervention x 
that most successfully brought ERK-RKIP levels back to the target setpoint (centroid of the healthy 
region). The resulting intervention (shown in Figure 8b) succeeds to robustly reset all 6 disease state 
points despite perturbations, as shown in Figure 8c. We refer to the notebook for reproducing the 
experiments.

Experiments on synthetic gene networks
This section details the additional experiments conducted on the synthetic gene networks (Figure 9). 
We refer to the second accompanying tutorial for the full codebase: https://developmentalsystems.​
org/curious-exploration-of-grn-competencies/tuto2.html.

In these experiments, we consider the target application of gene circuit engineering followed 
in Hiscock, 2019, where parameters of a gene circuit model are optimized to produce target 
oscillator patterns. The gene circuit model employed in Hiscock, 2019 is the same than the one 
used for the random networks database (Eq 1), with ‍τ = 1‍. Hence the intervention space is a 
‍n2 + 2n‍ dimensional space defined as ‍I =

[
yt=0,min, yt=0,max

]
⊕

[
Wmin, Wmax

]
⊕

[
Bmin, Bmax

]
‍, with 

‍y0,min = 0, y0,max = 1, Wmin = −30, Wmax = 30, Bmin = −10, Bmax = 10‍. Here, we consider networks 
of n=3 nodes, with the first node being the target phenotype node. Thus, what we seek here is 
kinematic parameters ‍

(
W, B

)
‍ and initial concentrations ‍y0‍ that would produce a periodic pattern 

‍y =
[
yn=0

(
0
)

, · · · , yn=0
(
T
)]

‍ with target amplitude ‍A‍, frequency ‍w‍ and offset ‍b‍. Here, the target ‍
(
A,ω, b

)
‍ 

are sample randomly with ‍A ∼ U
([

0.1, 0.5
])

, b ∼ U
([

A, 1 − A
])

,ω ∼ Beta
(
α = 2,β = 8

)
‍.

We then compare three alternative exploration strategies: (1) curiosity search, (2) random search 
and (3) gradient descent, i.e., pure optimization-driven search as proposed in Hiscock, 2019, all given 
the same experimental budget ‍N = 5000‍.

For curiosity search, the behavior space ‍Z ‍ is defined as the image space of the discrete Fourier 
transform of the 1d-signal ‍y‍, where distance in the space measures average difference in spec-
tral amplitude. The IMGEP algorithm is then the same that the one previously used, as detailed in 
Figure 1c, but operating within the novel problem spaces ‍

(
I, Z

)
‍.

For random search, interventions are sample uniformly ‍
(
i1, · · · , iN

)
∼ U

(
I
)
‍.

For gradient descent, we follow the procedure proposed in Hiscock, 2019. We define a loss func-
tion which, for a set of parameters ‍i =

(
W, B, y0

)
‍, measures the mean square error between the pheno-

type node activation levels ‍y‍ and the target oscillation represented as a cosine wave with the desired 

‍
(
A,ω, b

)
‍ : 

‍
L =

∑
t

(
y
(
t
)
−

(
Acos

(
2πωt

)
+ b

))2

‍
. We then sample a random parameter ‍i ∼ U

(
I
)
‍ and use 
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Adam optimizer with ‍lr = 10−3, b1 = 0.02, b3 = 0.001, ϵ = 10−8‍ for ‍N = 5000‍ optimization steps (same 

number of model rollouts allowed than for curiosity search and random search).
In addition, we use gradient descent for local refinement of the best discoveries made by the other 

exploration strategies (curiosity search and random search), this time with a limited budget of ‍N = 100‍ 
optimization steps.

Visualizations in Figure 9 show: (a-b) the oscillators discovered by random search and curiosity 
search (gradient descent did not find any oscillator in this example) in the ‍

(
A,ω, b

)
‍ space, (c) the 

corresponding diversity (using this time a binning-based space coverage measure with 203 bins as the 
space is 3-dimensional), (d) the evolution of the training loss ‍L‍ throughout the n=5000 trials for the 
three exploration strategies, (e-f-g) the corresponding best discoveries (for which ‍L‍ is minimal) for 
the three exploration strategies, and (h-i) the local training loss and resulting finetuning of the best 
discoveries with gradient descent.

Statistics
Statistical analyses were performed using custom code in Python 3.9 (relevant libraries include jax 
0.4.8 and scipy 1.10 and plotly 5.16.1). Welch’s two-sample t-tests reported in Figure 3 are two-tailed, 
and additional details on statistical analyses are provided in the figure legend.
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