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Abstract The excessive cosolute densities in the intracellular fluid create a physicochemical 
condition called macromolecular crowding (MMC). Intracellular MMC entropically maintains the 
biochemical thermodynamic equilibria by favoring associative reactions while hindering transport 
processes. Rapid cell volume shrinkage during extracellular hypertonicity elevates the MMC and 
disrupts the equilibria, potentially ushering cell death. Consequently, cells actively counter the 
hypertonic stress through regulatory volume increase (RVI) and restore the MMC homeostasis. 
Here, we establish fluorescence anisotropy of EGFP as a reliable tool for studying cellular MMC 
and explore the spatiotemporal dynamics of MMC during cell volume instabilities under multiple 
conditions. Our studies reveal that the actin cytoskeleton enforces spatially varying MMC levels 
inside adhered cells. Within cell populations, MMC is uncorrelated with nuclear DNA content 
but anti-correlated with the cell spread area. Although different cell lines have statistically similar 
MMC distributions, their responses to extracellular hypertonicity vary. The intensity of the extra-
cellular hypertonicity determines a cell’s ability for RVI, which correlates with nuclear factor kappa 
beta (NFkB) activation. Pharmacological inhibition and knockdown experiments reveal that tumor 
necrosis factor receptor 1 (TNFR1) initiates the hypertonicity-induced NFkB signaling and RVI. At 
severe hypertonicities, the elevated MMC amplifies cytoplasmic microviscosity and hinders receptor 
interacting protein kinase 1 (RIPK1) recruitment at the TNFR1 complex, incapacitating the TNFR1-
NFkB signaling and consequently, RVI. Together, our studies unveil the involvement of TNFR1-
NFkB signaling in modulating RVI and demonstrate the pivotal role of MMC in determining cellular 
osmoadaptability.

Editor's evaluation
This study provides a useful real time technique utilising fluorescence emission anisotropy of cyto-
plasmically expressed mEGFP to measure macromolecular crowding in living cells. The authors use 
this technique to provide solid evidence for the role of macromolecular crowding in cell volume 
control in mammalian cells under different conditions and perturbations. This method is likely to 
be of general interest to cell biologists and biophysicists since macromolecular crowding has broad 
implications for cell biological phenomena such as in osmotic stress response, cell cycle, cell death, 
and phase separation to cite only a few.
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Introduction
The intracellular fluid is an aqueous milieu of multiple macromolecule species that include proteins, 
nucleic acids, lipids, polysaccharides, and numerous metabolites. Making up 56% of a cell’s net dry 
mass, proteins are the most abundant macromolecules with intracellular concentrations ranging 
between 50 mg/mL and 400 mg/mL (Kohata and Miyoshi, 2020; Neurohr and Amon, 2020; Model 
et al., 2021). Such number densities within the confines of the intracellular fluid space create the 
macromolecular crowding (MMC) effect (Minton, 1981; Ellis, 2001; Rivas and Minton, 2016; Delarue 
et al., 2018). Individual macromolecules that operate a particular biochemical reaction cannot access 
the excluded volume of their cosolutes, thus their effective concentration increases while their average 
mobility decreases, resulting in a higher thermodynamic activity and lower entropy (Minton, 1983; 
Garner and Burg, 1994; Rivas and Minton, 2016). Consequently, MMC affects cellular microviscosity 
(Rashid et al., 2015), active transport processes (Nettesheim et al., 2020), protein-ligand binding 
kinetics (Minton, 2001; Köhn et al., 2021), enzyme-substrate reactivity (Thoke et al., 2018; Wilcox 
et al., 2021), macromolecular self-assembly (André and Spruijt, 2020; Schreck et al., 2020), protein 
folding (Adén and Wittung-Stafshede, 2014), and post-translational modifications (Darling and 
Uversky, 2018). Furthermore, since abrupt changes in cell volume affect MMC and in turn, the intra-
cellular thermodynamic landscape, a hypothesis emerged that cells may utilize such shifts in biochem-
ical reaction kinetics to ‘sense’ volume changes (Minton et al., 1992; Burg, 2000; Al-Habori, 2001; 
Hoffmann et al., 2009). Particularly, studies in dog erythrocytes have shown that MMC is a key deter-
minant of the resting cell volume (Colclasure and Parker, 1991; Colclasure and Parker, 1992). Desta-
bilizing the cell volume-MMC homeostasis through extracellular osmotic imbalances can be fatal, as 
persistent cell shrinkage precedes apoptosis while aberrant cell swelling leads to necrosis (Kerr, 1971; 
DiBona and Powell, 1980; Roger et al., 1999; Maeno et al., 2000; Yu and Choi, 2000; Bortner 
and Cidlowski, 2002; Berghe et al., 2010; Okada et al., 2020). Accordingly, cells initiate regulatory 
volume increase (RVI) or decrease (RVD) to avoid the lethal consequences of the osmotically altered 
volume, and concomitantly, MMC (Burg, 1995; Antolic et al., 2007; Hall, 2019; Govindaraj et al., 
2024). The cellular ability of RVI/RVD and their molecular mechanisms vary widely among cell lines, 
source tissue, and organisms (Garner and Burg, 1994; Pedersen et al., 2001; Lambert et al., 2008; 
Hoffmann et al., 2009; Jentsch, 2016). In the particular case of RVI, the transcription factor TonEBP 
(NFAT5) has been well studied for its osmoprotective role (Aramburu et al., 2006; Brocker et al., 
2012), but another prominent transcription factor of the same Rel-family, NFkB, has been implicated 
but relatively unexplored (Hasler et al., 2008; Roth et al., 2010). NFkB activity is involved in multiple 
cell survival pathways against a wide array of stressors, including apoptosis induction (Taniguchi and 
Karin, 2018; Verzella et al., 2020). As failure of cellular RVI also promotes apoptosis (Bortner and 
Cidlowski, 1996; Gómez-Angelats and Cidlowski, 2002; Maeno et al., 2006), it is interesting to see 
whether NFkB activity has a protective role by initiating the RVI process and if the altered MMC is 
involved in modulating NFkB activity.

Until recently, cellular MMC levels have been indirectly quantified through bulk viscosity measure-
ments using fluorescence photobleaching techniques, correlation spectroscopy, polarization anisot-
ropy, and single-particle tracking (Luby-Phelps, 1999; Verkman, 2002; Zorrilla et al., 2004; Kuimova 
et al., 2008; Kuimova et al., 2009; Liu et al., 2013b; Miermont et al., 2013; Puchkov, 2013; Solei-
maninejad et al., 2017; Delarue et al., 2018; Neurohr and Amon, 2020). Other studies have used 
specialized FRET probes to directly investigate cellular MMC (Boersma et al., 2015; Murade and 
Shubeita, 2019; Pittas et  al., 2021). Since solution refractive index generally scales linearly with 
macromolecule concentration, protoplasmic refractive index measurements can also serve as an esti-
mate of MMC levels (Charrière et al., 2006; Yanase et al., 2010; Bélanger et al., 2019; Aknoun 
et al., 2021). Notably, the effect of refractive index on the fluorescence lifetime of EGFP-like proteins 
is a robust technique for quantifying cellular MMC at high spatial resolutions (Sizaire et al., 2006; 
Pliss et al., 2012; Pliss et al., 2019; James et al., 2019; Pliss and Prasad, 2020). In this manu-
script, we propose that measuring the steady-state fluorescence anisotropy of EGFP (‍rEGFP‍) is a more 
straightforward method of quantifying cellular MMC, with the equivalent spatial resolution of fluo-
rescence lifetime measurements but faster temporal throughput. The rationale behind using ‍rEGFP‍ 
as a probe for MMC is explained in the ‘Materials and methods’ section. We demonstrate the high 
dynamic range, pH insensitivity, inertness to ionic and small-molecule crowding of ‍rEGFP‍ through in 
vitro studies, and then track the cell volume-MMC interplay during multiple isotonic and hypertonic 
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conditions using ‍rEGFP‍. Additionally, we unveil TNFR1-mediated NFkB signaling as a cellular RVI initi-
ator and show that elevated cytosolic MMC levels at severe hypertonicities hinder TNFR1 molecular 
assembly and the RVI process.

Results
Fluorescence anisotropy of EGFP is a robust probe for MMC
MMC increases solution microviscosity (Goins et al., 2008; Rashid et al., 2015) and refractive index 
(Khago et al., 2018; Levchenko et al., 2018; Pliss et al., 2012; Pliss et al., 2019; Sizaire et al., 
2006; Zhao et al., 2011), two physical parameters also influencing fluorescence anisotropy. To test 
the effects of MMC on the steady-state fluorescence anisotropy of EGFP (‍rEGFP‍) in vitro, we purified 
EGFP from BL21-DE3 using anion exchange chromatography. We then measured the concentration 
of the purified EGFP using FCS (fluorescence correlation spectroscopy) after serially diluting the EGFP 
solution to FCS-compatible levels. Increasing the dilution of EGFP raised the autocorrelation ampli-
tude (‍G0‍) of the fluorescence intensity fluctuation (Figure 1—figure supplement 1A). The number 
density (‍N = 1

G0−1‍) of EGFP molecules in the confocal volume was linearly dependent on the dilu-
tion factor, and the same linearity prevailed while measuring the total fluorescence intensity of EGFP 
solutions (Figure 1—figure supplement 1A, inset) in our ‍rEGFP‍ measurement system (Figure 1—
figure supplement 1B). We then measured the ‍rEGFP‍ of 50 nM EGFP in pH-adjusted buffer solutions 
containing different crowding agents with varying molecular weights and hydrodynamic radii. Raising 
crowder concentrations caused a linear increase of ‍rEGFP‍ (Figure 1A), and this linearity qualified ‍rEGFP‍ 
as a potential tool to quantify and compare MMC levels. Millimolar concentrations of the proteins 
- BSA (bovine serum albumin) and a-lactalbumin (alpha-lactalbumin) - caused a steep rise in ‍rEGFP‍. 
However, other crowder species common in the cytoplasm, like polysucrose (Ficoll), small organic 
molecules (L-arginine and glycine), and ions (NaCl), induced visible changes in ‍rEGFP‍ only at very 
high, non-physiological concentrations (Figure 1A). Two variants of polyethylene glycol (PEG-20000 
and PEG-6000), having different molar masses (20 kDa and 6 kDa), increased ‍rEGFP‍ in the millimolar 
range as the proteins. However, PEG has limited biological relevance as it is not intrinsically present in 
cells. Among all the crowders tested by us, BSA with the highest molar mass had the most prominent 
impact on ‍rEGFP‍, even though the hydrodynamic radii of PEG, Ficoll, and proteins like BSA are compa-
rable (~3.48 nm) (Ikeda and Nishinari, 2000; Linegar et al., 2010; Sim et al., 2012). In accordance 
with ‍rEGFP‍, increasing the crowder concentration monotonically decreased the fluorescence lifetime 
of EGFP (‍τEGFP‍), and the effect of protein crowding (BSA) was much more pronounced than polysu-
crose (Ficoll) (Figure 1B). The changes in ‍τEGFP‍ are caused by a concentration-dependent increase 
in refractive index (‍n‍) (Figure 1—figure supplement 1C) because ‍τEGFP‍ scales linearly with ‍1/n2‍, as 
predicted by the Strickler-Berg equation (Strickler and Berg, 1962; Figure 1—figure supplement 
1D). Time-resolved fluorescence anisotropy (TR-FA) measurements of EGFP in different BSA concen-
trations further revealed the effect of MMC on the intrinsic anisotropy (‍r0‍) and rotational correlation 
time (‍θC‍) (Figure 1C-i), both of which increased with crowder concentrations (Figure 1C-ii). We used 
the Perrin equation to reconstruct the steady-state ‍rEGFP‍ with the values of ‍r0‍, ‍θC‍, and ‍τ ‍ obtained from 
the TR-FA measurements in different crowder concentrations. The reconstructed ‍rEGFP‍ agreed with 
the measured steady-state ‍rEGFP‍ (Figure 1D), albeit with a suitable instrumental correction factor to 
account for the differences between wide-field and confocal systems. The scattered light in wide-field 
microscopes can depolarize the net fluorescence emission, reducing the magnitude of the observed 
change in ‍rEGFP‍ and the overall values. Thus, we concluded that an increase in MMC affects the ‍r0‍, ‍θC‍, 
and ‍τ ‍ of EGFP, such that ‍rEGFP‍ increases linearly with crowder concentrations.

To further estimate the relative contribution of the MMC-driven increase in ‍η‍ and ‍n‍ on the measured 

‍rEGFP‍, we compared the steady-state fluorescence anisotropy values of EGFP (‍rEGFP‍) with that of 
fluorescein (‍rFluorescein‍) in glycerol solutions (Figure 1E). In the range of 80–90% (vol/vol) glycerol, ‍η‍ 
increases by 264%, but ‍n‍ changes only by 1% (Lide, 2004). For these solutions, the ‍τ /θC‍ approach 
1 for fluorescein (Devauges et al., 2012). The linear nature of the ‍rEGFP‍ curve and the exponential 
nature of the ‍rFluorescein‍ curve in Figure 1E showed that solution ‍η‍ had a negligible effect on ‍rEGFP‍. 
Together, the results in Figure 1A–C and E established that changes in ‍r0‍ and ‍τ ‍ played a greater role 
in elevating ‍rEGFP‍ than ‍θC‍. To verify the reliability of ‍rEGFP‍ as a probe of intracellular MMC, we further 
explored the dependence of ‍rEGFP‍ on EGFP concentration and pH. Fluorescence resonance energy 
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Figure 1. Fluorescence anisotropy of EGFP is a robust probe for macromolecular crowding. (A) Steady-state fluorescence anisotropy of EGFP (‍rEGFP‍) 
progressively increases with crowder concentration and crowder molecular weight. (B) Fluorescence lifetime of EGFP (‍τEGFP‍) steadily decreases 
with increasing crowder concentration - as shown for bovine serum albumin (BSA) (protein) and Ficoll (polysucrose). (C-i) Time-resolved fluorescence 
anisotropy of EGFP (continuous lines - representative data from one experiment) and their fit to mono-exponential decay (dashed lines) in three 
different BSA concentrations along with their residuals, (C-ii) ‍r0‍ (intrinsic anisotropy) and ‍θC‍ (rotational correlation time) of EGFP vs BSA concentration, 
as obtained from curve fitting in C-i. (D) Comparison of the reconstructed ‍rEGFP‍ (dashed line) using the Perrin equation with the ‍r0‍, ‍τEGFP‍, and ‍θC‍ 
values obtained from B and C-ii, and the measured ‍rEGFP‍ (solid line) for the same BSA concentrations. (E) Comparison of the steady-state fluorescence 
anisotropy of EGFP and fluorescein in solutions of varying glycerol content (zoomed-in glycerol content 80–90%), showing that the viscosity dependence 
of ‍rEGFP‍ is negligible. (F) ‍rEGFP‍ vs EGFP concentration in HEPES buffer (pH 7.4) reveals that at [EGFP]>10 µM, ‍rEGFP‍ enters the homo-FRET regime. 
(G) Dependence of ‍rEGFP‍ on the solution pH of HEPES buffers. All the plots show the mean values obtained from at least three individual experiments 
(N≥3) performed at 25°C, and the error bars represent the standard deviation (SD). Except (F), 50 nM EGFP was used for all experiments.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Data tables for Figure 1C-i and Figure 1—figure supplement 1A.

Figure supplement 1. Fluorescence anisotropy of EGFP is a robust probe for macromolecular crowding.

https://doi.org/10.7554/eLife.92719
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transfer between EGFP molecules (homo-FRET) could be an important artifact in ‍rEGFP‍ readouts at 
high EGFP concentrations. Measurements of ‍rEGFP‍ against EGFP concentrations showed that ‍rEGFP‍ 
is independent of [EGFP] variations at less than 10 µM concentrations, and the subsequent decrease 
of ‍rEGFP‍ at [EGFP]>10 µM is presumably due to homo-FRET (Figure 1F). Furthermore, ‍rEGFP‍ was 
also independent of pH at the physiological range (Figure 1G). Therefore, cell-to-cell variations in 
EGFP expression level (if [EGFP]<10  µM), cytosolic pH, ion concentrations, or the small-molecule 
crowder concentrations will not affect ‍rEGFP‍, making it a reliable probe of intracellular MMC. Given 
the enhanced sensitivity of ‍rEGFP‍ to proteins over other macromolecules, and proteins being the most 
abundant macromolecules in a cell, intracellular ‍rEGFP‍ values would primarily sense protein crowding.

MMC levels do not significantly vary between individual cell lines
Next, we evaluated the reliability of ‍rEGFP‍ as a probe for intracellular MMC. We subjected NIH/3T3 
fibroblasts expressing monomeric EGFP to extracellular hypertonicity (additional 600 mM mannitol 
in the isotonic culture media), such that the consequential water efflux increases the intracellular 
MMC (Dmitrieva and Burg, 2005). TR-FA measurements during isotonic conditions and 2 min after 
hypertonicity exposure showed that the elevated MMC decreased ‍τ ‍ and increased ‍r0‍, ‍θC‍, and ‍rEGFP‍ 
(Figure 2A-ii–iv), analogous to our in vitro studies. We further reconstructed the ‍rEGFP‍ map from the 
‍τ ‍, ‍r0‍, and ‍θC‍ maps using the Perrin equation (Figure 2A-v) and found that the differences between 
the measured ‍rEGFP‍ (Figure 2A-vi) and the reconstructed ‍rEGFP‍ values were negligible (Figure 2A-vii). 
Therefore, the hypertonicity-induced changes in intracellular ‍rEGFP‍ could be ascribed to the Perrin 
equation. The intracellular ‍rEGFP‍ maps from the confocal TR-FA system contained spatial variability, 
and the variability was more prominent in the ‍rEGFP‍ maps obtained on a wide-field microscope 
(Figure 2B). Thus, to compare the MMC of different cells, we needed to assign a single ‍rEGFP‍ metric 
to each cell that represented its characteristic MMC. Judging from the intracellular ‍rEGFP‍ distributions 
in the representative examples with extremely dissimilar morphologies (Figure 2B), the modal ‍rEGFP‍ 
value corresponded to the predominant MMC condition in the cell while the mean ‍rEGFP‍ value included 
the influence of the spatial variability. Assuming that the hypertonicity-driven MMC increase should 
be equivalent across different cells irrespective of their morphology, we compared the spatial distri-
butions of intracellular MMC during extracellular isotonicity and hypertonicity (+600 mM mannitol). 
In the two extreme examples of morphological dissimilarity (Figure 2B), the difference between the 
isotonic and hypertonic modal ‍rEGFP‍ was significantly lesser than the difference in the mean ‍rEGFP‍. 
The spread of the modal ‍rEGFP‍ distribution was also less than that of the mean ‍rEGFP‍ distribution for 
NIH/3T3 cells (Figure 2—figure supplement 1A-i), and the differences in ‍rEGFP‍ between isotonic and 
10 min post hypertonicity induction were also more uniform for the modal values (Figure 2—figure 
supplement 1A-ii). Thus, the modal ‍rEGFP‍ values could be used as a robust metric for cell-to-cell MMC 
comparisons.

We then compared the cell-to-cell variations of the characteristic MMC of NIH/3T3 fibroblasts 
along with Hoechst co-staining to explore if the modal ‍rEGFP‍ per cell is correlated with the nuclear 
DNA content, which varies during the cell cycle phases of G1, S, or G2 (Figure 2C, Figure 2—figure 
supplement 1B). NIH/3T3 cells showed a broad distribution of ‍rEGFP‍ without any explicit correlation 
with DNA content, implying that the heterogeneity of intracellular MMC in the NIH/3T3 population 
is independent of the cell cycle stage during interphase. We then compared the modal ‍rEGFP‍ of 
four different cell lines - NIH/3T3 (fibroblasts), HeLa (epithelial cells from cervical tumor), MDA-MB-
231 (mesenchymal subtype of triple negative breast cancer cells), and RAW 264.7 (macrophages) 
(Figure 2D). Although the characteristic MMC of NIH/3T3, HeLa, and MDA-MB-231 was statistically 
similar, RAW 264.7 macrophages had a higher MMC at the cell population level (Figure 2E). Given the 
substantial variability observed in the intracellular modal ‍rEGFP‍ values within a particular cell line, we 
questioned whether this heterogeneity might arise from genuine variations in the intracellular MMC 
or fluctuations in homo-FRET. In the homo-FRET regime (Figure 1F), ‍rEGFP‍ and the intracellular [EGFP] 
should be negatively correlated. Photobleaching is a well-established methodology for quantita-
tively assessing homo-FRET (Ghosh, 2012). To ascertain whether the intracellular [EGFP] distribution 
conforms to the homo-FRET regime, we conducted photobleaching experiments on NIH/3T3 cells 
expressing monomeric EGFP. As a positive control, we subjected NIH/3T3 cells expressing dimeric 
EGFP (2GFP) to similar degrees of photobleaching (Figure 2—figure supplement 1C-i, ii). The 2GFP 
molecules exhibited homo-FRET irrespective of their cellular expression levels due to the inherent 
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Figure 2. Macromolecular crowding (MMC) levels do not significantly vary between individual cell lines. (A) Time-resolved fluorescence micrographs of 
NIH/3T3 fibroblasts expressing EGFP in isotonic (top panel) and hypertonic (bottom panel) conditions. Representative images of EGFP’s total intensity 
in (i), fluorescence lifetime (‍τEGFP‍) in (ii), rotational correlation time (‍θC‍) in (iii), intrinsic anisotropy (‍r0‍) in (iv), steady-state anisotropy (‍rEGFP‍) calculated 
using the Perrin equation in (v) with values from (i, ii, iii), measured steady-state anisotropy (‍rEGFP‍) in (vi), and the difference between the anisotropy 
values obtained from the Perrin equation and direct measurements in (vii). Accompanying calibration bars indicate the colors representing the depicted 
quantities. (B) The ‍rEGFP‍ maps of two extreme examples of NIH/3T3-EGFP cells having dissimilar morphologies (aspect ratios) and the intracellular 
distribution of ‍rEGFP‍ values during isotonic and hypertonic conditions (+600 mM mannitol), highlighting the consistency of the modal value of ‍rEGFP‍ 
per cell in depicting MMC changes at different experimental conditions compared to the mean value of ‍rEGFP‍ per cell. (C) Cell-to-cell variability of 
MMC among NIH/3T3 fibroblasts (n=828 cells, N=3) imaged by a ×10 objective. The accompanying distributions depict kernel-smoothed histograms 
(modal ‍rEGFP‍, dark red) and DNA content (Hoechst intensity, dark blue). (D) ‍rEGFP‍ and total intensity maps of representative cells from different cell 
lines. (E) The modal ‍rEGFP‍ value per cell from different cell lines show that only RAW 264.7 cells have a statistically different distribution of cellular MMC. 
The boxes represent the distribution mean ± 1 SD, and the whiskers represent 5–95 percentiles. Number of biological replicates (cells) are provided 
alongside for at least four independent experiments for each cell line. Statistical analysis was performed using the non-parametric Kruskal-Wallis 
ANOVA after Bonferroni alpha-correction, followed by Mann-Whitney test for every group pair. **** indicates p<0.000025.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Data tables for Figure 2B, C, and E and Figure 2—figure supplement 1A, C, and D.

Figure supplement 1. Macromolecular crowding (MMC) levels do not significantly vary between individual cell lines.

https://doi.org/10.7554/eLife.92719
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proximity of the two GFP molecules. The ‍rEGFP‍ values observed in cells expressing monomeric EGFP 
did not exhibit a significant rise upon photobleaching, whereas cells expressing 2GFP displayed an 
approximate 8% increase in ‍rEGFP‍ when subjected to an equivalent ~30% photobleaching (Figure 2—
figure supplement 1C-iii). Thus, we inferred that a significant majority of our experimental cell popu-
lation did not belong in the homo-FRET regime. Consequently, the variability in modal ‍rEGFP‍ among 
different cells reflected genuine variability in the intracellular MMC. We further used FCS to measure 
the intracellular [EGFP] in NIH/3T3 fibroblasts. FCS measurements require low fluorophore concentra-
tions, so the cells were photobleached until the fluorescence count rate decreased to suitable levels. 
The intracellular [EGFP] in the representative photobleached cell (Figure 2—figure supplement 1D) 
was estimated to be ~1.7 µM and scaling up the concentration according to the ratio of cellular EGFP 
intensities pre and post bleaching implied that the cell had ~8 µM EGFP before photobleaching. 
Comparing the average cellular EGFP intensity values of the same cells in the ‍rEGFP‍ measurement 
setup and the FCS measurement setup, we found that the intracellular [EGFP] in the total NIH/3T3 cell 
population varied between 3 µM and 18 µM (Figure 2—figure supplement 1D, inset). Monomeric 
EGFP exhibits homo-FRET at concentrations greater than 10 µM (Figure 1F), and in the experimental 
cell population, only ~12% of cells had [EGFP]>10 µM. Therefore, for studying intracellular MMC using 

‍rEGFP‍, we selected cells whose fluorescence intensities corresponded to [EGFP]<10 µM. However, a 
potential caveat may arise while measuring ‍rEGFP‍ in cells under severe hypertonic conditions, where 
local EGFP concentrations might crossover to the homo-FRET regime. Hence, we photobleached 
randomly selected NIH/3T3-mEGFP cells at 10 min after inducing 600 mM hypertonicity (Figure 2—
figure supplement 1E). We did not find a noticeable increase of modal ‍rEGFP‍ after photobleaching, 
and thus, concluded that 600 mM hypertonicity was not sufficient to induce homo-FRET in NIH/3T3 
cells.

The actin cytoskeleton enforces spatially varying MMC levels
The representative ‍rEGFP‍ maps in Figure  2B and D showed that cellular MMC is non-uniform at 
a few microns’ length scales. Time-lapse videos of ‍rEGFP‍ in cells that generate new lamellipodial 
extensions further showed that the MMC in the lamellar cytoplasm was lower than the rest of the cell 
body (Video 1), which agreed with previous microviscosity measurements in the lamellar and near-
lamellipodial regions (Laurent et al., 2005). Cellular lamellipodial dynamics are primarily regulated by 
actomyosin activity (Ridley, 2011; Tojkander et al., 2012), so we investigated if the actin cytoskeleton 
had a role in generating spatially heterogeneous intracellular MMC. Simultaneous imaging of actin 
filaments and ‍rEGFP‍ in NIH/3T3 fibroblasts revealed that regions of lower MMC within the lamellar 
areas were demarcated from the perinuclear areas by filamentous actin structures (Figure 3A). The 
different MMC levels in the lamellar and perinuclear regions should manifest in the microviscosity of 
the cytoplasm. Hence, we compared the translational mobility of EGFP in the two regions using FRAP 
(fluorescence recovery after photobleaching) (Figure 3B-i). However, the diffusion coefficient of EGFP 
did not vary appreciably between the two regions, possibly because the decelerating effect of the 
local MMC on the translational mobility of EGFP is not sufficient to resolve the meso-scale microvis-
cosity (Fabry et al., 2001; Goins et al., 2008; Wong et al., 2004). Identical to the cytoplasm, using 
FRAP to resolve the differential microviscosity of different BSA concentrations was also unachiev-
able, confirming our assumption (Figure  3—figure supplement 1A-i). Therefore, we performed 
single-particle tracking of fluorescent microspheres having 200 nm diameter, which are significantly 
larger than the local intracellular crowding agents. The mean-squared displacement (MSD) curves 

of the microspheres pronouncedly shifted with 
increasing BSA concentrations (Figure 3—figure 
supplement 1A-ii), indicating that single-particle 
tracking is better at resolving crowding-mediated 
microviscosity than FRAP. At the timescale of 1 s, 
the average diffusion rates of the 200 nm micro-
spheres amounted to  ~0.29, 0.14, and 0.016 
µm2/s at the BSA concentrations of 0, 2.26, and 
4.52 mM, respectively. Similarly, the MSD of the 
same microspheres in the lamellar regions of 
NIH/3T3 fibroblasts showed higher diffusivity 

Video 1. 8 hr time-lapse (5 frames per second) of an 
NIH/3T3-EGFP, showing EGFP intensity on the left and 

‍rEGFP‍ on the right. Scale bar 15 µm.

https://elifesciences.org/articles/92719/figures#video1

https://doi.org/10.7554/eLife.92719
https://elifesciences.org/articles/92719/figures#video1
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Figure 3. The actin cytoskeleton enforces spatially varying macromolecular crowding (MMC) levels. (A) EGFP intensity, Hoechst-stained DNA (in cyan), 
and phalloidin Alexa Fluor 546-stained actin (in magenta), and ‍rEGFP‍ map of an NIH/3T3 cell shows that the spatial heterogeneity of intracellular MMC 
is demarcated by actin stress fibers (arrows). (B-i) Average fluorescence recovery after photobleaching (FRAP) recovery curves and diffusion rates of 
EGFP in the lamellar (in black) and perinuclear (in red) regions of NIH/3T3 cells (n=21 cells; N=2), with the error bars representing standard deviation. 
Statistical significance was evaluated by unpaired t-test. (B-ii) The average MSD (mean-squared displacement) and their standard deviations obtained 
from tracking 200 nm fluorescent beads in the lamellar (dashed line in black) and perinuclear (solid line in red) regions of NIH/3T3 cells (n=17 cells; 
N=2). (C) The total intensity map of an EGFP expressing HeLa cell’s lamellar region, viewed laterally (XY) in panel (i), or its cross-section (XZ) in panel 
(ii) along the yellow line in (i), with the arrows indicating the thin lamella. Panels (iii) and (iv) show the corresponding ‍rEGFP‍ and fluorescence lifetime 
(‍τ ‍) maps of panel (i). Panel (v) shows the graphical explanation of the influence of cell height on ‍rEGFP‍ values. Panel (vi) shows the different regions 
used to calculate the contributions of autofluorescence (gray), lamellar regions (blue), and the cell body (red) to the ‍τ ‍ map in the phasor plot of panel 
(vii). In the phasor plot, the pixels corresponding to the ‍τ ‍ of the thin lamellar region (blue dots) are slightly shifted above the ‍τ ‍ of the cell body (red 
dots), revealing that ‍τ ‍ in the lamellar region is slightly greater, and thus MMC is slightly lower than the cell body. (D) Representative images of NIH/3T3-
EGFP, quantifications of the spatial heterogeneity of cytoplasmic ‍rEGFP‍, modal ‍rEGFP‍ (n=49, 51, 40 cells; N=2), and cell volume (n=11, 10, 8 cells; N=3) 
for individual cells. Black and orange colors represent pre- and post-treatment with (i) cytochalasin D (2 μM, 1 hr), (ii) nocodazole (20 μM, 1 hr), and 
(iii) withaferin A (3 μM, 3 hr). Statistical analysis performed by paired sample t-test. **** indicates p<0.0001, *** indicates p<0.001, * indicates p<0.05.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Figure 3 continued on next page

https://doi.org/10.7554/eLife.92719
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(~0.056 µm2/s at 1 s) compared to the perinuclear cytoplasm (~0.007 µm2/s at 1 s) (Figure 3B-ii), which 
also agreed with previously reported observations (Tseng et al., 2002). Thus, we concluded that MMC 
levels in an individual cell are spatially heterogeneous with the lamellar regions being less crowded 
than the perinuclear regions. There was a small extent of super-diffusive motion of the microspheres in 
the lamellar regions (logarithmic MSD slope ≅ 1.29) compared to the perinuclear regions (logarithmic 
MSD slope ≅ 0.92), which is presumably due to the actin retrograde flows characteristic to the lamellar 
regions (Anderson et al., 2008).

However, it was still possible that the observed intracellular spatial variations in the ‍rEGFP‍ were 
a consequence of the imaging artifacts associated with wide-field epifluorescence microscopy. The 
thickness of the lamellar regions often falls below the vertical resolution limit of optical microscopy 
(Atilgan et al., 2005). Consequently, it is plausible that the ‍rEGFP‍ values within the lamellar regions 
were susceptible to the excitation geometry (due to a more significant focus uncertainty) and the 
background autofluorescence, potentially leading to an overestimation of the reduction in MMC 
levels within the lamellar regions. To rule out focus uncertainties, we measured the ‍rEGFP‍ and ‍τ ‍ with 
confocal TR-FA with HeLa cells kept in low-autofluorescence serum-free media (Figure 3C). Measure-
ments of ‍τ ‍ are free of focus uncertainties, and the serum-free media reduces the contribution of 
background autofluorescence. HeLa cells showed prominent lamellar structures, and the representa-
tive cell’s vertical cross-section showed that the lamellar region’s thickness is in the submicron range 
(Figure 3C-i and ii, white arrows). The ‍rEGFP‍ values were marginally lower in the thinner sections 
(Figure 3C-iii), and the ‍τ ‍ values were noticeably higher (Figure 3C-iv), confirming the spatial hetero-
geneity of cellular MMC. The contribution of the background autofluorescence is significantly higher 
in wide-field microscopes because of the large PSF (point spread function) (Laasmaa et al., 2011), 
causing an underestimation of the lamellar ‍rEGFP‍ (Figure 3C-v). We further confirmed the differential 
‍τ ‍ values using phasor analysis, which graphically 
projects the chemical species having different 
fluorescence lifetimes in the phase space without 
the artifacts arising from fitting fluorescence 
decay curves (Figure 3C-vi and vii). The lamellar 
regions (marked blue) had slightly longer ‍τ ‍ values 
than the cell body (marked red), while the autoflu-
orescence (marked gray) had longer and noisier 
fluorescence lifetimes (Figure 3C-vi), further veri-
fying the reduced MMC in the lamellar regions. 
The autofluorescence imaging artifact can be 
reduced by employing two different strategies: 
(i) using a confocal system with a narrow pinhole 
(Figure  3—figure supplement 1B) for better 
Z-resolution, and (ii) using imaging media without 
serum to reduce the autofluorescence (Figure 3—
figure supplement 1C).

To investigate if F-actin structures genuinely 
barricade areas of spatially varying MMC, we 
induced actin depolymerization with cytochalasin 
D treatment in NIH/3T3 cells and estimated the 
spatial heterogeneity of the intracellular MMC. The 
spatial heterogeneity estimation was performed 
by creating sectorized geodesic distance maps 
(GDMs) between the cell and nucleus boundaries 
(Figure  3—figure supplement 1D), and then 
comparing the means of normalized ‍rEGFP‍ values 
in the different distance sectors. Comparing the 

Video 2. 3D projections of NIH/3T3 cells after 
cytoskeletal depolymerization.

https://elifesciences.org/articles/92719/figures#video2

Source data 1. Data tables for Figure 3B, C-vi, and D and Figure 3—figure supplement 1A and E.

Figure supplement 1. The actin cytoskeleton enforces spatially varying macromolecular crowding (MMC) levels.

Figure 3 continued

https://doi.org/10.7554/eLife.92719
https://elifesciences.org/articles/92719/figures#video2


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology

Biswas et al. eLife 2024;13:e92719. DOI: https://doi.org/10.7554/eLife.92719 � 10 of 37

representative images and normalized ‍rEGFP‍ quantifications, the ‍rEGFP‍ in the 60–100% distance range 
is closer to the 0–20% distance range after actin depolymerization (Figure 3D-i). Surprisingly, depo-
lymerization of microtubules or the intermediate filament vimentin led to an insignificant change in 
the spatial distribution of cytoplasmic MMC (Figure 3D-ii and iii), implying that the actin cytoskeleton 
segregates the intracellular regions of varying MMC. Actin disassembly also led to a significant rise 
of the intracellular MMC compared to the disassembly of microtubules and vimentin (Figure 3D-i–iii, 
associated graphs). Interestingly, the cell volumes pre- and post-actin disassembly were similar, but 
microtubule or vimentin disassembly led to a significant increase in cell volume (Figure 3D-i–iii, asso-
ciated graphs). The probable cause for the elevation of cellular MMC upon F-actin disassembly is due 
to the generation of a significantly larger number of actin monomers in the constant cell volume as 
compared to microtubules and intermediate filaments (Liebermeister et al., 2014; Pegoraro et al., 
2017; Loiodice et al., 2019). As cytoskeletal depolymerization also severely altered the cell morphol-
ogies, we suspected that the spatial heterogeneity estimations could be artifactual due to changes in 
the local cell height profile, as local cell height variations could change the autofluorescence contribu-
tion and affect the resultant ‍rEGFP‍. So, we created cell height maps from the 3D scans of the NIH/3T3 
cells used for volume measurements (Figure 3—figure supplement 1E, Video 2). Comparing the 
relative heights between the cell and nucleus boundaries, actin depolymerization showed a higher 
local cell height increase in the 40–60%  distance sectors compared to microtubule or vimentin 
depolymerization (Figure  3—figure supplement 1E-i–iii). Connecting the cell volume information 
(Figure 3D) and the cell height map images (Figure 3—figure supplement 1E), cell swelling upon 
microtubule and vimentin depolymerization increased the cell height uniformly while maintaining the 
height profile. Conversely, actin depolymerization altered the height profile while the cell volume was 
unchanged. As all three cases increase the local cell height, the contribution of background autofluo-
rescence upon cytoskeletal depolymerization should be consistent. Thus, we concluded that the actin 
cytoskeleton genuinely enforces a spatially varying intracellular MMC.

The characteristic cellular MMC is linked to cell spreading and adhesion
Cell spreading on fibronectin is driven by actin polymerization and actomyosin activity (Choi et al., 
2008; Fardin et al., 2010; Nisenholz et al., 2016; Reinhart-King et al., 2005; Wakatsuki et al., 
2003). As the polymerized state of actin is crucial for maintaining cellular MMC, we measured ‍rEGFP‍ of 
cells spreading on fibronectin-coated glass to investigate the cellular MMC during stages of increased 
actin assembly. After seeding, NIH/3T3 fibroblasts were allowed to settle for 15 min, and then we 
measured the intracellular MMC for 2 hr during dynamic cell spreading (Figure 4A-i and ii). MMC 
decreased gradually with increasing cell spreading area, and the observed decrease in the intracel-
lular MMC was accompanied by increasing cell volume (Figure 4A-iii). Thus, we hypothesized that the 
physiological MMC setpoint might be linked to the spreading area for NIH/3T3 fibroblasts. Within a 
population of NIH/3T3 seeded on fibronectin-coated glass, the well-spread cells had a lower MMC 
than the rounded, less-spread cells (Pearson’s correlation coefficient, r=–0.42) (Figure 4B). To investi-
gate differential MMC between well-spread and rounded cells with FRAP, we simultaneously seeded 
NIH/3T3 cells on fibronectin or PEG-400-coated glass for 2 hr. The hydrophobic PEG coating arrested 
cell spreading but maintained a stable cell attachment to facilitate FRAP. The translational diffusion 
rate of EGFP was substantially lower in the spreading-arrested cells on PEG in comparison to the 
well-spread cells on fibronectin (Figure 4C-i), demonstrating that the extent of increased microvis-
cosity in spreading-arrested cells is high enough to be detectable by FRAP. The elevated microvis-
cosity expectedly correlated with the ‍rEGFP‍ measurements (Figure 4C-ii). The spreading-arrested cells 
did not show the spatial variability of MMC akin to well-spread cells (Figure 4—figure supplement 
1A), so to track the loss of spatial variability, we induced cell rounding by trypsin treatment. Trypsin 
disrupts integrin-fibronectin bonds, causing cells to detach from the adhesion substrate. Loss of cell 
adhesion abolished the spatial variability of ‍rEGFP‍ and increased the intracellular MMC (Figure 4D-i). 
Surprisingly, the ‍rEGFP‍ levels of trypsinized cells and actin-depolymerized cells were comparable, and 
depolymerizing actin before trypsinization caused a non-significant change in MMC compared to 
trypsinization alone (Figure 4D-ii, Figure 4—figure supplement 1B). Thus, cellular F-actin levels are 
crucial in maintaining the MMC setpoint. Cell detachment by trypsinization induced rapid depolymer-
ization of both actin and microtubules (Figure 4—figure supplement 1C), which has also been shown 
previously (Celik et al., 2013). Thus, we concluded that the increased pool of monomeric cytoskeletal 

https://doi.org/10.7554/eLife.92719
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Figure 4. The characteristic cellular macromolecular crowding (MMC) is linked to cell spreading and adhesion. (A-i) ‍rEGFP‍ maps (top row), EGFP total 
intensity maps (middle row), and DIC images (bottom row) of NIH/3T3-EGFP during spreading on fibronectin-coated glass. (A-ii) Modal ‍rEGFP‍ values 
(cyan) and spread area (magenta) of NIH/3T3-EGFP averaged over n=109 cells, N=4. Error bars represent standard deviation. (A-iii) Average cell volume 
(green, open squares) and spread area (magenta, filled diamonds) of NIH/3T3 cells after seeding on fibronectin-coated glass (n=11 cells; N=4). Error 
bars show SD. (B) Modal ‍rEGFP‍ of NIH/3T3-EGFP cells vs their morphological spread area on fibronectin-coated glass, with the blue line indicating 
the negative linear correlation and the associated color bar denoting the shape circularity (‍4πArea/Perimeter2‍) (n=201 cells; N=3). (Ci) Fluorescence 
recovery after photobleaching (FRAP) analysis of EGFP in NIH/3T3 cells seeded on fibronectin (50 µg/mL) or 10% polyethylene glycol (PEG)-400-
coated glass for 2 hr. The average recovery curves and diffusion rates of EGFP are shown with the error bars representing the SD (n=21, 14 cells; N=2). 
Statistical significance was evaluated by unpaired t-test. ** indicates p<0.01. (C-ii) Modal ‍rEGFP‍ values of NIH/3T3-EGFP cells seeded on fibronectin 
or 10% PEG for 2 hr (n=87, 35 cells; N=2). Statistical analysis was performed using Mann-Whitney test. **** indicates p<0.0001. (D-i) ‍rEGFP‍ maps (top 
row), EGFP total intensity maps (middle row), and DIC images (bottom row) of NIH/3T3-EGFP undergoing substrate detachment due to trypsinization. 
(D-ii) Comparison of the modal ‍rEGFP‍ for untreated controls, cytochalasin D (2 µM, 1 hr) treated, trypsinized (20 min), and cytochalasin D pre-treatment 
(2 µM, 1 hr) then trypsinized (20 min) in NIH/3T3 (n=131, 49, 57, 57 cells; N=3). Statistical analysis was performed using Mann-Whitney test for every 
group pair.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Data tables for Figure 4B, C-ii, and D-ii.

Figure supplement 1. The characteristic cellular macromolecular crowding (MMC) is linked to cell spreading and adhesion.

https://doi.org/10.7554/eLife.92719
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proteins generated during cell detachment increases the MMC, and the characteristic MMC of a cell 
is linked to its spreading state.

Proteostasis disruption alters cellular MMC setpoint
We next explored the cell volume-MMC interplay during hypertonic stress in different cell lines by 
tracking the percentage change in the modal ‍rEGFP‍ of individual cells. Upon independently measuring 
cell volume and ‍rEGFP‍ during moderate hypertonic stress (150 mM mannitol) in NIH/3T3 and HeLa 
cells (Figure 5A), we found that both cell lines showed RVI post 10 min of hypertonicity induction, 
and the cellular MMC levels scaled with the RVI. The MMC and volume recovery of HeLa was slower 
than NIH/3T3 cells, and HeLa showed a larger change in MMC upon hypertonicity induction even 
though the average volume shrinkage was similar for both cell lines. Despite partial volume recovery, 
the MMC recovery of HeLa cells was almost complete in 60 min, probably due to other osmoadaptive 
mechanisms that change the total intracellular crowder numbers or excluded volume (Brocker et al., 
2012). The average volume and MMC of HeLa cells also did not recover to its initial state, implying 
partial RVI. Our observation of the partial RVI in HeLa cells aligned with a previous report (Tivey 
et al., 1985). To verify whether the gradual decrease of cellular MMC post 10 min is due to RVI, we 
pre-treated NIH/3T3 and HeLa cells with flufenamic acid and subjected them to 150 mM hypertonic 
shock (Figure 5B). Flufenamic acid blocks RVI by inhibiting HICCs (hypertonicity-induced cation chan-
nels) (Numata et al., 2007; Wehner et al., 2003). Pre-treatment with 700 µM flufenamic acid failed 
to stop the early RVI (0–30 min), but its effects were visible after 30 min, consistent with the previous 
reports (Liu et al., 2013a). The failure of flufenamic acid to stop the early RVI implies the activity of 
other ion channels during the initial stages of hypertonicity induction (Jentsch, 2016; Okada et al., 
2020). Thus, we were convinced that the gradual decrease of MMC at the later stages of hypertonicity 
induction is RVI-mediated.

We then subjected NIH/3T3, HeLa, MDA-MB-231, and RAW 264.7 cells to the excess osmolar-
ities of 50 mM mannitol (low hypertonicity) (Figure 5C-i) and 150 mM mannitol (moderate hyper-
tonicity) (Figure 5C-ii). The intracellular MMC rose rapidly within 5 min of exposure to hypertonic 
media and NIH/3T3 fibroblasts had the fastest recovery. Contrariwise, HeLa cells showed partial 
recovery, MDA-MB-231 cells recovered in 50 mM hypertonicity but not in 150 mM hypertonicity, and 
RAW 264.7 macrophages failed to recover in any degree of hypertonicity within 30 min. Interestingly, 
for different cell lines, the response to hypertonicity (‍∆rEGFP%‍ at 10 min) scaled differently with the 
applied dose of hypertonicity (Figure 5C). The ‍∆rEGFP%‍ response of MDA-MB-231 was greater than 
that of HeLa at 50 mM hypertonicity but smaller at 150 mM hypertonicity. The ‍∆rEGFP%‍ response 
was higher in 150 mM hypertonicity for each cell line, suggesting a dose-based response to hyperto-
nicity. Further exposing NIH/3T3-EGFP to varying degrees of osmotic imbalance caused a gradually 
larger increase in ‍rEGFP‍ (Figure 5D). NIH/3T3 could restore the MMC rise for ≤150 mM hypertonicity 
(low-to-moderate levels) within 30 min but failed when the hypertonicity exceeded 200 mM (severe 
hypertonicities). NIH/3T3 cells failed to recover their MMC for at least 2  hr for 600  mM hyperto-
nicity (data not shown), and the same was true for HeLa cells (for at least 1 hr) (Figure 5—figure 
supplement 1C). We also observed the dilution of MMC when NIH/3T3 cells were exposed to 50% 
hypotonicity, and the MMC rose briefly at 5 min but plunged until 20 min, and then gradually rose 
to near-isotonic levels after 2 hr (Figure 5—figure supplement 1A and B). The average area of the 
cell outlines expanded at the onset of hypotonicity and scaled in accordance with the ‍rEGFP‍ values. 
The cell outlines also showed considerable shrinkage after 2 hr in hypotonic media when the ‍rEGFP‍ 
values approached near-isotonic levels (Figure 5—figure supplement 1B). The response of NIH/3T3 
fibroblasts to different degrees of hypertonicity mediated by dextrose (Figure 5—figure supplement 
1D) was comparable to mannitol (Figure 5D). However, for the equivalent osmolarities of 100 mOsm 
and 600 mOsm, NaCl-mediated hypertonicity induced a lesser ‍∆rEGFP%‍ response when compared to 
mannitol or dextrose (Figure 5—figure supplement 1E). Comparing dextrose, mannitol, and NaCl-
mediated hypertonicities, the MMC recovery was faster in the case of 100 mOsm NaCl. Surprisingly, 
even though 600 mOsm NaCl induced a smaller ‍∆rEGFP%‍, cells did not recover their MMC just like 
600 mOsm mannitol/dextrose. The lesser rise in NaCl-mediated hypertonicity and the faster RVI could 
be attributed to the differences in cellular ion fluxes due to the excess chloride ions in the culture 
media (Yurinskaya and Vereninov, 2021).

https://doi.org/10.7554/eLife.92719
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Figure 5. Proteostasis disruption alters cellular macromolecular crowding (MMC) setpoint. (A) Average percentage changes in cell volume (filled 
symbols) and modal ‍rEGFP‍ (open symbols) for NIH/3T3 in (i) and HeLa in (ii) upon exposure to hypertonic mannitol (150 mM) (n>40 cells; N=4 for modal 

‍rEGFP‍ data, n>10 cells; N=3 for cell volume data). (B) Testing if the ‍rEGFP‍ recovery is mediated by hypertonicity-induced cation channels (HICCs) using 
flufenamic acid. Closed symbols represent cells pre-treated with 700 µM flufenamic acid for 1 hr; open symbols represent untreated cells. Average 
percentage change in modal ‍rEGFP‍ (n>40 cells; N=2 for each case) plotted with the standard deviation (SD) error bars. (C) Hypertonic shock response of 
different cell lines estimated through ‍rEGFP‍ measurements. Cells were subjected to an additional 50 mM or 150 mM hypertonicity using mannitol, and 
the average percentage change in modal ‍rEGFP‍ and its SD is depicted (n>40 cells, N>3 for each case). (D) Response of NIH/3T3 fibroblasts to different 
strengths of hypertonicity (by mannitol) and 50% hypotonicity. The ability of cells to recover ‍rEGFP‍ within 30 min decreases with increasing hypertonicity 
(n>50 cells, N≥3). (E) Diffusion rates of cytoplasmic and nuclear EGFP population estimated through fluorescence recovery after photobleaching (FRAP). 
The average and SD are shown (n>12 cells for each case). Statistical significance was evaluated by unpaired t-test against the isotonic condition. **** 
indicates p<0.0001. (F) Isotonic perturbations of intracellular MMC by proteostasis disruption - blocking protein degradation (MG 132 and heclin), 
protein translation (cycloheximide), or inducing widespread protein degradation using heat shock. The mean and SD of the modal ‍rEGFP‍ values 
are represented in (i) (n=132, 98, 138, 90, 130 cells; N=3). Statistical analysis was performed using Kruskal-Wallis ANOVA after Bonferroni correction, 
followed by Mann-Whitney test for every group pair. **** indicates p<0.00002. Corresponding to (i), the intracellular protein mass under each condition 
is illustrated in (ii) (N=3), and the percentage change in the average volume before and after treatment in (iii) (n>20 cells; N>2 for each case). Statistical 
significance was evaluated by paired sample t-test. ** indicates p<0.01, * indicates p<0.05.

Figure 5 continued on next page
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We additionally used FRAP to measure the translational mobility of EGFP in the cytoplasm and 
nucleus of NIH/3T3 cells, within a time window of 10–15 min after introducing various strengths of 
extracellular hypertonicities (Figure 5E). With increasing extracellular hypertonicity, the increase of 
the average modal ‍rEGFP‍ correlated with a decrease in the average translational diffusion rates of 
cytoplasmic EGFP (Figure 5—figure supplement 1F). The diffusion rate of EGFP was faster in the 
nucleus than in the cytoplasm during isotonic conditions, but the mobility of EGFP in the nucleus and 
cytoplasm became similar during hypertonic conditions and decreased with increasing hypertonicity. 
EGFP was nearly immobile at 600 mM hypertonicity. Thus, the MMC-mediated elevated microviscosity 
during hypertonic conditions decreases the mobility of both cytoplasmic and nucleoplasmic proteins, 
enough to be resolvable by FRAP. Comparing Extracellular osmotic imbalances change the cellular 
MMC through water efflux/influx, but the total number of intracellular proteins (the most abundant 
macromolecules) can be assumed to be constant during the first 10 min of osmotic stress. To directly 
alter the number of macromolecules in the cell, we disrupted cellular proteostasis in NIH/3T3 cells by: 
(i) increasing MMC through protein degradation inhibition via treatments with MG132 (proteasome 
inhibitor) or heclin (HECT E3 ubiquitin ligase inhibitor) (Mund et al., 2014), and (ii) decreasing MMC 
through protein translation inhibition via cycloheximide treatment (Siegel and Sisler, 1963), or wide-
spread protein degradation via heat shock (Parag et al., 1987). We estimated the intracellular MMC 
using ‍rEGFP‍ (Figure 5F-i), the average protein mass per cell using the Bradford assay (Figure 5F-ii; 
Guo et al., 2017), and cell volume using 3D confocal scans (Figure 5F-iii). Cycloheximide treatment 
caused non-significant changes in MMC and cell volume after 4 hr of treatment. MG132, heclin, and 
heat shock treatments altered the intracellular MMC, which qualitatively scaled with the changes in 
cell volume and protein mass per cell. However, despite the changes in cell volume and protein mass, 
cells failed to achieve the MMC levels of the untreated condition. Therefore, we concluded that cells 
cannot maintain MMC homeostasis when the general cellular proteostasis is disrupted, and thus the 
MMC setpoint is altered.

Hypertonic stress-induced NFkB activation is mediated by TNFR1
Hypertonic stress disrupts numerous physiological functions in a cell which might eventually lead to 
apoptosis (Maeno et al., 2000; Kültz, 2004; Maeno et al., 2006; Burg et al., 2007; Kwon et al., 
2009). The transcription factor NFkB (nuclear factor kappa beta) plays a major role in protecting cells 
from apoptosis (Taniguchi and Karin, 2018), and has been shown to upregulate osmoprotective genes 
that promote cell survival during hypertonic stress (Casali et al., 2018; Eisner et al., 2006; Farabaugh 
et al., 2017; Németh et al., 2002; Roth et al., 2010). Particularly, hypertonic stress-induced NFkB 
activity leads to the downregulation of aquaporin 2 (Hasler et al., 2008), implying the involvement of 
NFkB in the cellular RVI mechanism. NFkB is a transcription factor family comprising the p65 (Rel A), 
p50 (p105), p52 (p100), p68 (Rel B), and p75 (c-Rel) subunits, and in the absence of cellular stresses, 
the inactive p65-p50 heterodimers are sequestered in the cytoplasm by IkB (inhibitor of kappa beta) 
(Sun and Carpenter, 1998; Sung et al., 2009; Inoue et al., 2016). Stress induction leads to phosphor-
ylation and proteasome-mediated degradation of IkB, leading to the subsequent release and nuclear 
translocation of the p65 subunit, which activates the NFkB-mediated cell survival pathways. We had 
observed that during low-to-moderate levels of hypertonic stress (50–150 mM), NIH/3T3 and HeLa 
successfully reverted their intracellular MMC through RVI, but at severe hypertonicities (600 mM), 
neither cell line could recover their MMC (Figure  5D and Figure  5—figure supplement 1C). To 
gain a mechanistic insight behind the failure of RVI at severe hypertonic stresses, we investigated 
NFkB activity by quantifying the fraction of the total cellular p65 content inside the nucleus (identi-
fied by Hoechst co-staining) from immunofluorescence images (Figure 6A and B). We compared the 
p65 nuclear fraction in HeLa cells during moderate hypertonic stress (150 mM mannitol), where cells 
shrunk appreciably and demonstrated MMC recovery through RVI (Figure 5A-ii), and during severe 
hypertonic stress (600 mM mannitol), where cells do not recover their isotonic MMC (Figure 5—figure 

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Data tables for Figure 5F.

Figure supplement 1. Proteostasis disruption alters cellular macromolecular crowding (MMC) setpoint.

Figure 5 continued
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Figure 6. Hypertonic stress-induced NFkB activation is mediated by TNFR1. (A) Nuclear translocation of p65 visualized through immunofluorescence 
and Hoechst co-staining for wild-type and TNFR1-knockdown (TNFR1-KD) HeLa nuclei. Nuclear translocation of p65 indicates NFkB pathway activation 
upon 15 min of treatment with soluble human TNFa (20 ng/mL) or hypertonic mannitol (150 mM and 600 mM). All scale bars represent 20 µm. 
(B) Quantification of p65 nuclear translocation from immunofluorescence images of HeLa cells under indicated conditions. Statistical analysis was 
performed using Kruskal-Wallis ANOVA after Bonferroni alpha-correction, followed by Mann-Whitney test for the indicated pairs. * indicates p<0.00625, 
**** indicates p<0.0000125. (C) Quantification of cell volume under indicated conditions (n=13, 11, 12 cells; N=2 for HeLa, and n=16, 11 cells; N=3 for 
NIH/3T3). TNFR1 inactivation leads to a decrease in cell volume in both HeLa and NIH/3T3, although the volume changes are statistically insignificant.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Data tables for Figure 6B and C and Figure 6—figure supplement 1C, and raw images for the immunofluorescence panel in 
Figure 6A and immunoblots in Figure 6—figure supplement 1B.

Figure supplement 1. Hypertonic stress-induced NFkB activation is mediated by TNFR1.

https://doi.org/10.7554/eLife.92719
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supplement 1C). As a positive control (Figure 6A), we treated cells with soluble human TNFa (tumor 
necrosis factor-alpha), a pro-inflammatory cytokine and known activator of NFkB (Hayden and Ghosh, 
2014; Liu et  al., 2017). 150 mM mannitol activated a higher level of p65 than 600 mM mannitol 
(Figure 6A and B), but the level of nuclear p65 in HeLa exposed to 150 mM mannitol was distinguish-
ably less than that induced by TNFa, indicating partial activation of the NFkB pathway. Additionally, 
the levels of nuclear p65 varied with time under both TNFa and 150 mM hypertonicity compared to 
the isotonic baseline, but there was no nuclear shuttling of p65 in cells exposed to 600 mM hyper-
tonicity (Figure 6—figure supplement 1A). Then again, the TNF receptor-1 (TNFR1) complex, the 
primary receptor of soluble TNFa, has been shown to cluster and internalize during hypertonic 
stresses even without the presence of ligands, which might also lead to NFkB activation (Rosette 
and Karin, 1996; Lo et al., 2020; Kucka and Wajant, 2020; Su et al., 2022). Hence, to distinguish 
between the TNFR1-mediated and hypertonicity-mediated NFkB activity, we blocked TNFR1 clus-
tering using zafirlukast, a pharmacological inhibitor of TNFR1 oligomerization (Weinelt et al., 2021). 
Surprisingly, we found a significantly less nuclear fraction of p65 upon exposure to 150 mM mannitol 
in zafirlukast-treated cells. Moreover, siRNA-mediated TNFR1-knockdown (TNFR1-KD) HeLa elicited 
similar results (Figure 6A and B, knockdown estimation in Figure 6—figure supplement 1B). Thus, 
we concluded that NFkB activity is correlated with cellular capacity for RVI, and hypertonicity-induced 
NFkB activation is mediated by TNFR1. Additionally, we observed that both zafirlukast-treated cells 
and TNFR1-KD cells had smaller volumes on average (Figure 6C), and the corresponding MMC levels 
in the TNFR1-incapacitated cells were significantly higher (Figure 6—figure supplement 1C). There-
fore, we speculated that TNFR1 activity might also be involved in regulating the cell volume and MMC 
setpoints.

TNFR1 activity is essential for RVI
The effect of TNFR1 inactivation on cell volume and MMC inspired us to probe the RVI in TNFR1-KD 
and zafirlukast-treated cells. RVI was drastically hindered in HeLa and NIH/3T3 for the moderate hyper-
tonic stress of 150 mM mannitol (Figure 7A). Surprisingly, the cell volume shrinkage at 10 min post 
hypertonicity induction decreased upon both TNFR1 knockdown (for HeLa) and zafirlukast treatment 
(for HeLa and NIH/3T3) (Figure 7—figure supplement 1A). Furthermore, using CAY10512 to block 
NFkB activation (Heynekamp et al., 2006), we found a significant reduction in cellular RVI although 
the cell volume shrinkage at 10 min was comparable with the control cells. Additionally, we used the 
difference in cell volumes 10 min after exposure to 150 mM mannitol and our final measurement time 
point to calculate the volume recovery index (Figure 7A, insets). We found that in HeLa, the control 
cells (no pre-treatment) recovered ~11% of their volume in 70 min after their initial shrinkage at 10 min, 
while CAY10512-treated cells recovered only to ~6%, and TNFR1-KD or zafirlukast-treated cells lost 
their volume by ~1% and~8%, respectively (Figure 7A-i, inset). For NIH/3T3, the control cells (no pre-
treatment) recovered up to ~30% of their volume within 50 min after their initial shrinkage at 10 min, 
while zafirlukast-treated cells and CAY10512-treated cells recovered ~3% and ~9% of their volumes, 
respectively (Figure  7A-ii, inset). Akin to volume recovery, TNFR1-KD, or zafirlukast-treated HeLa 
and NIH/3T3 had impeded MMC recovery in 150 mM hypertonic stress, as revealed through ‍rEGFP‍ 
measurements (Figure 7B). As TNFR1 inactivation had deleterious effect on hypertonicity-mediated 
cell volume shrinkage (Figure 7—figure supplement 1A) as well as volume recovery (Figure 7A), we 
further probed the effects of TNFR1 inactivation on cell volume changes during the isotonic physi-
ological condition of cells spreading on fibronectin-coated glass. Interestingly, zafirlukast-mediated 
TNFR1 inactivation also severely decelerated the increase in the average area and volume of NIH/3T3 
cells during spreading (post 15 min of settlement) (Figure 7C). Thus, TNFR1 activity was important for 
cell volume control not only during hypertonic conditions, but also isotonic physiological conditions 
that involved dynamic cell volume changes.

Cellular RVI was dependent on the dose of hypertonicity and correlated with TNFR1-NFkB activity, 
so we sought to understand the molecular mechanism behind the lack of RVI at severe hypertonici-
ties. Upon ligand-induced activation, TNFR1 molecules trimerize and the oligomeric clusters recruit 
TRADD (TNFR1-associated death domain), TRAF2 (TNFR-associated factor 2), and RIPK1 (receptor-
interacting serine/threonine-protein kinase 1) at the plasma membrane to form the TNFR1 signaling 
complex. Linear ubiquitination of RIPK1 facilitates the formation of a scaffolding-like architecture that 
promotes enhanced phosphorylation of the IKK protein family, which subsequently phosphorylates 

https://doi.org/10.7554/eLife.92719
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Figure 7. TNFR1 activity is essential for regulatory volume increase (RVI). (A) Percentage change in the volume of HeLa (i) and NIH/3T3 (ii) cells while 
exposed to 150 mM hypertonicity under no pre-treatment, TNFR1-knockdown (TNFR1-KD) condition (HeLa only), zafirlukast pre-treatment (50 µM, 1 hr), 
and CAY10512 pre-treatment (250 nM, 1 hr), compared to cell volume fluctuations in isotonic conditions. Mean volume and SD plotted for n≥10 cells, 
N≥2 in each case. Insets show the RVI index (percentage change between cell volumes at the final time point of measurement vs at 10 min post 
hypertonicity induction) for each condition. (B) Percentage change in modal ‍rEGFP‍ for HeLa (i) and NIH/3T3 (ii) cells during hypertonic stress - under no 
pre-treatment, TNFR1-KD condition (HeLa only), and zafirlukast pre-treatment (50 µM, 1 hr). Mean percentage change and SD plotted for n≥40 cells, 
N≥2 in each case (C) Cell spread area trajectory (i) and corresponding cell volume trajectory (ii) for vehicle control and zafirlukast (50 µM,1 hr) treated 
NIH/3T3 cells spreading on fibronectin-coated glass. (D-i) Immunoprecipitated endogenous TNFR1 and associated RIPK1 under indicated conditions 
and their expression levels in the whole-cell lysate of wild-type (WT) HeLa cells visualized through immunoblotting; (D-ii) is the quantification of RIPK1 
content normalized by immunoprecipitated TNFR1 content during hypertonic stress. (E) Comparison of the membrane tension in (i) and corresponding 

‍SDtime‍ of membrane fluctuations in (ii) of HeLa cells for WT controls, different doses of zafirlukast, and TNFR1-KD. The 25th and 75th percentiles, 
medians, and means are shown for N≥2, WT: 51402 FBRs, 46 cells; zafirlukast - 1 µM: 9723 FBRs, 13 cells; 10 µM: 9357 FBRs, 14 cells; 50 µM: 14093 FBRs, 
14 cells; 100 µM: 11690 FBRs, 16 cells; TNFR1-KD: 24273 FBRs, 33 cells. Statistical analysis was performed by Mann-Whitney test for every distribution 
against the WT control.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Data tables for Figure 7E (.opj file format) and Figure 7—figure supplement 1A, and raw images for the immunoblots in Figure 7D-i.

Figure supplement 1. TNFR1 activity is essential for regulatory volume increase (RVI).

https://doi.org/10.7554/eLife.92719
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IkB and initiates the nuclear translocation of p65 (He and Wang, 2018; Mihaly et al., 2014; Shi and 
Sun, 2018; Ting and Bertrand, 2016; Tu et al., 2021; Webster and Vucic, 2020). RIPK1 recruit-
ment and function is one of the pivotal determinants of the pro-survival TNFR1-NFkB signaling 
pathway (Mifflin et al., 2020), so we probed the levels of RIPK1 recruitment to the TNFR1 complex 
under different hypertonic stress using immunoprecipitation assays. In HeLa cells, severe hyper-
tonic stresses (600 mM mannitol) had reduced TNFR1-associated RIPK1 than moderate hypertonic 
stresses (150 mM mannitol) (Figure 7D), suggesting that TNFR1 signaling was incapacitated at severe 
hypertonic stresses. We hypothesized that the impaired recruitment of RIPK1 at the TNFR1 complex 
during severe hypertonic stresses was due to the MMC-mediated rise in cytoplasmic microviscosity 
(Figure 5D). The absence of TNFR1 signaling further impeded NFkB activity, delaying the onset of 
RVI and establishing the pivotal role of TNFR1 in modulating RVI. While the impaired mobility of 
RIPK1 explained the lack of TNFR1-NFkB signaling, the physicochemical reason behind the reduced 
hypertonic volume shrinkage in zafirlukast and TNFR1-KD cells remained elusive (Figure 7—figure 
supplement 1A). Additionally, zafirlukast or TNFR1-KD reduced the average cell volume (Figure 6C) 
and increased the cellular MMC (Figure 6—figure supplement 1C). Since extracellular hypertonicity 
reduces cortical shear modulus (Guo et al., 2017) and membrane tension (Roffay et al., 2021), we 
hypothesized that zafirlukast or TNFR1-KD could alter the cortex or membrane tension, enabling cells 
to mechanically resist the hypertonic volume deformations (Venkova et al., 2022). Membrane tension 
could also implicitly reduce the hypertonic volume shrinkage by altering the functionality of different 
membrane proteins, like aquaporins (Soveral et  al., 2008; Ozu et al., 2013; Jiang et al., 2021). 
Using interference reflection microscopy (IRM), we measured the shape fluctuation autocorrelations 
of the basolateral membrane, allowing membrane tension estimation (Biswas et al., 2017). We found 
that zafirlukast treatment increased tension in a dose-dependent manner, but surprisingly, TNFR1-KD 
reduced the tension (Figure 7E and Figure 7—figure supplement 1B). Therefore, we eliminated the 
causal role of membrane tension in reducing hypertonic cell shrinkage, and we could only speculate 
that the altered setpoints of cell volume and MMC upon TNFR1 inhibition might be connected to the 
cellular resistance to hypertonic volume shrinkage.

Intracellular MMC deviates from the concentration-dilution law under 
hypertonic stress
The cellular macromolecule concentration should be inversely proportional to the cell volume if the 
number of macromolecules remains unchanged. Challenged by 150  mM hypertonicity, the MMC 
(‍rEGFP‍) of NIH/3T3 and HeLa cells scaled in proportion with the cell volume (Figure 5A). For both 
NIH/3T3 and HeLa cells, the MMC peaked 10 min after hypertonicity induction, indicating equilibra-
tion of the intra- and extracellular osmolarities. However, NIH/3T3 showed an ~35% volume shrinkage 
and ~10% MMC elevation, while HeLa showed a similar ~35% volume shrinkage but an ~25% MMC 
elevation. We could attribute the difference of hypertonic stress response in the cellular MMC to the 
observed variability in different cell lines (Figure 5C), but the discrepancy in the volume shrinkage vs 
MMC elevation challenged the concentration-dilution law: ‍Ni · Vi = constant‍, where ‍Ni‍ is the solute 
concentration and ‍Vi‍ is the solvent volume for the solution ‍i‍. Since ‍rEGFP‍ scaled linearly with macro-
molecule concentration (Figure 1A), we expressed the macromolecule concentration (‍

[
MMC

]
‍) as a 

linear function of ‍rEGFP‍ as: ‍
[
MMC

]
= m · rEGFP − m · α‍, where ‍1/m‍ is the slope in Figure 1A and ‍α‍ is 

the ‍rEGFP‍ value at zero crowder concentration. Thus, according to the concentration-dilution law, 

‍
(
rEGFP,1 − α

)
· V1 =

(
rEGFP,2 − α

)
· V2‍ at any condition, provided the number of macromolecules in 

the cell or the total excluded volume is constant. Post hypertonicity induction, the MMC of NIH/3T3 
cells equilibrated at 10 min for every dose of hypertonicity tested by us (Figure 5D). So, we used 
the Boyle-van’t Hoff (VBH) relation to model the equilibrium cell volume compression at different 
hypertonicities and find the osmotically inactive cell volume at infinite hypertonicity (Katkov, 2011; 
Roffay et al., 2021; Venkova et al., 2022). At equilibrium, the average cell volumes scaled with the 
average modal ‍rEGFP‍ values in accordance with the applied hypertonicity (Figure 8A-i). Using the VBH 
relation, we computed the osmotically inactive cell volume (≅ 284 µm3) and the limiting ‍rEGFP‍ (≅0.23) 
for NIH/3T3 cells (Figure 8A-ii) (normalized according to the relations: ‍Cell volume ∝ 1/Osmotic Pressure‍ 
and ‍1/MMC ∝ 1/Osmotic Pressure‍). We related the pair of ‍

(
rEGFP, V

)
‍ points at isotonic and infinite hyper-

tonicity using the concentration-dilution law and extracted  ‍α‍ = 0.169 for intracellular EGFP. The 
intracellular ‍rEGFP‍ vs ‍V ‍ of NIH/3T3 populations at different hypertonic strengths deviated from the 

https://doi.org/10.7554/eLife.92719
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Figure 8. Intracellular macromolecular crowding (MMC) deviates from the concentration-dilution law under hypertonic stress. (A) The average and 
standard deviation of cell volume and ‍rEGFP‍ of NIH/3T3 cells at different hypertonicities measured 10 min post hypertonic stress induction, shown 
in (i) (0 indicates isotonic), were normalized to fit the Boyle-van’t Hoff relation, as shown in (ii). The resultant points were fit to a straight line forced to 
pass through (1,1) - the isotonic condition, such that the y-intercept gives the limiting cell volume (osmotically inactive cell volume) and limiting ‍rEGFP‍. 
Using the ‍rEGFP‍ and cell volume values at the limiting and isotonic conditions, the ‍rEGFP‍ vs cell volume trendline representing the concentration-
dilution law was calculated (blue dashed line, formula in legend) in (iii). The expected trendline of ‍rEGFP‍ vs cell volume deviates from the measured 
values (gray symbols), indicated by the double-headed arrow, even though the total protein mass per cell at different hypertonic conditions do not 
change at different hypertonicities, as shown in (iv). (B) Trajectory of ‍rEGFP‍ vs cell volume at different time points after inducing hypertonic shock 
(150 mM mannitol) (n=7 cells; N=2). The blue dashed line denotes the theoretical estimate of the trajectory, as indicated in the legend. (C) AiryScan 
super-resolution imaging of NIH/3T3-EGFP cells reveals submicron-sized cluster-like appearance of EGFP under severe hypertonic stress (600 mM 
mannitol). The brightness-contrast in the magnified insets was individually adjusted for better visualization. (D) Time-lapse of EGFP intensity after 
photobleaching under hypertonic stress of 600 mM mannitol (i) and isotonic conditions (ii) in NIH/3T3. Pseudocolored bottom panels show the 
magnified photobleaching area (white squares).

The online version of this article includes the following source data and figure supplement(s) for figure 8:

Figure supplement 1. Intracellular macromolecular crowding (MMC) deviates from the concentration-dilution law under hypertonic stress.

Figure supplement 1—source data 1. Raw images for Figure 8—figure supplement 1A.

Figure supplement 2. Intracellular macromolecular crowding (MMC) deviates from the concentration-dilution law under hypertonic stress.

https://doi.org/10.7554/eLife.92719
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expected relation: ‍rEGFP =
(
rEGFP,iso − 0.169

) Viso
V + 0.169‍, (‘iso’ → isotonic condition) (Figure 8A-iii). 

The deviation of the measured ‍rEGFP‍ vs ‍V ‍ curve in Figure 8A-iii suggested the presence of other 
physical processes that alter ‍rEGFP‍ besides hypertonic volume change. We speculated that the hyper-
tonic conditions either increased the total number of macromolecular crowders, or caused associative 
reorganization of the crowders that increased the total excluded volume and amplified the refractive 
index of the protoplasm, elevating ‍rEGFP‍ beyond the expected value. The total protein mass per cell 
(Figure 8A-iv) did not noticeably differ between 150 mM and 600 mM hypertonicities, indicating no 
measurable change between intracellular crowder numbers. Simultaneous measurements of ‍rEGFP‍ and 
volume of NIH/3T3 cells under hypertonic stress (150 mM mannitol) also showed a similar deviation 
from the expected behavior (Figure 8B). Therefore, we speculated that hypertonicity-induced reor-
ganization of the intracellular crowders could enforce the deviation of ‍rEGFP‍ from the concentration-
dilution law.

In AiryScan super-resolution images of NIH/3T3-EGFP, we found that the intensity profile of EGFP 
was more non-uniform and puncta-like at severe hypertonicities compared to isotonic conditions 
(Figure 8C). Photobleaching studies on such cells revealed that the translational mobility of EGFP was 
severely compromised compared to isotonic conditions (Figure 8D). Moreover, we found an increase 
of intracellular subspace devoid of EGFP (EGFP excluded cytoplasmic volume [EECV]). The structure 
of EECVs inside the cell did not change even within a span of 4 min, and EGFP molecules diffused 
through the interstitial spaces around the EECVs (Figure 8D). Hypertonic stress also caused severe 
DNA condensation in the nucleus, which confirmed previous reports (Irianto et al., 2013). Literature 
suggests that extracellular hypertonicities can trigger condensation of multivalent proteins and mRNA 
through liquid-liquid phase separation (LLPS) (André and Spruijt, 2020; Bounedjah et  al., 2012; 
Carrettiero et al., 2022; Delarue et al., 2018; Keber et al., 2021; Shin and Brangwynne, 2017; 
Watanabe et al., 2021; Watson et al., 2023; Yasuda et al., 2020). The subunits of the NFkB family 
are multimeric, possess intrinsically disordered domains, and have DNA binding motifs (Riedlinger 
et al., 2019; Baughman et al., 2022; Komives, 2023), the essential characteristics of a protein that 
could condensate via LLPS. In NIH/3T3-EGFP cells immunostained for p65 under 150 mM hyperto-
nicity, we found condensate-like granular structures of p65 in the cytoplasm that exclude EGFP from 
within (Figure 8—figure supplement 1A). In live NIH/3T3 cells overexpressing p65-GFP, we observed 
the granular structures even at low hypertonicities (50 mM mannitol), which disappeared immediately 
as the cells were rescued to isotonic culture media (Figure 8—figure supplement 1B), and an iden-
tical effect was observed in severe hypertonic conditions (Figure 8—figure supplement 2A). The 
propensity of granule formation increased with the p65-GFP expression levels, and only ~20% of the 
cells showed p65 granules. However, at severe hypertonicities (600 mM mannitol), 100% of the trans-
fected cells showed p65 granules (Figure 8—figure supplement 1C). The p65 granules at 600 mM 
hypertonicity appeared smaller and uniformly spherical, while those at 50  mM hypertonicity were 
larger and more non-uniformly shaped. Photobleaching individual p65-GFP granules showed slow 
fluorescence recovery of the complete structure, confirming material exchange with the cytosol and 
the fluid nature of the granules (Figure 8—figure supplement 2B). Therefore, we speculated that the 
EECVs were created by hypertonicity-induced condensation of multivalent proteins like WNK kinases 
(Boyd-Shiwarski et al., 2022), DCP1A (Jalihal et al., 2020), YAP (Cai et al., 2019), ASK3 (Watanabe 
et  al., 2021), and additionally, NFkB family proteins, which enforced the deviation of intracellular 
MMC from the concentration-dilution law.

Discussion
Our in vitro and in-cell fluorescence anisotropy measurements of EGFP establish ‍rEGFP‍ as a robust 
technique to quantitate intracellular MMC. Figure  1A shows that among different biomolecules, 
protein crowding imparts the maximum effect on ‍rEGFP‍, presumably because proteins have the highest 
average molecular weight among biomolecules, and therefore, the highest molecular polarizability 
(Booth et al., 2022). Thus, proteins have the most significant effect on the protoplasmic refractive 
index, and thereby, ‍rEGFP‍. Protein crowding mediated changes in solution viscosity (‍η‍), fluorescence 
lifetime (‍τ ‍), and the intrinsic anisotropy (‍r0‍) of EGFP describes the observed changes in ‍rEGFP‍ in vitro 
(Figure 1C and D) and in cells (Figure 2A). Variability in pH (Figure 1G) or EGFP concentration below 
the homo-FRET regime (Figure 1F) does not affect ‍rEGFP‍, demonstrating its reliability under different 

https://doi.org/10.7554/eLife.92719
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physiological conditions. However, homo-FRET can potentially affect intracellular ‍rEGFP‍ values if a 
cell is under severe osmotic compression where local EGFP concentrations exceed the threshold of 
10 µM. The linear scaling of ‍rEGFP‍ against protein concentration validates its suitability as a quanti-
tative indicator of crowder concentration (Figure 1A). However, the presence of uncharacterizable 
cellular scattering agents depolarizes the fluorescence emission of EGFP, thus finding appropriate 
parameters to relate in vitro and in-cell ‍rEGFP‍ is non-trivial. In addition, variability in cell height and 
focusing uncertainties cause media autofluorescence to further affect intracellular ‍rEGFP‍ values in 
wide-field microscopes, enhancing the spatial heterogeneity of intracellular ‍rEGFP‍. maps (Figure 3C). 
Despite these potential artifacts, we can exploit ‍rEGFP‍ as a reliable probe by considering the modal 
value of the ‍rEGFP‍ distribution in a cell, which represents the ubiquitous protein crowding levels and 
neglects the outliers (Figure 2B, Figure 2—figure supplement 1A). Intracellular ‍rEGFP‍ maps show the 
lamellar cytoplasm to be less crowded than the perinuclear cell body, and F-actin structures demar-
cate regions of variable crowding in the cytoplasm (Figure 3A). However, since the lamellar cytoplasm 
is optically thin, we validated its lower crowding using alternate established methods free of cell 
height artifacts: FRAP to measure translational diffusion kinetics of EGFP (Figure 3B-i, Figure 3—
figure supplement 1A-i, Figure 4C; Bulthuis et al., 2023), single-particle tracking microrheology 
(Figure 3B-ii; Delarue et al., 2018), and fluorescence lifetime imaging (Figure 3C; Levchenko et al., 
2018; Pliss et al., 2012). The different modes of probing MMC confirm that the cytoplasm indeed has 
differential MMC levels. Additionally, a previous fluorescence anisotropy study of intracellular EGFP 
using selective plane illumination also shows spatial variability, although the authors chose to ignore 
it (Hedde et al., 2015).

For NIH/3T3 fibroblasts, the cell-to-cell variability of ‍rEGFP‍ is free of homo-FRET artifacts (Figure 2—
figure supplement 1C), thus establishing that the observed population heterogeneity of intracellular 
MMC is uncorrelated to the cell cycle stage (G1, S, or G2) (Figure 2C). If the spread area does not 
change significantly, NIH/3T3 fibroblasts tightly maintain the intracellular MMC levels for relatively 
long timescales (at least 8 hr) (Video 1). Although the median levels of intracellular MMC may not 
vary among cell lines (Figure 2E), the hypertonic stress response varies (Figure 5C). A reduction in cell 
spread area upon substrate detachment leads to increased intracellular protein crowding (Figure 4C 
and D) and cytoskeletal depolymerization (Figure 4—figure supplement 1C). Contrarily, increasing 
cell spread area gradually reduces intracellular MMC and increases cell volume (Figure  4A). Our 
observations seemingly conflict with previous reports that measure cell volume during spreading (Guo 
et al., 2017; Xie et al., 2018) possibly because of differing experimental conditions, one of which is 
using a cell-permeable dye to visualize the whole cell compared to EGFP expression used by us. In 
alignment with our data, other investigations show that the cell volume initially decreases up to 20 min 
and then starts rising (Venkova et  al., 2022). Cell spread area has also been shown to positively 
correlate with cell volume (Perez Gonzalez et al., 2018; Kumar et al., 2019), hence we believe our 
observations to be correct. Interestingly, cytochalasin D-mediated actin depolymerization increases 
MMC without affecting cell volume, while microtubule and vimentin depolymerization does not affect 
cellular MMC but increases cell volume (Figure 3D), indicating that cytoskeletal polymers may regu-
late the cell volume-MMC setpoint. Moreover, increased MMC due to cell detachment or actin depo-
lymerization is comparable, and promoting deadhesion in actin-depolymerized cells does not increase 
cellular MMC substantially (Figure 4D-ii, Figure 4—figure supplement 1B). Previous reports show 
that increased MMC accelerates actin polymerization (Rashid et al., 2015), and actin polymerization 
is upregulated during the initial hours of cell spreading (Reinhart-King et al., 2005). Whether the 
elevated MMC in substrate-detached cells drives actin polymerization and increases cell spreading 
area/volume would be an interesting study since actin cytoskeletal proteins have been implicated in 
regulating cell volume (Papakonstanti et al., 2000; Hoffmann et al., 2009; Mills et al., 2020).

Proteostasis disruption by MG132, heclin, and heat shock alter the intracellular protein crowding 
without a substantial change in cell volume, implying that NIH/3T3 fibroblasts tolerate at least ~12% 
change in the MMC setpoint for 4 hr when under isotonic conditions (Figure 5F). Contrarily, even an 
~5% change in cellular MMC due to extracellular hypertonicity is rectified by RVI (Figure 5A and D), 
implying that cellular osmosensing mechanism is different from MMC-sensing and probably involves 
cell volume sensing machinery. The recovery of intracellular MMC after hypertonicity induction varies 
among different cell lines (Figure 5C), and HeLa cells recover their MMC even without volume recovery 
(Figure  5A), possibly using alternate mechanisms like osmolyte accumulation (Burger-Kentischer 
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et al., 1999; Burg and Ferraris, 2008). Remarkably, while moderate hypertonicities (150 mM) elicit 
RVI in NIH/3T3 and HeLa (Figure 5A), both cell lines lose their ability to recover their MMC at severe 
hypertonicities (600 mM) (Figure 5D, Figure 5—figure supplement 1C–E). Cellular RVI at moderate 
hypertonicities correlates with NFkB activity, and surprisingly, knockdown, or pharmacological inhi-
bition of TNFR1, an upstream effector of NFkB signaling, prevents its activation and thwarts RVI 
(Figure 6A and B, Figure 7A), indicating an osmosensing activity of TNFR1. Furthermore, at severe 
hypertonicities, the cytoplasmic viscosity increases 15-fold (Figure 5E) and significantly delays the 
recruitment of RIPK1 at the TNFR1 complex, culminating in the failure of timely TNFR1 activation 
and RVI. Interestingly, TNFR1 inhibition or knockdown reduces the average cell volume and slows 
down the hypertonic cell shrinkage (Figure 7—figure supplement 1A), but the cause for the slower 
cell shrinkage rate is unknown and not related to cell membrane tension (Figure 7E). We speculate 
that TNFR1 activity is interconnected with aquaporin levels in the plasma membrane, since aquaporin 
inhibition also restricts hypertonic cell volume shrinkage (Krane et al., 2001; Hansen and Galtung, 
2007; Akai et al., 2012).

Cell volume-MMC kinetics are synchronized during RVI in NIH/3T3 and HeLa cells (Figure 5A), yet 
hypertonicity-induced changes in cell volume and ‍rEGFP‍ do not follow the concentration-dilution law 
(Figure 8A and B). Extracellular hypertonicity creates subspaces within the cytoplasm inaccessible 
to EGFP molecules (EECV) (Figure 8C and D, Figure 8—figure supplement 1), conceivably due to 
LLPS of multiple proteins (André and Spruijt, 2020; Boyd-Shiwarski et al., 2022; Cai et al., 2019; 
Carrettiero et al., 2022; Jalihal et al., 2020; Shin and Brangwynne, 2017; Watanabe et al., 2021; 
Yasuda et al., 2020). The EECV fraction in the cytoplasm increases with the applied hypertonicity, 
and the intracellular MMC deviates from the concentration-dilution law presumably because of the 
factors that increase the EECV fraction, which can have aberrant effects on ‍rEGFP‍. In conclusion, our 
explorations of the cellular MMC-volume interplay illuminate the effects of MMC on cellular biochem-
ical signaling, and we unveil the involvement of TNFR1-NFkB signaling in the cellular RVI process. 
However, the exact mechanism of hypertonicity-induced TNFR1 activation is still elusive and requires 
further studies.

Materials and methods
Cell culture and pharmacological studies
NIH/3T3 cell line was procured from NCCS (National Center for Cell Science, Pune, India). RAW 
264.7 cell line was a generous gift from Dr. Sanjay Dutta (CSIR-Indian Institute of Chemical Biology, 
Kolkata), while HeLa and MDA-MB-231 cell lines were kindly gifted by Dr. Prosenjit Sen (Indian Asso-
ciation for the Cultivation of Science, Kolkata). FuGENE (Promega, #E2311) was used to transfect cells 
with the following plasmids: pCAG-mGFP, a gift from Connie Cepko (Addgene plasmid # 14757); 
2GFP (GFP-GFP dimer), a very kind gift from Maria Vartiainen (University of Helsinki, Finland) (Dopie 
et al., 2012; Koskinen and Hotulainen, 2014); pEGFP-C1 LifeAct-EGFP, a gift from Dyche Mullins 
(Addgene plasmid # 58470); EGFP-p65, a gift from Johannes A Schmid (Addgene plasmid # 111190); 
mCherry-Tubulin-6, a gift from Michael Davidson (Addgene plasmid # 55147), and TNFRSF1A DsiRNA 
(IDT, #hs.Ri.TNFRSF1A.13.1), following standard protocol. Cells cultured in DMEM (Himedia, #Al007G) 
at 37°C, 5% CO2 in a humidified incubator, were seeded on custom-made glass-bottom 35 mm Petri 
dishes. The glass was coated with 50 µg/mL of fibronectin (Sigma, #F1141) to promote rapid adhesion 
and proper spreading or with 10% PEG (PEG-400, Sigma, #CAS: 25322-68-3) to prevent spreading in 
the appropriate cases. Before microscopy, cells were gently washed with 1× PBS twice, and culture 
media was replaced with phenol red-free DMEM (Gibco, #21063029), which would be supplemented 
with the required drug when necessary. For all pharmacological treatments, cytochalasin D (Merck, 
#C8273), nocodazole (Merck, #487928), withaferin A (Merck, #W4394), heclin (Tocris, #5433), cyclo-
heximide (Sigma, #18079), and zafirlukast (Merck, #Z4152) were dissolved in DMSO, and working 
concentrations were reconstituted as indicated in appropriate places. For applying heat shock, cells 
were incubated at 42°C for 1 hr in the presence of 5% CO2. Osmotic imbalances were created by 
replacing the isotonic complete media with hypertonic or hypotonic complete media using a custom-
made flow system. Hypertonic media was prepared by adding mannitol, dextrose, or NaCl (Merck 
Empura) to phenol red-free DMEM (Gibco, #21063029) at indicated concentrations and filtered for 
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decontamination. 50% hypotonic media was prepared by adding autoclaved Milli-Q water to equal 
volumes of phenol red-free DMEM.

EGFP purification
BL21 (DE3) Escherichia coli variant, transformed to express monomeric EGFP, was grown to log phase 
(OD600 ≅ 0.7) in a 500 mL culture by 12 hr incubation at 37°C. Then, EGFP expression was maximized 
through isopropyl β-D-1-thiogalactopyranoside induction (40 mg/mL, 37°C, 4 hr). The bacteria were 
harvested by centrifugation (6500×g, at 4°C for 5 min), and the cell pellet was resuspended in 5 mL 
lysis buffer containing 50 mM Tris-HCl, 150 mM NaCl, 0.1X protease inhibitor, and 1 mg/ml lysozyme. 
The bacterial cells were then mechanically lysed using a probe sonicator (cycle: 0.5, amplitude: 30%) 
in an ice bath for 30 min, the debris was separated by centrifugation (10,000×g, at 4°C for 40 min), 
and the supernatant was collected. Proteins heavier than EGFP (MW: 27 kDa) in the supernatant were 
salted out by the slow addition of 80% ammonium sulfate solution (wt/vol) (up to a final concentration 
of 20%). The precipitate was centrifuged for removal (13,500×g, at 4°C for 45 min), and the remnant 
proteins in the supernatant, including EGFP, were salted out using 40% ammonium sulfate solution 
(final concentration). The precipitate was resuspended in 3 mL 50 mM Tris-HCl buffer and was dialyzed 
against the same buffer overnight with mild stirring at 4°C. The dialyzed solution was subjected to 
anion exchange chromatography using standard protocols, and the purified EGFP was lyophilized and 
reconstituted in HEPES (SRL, #63732) buffer of pH (7.2–7.6). The concentration of the reconstituted 
EGFP was estimated from UV absorbance and FCS. Subsequently, the reconstituted EGFP was diluted 
to ~50 nM for all experiments (except ‍rEGFP‍ vs EGFP concentration).

FCS measurements
FCS measurements were performed in solutions diluted from our purified EGFP stock solution using a 
×40/1.2 NA water immersion objective on a confocal microscope (Zeiss LSM 780) at 20°C. EGFP was 
diluted from the stock at the indicated volume fractions in 100 mM HEPES (pH 7.4), then 100 µL of each 
solution was sandwiched between glass coverslips with ~1 mm space in-between, then sealed airtight 
and bubble-free. Fluorescence fluctuations were measured for 2 s at a height of 200 µm from the basal 
coverslip glass, and the averaged autocorrelation data of 200 repetitions was plotted for each solution 
prepared in triplicate groups. The autocorrelation curve ‍G

(
τ
)
‍ was fit by the built-in curve fitting system 

to the analytical function for 3D anomalous diffusion: 
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where ‍N ‍ is the number of fluorophores in the confocal volume, ‍τ ‍ is the lag time, ‍F‍ is the fraction of 
fluorophores in the triplet state, and ‍S‍ is the structure parameter (‍S = ωZ

ωXY ‍, with ‍ωZ ‍ being the axial 
radius and ‍ωXY ‍ being the lateral radius). The value of the diffusion anomaly parameter, ‍α‍, was fixed 
at 1 during fitting for simplicity. The triplet state fraction was not accounted for while fitting ‍G

(
τ
)
‍ of 

the EGFP solutions, and the average diffusion time of EGFP in buffer solutions was measured to be 
163±74 µs, while cytoplasmic EGFP had an average diffusion time of 338±103 µs. The number density 
of fluorophores in the confocal volume ‍N = 1/

(
G
(
0
)
− 1

)
‍ is independent of fitting parameters, and 

thus, fitting artifacts can be disregarded. The theoretical values of ‍ωZ ‍ and ‍ωXY ‍ (for 488  nm light, 
1.2 NA objective, and 1.33 refractive index for HEPES buffer) are 901 nm and 248 nm, respectively. 
The ellipsoidal confocal volume (‍V ‍) thus amounts to ~0.109  fL. Since  ‍G

(
0
)
‍ = 1.028 for the 0.1% 

dilution (vol/vol), the concentration of EGFP was calculated using ‍
[
EGFP

]
= N

NA
1
V ‍, which amounted 

to ~540 nM. Thus, our stock solution of purified EGFP had a concentration of ~540 µM, the maximum 
[EGFP] depicted in Figure  1F. We then measured the fluorescence anisotropy of the same EGFP 
dilutions in our ‍rEGFP‍ setup. The total intensity values obtained for the different dilutions were plotted 
against the ‍1/

(
G
(
0
)
− 1

)
‍ values in Figure 1—figure supplement 1A, inset. The corresponding total 

intensities of the solutions scaled linearly with the prepared dilutions of the EGFP solutions.

Rationale behind ‍rEGFP‍ as a probe for intracellular MMC
Fluorescence anisotropy requires exciting fluorophores with plane-polarized light, which selectively 
excites fluorophores aligned more parallel to the polarization plane of the excitation light. The resul-
tant fluorescence emission is also polarized along the excitation plane, ensuing anisotropic intensities 
of the emitted light when observed through two orthogonally oriented polarizers. The normalized 

difference between the fluorescence intensities along the parallel (‍I∥‍) and perpendicular (‍I⊥‍) directions 

https://doi.org/10.7554/eLife.92719


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology

Biswas et al. eLife 2024;13:e92719. DOI: https://doi.org/10.7554/eLife.92719 � 24 of 37

is defined as fluorescence anisotropy: 
‍
r =

(
I∥ − I⊥

)
/
(

I∥ + 2I⊥
)
‍
 (Lakowicz, 2006; Ghosh, 2012). 

This anisotropy of fluorescence polarization is gradually lost when the fluorophores undergo rapid 
Brownian rotation in the excited state or due to other non-trivial causes, like homo-FRET (Bojarski 
et al., 1991; Clayton et al., 2002; Tramier and Coppey-Moisan, 2008) and light scattering (Bigelow 
and Foster, 2004). The extent of a fluorophore’s rotation in the excited state determines the loss in 
anisotropy and depends on the solution viscosity (‍η‍), temperature (‍T ‍), the fluorophore’s size (‍V ‍), and 
the fluorescence lifetime (‍τ ‍). The Perrin equation describes the measured fluorescence anisotropy as: 

‍r = r0/
(
1 + τ /θC

)
‍, where ‍θC = ηV/kBT ‍ is the rotational correlation time, and ‍r0‍ is the intrinsic anisotropy 

in the absence of rotation. ‍r0‍ is determined by the intrinsic angle between the absorption and emis-
sion dipole moments within the fluorophore. Palpably, the value of ‍τ /θC‍ determines the sensitivity of a 
fluorophore’s ‍r‍ to changes in ‍η‍. As seen in comparatively large molecules like EGFP, the value of ‍τ /θC‍ 
is <1, implying that an increase in ‍θC‍ (and thus solution ‍η‍) has a negligible effect on the measured ‍r‍ 
of EGFP (Swaminathan et al., 1997; Novikov et al., 2017). In comparison, for a smaller molecule 
like fluorescein, the value of ‍τ /θC‍ is >1, meaning that increases in ‍η‍ strongly affect the measured ‍r‍ 
(Devauges et al., 2012). The ‍r‍ of large fluorophores like EGFP (having long ‍θC‍) is still prone to be 
affected by the solution refractive index (‍n‍). This is because ‍n2 ∝ 1/τ ‍ according to the Strickler-Berg 
relation (Strickler and Berg, 1962; Tregidgo et al., 2008). Thus, an increase in ‍n‍ can also increase the 
measured ‍r‍ because ‍n2 ∝ 1/τ ∝ r‍. Importantly, as the effect of ‍n‍ on ‍τ ‍ is short range (Suhling et al., 
2002), one can use ‍r‍ to probe the local ‍n‍ of the protoplasm, and, in turn, the local MMC.

‍rEGFP‍ measurement
The ‍rEGFP‍ measurement setup is described in Figure 1—figure supplement 1B. Cells seeded on 
glass-bottom Petri dishes were imaged with a ×40 (NA 0.75) or a ×10 (NA 0.45) air immersion objec-
tive using the Zeiss AxioObserver Z1 epifluorescence microscope. Light from a mercury arc lamp 
(HXP 150) was passed through a linear polarizer (Thorlabs) to create horizontally polarized light. The 
resulting polarized fluorescence signal from the cells passes through a polarizing beam splitter (DV2, 
Photometrics) to divide the emission light into parallel and perpendicular polarizations. The light 
is then collected by a CMOS camera (Hamamatsu Orca Flash 4.0 C13440), and the polarized fluo-
rescence signal appears as an image having 2048×2048 pixels, with each half (1024×2048 pixels) 
representing the parallel and perpendicularly polarized emission, respectively. Due to misalignment 
in the optical path, the two halves don‘t completely overlap. To resolve the misalignment, fluorescent 
polystyrene microspheres of 200 nm diameter were dried on a glass coverslip and imaged in the same 
arrangement as ‍rEGFP‍ measurement, such that the images of the beads may serve as fiduciary markers 
to register the pixels in the two halves of the image. Using the Descriptor-based Registration plugin 
of Fiji (ImageJ) (Schindelin et al., 2012) and a custom Fiji Macro, the left half (perpendicular channel, 

‍I⊥‍) and right half (parallel channel, ‍I∥‍) of the 2048×2048 image were registered to create the best 
possible overlap of the corresponding pixels in both channels. Thence, ‍rEGFP‍ was calculated for each 
pixel using the relation:

	﻿‍
rEGFP =

I∥ − gI⊥
I∥ + 2gI⊥ ‍�

where ‍g‍ refers to the instrumental correction factor or G-factor, calculated for each pixel from images 
of 100 nM fluorescein solution. To correct for background fluorescence, a 2048×2048 pixel image of 
the phenol red-free DMEM, having no cells and illuminated by similar conditions as the experimental 
subjects, was subtracted from each 2048×2048 image. This process eliminated the background fluo-
rescence of both the parallel and perpendicular channels in the correct ratio. The resultant ‍rEGFP‍ 
image was saved as a 32-bit TIFF file, thresholded based on intensity (15,000–50,000 count for 16-bit 
image), and further analyzed using a custom-written code in Fiji (ImageJ). Photobleaching to evaluate 
homo-FRET was performed at 100% lamp intensity for 30 s, and the same cells were imaged pre and 
post bleaching.

Fluorescence lifetime imaging microscopy
In vitro fluorescence lifetime and time-resolved anisotropy decay measurements were done using 
the DeltaFlex system (Horiba) using four-sided transparent UV quartz cuvettes. FLIM was carried 
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out using a pico-second 470 nm laser (PicoQuant) and a ×60 water immersion objective (NA 1.2), 
and fluorescence lifetime data for individual pixels were fitted to mono-exponential decay using the 
SymPhoTime64 software. The resultant 32-bit TIFF image was analyzed in a similar way as in ‍rEGFP‍ 
measurements with Fiji (ImageJ) (Schindelin et al., 2012). Alternatively, the raw .BIN files of FLIM data 
were analyzed using custom MATLAB codes for fitting and phasor analysis. The phasor plot is a graph-
ical way to display all the fluorescence lifetime data from a FLIM image in frequency space (Digman 
et al., 2008; Ranjit et al., 2018). Each phasor point represents a single fluorescence lifetime and its 
amplitude in the FLIM image without making any assumptions about the number of decay rates or 
the specific decay model, thus freeing the need for curve fitting. As a result, pixels having similar fluo-
rescence lifetimes occur in the same spot in phasor maps and can be easily differentiated. The FLIM 
images were processed using a custom MATLAB code to create phasor maps based on user-defined 
regions of interest. Cells were seeded on glass-bottom 35 mm Petri dishes, and hypertonic stress was 
applied following the same protocol as in ‍rEGFP‍ experiments.

Fluorescence recovery after photobleaching
Photobleaching and recovery were imaged with a 488 nm laser (Coherent OBIS 1185053) through 
the ×63 oil immersion objective of Zeiss AxioObserver Z1 using a home-built FRAP setup. Briefly, 
the source laser beam was split in a 90:10 ratio. The resultant beams were collimated using a lens 
system to be incident parallelly on the back focal plane of the microscope objective. The beams were 
aligned to illuminate the same spot (of 2 μm diameter) when imaged with the ×63 objective. The 
low-intensity beam was further dimmed using neutral density filters to minimize photobleaching and 
image the circular spot. The circular spot was continuously imaged at 50–100 frames per second to 
perform FRAP with only the low-intensity beam. After 70–100 frames, the high-intensity beam was 
exposed for 10 ms using a programmable shutter (Thorlabs, SC10) to achieve fast photobleaching. 
Imaging is continued for a total of 2000 frames, by which time the spot intensity becomes constant, 
indicating completion of recovery. The fluorophore’s diffusion rate and mobile fractions are calculated 
by fitting the intensity recovery data from the spot with a custom-written MATLAB code, as explained 
in Kang et al., 2010. Before studying live cells, the FRAP setup was calibrated using a glycerol-water 
mix of known viscosity containing 100 nM fluorescein (data not shown). The FRAP in Figure 8D and 
Figure 8—figure supplement 2B was performed using the Zeiss LSM 780 laser scanning confocal 
system to bleach a larger spot (~10 μm diameter).

Single-particle tracking
Fluorescent polystyrene beads of diameter 200 nm (Invitrogen, #F8888) were imaged with a ×63 oil 
immersion objective at 100 frames per second to capture the thermal motion. For in vitro measure-
ment, beads were suspended in BSA solutions at previously indicated concentrations. The beads were 
ballistically injected with the Helios Gene Gun (Bio-Rad) delivery system for intracellular measurement. 
Cells were ‘shot’ with a pressure of 100 PSI at 3–4 cm from the Petri dish. The cells were then gently 
washed with serum-free media thrice to remove beads stuck on the plasma membrane or glass and 
incubated in phenol red-free DMEM at 37°C, 5% CO2 for 2  hr to allow them to recuperate. The 
trajectories of the fluorescent beads were extracted using the Mosaic plugin (Particle Tracking 2D/3D) 
of ImageJ. The following relation was used for MSD computation of a bead with trajectory ‍

(
xt, yt

)
‍: 

‍
MSD

(
τ
)

=
⟨(

xt+τ − xt
)2 +

(
yt+τ − yt

)2
⟩

‍
, where ‍τ ‍ is the lag time. MSD computation was performed 

using a custom-written MATLAB code.

Cell volume measurement
Cells were imaged using the Zeiss LSM 780 laser scanning confocal system using a ×63 oil immer-
sion objective. Z-stack images of 0.4 μm step size were acquired in AiryScan super-resolution mode 
to measure the whole cell volume. While AiryScan imaging improves the spatial XY resolution but 
not the Z-resolution, AiryScan processed images have comparatively lesser pixel noise, providing a 
uniform parameter for image thresholding. An appropriate intensity threshold was used to binarize 
the Z-stacks, and then the volume of the cells was calculated by counting the number of white pixels 
and multiplying the resultant with the voxel dimensions.
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Spatial heterogeneity estimation and height map generation
Figure 3—figure supplement 1D details the GDM creation using cell and nuclear boundary ROIs. 
For cell height map generation, the ‘royal’ LUT of ImageJ was modified to generate colors specific to 
height range of 0–12 µm. The starting color was black for the base, and the next color was assigned 
white to create maximum contrast so that individual cell boundaries could be identified. The Z-stacks 
used to measure cell volume were thresholded and the pixel values were changed to the voxel depth, 
then the sum of each Z-slice created the local height map, which was color-coded. Video 2 was gener-
ated using ImageJ’s ‘3D Project’, and here, individual Z-slices were color-coded according to their 
vertical height using the same modified LUT.

Cell extracts, immunoprecipitation, and immunoblotting
HeLa cells (~8 × 106) were plated overnight in 10 cm dishes and treated with mannitol for 15 min, then 
lysed in 50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1% NP40, 0.1% SDS, 0.5% Na-deoxycholate supple-
mented with protease and phosphatase inhibitor cocktail (Sigma, #PPC1010) for 15 min on ice. The 
cell lysates were centrifuged at 15,000×g, 40°C for 20 min, and supernatants were collected. Protein 
concentration was determined by the Bradford assay, and the lysates were pre-cleared with 50 μL of 
protein A/G-PLUS agarose beads (Santa Cruz, CA, USA). About 3 mg of pre-cleared lysate was incu-
bated overnight at 4°C with 10 μL of TNFR1/TNFRSF1A Rabbit pAb (ABclonal, A1540) and 50 μL of 
protein A/G-PLUS agarose beads (Santa Cruz, #sc-2003). The immune complexes were recovered by 
centrifugation, washed thrice with lysis buffer, and subjected to electrophoresis on 10% Tris-glycine 
gels. Proteins were then transferred to the PVDF membrane (Millipore), and non-specific binding 
sites were blocked by incubation in TBS containing 0.1% Tween-20 and 5% BSA. The membrane 
was probed with primary antibodies - anti-RIPK1/RIP rabbit mAb (ABclonal, #A19580) or anti-TNFR1/
TNFRSF1A rabbit pAb (ABclonal, #A1540), in 1:1000 dilution at 4°C overnight, washed with TBS-T 
and subsequently incubated with secondary antibody (1:10,000 horseradish peroxidase-conjugated 
goat anti-rabbit IgG, Sigma) for 1 hr. Immunoblotting was done following standard chemilumines-
cence procedure, and densitometric analysis was performed using ImageJ. For TNFR1 knockdown, 
cells were incubated with TNFRSF1A DsiRNA or scrambled siRNA in the presence of FuGENE for 
48 hr per the manufacturer’s recommendations before evaluation by immunoblotting.

Immunofluorescence imaging and quantification
HeLa or NIH/3T3 cells were plated on glass-bottom dishes and fixed with 4% PFA (paraformaldehyde) 
in 1× PBS for 15 min at room temperature. Cells to be assessed for hypertonic stress response were 
fixed with 4% PFA dissolved in mannitol-supplemented hypertonic PBS as per treatment to preserve 
macromolecular condensation. The cells were then permeabilized with 0.1% Triton X-100 in 1× PBS 
for 7–8 min, and blocking was performed with 5% BSA solution for an hour at room temperature. The 
cells were incubated with 1:250 anti-NF-kB p65 antibody (Abcam, #ab16502) at 4°C overnight. The 
cells were then gently washed three times with 1× PBS and incubated with Alexa Fluor 546-conjugated 
secondary antibody (1:200 dilution) for 1 hr at room temperature. The nuclei were counterstained with 
Hoechst (0.5 µg/mL). Imaging was performed using Zeiss AxioObserver Z1 (×63 oil immersion objec-
tive), and Z-stacks of randomly selected cell populations were obtained. The Z-plane of a cell having 
the largest nucleus area was considered for obtaining the nuclear fraction of p65. The total intensity 
values (‘RawIntDen’ in ImageJ) of p65 fluorescence were used to quantify the nucleus/whole-cell p65 
fraction for individual cells. For the Alexa Fluor 546 phalloidin (Thermo Fisher, #A22283) staining in 
Figure 3A, live NIH/3T3-EGFP cells were fixed on the microscope stage with 4% PFA in 1× PBS for 
15 min after imaging for ‍rEGFP‍ measurement, and then co-stained with Alexa Fluor 546 phalloidin and 
Hoechst.

Protein mass per cell estimation with Bradford assay
NIH/3T3 cells were serum-starved for 24 hr and then 1×106 cells were seeded on 60 mm dishes in 
complete medium after counting with a hemocytometer. Cells were allowed to spread overnight for 
a maximum of 12 hr, and all treatments (described in Figures 5F-ii and 8A-iv) were performed on 
the following morning, such that there are equal number of cells in each plate for every treatment. 
Post treatment, cells were immediately placed on ice and scraped with 200 µL RIPA lysis buffer. After 
15 min of incubation on ice in the lysis buffer, the cell lysates were centrifuged at 15,000×g for 10 min 
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at 4°C, and the supernatant was collected for protein density measurement using the standard Brad-
ford assay protocol. The total protein density in 200 µL of solution allows the calculation of the total 
protein mass of 1×106 cells, and thus, protein mass in one cell. Using 8 M urea lysis buffer instead 
of RIPA buffer yielded no significant difference in the total protein mass content post the treatments 
indicated in Figure 5F-ii, thus confirming no loss of protein in the centrifuge precipitate.

IRM and membrane tension estimation
An inverted microscope (Nikon, Tokyo, Japan) with adjustable field and aperture diaphragms, ×60 
Plan Apo (NA 1.22, water immersion) with ×1.5 external magnification, 100  W mercury arc lamp, 
(546±12 nm) interference filter, 50:50 beam splitter, and CMOS (ORCA Flash 4.0 Hamamatsu, Japan) 
camera were used for IRM. Fast time-lapse images of cells were taken at 20 frames per second, and 
2048 frames were captured. Membrane fluctuations are quantified for regions within ~100 nm of the 
coverslip and termed First Branch Regions (FBRs). Calibration, identification of FBRs, and quantifica-
tion of fluctuation amplitude (‍SDtime‍) and tension were done as previously reported (Biswas et al., 
2017).

Statistical analysis
Technical replicates (N) of single-cell measurements within the same treatment group were combined 
to form a single group of biological replicates (n) for a given dataset. Normally distributed datasets 
were analyzed with ANOVA, while non-normal distributions were compared using the non-parametric 
Kruskal-Wallis ANOVA after alpha-correction by the Bonferroni method, followed by the Mann-
Whitney test for every group pair. Differences between the population averages before and after 
treatment for same-cell measurements were assessed by the paired sample t-test, and for measure-
ments in different cell groups, the unpaired t-test was used, assuming that a large enough sample size 
would follow the normal distribution. All statistical analyses and data plotting were performed using 
Origin 2019b.
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