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Abstract The chemical composition of foods is complex, variable, and dependent on many 
factors. This has a major impact on nutrition research as it foundationally affects our ability to 
adequately assess the actual intake of nutrients and other compounds. In spite of this, accurate 
data on nutrient intake are key for investigating the associations and causal relationships between 
intake, health, and disease risk at the service of developing evidence-based dietary guidance that 
enables improvements in population health. Here, we exemplify the importance of this challenge by 
investigating the impact of food content variability on nutrition research using three bioactives as 
model: flavan-3-ols, (–)-epicatechin, and nitrate. Our results show that common approaches aimed 
at addressing the high compositional variability of even the same foods impede the accurate assess-
ment of nutrient intake generally. This suggests that the results of many nutrition studies using food 
composition data are potentially unreliable and carry greater limitations than commonly appreci-
ated, consequently resulting in dietary recommendations with significant limitations and unreliable 
impact on public health. Thus, current challenges related to nutrient intake assessments need to be 
addressed and mitigated by the development of improved dietary assessment methods involving 
the use of nutritional biomarkers.

eLife assessment
This important study, using three bioactive compounds as a model, demonstrates that estimating 
the intake of food components based on food composition databases and self-reported dietary data 
is highly unreliable. The authors present convincing data showing the differences in the estimated 
quantile of intake of three bioactive compounds between biomarker and 24-hour dietary recall 
with food composition database. The work will be of broad interest to the clinical nutrition research 
community.

Introduction
Nutrition is a crucial factor for public health (Afshin et al., 2019; The National Academies of Sciences 
and Engineering and Medicine Health, 2017). However, despite considerable methodological prog-
ress, nutrition research still relies mostly on self-reported dietary information and limited food compo-
sition data to investigate the links between health and nutrition. Indeed, food composition data is 
the bedrock on which nutrition research rests today: it allows us to estimate the intake of specific 
nutrients and other dietary compounds, and thus enables investigations into the associations between 
nutrient intake and health outcomes. Such data inform policymakers in the development of dietary 
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recommendations and risk assessments, and support the development of guidance for the general 
public and the food industry. However, this approach is not without significant challenges and limita-
tions. One key challenge is the construction and maintenance of food composition data that underpin 
intake assessments for specific nutrients as foods are highly complex and widely variable in their 
chemical makeup. Multiple factors affect the ultimate nutrient content of foods, including cultivar or 
breed, climate, growing and harvest conditions, storage, processing, and methods of culinary prepa-
ration (Greenfield and Southgate, 2003). Even apples harvested at the same time from the self-same 
tree show more than a twofold difference in the amount of many micronutrients (Wilkinson and 
Perring, 1961). Moreover, processed foods are usually not standardised for composition but taste, 
texture, and consumer preferences, and thus vary in their chemical composition. Significant efforts 
have been made to generate extensive and detailed food composition tables, and complex sampling 
paradigms are used to obtain representative samples. Despite all these efforts, food composition 
data are generally used by relying on single-point estimates, the mean food composition, de facto 
assuming that foods have a consistent composition. This approach introduces a considerable degree 
of error, bias, and uncertainty – and these are exacerbated by the limitations of self-reported dietary 
data which are known to carry substantial bias (Subar et al., 2015).

Moreover, current approaches also assume that intake directly correlates with the systemic pres-
ence of a given nutrient as it is through their systemic presence that many nutrients mediate much 
of their health-related biological effects. This introduces even more complexity when assessing true 
nutrient intake as inter- and intra-individual aspects of absorption, metabolism, distribution, and 
excretion, processes also impacted by the gut microbiome and other potentially highly variable and 
individual modulators of nutrient levels in the human body, should ideally be taken into account.

While all of this is well known in the nutrition expert community (Gibney et al., 2020), the impact 
on both the interpretation of research findings and the development of dietary guidance and 
advice has been largely neglected, and there are only limited data exploring the impact on research 
outcomes (Kipnis et al., 2002). It seems to be tenable that these limitations are a key contributor to 

eLife digest Studies about the health benefits of foods or nutrients are often inconsistent. One 
study may find a health benefit of a particular food and may recommend that people increase their 
consumption of this food to reduce their disease risk. Yet another study may find the opposite. Incon-
sistent study results fuel confusion and frustration, and reduce trust in research.

Limitations in the studies’ designs are likely to be blamed for the inconsistent findings. For example, 
many studies rely on participants to self-report their food intake and on databases of the nutritional 
content of food. But people may not accurately report their food intake. Foods vary in their nutritional 
content, even between two items of the same food such as two apples. And how individuals metab-
olize foods can further affect the nutrients they receive.

Nutritional biomarkers are a potential alternative to measuring dietary intake of specific nutrients. 
Biomarkers are compounds the body produces when it metabolizes a specific nutrient. Measuring 
biomarkers therefore give scientists a more accurate and unbiased assessment of nutrient intake.

Ottaviani et al. conducted a study to test the differences when estimating nutrient intake using 
nutritional biomarkers compared with more conventional tools. They analyzed data from a nutrition 
study that involved over 18,000 participants. The experiments used computer modelling to assess 
study results using self-reported food intake in combination with food composition database informa-
tion, or measures of three biomarkers estimating the intake of flavan-3-ols, epicatechin, and nitrates. 
The models showed that self-reported intake and food database information often led to inaccurate 
results that did not align well with biomarker measurements.

Measuring nutritional biomarkers provides a more accurate and unbiased assessment of nutri-
tional intake. Using these measurements instead of traditional methods for measuring nutrient intake 
may help increase the reliability of nutrition research. Scientists must work to identify and confirm 
biomarkers of nutrients to facilitate this work. Using these more precise nutrient measurements in 
studies may result in more consistent results. It may also lead to more trustworthy recommendations 
for consumers.

https://doi.org/10.7554/eLife.92941
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the inconsistent and often contradictory outcomes of nutrition research and dietary guidance, which 
have received a high level of public attention and significant criticism in recent years (Ioannidis, 2018).

The European Prospective Investigation into Cancer and Nutrition (EPIC) Norfolk study (n = 25,618, 
data available for 18,684; Day et al., 1999) is ideally suited to investigate the impact of the vari-
ability in bioactive content on nutritional research because it has detailed dietary data based on the 
combination of self-reporting and food composition data, nutritional biomarkers, as well as health 
endpoints collected at the same time. Bioactives are food constituents that are not considered essen-
tial to human life but can affect health and are therefore extensively investigated (Ottaviani et al., 
2022). We used three dietary bioactives as model compounds, including flavan-3-ols, (–)-epicatechin, 
and nitrate (Table 1) as (i) there are widely used food composition data tables used to estimate their 
dietary intake (Figure 1); (ii) there exist suitable nutritional biomarkers, which can provide accurate 
information on actual intake Kaaks et  al., 1997; and (iii) there are data from dietary intervention 
studies that support associations between intake and health outcomes (Larsen et al., 2006; Ottaviani 
et al., 2018b; Table 1). For the purpose of this investigation, we determined bioactive intakes in a 
single cohort using data and samples collected at the same time. We used two different methods: 
the commonly deployed approach based on combing self-reported dietary intake with data from 
food composition tables (DD-FCT) as well as a method based on measuring nutritional biomarkers 
in urine samples (biomarker method). In the context of the first approach, we also considered taking 
into consideration nutrient content variability data provided by current food content tables. This was 
achieved by not only using single-point estimates (mean values) as is common practice, but also 
by considering reported content ranges (Blekkenhorst et al., 2017; Rothwell et al., 2013), using 
a probabilistic-type modelling approach. While our study focuses on bioactives, it is likely that the 
results will also apply to nutrients and other food constituents with high variability such as minerals, 
where more than twofold variabilities were previously observed (Wilkinson and Perring, 1961), and 
other nutrients, including macronutrients such as fatty acids (Reig et al., 2013; Schwendel et al., 
2015). The findings of our study aim to test whether current approaches most often relying on the 
standardised, single-point food content estimates obtained from food composition data can provide 
useful estimates of actual dietary intake and allow the investigation and meaningful interpretation of 
associations with health.

Results
Impact of bioactive content variability when assessing dietary intake
The intake of an individual nutrient or bioactive is usually calculated by using self-reported dietary data 
and the mean food content as single-point estimate. While the high variability in food composition is 
well known and recognised as a source of bias (National Research Council et al., 1986), this is rarely 

Table 1. Characteristics of dietary bioactives used as model system of dietary compounds to investigate the limitation of using single-
point estimates to assess intake and investigate health outcomes in nutrition research.

Dietary 
compound

Dietary 
distribution Factors for variability Biomarker of intake Potential health effect

Flavan-3-ols

Tea, apple, and 
cocoa-derived 
products

Cultivar, agricultural conditions, 
storage, and processing

Urinary concentrations of gut 
microbiome-derived flavan-3-ol 
metabolites (phenyl-γ-valerolactone 
metabolites) (Ottaviani et al., 
2018a)

Reduce cardiovascular events and 
deaths (Sesso et al., 2022. Reduce 
blood pressure Ottaviani et al., 
2018b)
 

Improve cognitive performance (Sloan 
et al., 2021)

(–)-Epicatechin

Tea, apple, and 
cocoa-derived 
products

Cultivar, agricultural conditions, 
storage, and processing 
(including epimerisation)

Urinary concentrations of structural-
related metabolites derived from 
phase II conjugation (Ottaviani 
et al., 2019)

Improve vascular function (Schroeter 
et al., 2006; Dicks et al., 2022) and 
reduce blood pressure (Ottaviani 
et al., 2018b)

Nitrate
Vegetables, 
drinking water

Depends on a wide range of 
environmental factors such as 
fertilisation, light exposure, and 
water supply

Urinary nitrate status can be used as 
a surrogate marker of intake (Green 
et al., 1981; Pannala et al., 2003; 
Smallwood et al., 2017)

Dietary nitrate can reduce blood 
pressure (Larsen et al., 2006)

https://doi.org/10.7554/eLife.92941
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acknowledged in such estimates and often assumed to have only a little impact due to a regression 
to the mean. However, there is a paucity of data investigating the actual impact of this variability on 
estimated intakes. We estimated the potential impact of the variability in flavan-3-ols, (–)-epicatechin, 
and nitrate food content on estimated intakes of the respective compounds and compound classes 
in 18,684 participants of EPIC Norfolk for whom all relevant data were available (Table 2). Table 3 
shows a comparison of estimated intakes when calculated using the DD-FCT approach with mean 
food content, as is current practice, as well as minimum and maximum reported food content. These 
results demonstrate a large uncertainty in estimating actual intake when taking the large variability in 
bioactive content into consideration. In comparison to the uncertainty introduced by the variability 
in food composition, the uncertainty associated with the use of self-reported methods of 2–25% 
(Stubbs et  al., 2014) appears to be small. There is an overlap in the possible range of bioactive 
intake between study participants (Figure 2), making it difficult to identify low and high consumers 
or to rank participants by intake (see also below). These results show that bioactive content variability 
significantly contributes to the uncertainty in the estimation of dietary intake, even more than the error 
incurred by self-report methods that have attracted a lot of attention and discussion in nutritional 
research (Subar et al., 2015).

Impact of food composition variability when assessing relative intake
In many studies, relative, instead of absolute, intakes, for example, quintiles, are used (Altman and 
Bland, 1994). It is assumed that the relative intake is less affected by measurement error than absolute 
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Figure 1. Variability in flavan-3-ol, (–)-epicatechin (Rothwell et al., 2013), and nitrate (Blekkenhorst et al., 2017) content of foods commonly eaten. 
Data show the range of food content (black) and mean (red).

https://doi.org/10.7554/eLife.92941
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intake, and thus can mitigate some of the limitations of estimating dietary intake (Streppel et al., 
2013). We therefore investigated how the ranking of participants is affected by the variability in bioac-
tive content and compared the relative intake of participants with low (p25 – based on mean bioactive 
content), medium (p50), and high (p75) intake. Bioactive content variability was introduced in the anal-
ysis using an approach similar to probabilistic modelling by sampling randomly from the distribution 
of possible food composition for each food consumed by each participant. Figure 3 shows the result 
of 10,000 of such simulations. They suggest that the high variability in bioactive content makes esti-
mates of relative intakes unreliable. Indeed, depending on the actual food consumed, the self-same 
diet could put the self-same study participant in the bottom or top quintile of intake. This suggests 
that it is difficult to obtain reliable relative intakes from dietary data alone, and that ranking by those 
data is unreliable.

In order to confirm the findings of our simulations, we compared relative intakes estimated using 
data from DD-FCT and biomarker method. The biomarkers used in this study (Green et al., 1981; 
Ottaviani et al., 2018a; Ottaviani et al., 2019; Pannala et al., 2003; Smallwood et al., 2017) have 
been validated and characterised previously (Table  1) and are suitable to estimate relative intake 
(Keogh et al., 2013). Like the 24 hr dietary recall data used here, biomarkers reflect acute intake. 
The intake estimated from the DD-FCT method was calculated using the common approach based 
on the mean bioactive content in databases. The association between this self-reported intake and 
biomarker is weak, with a maximum Kendall’s ‍τ ‍ of 0.16 for (–)-epicatechin and lower for flavan-3-ols 

Table 2. Study population and baseline characteristics of 18,684 participants of EPIC Norfolk, for 
whom all data were available.
Data shown are mean (SD) or absolute number and proportion. Data for urinary nitrate was available 
for 1027 samples.

Women Men

n 10,167 8517

Age (years) 59 (9) 59 (9)

Body mass index (kg/m2) 26.1 (4.2) 26.4 (3)

Systolic blood pressure (mmHg) 134 (19) 138 (17.6)

Physical activity

Inactive 2997 (30%) 2577 (30%)

Moderately inactive 3258 (32%) 2096 (25%)

Moderately active 2309 (23%) 1990 (23%)

Active 1603 (16%) 1854 (22%)

Smoking status

Current 1121 (11%) 998 (12%)

Former 3250 (32%) 4647 (55%)

Never 5796 (57%) 2872 (34%)

Table 3. Intake of different bioactive compounds in EPIC Norfolk (median and interquartile range) 
when determined using different food composition data.
Results are shown for estimates calculated using minimum, mean, and maximum food content and 
self-reported dietary data based on 24 hr diet recall (24HDR).

Bioactive intake (mg/day)

Minimum food content Mean food content Maximum food content

Flavan-3-ols 48 (28–82) 120 (70–190) 329 (172–451)

(–)-Epicatechin 1.5 (1.0–2.5) 19 (9–25) 33 (65–100)

Nitrate 5.5 (4.6–57) 100 (80–124) 204 (151–305)

https://doi.org/10.7554/eLife.92941
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(0.06) and nitrate (–0.05). Figure 4 illustrates this by comparing respective quantiles of intake as these 
are commonly used to categorise relative intake. The data show very modest agreement between the 
two measurement methods (only 20–30% of participants assigned to the same quantile) and confirm 
that ranking is not suitable to address the measurement error and uncertainty introduced by the high 

Nitrate

0 2000 4000 6000
[mg/d]

0 1000 2000
[mg/d]

Flavanol

0 200 400 600
[mg/d]

(–)-Epicatechin

Figure 2. Possible intake ranges of flavan-3-ols, (–)-epicatechin, and nitrate in each individual study participant 
displayed from low to high possible bioactive intake level. Range of bioactive intake was calculated using 
an approach similar to probabilistic modelling by sampling randomly from the distribution of possible food 
composition (n = 10,000 iterations). Intake based on mean bioactive content, as is common practice, is indicated 
by a black line. Green line shows the median intake of the entire cohort and the green box the interquartile range.

https://doi.org/10.7554/eLife.92941
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Figure 3. Simulation of the effect of variability in food composition on relative intakes of flavanols, (–)-epicatechin, 
and nitrate of EPIC Norfolk participants with low (25th centile, p25), medium (median), and high (75th centile, 
p75) estimated intake of bioactive (based on 24 hr diet recall [24HDR] and mean food content – indicated by the 
black line). Data shown are relative intake (100% is the maximum intake) of 10,000 simulations.

https://doi.org/10.7554/eLife.92941
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variability in bioactive content. Overall, this shows 
that relying on a single value of bioactive content 
in food for all participants introduces bias when 
assessing relative intake of dietary compounds.

Impact of bioactive content 
variability on the estimated 
association between intake and 
health endpoints
We showed earlier that the high variability in food 
composition has an impact on the estimates of 
intake using the DD-FCT method. However, it is 
not known whether this affects estimated associa-
tions between intake and health endpoints. Here, 
we use simulations to explore how the variability 
in food compositions affects such estimates in a 
‘vibration of effects’-type approach (Patel et al., 
2015) and compare these with the results derived 
from biomarker-estimated intakes. We use the 
cross-sectional association with blood pressure 
as example as all three compounds have a well-
established acute effect on vascular function 
(Larsen et  al., 2006; Ottaviani et  al., 2018b; 
Schroeter et al., 2006).

Figure 5 shows the high variability in estimated 
associations for all three bioactives under inves-
tigation. Each estimate shown is based on iden-
tical dietary data and thus represents a possible 
true association between bioactive intake and 
blood pressure, depending on the actual bioac-
tive content. It is noticeable that we observe a 
Janus effect with the DD-FCT method-estimated 
associations being in opposing positions. This is 
very noticeable for nitrate, where the estimated 
differences in blood pressure range from –1.0 
(95% CI –1.6 to –0.4) mmHg between the bottom 
and top decile of intake, suggesting a potentially 
beneficial, to 0.8 (0.2; 1.4) mmHg, suggesting 
a potentially detrimental effect on health. As 
the actual food composition is unknown, it is 
not possible to obtain a reliable estimate of this 
association or even identify the likely direction 
of such an association. Using the mean bioactive 
content, as is common practice, does not resolve 
this challenge. Biomarker-derived data, while not 
deprived of limitations but certainly not affected 
by the factors that modulate variability in food 
content in the DD-FCT method, show a strong 
and significant inverse association between intake 
and blood pressure, and this association would 
have been missed when relying exclusively on 
dietary data.

These results show that the variability in bioac-
tive content can impact the estimated associations 
between the DD-FCT method intake assessments 
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https://doi.org/10.7554/eLife.92941
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and health endpoints. It demonstrates that even when using the self-same food intake data, differ-
ences in bioactive content can result in diametrically opposite results. Considering that most studies 
investigating the associations between the intake of bioactives and health do not take variability in 
food composition into account, it is likely that many reported associations are unreliable.

Discussion
In this study, we investigated how the variability in food composition affects nutritional research. 
Our results, based on three bioactives, show that the variability in food composition represents a 
significant factor that needs to be taken into consideration. The use of single-point estimates of food 
composition data represents a significant oversimplification that yields unreliable data as the actual 
intake can be considerably different from the estimated intake. This is often exacerbated by errors 
that arise from imputing data into food composition tables from analyses conducted in different coun-
tries or by changes in the formulation of foods from food manufacturers. These findings are not only 
important for observational studies, but also for dietary intervention studies, where such methods 
are often used to estimate background dietary intake and the trial designs of a given intervention. 
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Figure 5. Association between estimated bioactive intake (flavan-3-ols, (–)-epicatechin, and nitrate, based on the 24 hr dietary recall and food 
composition data [DD-FCT method]) and systolic blood pressure at baseline (estimated difference between low [p10] and high [p90] intake and p-value 
for Wald-test (as -log10(p)) in men [purple], women [green], and all participants [red]). Data are based on 10,000 simulations and adjusted for age, 
body mass index (BMI), plasma vitamin C, smoking status, physical activity, and self-reported health at baseline; additionally for menopausal status for 
women and sex for nitrate. Results based on the intake estimated by simulating food content within minimum and maximum food content reported in 
databases (circle), intake based on mean food content as reported in databases (diamond), and intake based on biomarker data (|). 95% CI is shown for 
biomarker only.
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Our results show that the variability in food composition makes reliable estimates of both absolute 
and relative intake of bioactives challenging and potentially highly unreliable when solely relying on a 
combination of self-reported dietary data and food composition databases. This significant limitation 
is further applied by the bias introduced through limitations of dietary assessment itself (e.g., reporting 
bias). Thus, any associations between intake and health outcomes derived from using many current 
approaches are unreliable. Indeed, for the three food constituents under investigation, we found a 
Janus-like effect with negative and positive associations using the self-same food consumption data 
and food content within the reported range. This might help explain why nutritional advice given to 
the general public can feel inconstant, and even contradictory, at times, especially when observing the 
evolution of advisory statements on the same foods, food groups, or nutrients over time.

Validated nutritional biomarkers, especially recovery biomarkers (Kaaks et al., 1997), can provide 
a reliable estimate of nutrient and bioactive intake as they are based on their systemic presence and 
do not rely on assumptions about food composition data. In contrast to the duplicate diet method, 
which relies on the full analysis of all foods consumed, biomarkers provide better information to inves-
tigate the associations between intake and health biomarkers as they reflect not just consumption but 
also nutrient–nutrient interactions and bioavailability, which can affect the systemic presence of many 
bioactives (Ottaviani et al., 2023).

The application of biomarkers to assess nutrient intakes is not without limitations; however, these 
limitations can be addressed today. Doing so is often of greater technical feasibility and tenably 
delivers greater overall improvements than to address the limitations of current non-biomarker-based 
approaches, including self-report bias and the imprecisions and other limitations of today’s food 
composition databases. This is due to the fact that even successfully mitigating limitations related 
to reporting bias and food composition analyses does not address the inherent shortfalls of non-
biomarker-based methods. These include the unknown impact of pre- and postprandial nutrient–nu-
trient interactions, inter-subject variations in absorption and metabolism, and the often unknown 
effects of food processing, preparation, and storage on nutrient composition of foods, which can be 
addressed through the use of biomarkers.

An important challenge when developing biomarker-based methods for assessing intake is related 
to the inter-subject variance in the absorption and metabolism of a specific nutrient or bioactive. It is 
therefore important to establish a physiological link as well as a strong statistical association between 
intake and biomarker, such as has been done for the biomarkers used in this study (Ottaviani et al., 
2018a; Ottaviani et al., 2019; Pannala et al., 2003). Biomarkers need to be evaluated using data of 
actual bioactive intake and should not rely on published food composition data due to the limitations 
described above. Except for recovery biomarkers in 24 hr urine, most biomarkers are used to provide 
relative intake data in order to rank participants according to intake. Our results however show that 
biomarker-based ranking of intake is much more reliable than the rankings based on methods relying 
on self-reported data and food composition databases.

High variability in food composition has been described for a range of compounds, for example, for 
the fatty acid composition of dairy (Moate et al., 2007; Stergiadis et al., 2019) or vitamins (Phillips 
et al., 2018). There is also a longitudinal variation in food composition, in particular due to changes 
to cultivars, production practices, and distribution and processing methods (Davis et al., 2004), and 
climate change is likely to exaggerate this (Macdiarmid and Whybrow, 2019). Thus, bioactive and 
nutrient content variability must be taken into consideration when choosing the tools to investigate 
not only dietary bioactives but also micro- and macronutrients.

The methods commonly used to address measurement error in nutritional research, such as regres-
sion calibration (Spiegelman et al., 1997), are not suitable to address the limitations introduced by 
the high variabilty. These methods rely on a known relationship between reported and actual intake 
in a calibration study to predict the actual intake in a larger cohort. However, the composition of the 
food actually consumed by participants is impossible to predict as it depends on a range of factors, 
many of which are unknown to consumers and researchers as outlined in the introduction.

There are of course also other sources of bias and variability that affect dietary assessment. We 
excluded those from our study as much as possible by using the self-same dietary data for all anal-
yses using only acute intake data (24 hr dietary recall and spot urine samples) and an endpoint that 
is affected directly by intake. This allows us to attribute our findings mainly to the variability in food 
composition.

https://doi.org/10.7554/eLife.92941
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In our study, we used the identical dietary data to investigate the impact of the variability in food 
content. This allowed us to exclude other sources of variability in dietary assessment, in particular 
misreporting of dietary intake. We also used measures of acute intake (24 hr dietary recalls and spot 
urine samples) and used a health endpoint that is directly affected by intake.

Prospective studies
In our study, we focused on cross-sectional associations between bioactives and blood pressure as the 
acute effect of these compounds is well established. It is expected that the variability in food compo-
sition affects prospective analyses more than cross-sectional analyses: in addition to the variability in 
food content, the composition of foods changes over time (Davis et al., 2004; White and Broadley, 
2005).

Biomarker-predicted dietary patterns
The high variability in the content of dietary compounds in food has also implications for the devel-
opment of biomarkers for individual foods or dietary patterns. A number of biomarkers have been 
proposed to estimate the intake of individual foods, for example, proline-betaine as biomarker of 
citrus fruit intake (Gibbons et  al., 2017), but the content in citrus fruits is highly variable (14.3—
110 mg/100 mL in various citrus fruit juice; Lang et al., 2017), and it is thus not possible to estimate 
actual food intake without using foods in which the content of the dietary compound to use as a 
biomarker is standardised.

The same applies to metabolomics-based biomarkers of dietary patterns. They are usually devel-
oped under highly standardised conditions and reflect the composition of the foods consumed during 
these studies. Changes in the composition of these foods affect the concentration of metabolites and 
thereby reduce the reliability of metabolite-based biomarkers of individual foods or dietary pattern. 
This diminishes the suitability of such markers for longitudinal or multicentre studies where a high vari-
ability in food composition is likely. These limitations do not apply to the development of biomarkers 
of specific bioactives or other nutrients as the variability of bioactive and nutrient content is reflected 
in the variation of biomarker levels.

Effect on dietary recommendations and risk assessment
The findings presented in this work have a considerable impact on dietary recommendations and 
guidelines. Our data clearly show that the results based on the DD-FCT method are likely to be biased 
and unreliable. Dietary recommendation based on such data emanating from that approach are there-
fore also likely to be unreliable and misleading. However, the high variability in food composition also 
has an impact on the translation of health-based guidance values into food-based dietary recom-
mendations. For example, the amount of flavan-3-ols required to achieve a vasculoprotective effect 
according to the EFSA health claim is 200 mg/day (EFSA Panel on Dietetic Products, Nutrition and 
Allergies, 2014). When using mean food composition data (Rothwell et al., 2013), this could be 
achieved by five cups of tea. However, when using the lowest reported food content, at least 22 cups 
of tea would have to be consumed to meet the recommended intake. Similarly, 5–6 apples would 
be sufficient to consume the 50 mg/day (–)-epicatechin assumed to be sufficient to improve vascular 
function (Ellinger et al., 2012; Hooper et al., 2012) when using mean food content, but it could be 
up to 27 when assuming a low content in food. In this manner, it would not be possible to determine 
whether or not a population is already meeting dietary recommendation for flavan-3-ols without the 
development of biomarker-based methods (Crowe-White et al., 2022).

These findings also have an impact on the risk assessment of food components, in particular those 
that are naturally present in foods and used as additives such as nitrates (Mortensen et al., 2017) 
or phosphates (Younes et  al., 2019). Results from observational studies and intervention studies 
relying on food content data will be affected by inaccurate assessment of intake as described above. 
More importantly, however, the exposure assessment will be affected by the variability of data, with 
consequences for consumers and food producers as an overestimation of exposure could result in 
unnecessary restrictions in use, whereas an underestimation could put consumers at risk. For example, 
in EPIC Norfolk, none or only a very few study participants exceed the ADI (acceptable daily intake) 
of 3.7 mg/kg BW/day (Mortensen et al., 2017) for nitrate when estimating intake with minimum and 
mean food content, respectively. However, when using the maximum food content, one-third of study 

https://doi.org/10.7554/eLife.92941
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participants exceed the ADI for nitrate, and almost 10% exceed it twofold. Each of these scenarios 
would result in very different actions by risk managers due to the different impact on population 
health, and in the latter case more stringent restrictions were necessary.

Conclusions
Our data suggest that the results of many interventional and observational nutrition studies using 
dietary surveys in combination with food composition data are potentially unreliable and carry greater 
limitations than commonly appreciated. As these studies are used to derive evidence-based dietary 
recommendations and disease risk assessments, their limitations could have a considerable impact 
on public health. We demonstrated that the results relying solely on food composition data not only 
failed to identify beneficial associations between three bioactives and blood pressure, but even 
suggested possible adverse associations. It is highly likely that the findings of this nature are not 
limited to the model compounds that served as examples in our investigation here but broadly apply 
to other dietary components as well. Given the importance of diet in the maintenance of health and 
disease risk reduction, it is crucial to address this limitation: both by revisiting previous studies and 
by taking these limitations into consideration in future studies. We think it is essential to develop and 
use nutritional biomarkers to determine actual nutrient intakes that ensure more reliable and action-
able insights. This means that the development of more and better biomarkers for accurate dietary 
assessment remains crucial (Prentice, 2018). The challenges associated with developing biomarker-
based approaches are not insignificant, but the technical capabilities required are broadly available 
today, and the advantages of deploying improved approaches to establishing the links between diet 
and health are so significant, timely, and needed that it should become a standard tool in nutrition 
research.

Methods
Study population
Between 1993 and 1997, 30,447 women and men aged between 40 and 79 years were recruited for 
the Norfolk cohort of the EPIC study, and 25,639 attended a health examination (Day et al., 1999). 
Health and lifestyle characteristics, including data on smoking, social class, and family medical history, 
were assessed by a questionnaire. Height and weight measurements were collected following a stan-
dardised protocol by trained research nurses. Physical activity, representing occupational and leisure 
activity, was assessed using a validated questionnaire (Wareham et al., 2002). Blood pressure was 
measured using a non-invasive oscillometric blood pressure monitor (Acutorr; Datascope Medical, 
Huntingdon, UK; validated against sphygmomanometers every 6 months) after the participant had 
been seated in a comfortable environment for 5 min. The arm was horizontal and supported at the 
level of the mid-sternum; the mean of two readings was used for analysis. Non-fasting blood samples 
were taken by venepuncture and stored in serum tubes in liquid nitrogen. Serum levels of total choles-
terol were measured on fresh samples with the RA 1000 autoanalyser (Bayer Diagnostics, Basingstoke, 
UK). Plasma vitamin C was measured using a fluorometric assay as described previously (Khaw et al., 
2001). Spot urine samples were collected during the health examination and stored at –20°C until 
analysis. The study was approved by the Norwich Local Research Ethics Committee, all participants 
gave written, informed consent, and all methods were carried out in accordance with relevant guide-
lines and regulations.

Diet was assessed by 7-day diary (7DD), whereby the first day of the diary was completed as a 24 hr 
recall (24HDR) with a trained interviewer and the remainder completed during subsequent days. Diary 
data were entered, checked, and calculated using the in-house dietary assessment software DINER 
(Data into Nutrients for Epidemiological Research) and DINERMO (Welch et al., 2001). Flavan-3-ol 
intake (the sum of epicatechin, catechin, epicatechin-3-O-gallate, catechin-3-O-gallate, and proantho-
cyanidins) was estimated as described previously Vogiatzoglou et al., 2015; minimum and maximum 
estimated flavan-3-ol intake was estimated using the minimum and maximum food content data 
provided by Phenol Explorer und USDA databases (Rothwell et al., 2013). Nitrite and nitrate intake, 
based on minimum, maximum, and mean food content, were estimated using a database published 
previously (Blekkenhorst et al., 2017).

https://doi.org/10.7554/eLife.92941
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Nutritional biomarker
Flavan-3-ols and (–)-epicatechin
We used two different biomarkers to estimate flavan-3-ol and (–)-epicatechin intake: gVLMB that 
includes the metabolites 5-(4′-hydroxyphenyl)-γ-valerolactone-3′-glucuronide (gVL3G) and 5-(4′
-hydroxyphenyl)-γ-valerolactone-3′-sulphate (gVL3S), and SREMB that includes the metabolites 
(–)-epicatechin-3′-glucuronide (E3G), (–)-epicatechin-3′-sulphate (E3S) and 3′-methoxy(–)-epicatechin-
5-sulphate (3Me5S). gVLMB are specific for estimating the intake of flavan-3-ols in general, including 
(±)-epicatechin, (±)-catechin, (±)-epicatechin-3-O-gallate, (±)-catechin-3-O-gallate, and procyan-
idins and excluding the flavan-3-ols gallocatechin, epigallocatechin, gallocatechin-3-O-gallate, 
epigallocatechin-3-O-gallate, theaflavins, and thearubigins (Ottaviani et  al., 2018a). SREMB are 
specific for (–)-epicatechin intake (Ottaviani et al., 2019). Spot urine samples were collected during 
the baseline health examination and stored in glass bottles at –20°C until analysis. Stability analyses 
confirmed that biomarkers are stable under these conditions (Ottaviani et al., 2019). Samples were 
analysed in random order using the method described previously (Ottaviani et al., 2019), with auto-
mated sample preparation (Hamilton Star robot; Hamilton, Bonaduz, Switzerland). Concentrations 
below the lower limit of quantification (LLOQ, 0.1 μM) were used for the analysis to avoid the bias of 
substituting a range of values by a single value. Concentrations were adjusted by specific gravity for 
dilution as the endpoint of the analysis, systolic blood pressure, was strongly correlated with urinary 
creatinine. We used specific gravity to adjust for dilution previously when there was a strong associa-
tion between creatinine and study endpoint (Bingham et al., 2007).

Flavan-3-ol and (–)-epicatechin biomarker data, as well as data for all other variables, were available 
for 18,864 participants. Data for nitrate biomarker were available for 1027 participants.

Nitrate
Urinary nitrate concentration, adjusted for dilution by specific gravity, was used as a biomarker of 
nitrate intake, as between 50 and 80% of dietary nitrate are recovered in urine, whereas endogenous 
production is relatively stable at 0.57 (95% CI 0.27–0.86) mmol/day (Green et al., 1981; Packer et al., 
1989). A random subset of 1027 samples were analysed by ion chromatography with colorimetric 
detection (NOx Analyser ENO-30, EICOM, San Diego, CA).

Simulation of variability
We conducted 10,000 simulations to explore the impact of the variability on bioactive content. For 
each simulation, we assigned each participant a possible intake of total flavan-3-ol, (–)-epicatechin, 
and nitrate based on their self-reported dietary intake and the minimum and maximum reported 
content of each compound in the foods consumed. The data available do not suggest that food 
composition follows a normal distribution, and we therefore assumed a uniform distribution.

Data analysis
Data analyses were carried out using R 3.6 (R Development Core Team, 2023), using the packages rms 
(Harrell, 2023) for regression analyses, ggplot2 (Wickham, 2016) and gridExtra (Auguie, 2017) for the 
generation of graphics. Regression analyses were conducted using ols as regression function. We used 
the Wald statistics calculated by the rms anova function to investigate the relationship between depen-
dent and independent variables, and test for linearity. The tableone package (Yoshida and Bartel, 
2022) was used to prepare tables. Unless indicated otherwise, results are shown with 95% CIs.

Descriptive statistics
Descriptive characteristics of the study population were summarised using mean (standard deviation) 
for continuous variables and frequency (percentage) for categorical variables.

https://doi.org/10.7554/eLife.92941
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Data transformation
Biomarker data were positively skewed (log-normal distribution), and, therefore, log2-transformed 
data were used for all analyses. Restricted cubic splines (3 knots, outer quantiles 0.1 and 0.9; using the 
rcs function; Harrell, 2023) were used for all continuous variables unless indicated otherwise.

Cross-sectional analyses
In cross-sectional analyses, stratified by sex, we investigated the associations between biomarker and 
24 hr recall estimated flavan-3-ol, (–)-epicatechin, and nitrate intake (biomarkers adjusted by specific 
gravity adjusted, dietary data by energy, log2-transformed), as independent variable and systolic and 
diastolic blood pressure (mmHg) using multiple regression analyses. Analyses were adjusted by age 
(continuous; years), body mass index (BMI) (continuous, kg/m2), plasma vitamin C, smoking status 
(categorical; never, ever, former), physical activity (categorical; inactive, moderately inactive, moder-
ately active, active), and health at baseline (self-reported diabetes mellitus, myocardial infarction, 
cerebrovascular accident). Analyses with flavan-3-ol and (–)-epicatechin as independent variable were 
stratified by sex, and analyses for women additionally adjusted by menopausal status; analyses with 
nitrate as independent variable were adjusted by sex and menopausal status.

Acknowledgements
The EPIC-Norfolk study (doi:10.22025/2019.10.105.00004) received funding from the Medical 
Research Council (MR/N003284/1 MC-UU_12015/1 and MC_UU_00006/1) and Cancer Research UK 
(C864/A14136). We are grateful to all the participants who have been part of the project and the many 
members of the study teams at the University of Cambridge who have enabled this research. The 
preparation of this paper was supported through a writing retreat funded by the Agriculture, Food 
and Health research Theme at the University of Reading.

Additional information

Competing interests
Javier I Ottaviani, Hagen Schroeter: employed by Mars, Inc, a company engaged in flavanol research 
and flavanol-related commercial activities. Gunter GC Kuhnle: has received an unrestricted research 
grant from Mars, Inc. The other author declares that no competing interests exist.

Funding

Funder Grant reference number Author

Mars Gunter GC Kuhnle

The funders had no role in study design, data collection and interpretation, or the 
decision to submit the work for publication.

Author contributions
Javier I Ottaviani, Hagen Schroeter, Conceptualization, Resources, Formal analysis, Investigation, 
Methodology, Writing – original draft, Writing – review and editing; Virag Sagi-Kiss, Formal analysis, 
Methodology; Gunter GC Kuhnle, Conceptualization, Resources, Data curation, Software, Formal 
analysis, Investigation, Visualization, Methodology, Writing – original draft, Project administration, 
Writing – review and editing

Author ORCIDs
Javier I Ottaviani ‍ ‍ https://orcid.org/0000-0002-4909-0452
Virag Sagi-Kiss ‍ ‍ http://orcid.org/0000-0003-3959-6596
Hagen Schroeter ‍ ‍ https://orcid.org/0000-0001-6569-382X
Gunter GC Kuhnle ‍ ‍ https://orcid.org/0000-0002-8081-8931

Peer review material
Joint public review: https://doi.org/10.7554/eLife.92941.3.sa1

https://doi.org/10.7554/eLife.92941
https://orcid.org/0000-0002-4909-0452
http://orcid.org/0000-0003-3959-6596
https://orcid.org/0000-0001-6569-382X
https://orcid.org/0000-0002-8081-8931
https://doi.org/10.7554/eLife.92941.3.sa1


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Epidemiology and Global Health

Ottaviani et al. eLife 2024;13:RP92941. DOI: https://doi.org/10.7554/eLife.92941 � 15 of 18

Author response https://doi.org/10.7554/eLife.92941.3.sa2

Additional files
Supplementary files
•  MDAR checklist 

Data availability
The data used in this study is from the EPIC Norfolk cohort. EPIC Norfolk aims to make data and 
samples as widely available as possible whilst safeguarding the privacy of our participants, protecting 
confidential data and maintaining the reputations of our studies and participants aims. Information 
on how to request data from EPIC Norfolk can be found here: https://www.epic-norfolk.org.uk/for-​
researchers/data-sharing/data-requests/. The code can be obtained from https://gitlab.act.reading.​
ac.uk/xb901875/reliance-on-self-reporting (copy archived at Kuhnle, 2024).

References
Afshin A, Sur PJ, Fay KA, Cornaby L, Ferrara G, Salama JS, Mullany EC, Abate KH, Abbafati C, Abebe Z, 

Afarideh M, Aggarwal A, Agrawal S, Akinyemiju T, Alahdab F, Bacha U, Bachman VF, Badali H, Badawi A, 
Bensenor IM, et al. 2019. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for 
the Global Burden of Disease Study 2017. The Lancet 393:1958–1972. DOI: https://doi.org/10.1016/S0140-​
6736(19)30041-8

Altman DG, Bland JM. 1994. Quartiles, quintiles, centiles, and other quantiles. BMJ 309:996. DOI: https://doi.​
org/10.1136/bmj.309.6960.996, PMID: 7950724

Auguie B. 2017. gridExtra: miscellaneous functions for "grid" graphic. Version 2.3. R Packages. https://cran.r-​
project.org/web/packages/gridExtra/index.html

Bingham SA, Luben R, Welch AA, Tasevska N, Wareham NJ, Khaw KT. 2007. Epidemiologic assessment of sugars 
consumption using biomarkers: Comparisons of obese and nonobese individuals in the european prospective 
investigation of cancer norfolk. Cancer Epidemiology, Biomarkers & Prevention 16:1651–1654. DOI: https://​
doi.org/10.1158/1055-9965.EPI-06-1050

Blekkenhorst LC, Prince RL, Ward NC, Croft KD, Lewis JR, Devine A, Shinde S, Woodman RJ, Hodgson JM, 
Bondonno CP. 2017. Development of a reference database for assessing dietary nitrate in vegetables. 
Molecular Nutrition & Food Research 61:1600982. DOI: https://doi.org/10.1002/mnfr.201600982

Crowe-White KM, Evans LW, Kuhnle GGC, Milenkovic D, Stote K, Wallace T, Handu D, Senkus KE. 2022. 
Flavan-3-ols and cardiometabolic health: A guideline recommendation by the academy of nutrition and 
dietetics. Advances in Nutrition 13:2070–2083. DOI: https://doi.org/10.1093/advances/nmac105

Davis DR, Epp MD, Riordan HD. 2004. Changes in USDA food composition data for 43 garden crops, 1950 to 
1999. Journal of the American College of Nutrition 23:669–682. DOI: https://doi.org/10.1080/07315724.2004.​
10719409, PMID: 15637215

Day N, Oakes S, Luben R, Khaw KT, Bingham SA, Welch AA, Wareham NJ. 1999. EPIC-Norfolk: study design and 
characteristics of the cohort: European prospective investigation of cancer. British Journal of Cancer 80 Suppl 
1:95–103 PMID: 10466767. 

Dicks L, Haddad Z, Deisling S, Ellinger S. 2022. Effect of an (-)-epicatechin intake on cardiometabolic 
parameters-A systematic review of randomized controlled trials. Nutrients 14:4500. DOI: https://doi.org/10.​
3390/nu14214500, PMID: 36364762

EFSA Panel on Dietetic Products, Nutrition and Allergies. 2014. Scientific Opinion on the modification of the 
authorisation of a health claim related to cocoa flavanols and maintenance of normal endothelium‐dependent 
vasodilation pursuant to Article 13(5) of Regulation (EC) No 1924/2006 following a request in accordance with 
Article 19 of Regulation (EC) No 1924/2006. EFSA Journal 12:2809. DOI: https://doi.org/10.2903/j.efsa.2014.​
3654

Ellinger S, Reusch A, Stehle P, Helfrich HP. 2012. Epicatechin ingested via cocoa products reduces blood 
pressure in humans: a nonlinear regression model with a Bayesian approach. The American Journal of Clinical 
Nutrition 95:1365–1377. DOI: https://doi.org/10.3945/ajcn.111.029330, PMID: 22552030

Gibbons H, Michielsen CJR, Rundle M, Frost G, McNulty BA, Nugent AP, Walton J, Flynn A, Gibney MJ, 
Brennan L. 2017. Demonstration of the utility of biomarkers for dietary intake assessment; proline betaine as an 
example. Molecular Nutrition & Food Research 61:37. DOI: https://doi.org/10.1002/mnfr.201700037, PMID: 
28556565

Gibney M, Allison D, Bier D, Dwyer J. 2020. Uncertainty in human nutrition research. Nature Food 1:247–249. 
DOI: https://doi.org/10.1038/s43016-020-0073-2

Green LC, Ruiz de Luzuriaga K, Wagner DA, Rand W, Istfan N, Young VR, Tannenbaum SR. 1981. Nitrate 
biosynthesis in man. PNAS 78:7764–7768. DOI: https://doi.org/10.1073/pnas.78.12.7764, PMID: 6950416

Greenfield H, Southgate DAT. 2003. Food Composition Data. Food & Agriculture Organisation.
Harrell FE. 2023. Rms: regression modeling strategies. Version 6.8-1. R Packages. https://cran.r-project.org/web/​

packages/rms/rms.pdf

https://doi.org/10.7554/eLife.92941
https://doi.org/10.7554/eLife.92941.3.sa2
https://www.epic-norfolk.org.uk/for-researchers/data-sharing/data-requests/
https://www.epic-norfolk.org.uk/for-researchers/data-sharing/data-requests/
https://gitlab.act.reading.ac.uk/xb901875/reliance-on-self-reporting
https://gitlab.act.reading.ac.uk/xb901875/reliance-on-self-reporting
https://doi.org/10.1016/S0140-6736(19)30041-8
https://doi.org/10.1016/S0140-6736(19)30041-8
https://doi.org/10.1136/bmj.309.6960.996
https://doi.org/10.1136/bmj.309.6960.996
http://www.ncbi.nlm.nih.gov/pubmed/7950724
https://cran.r-project.org/web/packages/gridExtra/index.html
https://cran.r-project.org/web/packages/gridExtra/index.html
https://doi.org/10.1158/1055-9965.EPI-06-1050
https://doi.org/10.1158/1055-9965.EPI-06-1050
https://doi.org/10.1002/mnfr.201600982
https://doi.org/10.1093/advances/nmac105
https://doi.org/10.1080/07315724.2004.10719409
https://doi.org/10.1080/07315724.2004.10719409
http://www.ncbi.nlm.nih.gov/pubmed/15637215
http://www.ncbi.nlm.nih.gov/pubmed/10466767
https://doi.org/10.3390/nu14214500
https://doi.org/10.3390/nu14214500
http://www.ncbi.nlm.nih.gov/pubmed/36364762
https://doi.org/10.2903/j.efsa.2014.3654
https://doi.org/10.2903/j.efsa.2014.3654
https://doi.org/10.3945/ajcn.111.029330
http://www.ncbi.nlm.nih.gov/pubmed/22552030
https://doi.org/10.1002/mnfr.201700037
http://www.ncbi.nlm.nih.gov/pubmed/28556565
https://doi.org/10.1038/s43016-020-0073-2
https://doi.org/10.1073/pnas.78.12.7764
http://www.ncbi.nlm.nih.gov/pubmed/6950416
https://cran.r-project.org/web/packages/rms/rms.pdf
https://cran.r-project.org/web/packages/rms/rms.pdf


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Epidemiology and Global Health

Ottaviani et al. eLife 2024;13:RP92941. DOI: https://doi.org/10.7554/eLife.92941 � 16 of 18

Hooper L, Kay C, Abdelhamid A, Kroon PA, Cohn JS, Rimm EB, Cassidy A. 2012. Effects of chocolate, cocoa, 
and flavan-3-ols on cardiovascular health: a systematic review and meta-analysis of randomized trials. The 
American Journal of Clinical Nutrition 95:740–751. DOI: https://doi.org/10.3945/ajcn.111.023457, PMID: 
22301923

Ioannidis JPA. 2018. The challenge of reforming nutritional epidemiologic research. JAMA 320:969–970. DOI: 
https://doi.org/10.1001/jama.2018.11025, PMID: 30422271

Kaaks R, Riboli E, Sinha R. 1997. Biochemical markers of dietary intake. IARC Scientific Publications 01:103–126 
PMID: 9354915. 

Keogh RH, White IR, Rodwell SA. 2013. Using surrogate biomarkers to improve measurement error models in 
nutritional epidemiology. Statistics in Medicine 32:3838–3861. DOI: https://doi.org/10.1002/sim.5803, PMID: 
23553407

Khaw KT, Bingham S, Welch A, Luben R, Wareham N, Oakes S, Day N. 2001. Relation between plasma ascorbic 
acid and mortality in men and women in EPIC-Norfolk prospective study: a prospective population study: 
European prospective investigation into cancer and nutrition. Lancet 357:657–663. DOI: https://doi.org/10.​
1016/s0140-6736(00)04128-3, PMID: 11247548

Kipnis V, Midthune D, Freedman L, Bingham SA, Day NE, Riboli E, Ferrari P, Carroll RJ. 2002. Bias in dietary-
report instruments and its implications for nutritional epidemiology. Public Health Nutrition 5:915–923. DOI: 
https://doi.org/10.1079/PHN2002383, PMID: 12633516

Kuhnle GGC. 2024. Reliance on self reporting. swh:1:rev:c7496fa52181eb645a7ff954e4eecc6a8c4aa79c. 
Software Heritage. https://archive.softwareheritage.org/swh:1:dir:690ac9bc4f40b9870a27fea451cec2ec​
d7bcb100;origin=https://gitlab.act.reading.ac.uk/xb901875/reliance-on-self-reporting;visit=swh:1:snp:145a​
000ada3a9d6f83ecf8df182637009e2448e1;anchor=swh:1:rev:c7496fa52181eb645a7ff954e4eecc6a8c4aa79c

Lang R, Lang T, Bader M, Beusch A, Schlagbauer V, Hofmann T. 2017. High-throughput quantitation of proline 
betaine in foods and suitability as a valid biomarker for citrus consumption. Journal of Agricultural and Food 
Chemistry 65:1613–1619. DOI: https://doi.org/10.1021/acs.jafc.6b05824, PMID: 28158941

Larsen FJ, Ekblom B, Sahlin K, Lundberg JO, Weitzberg E. 2006. Effects of dietary nitrate on blood pressure in 
healthy volunteers. The New England Journal of Medicine 355:2792–2793. DOI: https://doi.org/10.1056/​
NEJMc062800, PMID: 17192551

Macdiarmid JI, Whybrow S. 2019. Nutrition from a climate change perspective. The Proceedings of the Nutrition 
Society 78:380–387. DOI: https://doi.org/10.1017/S0029665118002896, PMID: 30688178

Moate PJ, Chalupa W, Boston RC, Lean IJ. 2007. Milk fatty acids. I. Variation in the concentration of individual 
fatty acids in bovine milk. Journal of Dairy Science 90:4730–4739. DOI: https://doi.org/10.3168/jds.2007-0225, 
PMID: 17881696

Mortensen A, Aguilar F, Crebelli R, Di Domenico A, Dusemund B, Frutos MJ, Galtier P, Gott D, Gundert-Remy U, 
Lambré C, Leblanc J-C, Lindtner O, Moldeus P, Mosesso P, Oskarsson A, Parent-Massin D, Stankovic I, 
Waalkens-Berendsen I, Woutersen RA, Wright M, et al. 2017. Re-evaluation of sodium nitrate (E 251) and 
potassium nitrate (E 252) as food additives. EFSA Journal. European Food Safety Authority 15:e04787. DOI: 
https://doi.org/10.2903/j.efsa.2017.4787, PMID: 32625505

National Research Council, Coordinating Committee on Evaluation of Food Consumption Surveys, 
Subcommittee on Criteria for Dietary, Evaluation and ProQuest. 1986. Modeling of Sources of Variability and 
Biases. National Academy Press.

Ottaviani JI, Fong R, Kimball J, Ensunsa JL, Britten A, Lucarelli D, Luben R, Grace PB, Mawson DH, Tym A, 
Wierzbicki A, Khaw KT, Schroeter H, Kuhnle GGC. 2018a. Evaluation at scale of microbiome-derived 
metabolites as biomarker of flavan-3-ol intake in epidemiological studies. Scientific Reports 8:9859. DOI: 
https://doi.org/10.1038/s41598-018-28333-w, PMID: 29959422

Ottaviani JI, Heiss C, Spencer JPE, Kelm M, Schroeter H. 2018b. Recommending flavanols and procyanidins for 
cardiovascular health: Revisited. Molecular Aspects of Medicine 61:63–75. DOI: https://doi.org/10.1016/j.mam.​
2018.02.001, PMID: 29427606

Ottaviani JI, Fong R, Kimball J, Ensunsa JL, Gray N, Vogiatzoglou A, Britten A, Lucarelli D, Luben R, Grace PB, 
Mawson DH, Tym A, Wierzbicki A, Smith AD, Wareham NJ, Forouhi NG, Khaw KT, Schroeter H, Kuhnle GGC. 
2019. Evaluation of (-)-epicatechin metabolites as recovery biomarker of dietary flavan-3-ol intake. Scientific 
Reports 9:13108. DOI: https://doi.org/10.1038/s41598-019-49702-z, PMID: 31511603

Ottaviani JI, Schroeter H, Kuhnle GGC. 2022. Measuring the intake of dietary bioactives: Pitfalls and how to 
avoid them. Molecular Aspects of Medicine 89:101139. DOI: https://doi.org/10.1016/j.mam.2022.101139, 
PMID: 36031430

Ottaviani JI, Ensunsa JL, Fong RY, Kimball J, Medici V, Kuhnle GGC, Crozier A, Schroeter H, Kwik-Uribe C. 2023. 
Impact of polyphenol oxidase on the bioavailability of flavan-3-ols in fruit smoothies: a controlled, single 
blinded, cross-over study. Food & Function 14:8217–8228. DOI: https://doi.org/10.1039/d3fo01599h, PMID: 
37615673

Packer PJ, Leach SA, Duncan SN, Thompson MH, Hill MJ. 1989. The effect of different sources of nitrate 
exposure on urinary nitrate recovery in humans and its relevance to the methods of estimating nitrate exposure 
in epidemiological studies. Carcinogenesis 10:1989–1996. DOI: https://doi.org/10.1093/carcin/10.11.1989, 
PMID: 2805224

Pannala AS, Mani AR, Spencer JPE, Skinner V, Bruckdorfer KR, Moore KP, Rice-Evans CA. 2003. The effect of 
dietary nitrate on salivary, plasma, and urinary nitrate metabolism in humans. Free Radical Biology & Medicine 
34:576–584. DOI: https://doi.org/10.1016/s0891-5849(02)01353-9, PMID: 12614846

https://doi.org/10.7554/eLife.92941
https://doi.org/10.3945/ajcn.111.023457
http://www.ncbi.nlm.nih.gov/pubmed/22301923
https://doi.org/10.1001/jama.2018.11025
http://www.ncbi.nlm.nih.gov/pubmed/30422271
http://www.ncbi.nlm.nih.gov/pubmed/9354915
https://doi.org/10.1002/sim.5803
http://www.ncbi.nlm.nih.gov/pubmed/23553407
https://doi.org/10.1016/s0140-6736(00)04128-3
https://doi.org/10.1016/s0140-6736(00)04128-3
http://www.ncbi.nlm.nih.gov/pubmed/11247548
https://doi.org/10.1079/PHN2002383
http://www.ncbi.nlm.nih.gov/pubmed/12633516
https://archive.softwareheritage.org/swh:1:dir:690ac9bc4f40b9870a27fea451cec2ecd7bcb100;origin=https://gitlab.act.reading.ac.uk/xb901875/reliance-on-self-reporting;visit=swh:1:snp:145a000ada3a9d6f83ecf8df182637009e2448e1;anchor=swh:1:rev:c7496fa52181eb645a7ff954e4eecc6a8c4aa79c
https://archive.softwareheritage.org/swh:1:dir:690ac9bc4f40b9870a27fea451cec2ecd7bcb100;origin=https://gitlab.act.reading.ac.uk/xb901875/reliance-on-self-reporting;visit=swh:1:snp:145a000ada3a9d6f83ecf8df182637009e2448e1;anchor=swh:1:rev:c7496fa52181eb645a7ff954e4eecc6a8c4aa79c
https://archive.softwareheritage.org/swh:1:dir:690ac9bc4f40b9870a27fea451cec2ecd7bcb100;origin=https://gitlab.act.reading.ac.uk/xb901875/reliance-on-self-reporting;visit=swh:1:snp:145a000ada3a9d6f83ecf8df182637009e2448e1;anchor=swh:1:rev:c7496fa52181eb645a7ff954e4eecc6a8c4aa79c
https://doi.org/10.1021/acs.jafc.6b05824
http://www.ncbi.nlm.nih.gov/pubmed/28158941
https://doi.org/10.1056/NEJMc062800
https://doi.org/10.1056/NEJMc062800
http://www.ncbi.nlm.nih.gov/pubmed/17192551
https://doi.org/10.1017/S0029665118002896
http://www.ncbi.nlm.nih.gov/pubmed/30688178
https://doi.org/10.3168/jds.2007-0225
http://www.ncbi.nlm.nih.gov/pubmed/17881696
https://doi.org/10.2903/j.efsa.2017.4787
http://www.ncbi.nlm.nih.gov/pubmed/32625505
https://doi.org/10.1038/s41598-018-28333-w
http://www.ncbi.nlm.nih.gov/pubmed/29959422
https://doi.org/10.1016/j.mam.2018.02.001
https://doi.org/10.1016/j.mam.2018.02.001
http://www.ncbi.nlm.nih.gov/pubmed/29427606
https://doi.org/10.1038/s41598-019-49702-z
http://www.ncbi.nlm.nih.gov/pubmed/31511603
https://doi.org/10.1016/j.mam.2022.101139
http://www.ncbi.nlm.nih.gov/pubmed/36031430
https://doi.org/10.1039/d3fo01599h
http://www.ncbi.nlm.nih.gov/pubmed/37615673
https://doi.org/10.1093/carcin/10.11.1989
http://www.ncbi.nlm.nih.gov/pubmed/2805224
https://doi.org/10.1016/s0891-5849(02)01353-9
http://www.ncbi.nlm.nih.gov/pubmed/12614846


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Epidemiology and Global Health

Ottaviani et al. eLife 2024;13:RP92941. DOI: https://doi.org/10.7554/eLife.92941 � 17 of 18

Patel CJ, Burford B, Ioannidis JPA. 2015. Assessment of vibration of effects due to model specification can 
demonstrate the instability of observational associations. Journal of Clinical Epidemiology 68:1046–1058. DOI: 
https://doi.org/10.1016/j.jclinepi.2015.05.029, PMID: 26279400

Phillips KM, Tarrago-Trani MT, McGinty RC, Rasor AS, Haytowitz DB, Pehrsson PR. 2018. Seasonal variability of 
the vitamin C content of fresh fruits and vegetables in a local retail market. Journal of the Science of Food and 
Agriculture 98:4191–4204. DOI: https://doi.org/10.1002/jsfa.8941, PMID: 29406576

Prentice RL. 2018. Intake biomarkers and the chronic disease nutritional epidemiology research agenda. The 
American Journal of Clinical Nutrition 108:433–434. DOI: https://doi.org/10.1093/ajcn/nqy206, PMID: 
30535112

R Development Core Team. 2023. R: A language and environment for statistical computing. Vienna, Austria. R 
Foundation for Statistical Computing. https://www.r-project.org

Reig M, Aristoy M-C, Toldrá F. 2013. Variability in the contents of pork meat nutrients and how it may affect food 
composition databases. Food Chemistry 140:478–482. DOI: https://doi.org/10.1016/j.foodchem.2012.11.085, 
PMID: 23601395

Rothwell JA, Perez-Jimenez J, Neveu V, Medina-Remón A, M’hiri N, García-Lobato P, Manach C, Knox C, 
Eisner R, Wishart DS, Scalbert A. 2013. Phenol-Explorer 3.0: a major update of the Phenol-Explorer database 
to incorporate data on the effects of food processing on polyphenol content. Database 2013:bat070. DOI: 
https://doi.org/10.1093/database/bat070, PMID: 24103452

Schroeter H, Heiss C, Balzer J, Kleinbongard P, Keen CL, Hollenberg NK, Sies H, Kwik-Uribe C, Schmitz HH, 
Kelm M. 2006. (-)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. 
PNAS 103:1024–1029. DOI: https://doi.org/10.1073/pnas.0510168103, PMID: 16418281

Schwendel BH, Wester TJ, Morel PCH, Tavendale MH, Deadman C, Shadbolt NM, Otter DE. 2015. Invited 
review: organic and conventionally produced milk-an evaluation of factors influencing milk composition. 
Journal of Dairy Science 98:721–746. DOI: https://doi.org/10.3168/jds.2014-8389, PMID: 25497795

Sesso HD, Manson JE, Aragaki AK, Rist PM, Johnson LG, Friedenberg G, Copeland T, Clar A, Mora S, 
Moorthy MV, Sarkissian A, Carrick WR, Anderson GL, Group CR. 2022. Effect of cocoa flavanol 
supplementation for the prevention of cardiovascular disease events: the COcoa Supplement and Multivitamin 
Outcomes Study (COSMOS) randomized clinical trial. The American Journal of Clinical Nutrition 115:1490–
1500. DOI: https://doi.org/10.1093/ajcn/nqac055, PMID: 35294962

Sloan RP, Wall M, Yeung LK, Feng T, Feng X, Provenzano F, Schroeter H, Lauriola V, Brickman AM, Small SA. 
2021. Insights into the role of diet and dietary flavanols in cognitive aging: results of a randomized controlled 
trial. Scientific Reports 11:3837. DOI: https://doi.org/10.1038/s41598-021-83370-2, PMID: 33589674

Smallwood MJ, Ble A, Melzer D, Winyard PG, Benjamin N, Shore AC, Gilchrist M. 2017. Relationship between 
urinary nitrate excretion and blood pressure in the inchianti cohort. American Journal of Hypertension 
30:707–712. DOI: https://doi.org/10.1093/ajh/hpx035, PMID: 28430835

Spiegelman D, McDermott A, Rosner B. 1997. Regression calibration method for correcting measurement-error 
bias in nutritional epidemiology. American Journal of Epidemiology 65:1179S–1186S. DOI: https://doi.org/10.​
1093/oxfordjournals.aje.a009089

Stergiadis S, Berlitz CB, Hunt B, Garg S, Ian Givens D, Kliem KE. 2019. An update to the fatty acid profiles of 
bovine retail milk in the United Kingdom: Implications for nutrition in different age and gender groups. Food 
Chemistry 276:218–230. DOI: https://doi.org/10.1016/j.foodchem.2018.09.165

Streppel MT, de Vries JHM, Meijboom S, Beekman M, de Craen AJM, Slagboom PE, Feskens EJM. 2013. 
Relative validity of the food frequency questionnaire used to assess dietary intake in the Leiden Longevity 
Study. Nutrition Journal 12:75. DOI: https://doi.org/10.1186/1475-2891-12-75, PMID: 23758629

Stubbs RJ, O’Reilly LM, Whybrow S, Fuller Z, Johnstone AM, Livingstone MBE, Ritz P, Horgan GW. 2014. 
Measuring the difference between actual and reported food intakes in the context of energy balance under 
laboratory conditions. The British Journal of Nutrition 111:2032–2043. DOI: https://doi.org/10.1017/​
S0007114514000154, PMID: 24635904

Subar AF, Freedman LS, Tooze JA, Kirkpatrick SI, Boushey C, Neuhouser ML, Thompson FE, Potischman N, 
Guenther PM, Tarasuk V, Reedy J, Krebs-Smith SM. 2015. Addressing current criticism regarding the value of 
self-report dietary data. The Journal of Nutrition 145:2639–2645. DOI: https://doi.org/10.3945/jn.115.219634, 
PMID: 26468491

The National Academies of Sciences and Engineering and Medicine Health. 2017. Guiding Principles for 
Developing Dietary Reference Intakes Based on Chronic Disease. National Academies Press. DOI: https://doi.​
org/10.17226/24828

Vogiatzoglou A, Mulligan AA, Bhaniani A, Lentjes MAH, McTaggart A, Luben RN, Heiss C, Kelm M, Merx MW, 
Spencer JPE, Schroeter H, Khaw K-T, Kuhnle GGC. 2015. Associations between flavan-3-ol intake and CVD risk 
in the Norfolk cohort of the European Prospective Investigation into Cancer (EPIC-Norfolk). Free Radical 
Biology & Medicine 84:1–10. DOI: https://doi.org/10.1016/j.freeradbiomed.2015.03.005, PMID: 25795512

Wareham NJ, Jakes RW, Rennie KL, Mitchell J, Hennings S, Day NE. 2002. Validity and repeatability of the 
epic-norfolk physical activity questionnaire. International Journal of Epidemiology 31:168–174. DOI: https://​
doi.org/10.1093/ije/31.1.168, PMID: 11914316

Welch AA, McTaggart A, Mulligan AA, Luben R, Walker N, Khaw KT, Day NE, Bingham SA. 2001. DINER (Data 
Into Nutrients for Epidemiological Research) - a new data-entry program for nutritional analysis in the EPIC-
Norfolk cohort and the 7-day diary method. Public Health Nutrition 4:1253–1265. DOI: https://doi.org/10.​
1079/phn2001196, PMID: 11796089

https://doi.org/10.7554/eLife.92941
https://doi.org/10.1016/j.jclinepi.2015.05.029
http://www.ncbi.nlm.nih.gov/pubmed/26279400
https://doi.org/10.1002/jsfa.8941
http://www.ncbi.nlm.nih.gov/pubmed/29406576
https://doi.org/10.1093/ajcn/nqy206
http://www.ncbi.nlm.nih.gov/pubmed/30535112
https://www.r-project.org
https://doi.org/10.1016/j.foodchem.2012.11.085
http://www.ncbi.nlm.nih.gov/pubmed/23601395
https://doi.org/10.1093/database/bat070
http://www.ncbi.nlm.nih.gov/pubmed/24103452
https://doi.org/10.1073/pnas.0510168103
http://www.ncbi.nlm.nih.gov/pubmed/16418281
https://doi.org/10.3168/jds.2014-8389
http://www.ncbi.nlm.nih.gov/pubmed/25497795
https://doi.org/10.1093/ajcn/nqac055
http://www.ncbi.nlm.nih.gov/pubmed/35294962
https://doi.org/10.1038/s41598-021-83370-2
http://www.ncbi.nlm.nih.gov/pubmed/33589674
https://doi.org/10.1093/ajh/hpx035
http://www.ncbi.nlm.nih.gov/pubmed/28430835
https://doi.org/10.1093/oxfordjournals.aje.a009089
https://doi.org/10.1093/oxfordjournals.aje.a009089
https://doi.org/10.1016/j.foodchem.2018.09.165
https://doi.org/10.1186/1475-2891-12-75
http://www.ncbi.nlm.nih.gov/pubmed/23758629
https://doi.org/10.1017/S0007114514000154
https://doi.org/10.1017/S0007114514000154
http://www.ncbi.nlm.nih.gov/pubmed/24635904
https://doi.org/10.3945/jn.115.219634
http://www.ncbi.nlm.nih.gov/pubmed/26468491
https://doi.org/10.17226/24828
https://doi.org/10.17226/24828
https://doi.org/10.1016/j.freeradbiomed.2015.03.005
http://www.ncbi.nlm.nih.gov/pubmed/25795512
https://doi.org/10.1093/ije/31.1.168
https://doi.org/10.1093/ije/31.1.168
http://www.ncbi.nlm.nih.gov/pubmed/11914316
https://doi.org/10.1079/phn2001196
https://doi.org/10.1079/phn2001196
http://www.ncbi.nlm.nih.gov/pubmed/11796089


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Epidemiology and Global Health

Ottaviani et al. eLife 2024;13:RP92941. DOI: https://doi.org/10.7554/eLife.92941 � 18 of 18

White PJ, Broadley MR. 2005. Historical variation in the mineral composition of edible horticultural products. 
The Journal of Horticultural Science and Biotechnology 80:660–667. DOI: https://doi.org/10.1080/14620316.​
2005.11511995

Wickham H. 2016. Ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag. DOI: https://doi.org/​
10.1007/978-3-319-24277-4

Wilkinson BG, Perring MA. 1961. Variation in mineral composition of Cox’s Orange Pippin apples. Journal of the 
Science of Food and Agriculture 12:74–80. DOI: https://doi.org/10.1002/jsfa.2740120114

Yoshida K, Bartel A. 2022. Tableone: create ’table 1’ to describe baseline characteristics with or without 
propensity score weights. 0.13.2. R Package. https://rdrr.io/cran/tableone/

Younes M, Aquilina G, Castle L, Engel K-H, Fowler P, Frutos Fernandez MJ, Fürst P, Gürtler R, Husøy T, 
Mennes W, Moldeus P, Oskarsson A, Shah R, Waalkens-Berendsen I, Wölfle D, Aggett P, Cupisti A, Fortes C, 
Kuhnle G, Lillegaard IT, et al. 2019. Re-evaluation of phosphoric acid-phosphates - di-, tri- and polyphosphates 
(E338-341, E343, E450-452) as food additives and the safety of proposed extension of use. EFSA Journal. 
European Food Safety Authority 17:e05674. DOI: https://doi.org/10.2903/j.efsa.2019.5674, PMID: 32626329

https://doi.org/10.7554/eLife.92941
https://doi.org/10.1080/14620316.2005.11511995
https://doi.org/10.1080/14620316.2005.11511995
https://doi.org/10.1007/978-3-319-24277-4
https://doi.org/10.1007/978-3-319-24277-4
https://doi.org/10.1002/jsfa.2740120114
https://rdrr.io/cran/tableone/
https://doi.org/10.2903/j.efsa.2019.5674
http://www.ncbi.nlm.nih.gov/pubmed/32626329

	Reliance on self-­reports and estimated food composition data in nutrition research introduces signiﬁcant bias that can only be addressed with biomarkers
	eLife assessment
	Introduction
	Results
	Impact of bioactive content variability when assessing dietary intake
	Impact of food composition variability when assessing relative intake
	Impact of bioactive content variability on the estimated association between intake and health endpoints

	Discussion
	Prospective studies
	Biomarker-predicted dietary patterns
	Eﬀect on dietary recommendations and risk assessment
	Conclusions

	Methods
	Study population
	Nutritional biomarker
	Flavan-3-ols and (–)-epicatechin
	Nitrate

	Simulation of variability
	Data analysis
	Descriptive statistics
	Data transformation
	Cross-sectional analyses


	Acknowledgements
	Additional information
	﻿Competing interests
	﻿Funding
	Author contributions
	Author ORCIDs
	Peer review material

	Additional files
	Supplementary files

	References


