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Abstract Despite major successes with inhibitory receptor blockade in cancer, the identification of 
novel inhibitory receptors as putative drug targets is needed due to lack of durable responses, therapy 
resistance, and side effects. Most inhibitory receptors signal via immunoreceptor tyrosine-based inhib-
itory motifs (ITIMs) and previous studies estimated that our genome contains over 1600 ITIM-bearing 
transmembrane proteins. However, testing and development of these candidates requires increased 
understanding of their expression patterns and likelihood to function as inhibitory receptor. Therefore, 
we designed a novel bioinformatics pipeline integrating machine learning-guided structural predic-
tions and sequence-based likelihood models to identify putative inhibitory receptors. Using transcrip-
tomics data of immune cells, we determined the expression of these novel inhibitory receptors, and 
classified them into previously proposed functional categories. Known and putative inhibitory recep-
tors were expressed across different immune cell subsets with cell type-specific expression patterns. 
Furthermore, putative immune inhibitory receptors were differentially expressed in subsets of tumour 
infiltrating T cells. In conclusion, we present an inhibitory receptor pipeline that identifies 51 known 
and 390 novel human inhibitory receptors. This pipeline will support future drug target selection across 
diseases where therapeutic targeting of immune inhibitory receptors is warranted.

eLife assessment
The authors presented a valuable bioinformatics pipeline for screening and identifying inhibitory 
receptors for potential drug targets. They provided solid evidence showing a sequential reduction 
in the search space through various screening tools and algorithms and demonstrated that this pipe-
line can be used to "rediscover" known targets. Further experimental validation on putative and 
unknown inhibitory receptors will strengthen the evidence reported in this work. This study will be of 
interest to bioinformaticians and computational biologists working on immune regulation, sequence 
screening, and target identification of immune checkpoint inhibitors.

Introduction
In the past decade, checkpoint blockade therapy has revolutionised the treatment of cancer by 
releasing immune cells from inhibition in the tumour microenvironment. Approval of blocking anti-
bodies targeting immune inhibitory receptors, i.e., cytotoxic T cell lymphocyte antigen 4 (CTLA-4) 
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(ipilimumab), the programmed cell death protein 1 (PD-1)/PD-L1 axis (nivolumab, atezolizumab), 
and lymphocyte-activation gene 3 (LAG-3) (Chocarro et al., 2022), resulted in significantly increased 
responses in previously hard-to-treat cancers, such as metastatic melanoma or non-small-cell lung 
cancer (Andrews et  al., 2019). Despite these successes, most cancer patients do not respond to 
checkpoint therapy, or do not have a durable treatment response (Sharma et al., 2017). Further-
more, the central role for CTLA-4 and PD-1 in maintaining peripheral tolerance results in immune-
related adverse events for many patients (Wolchok et al., 2013). Further understanding of tissue- or 
activation-specific expression of different inhibitory receptors can assist in limiting toxicities, in partic-
ular when receptors are also expressed on non-immune cells (von Richthofen and Meyaard, 2023). 
Additional benefit can be gained by targeting inhibitory receptors with more specialised functions or 
expression patterns, such as T cell immunoglobulin and mucin domain-containing receptor 3 (TIM-3) 
or T cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif (ITIM) domains 
(TIGIT) (Schnell et al., 2020).

We previously proposed that inhibitory receptors can be classified into distinct functional catego-
ries based on the regulation of their expression (Rumpret et al., 2020). Using mathematical model-
ling, we defined four categories: (1) Negative feedback receptor expression is induced by cellular 
activation to ensure a timely resolution of the response and limit excessive responses. (2) Threshold 
receptors are expressed on immune cells in the resting state and control the threshold for immune cell 
activation to provide context and prevent unnecessary or futile responses. (3) Threshold-disinhibition 
receptors are threshold receptors of which the expression is downregulated after activation. This 
allows for a more potent response after initial activation. (4) Threshold-negative feedback receptors 
are threshold receptors of which expression is further induced upon cellular activation.

It is reasonable to assume that therapeutic interference with inhibitory receptors of different func-
tional categories would have different outcomes. In cancer, blocking threshold receptors will lower the 
activation threshold of immune cells with antitumour activities. Meanwhile, interference with negative 
feedback receptors will prolong the antitumour and cytolytic activities of immune cells.

The vast majority of currently characterised inhibitory receptors recruit phosphatases, such as SH2 
domain-containing phosphatase (SHP-1), SHP-2, or SHIP-1 to their intracellular immunoreceptor via 
tyrosine-based inhibitory and/or switch motifs (ITIM/ITSMs) (Long, 1999). This allows these receptors 
to dephosphorylate and inactivate other signalling molecules, such as those recruited to the T cell 
receptor complex, although some receptors are also capable of relaying activating signals through an 
ITSM (Dietrich et al., 2001; Ostrakhovitch and Li, 2006). ITIM sequences consist of the consensus 
amino acid sequence (V|L|I|S)xYxx(I|L|V), where x can be any amino acid, in the intracellular domain of a 
protein. This domain can be extended to (V|L|I|S|T)xYxx(I|L|V) to also include ITSM sequences, as there 
are inhibitory receptors, such as PD-1, that rely partly on the ITSM for their inhibitory function (Chem-
nitz et al., 2004). So far, around 50 ITIM/ITSM containing inhibitory receptors have been described, 
although it has previously been estimated that over 1600 ITIM-containing molecules can be found in 
the human genome (Daëron et al., 2008).

More specific selection of potential drug targets out of this large collection of predicted receptors 
is required for further development and subsequent targeting in disease. Here, we set out to predict 
potential targets by developing a computational framework to identify putative inhibitory receptors 
and integrate three-dimensional structure predictions of proteins to those with a high likelihood 
of encoding functional inhibitory receptors. Furthermore, as inhibitory receptor expression follows 
specific dynamics and can play different roles in orchestrating immune responses (Rumpret et al., 
2020), we analysed changes in the expression of putative inhibitory receptors in different immune 
cells and activation states. Our analysis will aid in the selection of inhibitory receptors as therapeutic 
targets for specific diseases, to minimise toxicity and maximise efficacy.

Results
Putative ITIM/ITSM-bearing immune inhibitory receptors can be found 
in the human genome
To identify putative novel inhibitory receptors, we first retrieved the protein sequences of all 96,457 
protein-coding transcripts, corresponding to 19,353 individual human genes, annotated in the Ensembl 
database (release 105, December 2021) (Cunningham et  al., 2022). We retrieved all deposited 
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isoforms, as certain proteins might only contain an ITIM in a specific isoform. We then screened the 
entire protein sequence for the presence of an ITIM or ITSM, based on the consensus sequence 
(V|L|I|S|T)xYxx(I|L|V), resulting in 40,063 protein sequences from the initial 96,457. We next used the 
TOPCONS server, which is based on a consensus of several prediction tools (Tsirigos et al., 2015), 
to determine the membrane topology of all proteins with an ITIM/ITSM motif. TOPCONS predicted 
12,576 out of the 40,056 input proteins to be integral membrane proteins, of which 7445 contained 
multiple transmembrane domains and the remaining 5131 are single-pass membrane proteins.

We next filtered proteins for the presence of the ITIM or ITSM sequence in an intracellular domain 
of the protein based on the predicted topology. This yielded with 4613 protein sequences bearing 
one or more intracellular ITIMs or ITSMs, which correspond to 1562 genes (Figure 1A, Supplemen-
tary file 1). To assess how well our pipeline reflects previously documented inhibitory receptors, we 
confirmed that all the 52 proteins known for their ITIM-mediated immune inhibitory effects, such 
as PD-1 or leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1) (Table 1; Rumpret et al., 
2020), were recalled successfully, with the exception of MPIG6B, encoding for the inhibitory receptor 
G6B on platelets and megakaryocytes (de Vet et  al., 2001), due to an incorrect prediction of its 
transmembrane domain.
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Figure 1. A novel bioinformatics approach for the identification of predicted inhibitory receptors. (A) Schematic overview of the bioinformatics 
pipeline with the number of unique genes and corresponding proteins remaining at every step. All amino acid sequences corresponding to a protein-
coding transcript were retrieved from Ensembl. (B) Intracellular domains of identified proteins were permutated 10,000 times, and the number of 
immunoreceptor tyrosine-based inhibitory motif (ITIM) or immunoreceptor tyrosine-based switch motif (ITSM) occurrences were compared to the 
number of ITIMs in the original sequence to determine the likelihood of a specific intracellular domain containing an ITIM or ITSM. Threshold was 
determined based on known inhibitory receptors, and set at 0.25+ε, with ε being a random number between 0 and 0.01 to better predict the borderline 
predictions. The black line indicates 0.25 likelihood, the grey dotted line indicates 0.25+ε and the solid grey line indicates 0.05 likelihood. (C) Three-
dimensional structure for all proteins was predicted using AlphaFold, and the average model prediction score (pLDDT) was determined for each 
individual ITIM or ITSM in the protein. Proteins with all ITIMs above 80 pLDDT were excluded. The black line indicates 80 pLDDT threshold and the solid 
grey line indicates 50 pLDDT. For B and C, one protein is plotted for every unique gene symbol for clarity.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. A novel bioinformatics approach for the identification of predicted inhibitory receptors.

https://doi.org/10.7554/eLife.92870
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The composition of an ITIM/ITSM sequence is highly variable, as only three out of six amino acids 
positions are limited to specific amino acids. As a result of this, large proteins or proteins containing 
many tyrosines and hydrophobic residues are more likely to contain an ITIM/ITSM by chance (Figure 1—
figure supplement 1A). We therefore determined the likelihood of encountering an ITIM/ITSM by 
chance in the intracellular region of the putative targets. To this end, we randomly permutated the 
amino acid sequences of the intracellular domains by shuffling their order using the Fisher-Yates algo-
rithm. We did this 10,000 times for each receptor and assessed how often the permutated sequence 
contained more or an equal amount of ITIM/ITSMs compared to the original sequence. For 41 out of 
51 known receptors, these odds were low (<5%). However, for 10 out of 51, we observed ITIM/ITSM 
sequences in the permutated sequence between 5% and ~25% of the time. Based on these findings, 
we decided to exclude novel targets when they were above this threshold of 25% (Figure 1B). Due to 
the nature of permutation testing, there is some variation in the individual likelihood values for each 
protein sequence. However, as they were generally below 0.25 in any given iteration, we decided to 
define this value as a threshold for inclusion. After this statistical filtering, we were left with 837 inhib-
itory receptor genes. As expected, the average length of the intracellular domains of the excluded 
proteins was much higher than that of the remaining targets (Figure 1—figure supplement 1B).

AlphaFold structure predictions can assist in identifying likely 
functional ITIM/ITSMs
Protein interaction motifs are most commonly found in intrinsically disordered regions within proteins 
(Tompa et al., 2014), as structured regions are less accessible to binding with interacting partners. 
We therefore hypothesised that ITIM/ITSM sequences locate in disordered regions to allow for inter-
action with phosphatases and kinases. We therefore leveraged AlphaFold to infer three-dimensional 
structure predictions of the remaining inhibitory receptor candidates to determine where the ITIM/
ITSM sequences were located in three-dimensional space (Jumper et al., 2021).

For 832 of the 837 remaining inhibitory receptor genes, we were able to retrieve the predicted 
structures using AlphaFold. For every residue in the three-dimensional model, AlphaFold defines a 
confidence score (pLDDT) between 0 and 100 pLDDT. Low scores indicate reduced confidence, and 
regions with a low score are more likely to be intrinsically disordered (Tunyasuvunakool et al., 2021). 
We determined the average pLDDT of all six residues encompassing the ITIM/ITSM sequence, what 
resulted in an overall confidence score for each intracellular ITIM/ITSM (Figure 1C) in all targets.

We found that 99 out of 101 ITIM/ITSMs of the 51 known receptors had low confidence scores, i.e., 
less than 80 pLDDT, with an average confidence score of 49.3 pLDDT. 64 of the ITIMs even had pLDDT 
values below 50, which means they are particularly likely to be intrinsically disordered (Tunyasuvuna-
kool et al., 2021; Figure 1—figure supplement 1C). This result confirmed the hypothesis that ITIM/
ITSMs are likely to be located in disordered regions in the protein and indicates that the AlphaFold 

Table 1. Genes encoding previously described immunoreceptor tyrosine-based inhibitory motif 
(ITIM)-bearing inhibitory receptors.

BTLA CLEC4A KIR3DL2 NCR2 SIGLEC11

CD22 FCGR2B KIR3DL3 PDCD1 SIRPA

CD244 FCRL2 KLRC1 PECAM1 SIT1

CD300A FCRL3 KLRG1 PILRA SLAMF6

CD300LF FCRL4 LAIR1 PVR TIGIT

CD33 FCRL5 LILRB1 SIGLEC5 TREML1

CD5 KIR2DL1 LILRB2 SIGLEC6 VSIG4

CD72 KIR2DL2 LILRB3 SIGLEC7 VSTM1

CEACAM1 KIR2DL3 LILRB4 SIGLEC8

CLEC12A KIR2DL4 LILRB5 SIGLEC9

CLEC12B KIR3DL1 MPIG6B SIGLEC10

https://doi.org/10.7554/eLife.92870
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confidence score can be a valuable asset to determine the potential functionality of an ITIM sequence 
in predicted targets.

Based on the known receptors, we determined a threshold of 80 pLDDT and were left with 390 
out of 832 putative ITIM-bearing inhibitory receptor genes likely to contain a functional ITIM/ITSM. 
Among these genes, 54.6% consisted of multi-spanning proteins, while the remaining 177 single 
transmembrane domain targets consisted of 145 (37.2%) type I and 32 (8.2%) type II receptors. In 
some cases, a single gene was predicted to have both single-spanning and multi-spanning isoforms. 
Most putative inhibitory receptors (275) were based on the canonical transcript, as annotated by 
Ensembl, while 115 were identified as a non-canonical isoform of the gene.

Putative inhibitory receptors are expressed across immune cell subsets
To better characterise these receptors, we studied the expression patterns of the retrieved known and 
putative inhibitory receptor genes in various immune cells. We collected publicly available bulk RNA 
sequencing data of various immune cell subsets, both at resting state and after in vitro stimulation 
(West et al., 2016; Calderon et al., 2019; Table 2). We included all putative inhibitory receptors, 
including those that were identified in a non-canonical transcript of the gene. For this analysis, we 
considered a receptor as expressed when the expression was above the median overall gene expres-
sion in the sample, in either resting or activated state. From our set of inhibitory receptor genes, 2/51 
known and 41/390 predicted genes were not detected in these datasets.

Almost all functionally characterised immune inhibitory receptors are type I transmembrane 
proteins, while only six are type II single spanners. So far, no multi-spanning receptors have been 
described to have an inhibitory function in the immune system. Also, many genes encoding multi-
spanning proteins only showed very limited expression across immune cell subsets in the datasets we 
used for our analysis. Therefore, we analysed the multi-spanning targets (Figure 2—figure supple-
ment 1) separately from the single-spanning novel targets (Figure 2).

We investigated the expression of 215 single-spanning receptor genes in these immune cell 
subsets and found that neutrophils (137 genes) and monocytes (120 genes) expressed the highest 
number of inhibitory receptor genes. Lymphoid cells expressed fewer inhibitory receptor genes 
compared to myeloid cells, with B and NK cells expressing 111 genes, followed by CD8+ (106 genes) 
and CD4+ (99 genes) T cells (Figure 2B). The relative contribution of known and novel targets in 
each subset varied between different immune cells. We found more novel targets being expressed 
in CD4+ (86/99 genes, 86.9%) and CD8+ T cells (88/106 genes, 84.3%), compared to neutrophils 
(98/137 genes, 71.5%). Neutrophils and monocytes uniquely expressed nine and three inhibitory 
receptor genes respectively, but the vast majority were shared between two or more immune cell 
subsets (Figure 2C).

Compared to the single spanners, we found slightly fewer multi-spanning inhibitory receptor genes 
expressed in the different immune cell subsets. Out of 197 predicted genes, neutrophils expressed 
the most multi-spanning inhibitory receptor genes (118 genes), while the other subsets expressed a 
similar number: Monocytes expressed 100 inhibitory receptor genes, followed by B cells (95 genes), 
CD4+ (90 genes) and CD8+ (90 genes) T cells, and NK cells (89 genes) (Figure 2—figure supplement 
1A and B). Neutrophils (14 genes) expressed the most unique set of multi-spanning inhibitory recep-
tors, while most other genes were shared between all subsets (Figure 2—figure supplement 1C).

Table 2. Number of samples for different resting and activated immune cell subsets.

Cell type Subsets Resting Activated Stimulation Duration

Neutrophils 3 10 TSLP/Staphylococcus aureus 4 hr/24 hr

Monocytes 4 8 LPS 24 hr

NK cells 6 6 IL-2 24 hr

B cells Naïve, memory, plasmablast 13 10 Anti-IgG/M+IL-4 24 hr

CD4 T cells Naïve, effector, memory, regulatory, Tfh 37 40 Dynabeads +IL-2 24 hr

CD8 T cells Naïve, effector, memory 15 16 Dynabeads +IL-2 24 hr

https://doi.org/10.7554/eLife.92870
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Figure 2. Known and predicted single-spanning inhibitory receptors are expressed in different cell types in the resting state and after activation. (A) 
Heatmap with normalised expression data for known and predicted single-spanning inhibitory receptor genes in different cell types, in the resting state 
or after activation. Receptors were considered not expressed (black) when expression was below median overall gene expression in the sample. Data 
for neutrophils was retrieved from a different source than the other cell types. (B) Novel and known receptors were classified into different functional 
categories based on changes, or lack thereof, in expression after stimulation. Threshold receptors were expressed at resting state, and did not change 
after activation (i.e. change in expression <0.5 log2 fold change). Threshold-negative feedback and threshold-disinhibition receptors were defined 
by >0.5 log2 fold change up- or downregulation, respectively, in expression after activation. Negative feedback receptors were absent in the resting 
state, but were expressed after activation. (C) Upset plot showing the number of single-spanning receptors that are expressed uniquely by individual 
immune cell subsets, or shared between subsets as indicated by connected circles. Sixty-four genes are expressed in all cell types (not depicted).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Known and predicted multi-spanning inhibitory receptors are expressed in different cell types in the resting state and after 
activation.

https://doi.org/10.7554/eLife.92870
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Known and novel immune inhibitory receptors of different functional 
categories can be identified in immune cells
We next assigned the putative inhibitory receptor into the previously described functional catego-
ries by comparing the expression in the resting state versus after activation in the available data 
from different cell types (Rumpret et al., 2020; Table 3, Supplementary file 2). We defined nega-
tive feedback receptors as below median expression in the resting state, but expressed after activa-
tion. Threshold receptors were defined as being expressed in the resting state and having less than 
0.5 log2 fold change after activation, while threshold-disinhibition and threshold-negative feedback 
receptors were defined by more than 0.5 log2 fold decrease or increase in expression upon activation, 
respectively. Using this functional classification system, we found that all immune cell subsets, except 
B cells, expressed receptors of all four categories, although all subsets primarily expressed threshold 
receptors.

We did not observe many changes in inhibitory receptor gene expression after activation in neutro-
phils. Six receptor genes, such as SLAMF1, were absent on resting neutrophils, but expression was 
induced after stimulation, categorising them as negative feedback receptors. We identified 124 
receptors as threshold receptors, while four and three genes were identified as threshold-disinhibition 
and threshold-negative feedback receptors, respectively (Figure 2B).

In contrast, in monocytes 26 genes, including SIGLEC8 or SIGLEC11, had the expression pattern of 
negative feedback receptors. We found 72 receptors, e.g., SIGLEC10 or PILRA, that maintained their 
expression after activation, while 21 were downregulated, such as VSTM1 or CLEC12A. Only a single 
receptor, SLAMF7, was categorised as a threshold-negative feedback receptor. Of note, a cluster of 
14 receptors was shared exclusively between monocytes and neutrophils (Figure 2C) and thus could 
be indicative of a set of conserved myeloid-specific checkpoints.

We observed the expression of 17 negative feedback receptors, e.g., SIGLEC15 and VSTM4, and 
81 threshold receptors, such as CD244 and CD300A on NK cells. Additionally, 11 genes were clas-
sified as threshold-disinhibition receptors, e.g., FCRL6, while 2 were determined to be threshold-
negative feedback receptors.

B cells expressed 111 predicted inhibitory receptor genes, of which 10, like SIRPA and SIGLEC6, 
were negative feedback receptors. We found 85 threshold receptors, such as BTLA, as well as 16 
threshold-disinhibition receptors, e.g., PILRA and LST1. B cells were the only subset that are not 
predicted to express threshold-negative feedback receptors. B cells also shared expression of six 
receptors with monocytes and neutrophils, while two genes were uniquely expressed by B cells.

CD4+ and CD8+ T cells expressed 8 and 9 negative feedback receptors, respectively, such as PDCD1, 
in addition to 73 (on CD4+ T cells) and 78 (on CD8+ T cells) threshold receptors, e.g., CEACAM1 and 
SIT1. In addition, we found 16 threshold-disinhibition receptors on CD4+ T cells and 15 on CD8+ T 
cells, such as LAIR1 on CD4+ T cells and AXL on both subsets, as well as 2 threshold-negative feedback 
receptors on CD4+ and 4 on CD8+ T cells.

All immune cell subsets expressed fewer multi-membrane spanning inhibitory receptor genes 
compared to single spanners (Figure  2—figure supplement 1, Supplementary file 2). When we 
assigned these multi-spanning targets to the different functional categories, a similar picture emerged 
as for the single spanners, where most receptors categorised as threshold receptors in all immune 
cell types. Whereas monocytes, B cells, CD4+ and CD8+ T cells expressed more single-spanning 
threshold-disinhibition receptors than negative feedback receptors, the opposite was observed 

Table 3. Number of single-spanning receptors in different functional categories for each immune cell subset.

Cell type Not expressed Negative feedback Threshold-negative feedback Threshold-disinhibition Threshold

Neutrophils 78 6 3 4 124

Monocytes 95 26 1 21 72

NK cells 104 17 2 11 81

B cells 104 10 0 16 85

CD4 T cells 116 8 2 16 73

CD8 T cells 109 9 4 15 78

https://doi.org/10.7554/eLife.92870
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for multi-spanning inhibitory receptor genes. NK cells had less dynamic gene regulation of multi-
spanning targets than of single spanners, while categorisation for neutrophils was similar between 
multi- and single spanners (Figure  2—figure supplement 1B). Interestingly, the multi-spanning 
targets were shared between three or more subsets more often than was the case for the single span-
ners (Figure 2—figure supplement 1C).

In summary, we identified 398 known and putative inhibitory receptors being expressed across 
a variety of immune cell subsets, with mostly overlapping expression patterns. We classified these 
receptors into different functional categories based on their expression in the resting and activated 
states. We found that all immune cells expressed mostly threshold receptors. Among the receptors 
that changed expression after activation, monocytes and NK cells mainly expressed negative feed-
back receptors, while the T cells and B cells expressed more threshold-disinhibition receptors. Neutro-
phils did not have very dynamic gene expression patterns.

Known and putative inhibitory receptors are expressed on tumour 
infiltrating T cells
To further translate our findings to a disease context, we explored the expression of putative inhib-
itory receptor genes in tumour infiltrating lymphocytes. We used publicly available single-cell RNA 
sequencing data of CD4+ and CD8+ T cells from 21 types of cancer and determined inhibitory receptor 
gene expression in the different T cell subsets identified by Zheng et al., 2021b; Figure 3A. After 
quality control and filtering, the expression of 133/215 single spanners and 111/197 of the multi-
spanners could be assessed in this dataset.

Among T cell subsets, expression of single-spanning inhibitory receptor genes was variable 
(Figure 3A). We found 27 and 46 inhibitory receptor genes in naïve CD4+ and CD8+ T cells, respec-
tively, while T cells with a more differentiated phenotype, e.g., regulatory CD4+ T cells (68 genes) 
and exhausted CD8+ T cells (83 genes), expressed a wider array of known and predicted inhibitory 
receptor genes (Figure 3B and C).

When we assessed expression of multi-spanning inhibitory receptor genes (Figure  3—figure 
supplement 1A), we found similar variable expression across T cell subsets as for the single spanners. 
Naïve CD4+ T cells expressed 21 multi-spanning receptor genes, while many more were found in the 
other subsets (Figure 3—figure supplement 1B). Resident memory CD8+ T cells expressed 87 multi-
spanning inhibitory receptor genes, while CD8+ memory and effector memory expressed 9 and 26 
genes, respectively (Figure 3—figure supplement 1C).

Based on the previously proposed functional categorisation of known and novel inhibitory recep-
tors (Figure 2 and Figure 2—figure supplement 1), we assessed the functional categories expressed 
across the tumour infiltrating T cell subsets (Figure 3—figure supplement 2). Similarly to the immune 
subset analysis, we observed that the subsets primarily expressed threshold receptors.

To validate that we rediscovered known immunotherapeutic targets, we assessed the expression 
of the known inhibitory receptor genes in tumour infiltrating lymphocytes of melanoma patients using 
the same dataset (Zheng et al., 2021b). We found high expression of known immunotherapeutic 
targets, such as PD-1, in addition to other inhibitory receptors being targeted in clinical trials, such as 
TIGIT (Figure 3—figure supplement 3).

Overall, this shows that the putative inhibitory immune receptors we identified are expressed on 
tumour infiltrating T cells and differ between cellular subsets. Further investigation into differences 
and similarities between these populations in different cancer types could assist in targeting these 
receptors for therapy.

In conclusion, we designed a novel, combined bioinformatics approach to predict around 400 
immune inhibitory receptors in the human genome, including both single- and multi-spanning targets. 
Our list of novel targets will assist drug target selection in diseases where inhibitory receptor targeting 
is warranted.

Discussion
This study introduces some major improvements over previous attempts at predicting novel inhib-
itory receptors in the human genome. In 2004, Staub et al. performed a search limited to type I 
membrane receptors containing an annotated extracellular domain and a restricted ITIM sequence. 

https://doi.org/10.7554/eLife.92870
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They identified a total of 94 genes encoding inhibitory receptors, of which 32 had been previously 
described to rely on their ITIM to inhibit immune function (Staub et  al., 2004). A later study by 
Daëron et al., 2008, performed a more extensive analysis of ITIM-bearing receptors across multiple 
species, including chickens and Drosophila (Daëron et  al., 2008). In humans, they identified 613 
predicted type I and type II single-spanners and 992 multi-spanning transmembrane proteins, corre-
sponding to around 1500 genes. This number agrees with what we retrieved in the initial steps of 
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Figure 3. Single-spanning predicted inhibitory receptors are expressed across a wide variety of tumour infiltrating T cell subsets. (A) Heatmap with row-
normalised expression data for known and predicted single-spanning inhibitory receptor genes in different tumour infiltrating T cell subsets. Receptors 
were considered not expressed in a T cell subset (black) when expression was below median across all subsets. (B) Number of inhibitory receptor genes 
expressed by different CD4+ T cell subsets (upper graph) and CD8+ T cell subsets (lower graph).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Multi-spanning predicted inhibitory receptors are expressed across a wide variety of tumour infiltrating T cell subsets.

Figure supplement 2. Expression of functional categories of inhibitory receptors across tumour infiltrating T cell subsets.

Figure supplement 3. Known inhibitory receptors are expressed in tumour infiltrating T cell subsets of melanoma patients.
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our bioinformatics pipeline, where we identified 1562 genes. Our efforts to reduce this number to 
candidates with a high probability of functioning as inhibitory receptors resulted in 390 novel targets. 
Compared to the previous studies, our method has key advantages. Firstly, the TOPCONS algorithm 
we used is superior to TMHMM and Philius, which have been used previously, at predicting membrane 
topology (Tsirigos et al., 2015; Möller et al., 2001; Reynolds et al., 2008). Most importantly, we 
excluded many potential false positives by filtering out proteins that are likely to contain an ITIM by 
chance and used three-dimensional structure predictions to enrich the remaining targets for those 
containing ITIMs in unstructured regions. Furthermore, our expression analysis and functional cate-
gorisation of the putative inhibitory receptors can assist in gaining a better understanding of their 
relevance in different contexts.

An important component of our pipeline is the use of AlphaFold (Jumper et  al., 2021). Our 
approach was exceptionally good at filtering out many proteins in the olfactory receptor family, for 
which almost all ITIMs identified were found in highly structured regions. We determined a threshold 
of 80 pLDDT based on the calculated prediction scores of the ITIM/ITSMs in known inhibitory recep-
tors, as this encompassed 99 out of 101 ITIM/ITSMs. However, this excluded ITIMs in CD5 (Y402) and 
BTLA (Y282), with confidence scores of 85.2 and 81.5, respectively. Of note, studies have suggested 
that this particular ITIM in CD5 might not be functional or essential for CD5 function (Voisinne et al., 
2018). It is important to highlight that the AlphaFold structure predictions are based on the proteins 
being in isolation. It is possible that ITIMs become available after conformational changes following 
ligand binding, or that ITIMs in disordered regions are not functional when the proteins are found in 
complexes (Jakob et al., 2014; Kiefhaber et al., 2012).

We acknowledge that our approach has limitations. We used known ITIM-bearing inhibitory recep-
tors as validation for the various steps of the pipeline and retrieved all but one receptor, resulting in a 
retrieval of 98%. We did not retrieve MPIG6B, as we were not able to properly predict the transmem-
brane helix in the ITIM-containing isoforms of MPIG6B. With increasing computing power and further 
development of artificial intelligence, these prediction algorithms are likely to further improve (Rives 
et al., 2021; Tsirigos et al., 2018). The identification of novel ITIM/ITSM-bearing inhibitory receptors 
also relies on our current knowledge of known inhibitory receptors and their motifs. This influences the 
thresholds in our analyses, and might be skewed by larger protein families, e.g., KIR- and LILRB-family 
receptors. Additional filtering of the candidates could be achieved by assessing subcellular localisa-
tion, as it is possible that the transmembrane proteins we identified are not localised on the outer 
membrane, but instead on intracellular membranes. Although they could still function as inhibitory 
receptors, this would complicate the ability to effectively target them with therapeutic antibodies, 
and might instead require other blocking agents, such as proteolysis-targeting chimeras (PROTACS) 
or small molecule inhibitors (Békés et al., 2022).

We focused our search on receptors bearing ITIM or ITSM sequences, while inhibitory receptors 
have been described that function independent of these short sequences. We previously reported 
that CD200R has a unique signalling motif that is not shared with any other protein (Timmerman 
et al., 2021). Also, TIM-3 contains multiple tyrosine residues that are not part of any known signalling 
motif (Wolf et al., 2020). A small number (26 genes) of putative inhibitory receptors contained an ITIM 
embedded in an ITAM sequence, i.e., Yxx(I|L)x6-12Yxx(I|L). Although some ITAM-bearing molecules are 
capable of mediating inhibitory signals in an ITIM-independent manner, these receptors may not all 
be inhibitory (Barrow and Trowsdale, 2006).

Until now, no known functional multimembrane spanning immune inhibitory receptors have been 
reported, although some ITIM-bearing multi-spanners, e.g., SSTR2 and HCRTR1, were shown to 
recruit SHP-2 (Ferjoux et al., 2003; Voisin et al., 2008). It is possible that multi-spanning inhibitory 
receptors have not yet been fully characterised due to their size and limited targetability, making 
them difficult to study. Of interest, in our analysis multi-spanning receptors were often expressed by 
multiple immune cell subsets. This may suggest that multi-spanning inhibitory receptors would be 
capable of inhibiting a broad array of immune responses.

We previously argued how different functional categories of inhibitory receptors might serve 
distinct purposes (Rumpret et al., 2020). Here, we grouped known and putative inhibitory receptors 
in different functional categories based on their expression in isolated immune cell subsets in resting 
and stimulated state and show that a large number of them is expressed and regulated in a cell type-
specific manner. However, as we categorised these receptors based on in vitro activation with limited 

https://doi.org/10.7554/eLife.92870
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stimuli, expression must be further validated in in vivo settings. Nonetheless, we tried to characterise 
the functional categories expressed by tumour infiltrating lymphocytes by extrapolating the in vitro 
defined functional categorisation per gene. This showed that mainly threshold receptors and some 
(threshold-)negative feedback receptors are expressed by the different T cell subsets. This would open 
the possibility of targeting different functional categories for cancer immunotherapy, since targeting a 
threshold receptor to lower the threshold for activation and a negative feedback receptor to lengthen 
and strengthen the cellular response might therefore be more effective than targeting two receptors 
of a single functional category. However, we acknowledge that this will require further validation of 
expression patterns in vivo in different cancers and immune cell subsets.

We found that the highest number of target genes are expressed in neutrophils, which fits the 
need to control and precisely regulate their potentially damaging effector functions (Geerdink et al., 
2018). However, inhibitory receptor gene expression on these cells did not change much after acti-
vation. This does not exclude regulation of receptor expression at the protein level, which would fit 
with the more short-lived nature of these cells. For instance, LAIR-1 protein is stored in intracellular 
granules which results in rapid membrane expression on activated granulocytes (Geerdink et  al., 
2018). On monocytes, we found many negative feedback receptors. Considering that monocytes 
(especially macrophages) play a central role in orchestrating the overall immune response, timely 
resolution of their activation is key to successful resolution of inflammation, which could be achieved 
by these receptors.

For the functional categorisation of novel inhibitory receptor genes, we collected multiple publicly 
available datasets containing different isolated immune cell subsets in the resting state and after cell 
type-specific activation. For 115 genes, we predicted a non-canonical isoform, but not the canonical 
sequence, as a putative inhibitory receptor. This means that our expression analyses for these inhib-
itory receptor genes might not be fully reflective of the expression of individual isoforms of those 
genes, considering that isoform usage can vary widely between different cells and activation states, as 
has been well described for CEACAM1 (Gaur et al., 2008; Helfrich and Singer, 2019). In the present 
study, we also did not consider the ligand expression of these known and putative receptors. Regula-
tion of inhibitory receptors does not only occur at the level of the receptor itself, but the presence or 
absence of ligands, decoy receptors, and other interactions all add additional layers of regulation of 
control to the immune system (Rumpret et al., 2020).

To further prioritise inhibitory receptors in immune cell subsets or diseases of interest, gene co-ex-
pression networks of putative inhibitory receptors could be assessed. On the one hand, the co-occur-
rence of putative inhibitory receptors with known inhibitory receptors within a module could be one 
approach, while on the other hand the presence of putative inhibitory receptors in a different module 
could suggest novel regulation of different biological functions than the known receptors. The loca-
tion of the putative inhibitory receptors in the network could also change depending on the cell type 
and the activation status of the cell. Additionally, one could look at the co-expression of candidates 
with other genes within a gene module to look at potential biological function, and at co-expression 
with signalling molecules known to interact with inhibitory receptors, such as Csk, SHP-1, SHP-2, and 
SHIP1, although their regulation might be more post-translationally regulated rather than at the tran-
scriptional level.

As proof-of-concept, we assessed expression of both known and novel targets in various tumour 
infiltrating T cell subsets. This helps understanding how these potential drug targets are differen-
tially expressed in a disease context. As many receptors we identified were shared across immune 
cell subsets, it would be particularly interesting to block those that are enriched in, e.g., effector 
CD8+ T cell subsets. While some T cell subsets, such as exhausted CD8+ T cells and CD4+ regula-
tory T cells, appear to not differ much in their expression of either single- or multi-spanning recep-
tors, we do observe that, for example, effector memory CD4+ T cells or EMRA CD8+ T cells express 
single-spanning inhibitory receptors to a higher extent than multi-spanning inhibitory receptors. It 
is possible that these differences and similarities reflect some of the roles multi-spanning inhibitory 
receptors could play in regulating immune cells, e.g. in response to chemokines, as many chemokine 
receptors are multi-spanning proteins. In contrast, receptors expressed in subsets that can have pro-
tumourigenic properties, such as CD4+ Treg or Th17 cells (Tay et al., 2021; Karpisheh et al., 2022), 
should not be activated; these targets could instead benefit from agonist therapy. Furthermore, these 
putative receptors might also be attractive in autoimmune diseases, where immune checkpoints are 
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increasingly being explored as potential targets for therapy (Grebinoski and Vignali, 2020; Zhai 
et al., 2021).

Taken together, we have designed a bioinformatic pipeline to identify a key list of 390 predicted 
inhibitory receptors to be used as a starting point for further research into novel targets for targeting 
in diseases.

Methods
Identification of putative inhibitory receptors in the human genome
To identify putative inhibitory receptors in the human genome, amino acid sequences for 96,457 
protein coding, as annotated by Ensembl, transcripts were retrieved from Ensembl (release 105, 
December 2021) (Cunningham et al., 2022) using the biomaRt package (Durinck et al., 2009) in 
R. Amino acid sequences were then filtered based on the presence of an ITIM or ITSM sequence, 
(V|L|I|S|T)xYxx(I|L|V). Seven out of 40,063 ITIM-containing proteins were larger than 10,000 amino 
acids, and were excluded because they are not feasible for membrane topology prediction using the 
TOPCONS method (Tsirigos et al., 2015). Topology results for the remaining 40,056 proteins were 
then retrieved, and proteins were further filtered based on the presence of a predicted transmem-
brane domain (12,576 out of 40,056 proteins). For the remaining proteins, we determined whether 
the identified ITIM or ITSM sequence corresponded to an intracellular section of the protein, which 
resulted in 4613 protein sequences remaining, corresponding to 1562 individual genes (Figure 1A). A 
further 61 protein sequences were excluded as they could not be matched to a HUGO Gene Nomen-
clature Committee (HGNC) gene symbol (Seal et al., 2023).

Determining the likelihood of intracellular protein domain containing an 
ITIM by chance
To determine the odds of finding an intracellular ITIM or ITSM sequence in a specific protein, all 
intracellular domains of the proteins were retrieved based on the TOPCONS predictions. For each 
protein, the amino acids in the intracellular domain were then shuffled randomly, using the stringi 
package (Gagolewski, 2022), and the number of identified ITIM or ITSM sequences in the permu-
tated sequences was compared to the actual number of intracellular ITIM or ITSM sequences in the 
original protein. Each protein was permutated 10,000 times, and the number of occurrences of a 
permutated protein containing more or equal ITIM/ITSMs to the original sequence was counted and 
used as measure for the likelihood of finding an ITIM or ITSM by chance. A threshold was defined 
based on likelihood scores for the proteins corresponding to known inhibitory receptors, and was set 
at 0.25+ε, with ε being a random number determined error between 0 and 0.01.

Determining AlphaFold model confidence scores for individual ITIMs
Three-dimensional structure of protein sequences that passed the likelihood threshold were next 
determined using AlphaFold (v2.2.0) under default parameters with amber minimisation (run_relax 
= True) using the pdb70, uniref90, mgnify (mgy_clusters_2018_12), uniclust30 (uniclust30_2018_08), 
and bfd (bfd_metaclust_clu_complete_id30_c90_final_seq) databases on a high-performance cluster 
(Jumper et al., 2021; Varadi et al., 2022). AlphaFold was not able to determine the structure for 46 
of these proteins, of which 6 were too long and 40 returned a run time error involving HHblits and 
the hh-suite. The three-dimensional prediction of 37 of these proteins was instead determined using 
ColabFold (Mirdita et al., 2022) (v1.5.2) using MMseqs2 and HHsearch under default parameters 
without using template information (template_mode = none) and using mmseq2_uniref_env as MSA 
mode. The top ranked prediction files were retrieved for each protein, and loaded into R using the 
bio3d package (Grant et al., 2021). Prediction confidence scores (pLDDT) were retrieved, and the 
average pLDDT for all six amino acids encompassing the ITIM or ITSM sequence was used as the 
AlphaFold confidence score for that ITIM or ITSM. Proteins that had no ITIM or ITSM sequences with 
an average confidence score below 80 were not used in further analysis.

Classification of receptor functional categories
Based on the in vitro RNA sequencing dataset of immune cells in the resting state and after acti-
vation, functional categories were defined based on expression patterns as outlined previously 
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(Rumpret et al., 2020). Data was retrieved from Calderon et al., 2019, and West et al., 2016. Gene 
symbols were matched to Ensembl Gene IDs using biomaRt and Ensembl (release 108, October 2022) 
(Cunningham et al., 2022). For the neutrophil data (West et al., 2016), TPM values were retrieved 
and log2 scaled. For other immune cells, count matrix was normalised using the DESeq2 package 
(Love et  al., 2014). Culture conditions for all immune cells were simplified to major immune cell 
subsets, and to resting and stimulated (Table  2). Average expression for each inhibitory receptor 
gene was determined for each sample. An inhibitory receptor gene was considered expressed when 
it was above the median expression of all genes within the sample. Genes that were not expressed 
in the resting state, but were expressed in the stimulated state, were considered negative feedback 
receptors. Genes expressed in the resting state were considered threshold, threshold-disinhibition, or 
threshold-negative feedback receptors if the log2 fold change in expression was between –0.5 and 
0.5, below –0.5, or above 0.5, respectively. Genes expressed in the resting state, but not after activa-
tion, were also considered threshold-disinhibition receptors.

Collection and normalisation of immune cell RNA sequencing data
For the analysis of tumour infiltrating T cells, a normalised expression matrix was retrieved from Zheng 
et al., 2021b; Zheng and Qin, 2021a. The average Z score of all cells in a T cell subset was deter-
mined, weighted by the relative contribution of different subclusters identified in the study. Inhibitory 
receptor genes were considered expressed in a T cell subset if the average Z score was above 0.
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•  Supplementary file 2. Number of multi-spanning receptors in different functional categories for 
each immune cell subset. Supplementary table corresponding to Figure 2—figure supplement 1 
contains the numbers of multi-spanning receptors that have been categorised as ‘not expressed’, 
‘negative feedback’, ‘threshold-negative feedback’, ‘threshold-disinhibition’, and ‘threshold’ in 
different immune cell subsets, i.e., neutrophils, monocytes, NK cells, B cells, and CD4+ and CD8+ T 
cells.

•  MDAR checklist 

Data availability
Code and data used to generate the figures in this study can be retrieved from https://github.com/​
AkashdipSingh/IIR_pipeline (copy archived at AkashdipSingh, 2023).
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The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Zheng L, Qin S, Si 
W, Wang A, Xing B, 
Gao R, Ren X, Wang 
L, Wu X, Zhang J, Wu 
N, Zhang N, Zheng 
H, Ouyang H, Chen 
K, Bu Z, Hu X, Ji J, 
Zhang Z

2021 Pan-Cancer Single Cell 
Landscape of Tumor-
Infiltrating T Cells

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE156728

NCBI Gene Expression 
Omnibus, GSE156728

West EE, Spolski R, 
Kazemian M, Zx Yu, 
Kemper C, Leonard 
WJ

2016 TSLP acts on neutrophils 
to drive complement-
mediated killing of 
methicillin-resistant 
Staphylococcus aureus

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE73313

NCBI Gene Expression 
Omnibus, GSE73313

Calderon D, Nguyen 
ML, Mezger A

2019 RNA-seq data https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE118165

NCBI Gene Expression 
Omnibus, GSE118165

References
AkashdipSingh. 2023. IIR_pipeline. swh:1:rev:989cfba460c3672f133fcbb1d800bd45bd02dae3. Software 

Heritage. https://archive.softwareheritage.org/swh:1:dir:e73c060824474aaef3203dcc379d51fcc4fa11e2;​
origin=https://github.com/AkashdipSingh/IIR_pipeline;visit=swh:1:snp:e53fbf602826766bc73b479a6befe843​
9ef9e260;anchor=swh:1:rev:989cfba460c3672f133fcbb1d800bd45bd02dae3

Andrews LP, Yano H, Vignali DAA. 2019. Inhibitory receptors and ligands beyond PD-1, PD-L1 and CTLA-4: 
breakthroughs or backups. Nature Immunology 20:1425–1434. DOI: https://doi.org/10.1038/s41590-019-0512-​
0, PMID: 31611702

Barrow AD, Trowsdale J. 2006. You say ITAM and I say ITIM, let’s call the whole thing off: the ambiguity of 
immunoreceptor signalling. European Journal of Immunology 36:1646–1653. DOI: https://doi.org/10.1002/eji.​
200636195, PMID: 16783855

Békés M, Langley DR, Crews CM. 2022. PROTAC targeted protein degraders: the past is prologue. Nature 
Reviews. Drug Discovery 21:181–200. DOI: https://doi.org/10.1038/s41573-021-00371-6, PMID: 35042991

Calderon D, Nguyen MLT, Mezger A, Kathiria A, Müller F, Nguyen V, Lescano N, Wu B, Trombetta J, Ribado JV, 
Knowles DA, Gao Z, Blaeschke F, Parent AV, Burt TD, Anderson MS, Criswell LA, Greenleaf WJ, Marson A, 
Pritchard JK. 2019. Landscape of stimulation-responsive chromatin across diverse human immune cells. Nature 
Genetics 51:1494–1505. DOI: https://doi.org/10.1038/s41588-019-0505-9, PMID: 31570894

Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL. 2004. SHP-1 and SHP-2 associate with immunoreceptor 
tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor 
ligation prevents T cell activation. Journal of Immunology 173:945–954. DOI: https://doi.org/10.4049/​
jimmunol.173.2.945, PMID: 15240681

Chocarro L, Bocanegra A, Blanco E, Fernández-Rubio L, Arasanz H, Echaide M, Garnica M, Ramos P, 
Piñeiro-Hermida S, Vera R, Escors D, Kochan G. 2022. Cutting-edge: Preclinical and clinical development of the 
first approved lag-3 inhibitor. Cells 11:2351. DOI: https://doi.org/10.3390/cells11152351, PMID: 35954196

Cunningham F, Allen JE, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, Austine-Orimoloye O, Azov AG, 
Barnes I, Bennett R, Berry A, Bhai J, Bignell A, Billis K, Boddu S, Brooks L, Charkhchi M, Cummins C, 
Da Rin Fioretto L, Davidson C, et al. 2022. Ensembl 2022. Nucleic Acids Research 50:D988–D995. DOI: https://​
doi.org/10.1093/nar/gkab1049, PMID: 34791404

Daëron M, Jaeger S, Du Pasquier L, Vivier E. 2008. Immunoreceptor tyrosine-based inhibition motifs: a quest in 
the past and future. Immunological Reviews 224:11–43. DOI: https://doi.org/10.1111/j.1600-065X.2008.00666.​
x, PMID: 18759918

de Vet ECJM, Aguado B, Campbell RD. 2001. G6b, a novel immunoglobulin superfamily member encoded in 
the human major histocompatibility complex, interacts with SHP-1 and SHP-2. Journal of Biological Chemistry 
276:42070–42076. DOI: https://doi.org/10.1074/jbc.M103214200

Dietrich J, Cella M, Colonna M. 2001. Ig-like transcript 2 (ILT2)/leukocyte Ig-like receptor 1 (LIR1) inhibits TCR 
signaling and actin cytoskeleton reorganization. Journal of Immunology 166:2514–2521. DOI: https://doi.org/​
10.4049/jimmunol.166.4.2514, PMID: 11160312

Durinck S, Spellman PT, Birney E, Huber W. 2009. Mapping identifiers for the integration of genomic datasets 
with the R/Bioconductor package biomaRt. Nature Protocols 4:1184–1191. DOI: https://doi.org/10.1038/nprot.​
2009.97, PMID: 19617889

Ferjoux G, Lopez F, Esteve J-P, Ferrand A, Vivier E, Vely F, Saint-Laurent N, Pradayrol L, Buscail L, Susini C. 2003. 
Critical role of Src and SHP-2 in sst2 somatostatin receptor-mediated activation of SHP-1 and inhibition of cell 

https://doi.org/10.7554/eLife.92870
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE156728
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE156728
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE156728
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE156728
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73313
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73313
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73313
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73313
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE118165
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE118165
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE118165
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE118165
https://archive.softwareheritage.org/swh:1:dir:e73c060824474aaef3203dcc379d51fcc4fa11e2;origin=https://github.com/AkashdipSingh/IIR_pipeline;visit=swh:1:snp:e53fbf602826766bc73b479a6befe8439ef9e260;anchor=swh:1:rev:989cfba460c3672f133fcbb1d800bd45bd02dae3
https://archive.softwareheritage.org/swh:1:dir:e73c060824474aaef3203dcc379d51fcc4fa11e2;origin=https://github.com/AkashdipSingh/IIR_pipeline;visit=swh:1:snp:e53fbf602826766bc73b479a6befe8439ef9e260;anchor=swh:1:rev:989cfba460c3672f133fcbb1d800bd45bd02dae3
https://archive.softwareheritage.org/swh:1:dir:e73c060824474aaef3203dcc379d51fcc4fa11e2;origin=https://github.com/AkashdipSingh/IIR_pipeline;visit=swh:1:snp:e53fbf602826766bc73b479a6befe8439ef9e260;anchor=swh:1:rev:989cfba460c3672f133fcbb1d800bd45bd02dae3
https://doi.org/10.1038/s41590-019-0512-0
https://doi.org/10.1038/s41590-019-0512-0
http://www.ncbi.nlm.nih.gov/pubmed/31611702
https://doi.org/10.1002/eji.200636195
https://doi.org/10.1002/eji.200636195
http://www.ncbi.nlm.nih.gov/pubmed/16783855
https://doi.org/10.1038/s41573-021-00371-6
http://www.ncbi.nlm.nih.gov/pubmed/35042991
https://doi.org/10.1038/s41588-019-0505-9
http://www.ncbi.nlm.nih.gov/pubmed/31570894
https://doi.org/10.4049/jimmunol.173.2.945
https://doi.org/10.4049/jimmunol.173.2.945
http://www.ncbi.nlm.nih.gov/pubmed/15240681
https://doi.org/10.3390/cells11152351
http://www.ncbi.nlm.nih.gov/pubmed/35954196
https://doi.org/10.1093/nar/gkab1049
https://doi.org/10.1093/nar/gkab1049
http://www.ncbi.nlm.nih.gov/pubmed/34791404
https://doi.org/10.1111/j.1600-065X.2008.00666.x
https://doi.org/10.1111/j.1600-065X.2008.00666.x
http://www.ncbi.nlm.nih.gov/pubmed/18759918
https://doi.org/10.1074/jbc.M103214200
https://doi.org/10.4049/jimmunol.166.4.2514
https://doi.org/10.4049/jimmunol.166.4.2514
http://www.ncbi.nlm.nih.gov/pubmed/11160312
https://doi.org/10.1038/nprot.2009.97
https://doi.org/10.1038/nprot.2009.97
http://www.ncbi.nlm.nih.gov/pubmed/19617889


 Research article﻿﻿﻿﻿﻿﻿ Cancer Biology | Immunology and Inflammation

Singh et al. eLife 2024;13:RP92870. DOI: https://doi.org/10.7554/eLife.92870 � 16 of 17

proliferation. Molecular Biology of the Cell 14:3911–3928. DOI: https://doi.org/10.1091/mbc.e03-02-0069, 
PMID: 12972574

Gagolewski M. 2022. stringi: Fast and portable character string processing in R. Journal of Statistical Software 
103:1–59. DOI: https://doi.org/10.18637/jss.v103.i02

Gaur S, Shively JE, Yen Y, Gaur RK. 2008. Altered splicing of CEACAM1 in breast cancer: identification of 
regulatory sequences that control splicing of CEACAM1 into long or short cytoplasmic domain isoforms. 
Molecular Cancer 7:46. DOI: https://doi.org/10.1186/1476-4598-7-46, PMID: 18507857

Geerdink RJ, Hennus MP, Westerlaken GHA, Abrahams AC, Albers KI, Walk J, Wesselink E, Janssen R, Bont L, 
Meyaard L. 2018. LAIR-1 limits neutrophil extracellular trap formation in viral bronchiolitis. The Journal of 
Allergy and Clinical Immunology 141:811–814. DOI: https://doi.org/10.1016/j.jaci.2017.08.031, PMID: 
29050972

Grant BJ, Skjaerven L, Yao X-Q. 2021. The Bio3D packages for structural bioinformatics. Protein Science 
30:20–30. DOI: https://doi.org/10.1002/pro.3923, PMID: 32734663

Grebinoski S, Vignali DA. 2020. Inhibitory receptor agonists: the future of autoimmune disease therapeutics? 
Current Opinion in Immunology 67:1–9. DOI: https://doi.org/10.1016/j.coi.2020.06.001, PMID: 32619929

Helfrich I, Singer BB. 2019. Size matters: The functional role of the CEACAM1 isoform signature and its impact 
for NK cell-mediated killing in melanoma. Cancers 11:356. DOI: https://doi.org/10.3390/cancers11030356, 
PMID: 30871206

Jakob U, Kriwacki R, Uversky VN. 2014. Conditionally and transiently disordered proteins: awakening cryptic 
disorder to regulate protein function. Chemical Reviews 114:6779–6805. DOI: https://doi.org/10.1021/​
cr400459c, PMID: 24502763

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, 
Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, 
Adler J, Back T, et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589. 
DOI: https://doi.org/10.1038/s41586-021-03819-2, PMID: 34265844

Karpisheh V, Ahmadi M, Abbaszadeh-Goudarzi K, Mohammadpour Saray M, Barshidi A, Mohammadi H, 
Yousefi M, Jadidi-Niaragh F. 2022. The role of Th17 cells in the pathogenesis and treatment of breast cancer. 
Cancer Cell International 22:108. DOI: https://doi.org/10.1186/s12935-022-02528-8, PMID: 35248028

Kiefhaber T, Bachmann A, Jensen KS. 2012. Dynamics and mechanisms of coupled protein folding and binding 
reactions. Current Opinion in Structural Biology 22:21–29. DOI: https://doi.org/10.1016/j.sbi.2011.09.010, 
PMID: 22129832

Long EO. 1999. Regulation of immune responses through inhibitory receptors. Annual Review of Immunology 
17:875–904. DOI: https://doi.org/10.1146/annurev.immunol.17.1.875, PMID: 10358776

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with 
DESeq2. Genome Biology 15:550. DOI: https://doi.org/10.1186/s13059-014-0550-8, PMID: 25516281

Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. 2022. ColabFold: making protein folding 
accessible to all. Nature Methods 19:679–682. DOI: https://doi.org/10.1038/s41592-022-01488-1, PMID: 
35637307

Möller S, Croning MD, Apweiler R. 2001. Evaluation of methods for the prediction of membrane spanning 
regions. Bioinformatics 17:646–653. DOI: https://doi.org/10.1093/bioinformatics/17.7.646, PMID: 11448883

Ostrakhovitch EA, Li SSC. 2006. The role of SLAM family receptors in immune cell signaling. Biochemistry and 
Cell Biology = Biochimie et Biologie Cellulaire 84:832–843. DOI: https://doi.org/10.1139/o06-191, PMID: 
17215871

Reynolds SM, Käll L, Riffle ME, Bilmes JA, Noble WS. 2008. Transmembrane topology and signal peptide 
prediction using dynamic bayesian networks. PLOS Computational Biology 4:e1000213. DOI: https://doi.org/​
10.1371/journal.pcbi.1000213, PMID: 18989393

Rives A, Meier J, Sercu T, Goyal S, Lin Z, Liu J, Guo D, Ott M, Zitnick CL, Ma J, Fergus R. 2021. Biological 
structure and function emerge from scaling unsupervised learning to 250 million protein sequences. PNAS 
118:e2016239118. DOI: https://doi.org/10.1073/pnas.2016239118, PMID: 33876751

Rumpret M, Drylewicz J, Ackermans LJE, Borghans JAM, Medzhitov R, Meyaard L. 2020. Functional categories 
of immune inhibitory receptors. Nature Reviews. Immunology 20:771–780. DOI: https://doi.org/10.1038/​
s41577-020-0352-z, PMID: 32612208

Schnell A, Bod L, Madi A, Kuchroo VK. 2020. The yin and yang of co-inhibitory receptors: toward anti-tumor 
immunity without autoimmunity. Cell Research 30:285–299. DOI: https://doi.org/10.1038/s41422-020-0277-x, 
PMID: 31974523

Seal RL, Braschi B, Gray K, Jones TEM, Tweedie S, Haim-Vilmovsky L, Bruford EA. 2023. ​Genenames.​org: the 
HGNC resources in 2023. Nucleic Acids Research 51:D1003–D1009. DOI: https://doi.org/10.1093/nar/gkac888, 
PMID: 36243972

Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. 2017. Primary, adaptive, and acquired resistance to cancer 
immunotherapy. Cell 168:707–723. DOI: https://doi.org/10.1016/j.cell.2017.01.017, PMID: 28187290

Staub E, Rosenthal A, Hinzmann B. 2004. Systematic identification of immunoreceptor tyrosine-based inhibitory 
motifs in the human proteome. Cellular Signalling 16:435–456. DOI: https://doi.org/10.1016/j.cellsig.2003.08.​
013, PMID: 14709333

Tay RE, Richardson EK, Toh HC. 2021. Revisiting the role of CD4+ T cells in cancer immunotherapy-new insights 
into old paradigms. Cancer Gene Therapy 28:5–17. DOI: https://doi.org/10.1038/s41417-020-0183-x, PMID: 
32457487

https://doi.org/10.7554/eLife.92870
https://doi.org/10.1091/mbc.e03-02-0069
http://www.ncbi.nlm.nih.gov/pubmed/12972574
https://doi.org/10.18637/jss.v103.i02
https://doi.org/10.1186/1476-4598-7-46
http://www.ncbi.nlm.nih.gov/pubmed/18507857
https://doi.org/10.1016/j.jaci.2017.08.031
http://www.ncbi.nlm.nih.gov/pubmed/29050972
https://doi.org/10.1002/pro.3923
http://www.ncbi.nlm.nih.gov/pubmed/32734663
https://doi.org/10.1016/j.coi.2020.06.001
http://www.ncbi.nlm.nih.gov/pubmed/32619929
https://doi.org/10.3390/cancers11030356
http://www.ncbi.nlm.nih.gov/pubmed/30871206
https://doi.org/10.1021/cr400459c
https://doi.org/10.1021/cr400459c
http://www.ncbi.nlm.nih.gov/pubmed/24502763
https://doi.org/10.1038/s41586-021-03819-2
http://www.ncbi.nlm.nih.gov/pubmed/34265844
https://doi.org/10.1186/s12935-022-02528-8
http://www.ncbi.nlm.nih.gov/pubmed/35248028
https://doi.org/10.1016/j.sbi.2011.09.010
http://www.ncbi.nlm.nih.gov/pubmed/22129832
https://doi.org/10.1146/annurev.immunol.17.1.875
http://www.ncbi.nlm.nih.gov/pubmed/10358776
https://doi.org/10.1186/s13059-014-0550-8
http://www.ncbi.nlm.nih.gov/pubmed/25516281
https://doi.org/10.1038/s41592-022-01488-1
http://www.ncbi.nlm.nih.gov/pubmed/35637307
https://doi.org/10.1093/bioinformatics/17.7.646
http://www.ncbi.nlm.nih.gov/pubmed/11448883
https://doi.org/10.1139/o06-191
http://www.ncbi.nlm.nih.gov/pubmed/17215871
https://doi.org/10.1371/journal.pcbi.1000213
https://doi.org/10.1371/journal.pcbi.1000213
http://www.ncbi.nlm.nih.gov/pubmed/18989393
https://doi.org/10.1073/pnas.2016239118
http://www.ncbi.nlm.nih.gov/pubmed/33876751
https://doi.org/10.1038/s41577-020-0352-z
https://doi.org/10.1038/s41577-020-0352-z
http://www.ncbi.nlm.nih.gov/pubmed/32612208
https://doi.org/10.1038/s41422-020-0277-x
http://www.ncbi.nlm.nih.gov/pubmed/31974523
https://doi.org/10.1093/nar/gkac888
http://www.ncbi.nlm.nih.gov/pubmed/36243972
https://doi.org/10.1016/j.cell.2017.01.017
http://www.ncbi.nlm.nih.gov/pubmed/28187290
https://doi.org/10.1016/j.cellsig.2003.08.013
https://doi.org/10.1016/j.cellsig.2003.08.013
http://www.ncbi.nlm.nih.gov/pubmed/14709333
https://doi.org/10.1038/s41417-020-0183-x
http://www.ncbi.nlm.nih.gov/pubmed/32457487


 Research article﻿﻿﻿﻿﻿﻿ Cancer Biology | Immunology and Inflammation

Singh et al. eLife 2024;13:RP92870. DOI: https://doi.org/10.7554/eLife.92870 � 17 of 17

Timmerman LM, de Graaf JF, Satravelas N, Kesmir Ç, Meyaard L, van der Vlist M. 2021. Identification of a novel 
conserved signaling motif in CD200 receptor required for its inhibitory function. PLOS ONE 16:e0244770. DOI: 
https://doi.org/10.1371/journal.pone.0244770, PMID: 33780466

Tompa P, Davey NE, Gibson TJ, Babu MM. 2014. A million peptide motifs for the molecular biologist. Molecular 
Cell 55:161–169. DOI: https://doi.org/10.1016/j.molcel.2014.05.032, PMID: 25038412

Tsirigos KD, Peters C, Shu N, Käll L, Elofsson A. 2015. The TOPCONS web server for consensus prediction of 
membrane protein topology and signal peptides. Nucleic Acids Research 43:W401–W407. DOI: https://doi.​
org/10.1093/nar/gkv485, PMID: 25969446

Tsirigos KD, Govindarajan S, Bassot C, Västermark Å, Lamb J, Shu N, Elofsson A. 2018. Topology of membrane 
proteins-predictions, limitations and variations. Current Opinion in Structural Biology 50:9–17. DOI: https://doi.​
org/10.1016/j.sbi.2017.10.003, PMID: 29100082

Tunyasuvunakool K, Adler J, Wu Z, Green T, Zielinski M, Žídek A, Bridgland A, Cowie A, Meyer C, Laydon A, 
Velankar S, Kleywegt GJ, Bateman A, Evans R, Pritzel A, Figurnov M, Ronneberger O, Bates R, Kohl SAA, 
Potapenko A, et al. 2021. Highly accurate protein structure prediction for the human proteome. Nature 
596:590–596. DOI: https://doi.org/10.1038/s41586-021-03828-1, PMID: 34293799

Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A, 
Žídek A, Green T, Tunyasuvunakool K, Petersen S, Jumper J, Clancy E, Green R, Vora A, Lutfi M, Figurnov M, 
et al. 2022. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-
sequence space with high-accuracy models. Nucleic Acids Research 50:D439–D444. DOI: https://doi.org/10.​
1093/nar/gkab1061, PMID: 34791371

Voisin T, El Firar A, Rouyer-Fessard C, Gratio V, Laburthe M. 2008. A hallmark of immunoreceptor, the tyrosine-
based inhibitory motif ITIM, is present in the G protein-coupled receptor OX1R for orexins and drives 
apoptosis: A novel mechanism. FASEB Journal 22:1993–2002. DOI: https://doi.org/10.1096/fj.07-098723, 
PMID: 18198212

Voisinne G, Gonzalez de Peredo A, Roncagalli R. 2018. CD5, an Undercover Regulator of TCR Signaling. 
Frontiers in Immunology 9:2900. DOI: https://doi.org/10.3389/fimmu.2018.02900, PMID: 30581443

von Richthofen HJ, Meyaard L. 2023. Sensing context: Inhibitory receptors on non-hematopoietic cells. 
European Journal of Immunology 53:e2250306. DOI: https://doi.org/10.1002/eji.202250306, PMID: 36965113

West EE, Spolski R, Kazemian M, Yu ZX, Kemper C, Leonard WJ. 2016. A TSLP-complement axis mediates 
neutrophil killing of methicillin-resistant Staphylococcus aureus Science Immunology 1:eaaf8471. DOI: https://​
doi.org/10.1126/sciimmunol.aaf8471, PMID: 28783679

Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon R-A, 
Reed K, Burke MM, Caldwell A, Kronenberg SA, Agunwamba BU, Zhang X, Lowy I, Inzunza HD, Feely W, 
Horak CE, Hong Q, et al. 2013. Nivolumab plus ipilimumab in advanced melanoma. The New England Journal 
of Medicine 369:122–133. DOI: https://doi.org/10.1056/NEJMoa1302369, PMID: 23724867

Wolf Y, Anderson AC, Kuchroo VK. 2020. TIM3 comes of age as an inhibitory receptor. Nature Reviews. 
Immunology 20:173–185. DOI: https://doi.org/10.1038/s41577-019-0224-6, PMID: 31676858

Zhai Y, Moosavi R, Chen M. 2021. Immune checkpoints, a novel class of therapeutic targets for autoimmune 
diseases. Frontiers in Immunology 12:645699. DOI: https://doi.org/10.3389/fimmu.2021.645699, PMID: 
33968036

Zheng L, Qin S. 2021a. Codes for the paper “pan-cancer single-cell landscape of tumor-infiltrating T cells.” 
Version v20210906. Zenodo. https://doi.org/10.5281/zenodo.5461803

Zheng L, Qin S, Si W, Wang A, Xing B, Gao R, Ren X, Wang L, Wu X, Zhang J, Wu N, Zhang N, Zheng H, 
Ouyang H, Chen K, Bu Z, Hu X, Ji J, Zhang Z. 2021b. Pan-cancer single-cell landscape of tumor-infiltrating T 
cells. Science 374:abe6474. DOI: https://doi.org/10.1126/science.abe6474, PMID: 34914499

https://doi.org/10.7554/eLife.92870
https://doi.org/10.1371/journal.pone.0244770
http://www.ncbi.nlm.nih.gov/pubmed/33780466
https://doi.org/10.1016/j.molcel.2014.05.032
http://www.ncbi.nlm.nih.gov/pubmed/25038412
https://doi.org/10.1093/nar/gkv485
https://doi.org/10.1093/nar/gkv485
http://www.ncbi.nlm.nih.gov/pubmed/25969446
https://doi.org/10.1016/j.sbi.2017.10.003
https://doi.org/10.1016/j.sbi.2017.10.003
http://www.ncbi.nlm.nih.gov/pubmed/29100082
https://doi.org/10.1038/s41586-021-03828-1
http://www.ncbi.nlm.nih.gov/pubmed/34293799
https://doi.org/10.1093/nar/gkab1061
https://doi.org/10.1093/nar/gkab1061
http://www.ncbi.nlm.nih.gov/pubmed/34791371
https://doi.org/10.1096/fj.07-098723
http://www.ncbi.nlm.nih.gov/pubmed/18198212
https://doi.org/10.3389/fimmu.2018.02900
http://www.ncbi.nlm.nih.gov/pubmed/30581443
https://doi.org/10.1002/eji.202250306
http://www.ncbi.nlm.nih.gov/pubmed/36965113
https://doi.org/10.1126/sciimmunol.aaf8471
https://doi.org/10.1126/sciimmunol.aaf8471
http://www.ncbi.nlm.nih.gov/pubmed/28783679
https://doi.org/10.1056/NEJMoa1302369
http://www.ncbi.nlm.nih.gov/pubmed/23724867
https://doi.org/10.1038/s41577-019-0224-6
http://www.ncbi.nlm.nih.gov/pubmed/31676858
https://doi.org/10.3389/fimmu.2021.645699
http://www.ncbi.nlm.nih.gov/pubmed/33968036
https://doi.org/10.5281/zenodo.5461803
https://doi.org/10.1126/science.abe6474
http://www.ncbi.nlm.nih.gov/pubmed/34914499

	A novel bioinformatics pipeline for the identification of immune inhibitory receptors as potential therapeutic targets
	eLife assessment
	Introduction
	Results
	Putative ITIM/ITSM-bearing immune inhibitory receptors can be found in the human genome
	AlphaFold structure predictions can assist in identifying likely functional ITIM/ITSMs
	Putative inhibitory receptors are expressed across immune cell subsets
	Known and novel immune inhibitory receptors of different functional categories can be identified in immune cells
	Known and putative inhibitory receptors are expressed on tumour infiltrating T cells

	Discussion
	Methods
	Identification of putative inhibitory receptors in the human genome
	Determining the likelihood of intracellular protein domain containing an ITIM by chance
	Determining AlphaFold model confidence scores for individual ITIMs
	Classification of receptor functional categories
	Collection and normalisation of immune cell RNA sequencing data

	Acknowledgements
	Additional information
	﻿Competing interests
	﻿Funding
	Author contributions
	Author ORCIDs
	Peer review material

	Additional files
	Supplementary files

	References


