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Abstract Relapse of acute myeloid leukemia (AML) is highly aggressive and often treatment 
refractory. We analyzed previously published AML relapse cohorts and found that 40% of relapses 
occur without changes in driver mutations, suggesting that non-genetic mechanisms drive relapse 
in a large proportion of cases. We therefore characterized epigenetic patterns of AML relapse 
using 26 matched diagnosis-relapse samples with ATAC-seq. This analysis identified a relapse-
specific chromatin accessibility signature for mutationally stable AML, suggesting that AML under-
goes epigenetic evolution at relapse independent of mutational changes. Analysis of leukemia 
stem cell (LSC) chromatin changes at relapse indicated that this leukemic compartment under-
went significantly less epigenetic evolution than non-LSCs, while epigenetic changes in non-LSCs 
reflected overall evolution of the bulk leukemia. Finally, we used single-cell ATAC-seq paired with 
mitochondrial sequencing (mtscATAC) to map clones from diagnosis into relapse along with their 
epigenetic features. We found that distinct mitochondrially-defined clones exhibit more similar 
chromatin accessibility at relapse relative to diagnosis, demonstrating convergent epigenetic evolu-
tion in relapsed AML. These results demonstrate that epigenetic evolution is a feature of relapsed 
AML and that convergent epigenetic evolution can occur following treatment with induction 
chemotherapy.
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Introduction
Acute myeloid leukemia (AML) is a blood cancer characterized by the accumulation of dysfunctional 
myeloid progenitors, resulting in severe cytopenias and an overall poor prognosis, especially in the 
elderly (Döhner et al., 2015). Despite recent advances in AML treatment, most patients relapse with 
aggressive disease that is highly resistant to further treatment. Relapse therefore presents a significant 
challenge for AML clinicians due to the lack of efficacious salvage options making it critical to study 
AML relapse to guide and improve outcomes.

Cancer progression is generally understood as an evolutionary process with certain cellular subpop-
ulations containing genetic and other features that allow for improved fitness and growth. There is 
often substantial subclonal genetic heterogeneity in cancer, with a dominant clone comprising the 
bulk of the tumor with accompanying smaller subclones (Akbani et al., 2015; Koboldt, 2012; The 
Cancer Genome Atlas Network, 2012; Ding et  al., 2012). Leukemia can persist after treatment 
during clinical remission as measurable residual disease (MRD) which is an independent risk factor 
for relapse (Ding et al., 2012). Indeed, whole-genome resequencing efforts have indicated that in 
many cases, clonal evolution at relapse results from the dynamic outgrowth of these resistant clones 
(Hassan et al., 2017). These data underscore the importance of characterizing the clonal dynamics of 
AML evolution to better understand how these cells evolve over time and contribute to relapse and 
chemoresistance.

According to the cancer stem cell model, AML is thought to be organized in a hierarchical manner, 
with transformed leukemia stem cells (LSCs) possessing long-term self-renewal capability giving rise 
to partially differentiated leukemia cells (non-LSCs; Dick, 2005; Thomas and Majeti, 2017). The role 
of LSCs in relapse is poorly understood, and future studies seeking to understand relapsed AML will 
require investigating how these cells contribute to disease recurrence. These studies are especially 
important given the lack of therapies that specifically target LSCs.

Recent genomic sequencing efforts have identified various classes of recurrent mutations in AML 
(The Cancer Genome Atlas Research Network, 2013; Tyner et al., 2018). In particular, these studies 
implicate epigenetic regulators as key factors in AML pathogenesis, including DNMT3A, TET2, 
IDH1/2, ASXL1, and the cohesin complex (Chan and Majeti, 2013; Ley et al., 2010; Delhommeau 
et al., 2009; Gross et al., 2010; Abdel-Wahab et al., 2012; Kon et al., 2013). Indeed, epigenetic 

eLife digest Acute myeloid leukemia (or AML for short) is a type of blood cancer characterized 
by abnormally high production of immature white blood cells. Despite advances in AML treatment, 
many patients relapse after an initially successful first round of treatment. As a result, understanding 
the factors contributing to relapse is essential for developing effective treatments for the disease.

Like most cancers, AML can evolve because of changes to the DNA sequence in cells that cause 
them to grow uncontrollably or resist treatment. Alongside these genetic mutations, AML cells also 
undergo ‘epigenetic’ changes, where regions of the DNA are modified and genes can be switched 
on or off without altering the DNA sequence. Previous research has demonstrated that epigenetic 
changes contribute to the development of AML, however, it was not clear if these changes could also 
make cells resistant to treatment without acquiring new DNA mutations.

Nuno, Azizi et al. addressed this question by analyzing the epigenetic states of AML cells from 26 
patients at the time of their diagnosis and after treatment when the disease had relapsed. Analysis 
revealed that almost half of the patients with AML experienced a relapse without acquiring new DNA 
mutations. Instead, these AML cells developed specific epigenetic changes that helped them to resist 
cancer treatment. Moreover, studying individual AML cells from different patients showed that the 
cells became more epigenetically similar at relapse, suggesting that they converge towards a more 
treatment-resistant disease.

Future experiments will determine exactly how these epigenetic changes lead to treatment resis-
tance. Currently, most of the drugs used to treat AML are either chemotherapies or ones that target 
specific DNA mutations. The findings of Nuno, Azizi et al. suggest that drugs targeting specific 
epigenetic changes may be more effective for some patients. Further studies will be needed to deter-
mine which patients may benefit and which epigenetic drugs could be useful.

https://doi.org/10.7554/eLife.93019
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dysregulation is now known to be a distinctive hallmark of AML (Hu and Shilatifard, 2016). Studies 
analyzing the transformation of normal hematopoietic stem cells (HSCs) into LSCs suggest epigenetic 
dysregulation is an initiating event in leukemic clonal evolution, and many mutations in epigenetic 
regulators persist between diagnosis and relapse (Jan et al., 2012; Corces-Zimmerman et al., 2014; 
Shlush et al., 2014).

It is increasingly apparent that chromatin accessibility and its three-dimensional landscape are 
important factors in cancer pathogenesis and progression (Corces and Corces, 2016). Recent 
studies profiling the chromatin landscape of certain cancers indicate that the fine regulation of chro-
matin activity is critical for tumor suppression (Hnisz et al., 2016; Flavahan et al., 2016). Analyses 
of active epigenetic programs in healthy hematopoietic and leukemic cells implicate epigenetic 
factors, including distal cis-regulatory elements and transcription factors, as critical features driving 
AML, with differential activation of regulatory chromatin programs defining disease subtypes (Corces 
et al., 2016; McKeown et al., 2017). Moreover, common AML mutations in transcription factors and 
RAS/RTK signaling have downstream activity on trans regulatory factors like NFkB, highlighting the 
importance of epigenetic regulatory elements in maintaining the balance of transcriptional programs 
required for proper cellular identity and preventing leukemic transformation (Corces et al., 2018; Assi 
et al., 2019). Cytosine methylation states have also been shown to evolve independently of genetic 
mutations in relapsed AML, indicating that epigenetic changes can occur with leukemia progression 
(Li et al., 2016). We hypothesize that examining chromatin accessibility to infer cancer gene regu-
latory programs and cancer-specific properties is a useful tool for uncovering novel biology in AML 
progression and relapse (Rosenbauer and Tenen, 2007).

Here, we report a longitudinal study of paired diagnosis-relapse AML patient samples to charac-
terize mechanisms of AML relapse. We first interrogated previously published genotyping studies of 
relapsed AML to understand clonal evolution of somatic driver mutations and found a large propor-
tion of cases lack mutational changes at relapse, suggesting that epigenetic evolution could be a 
driving factor in relapse. We then performed chromatin accessibility analysis to identify regulatory 
mechanisms associated with AML relapse in mutationally stable cases and further performed single-
cell chromatin analysis to investigate epigenetic subclones and evolution in primary patient samples. 
These studies reveal that individual diagnosis clones persist and acquire similar epigenetic features 
and states in relapse, demonstrating convergent epigenetic evolution.

Results
A large proportion of relapsed AMLs lack mutational evolution
To define the genetic landscape underlying AML relapse, we analyzed published genotyping studies 
of paired diagnosis and relapse samples. We collected data from seven different cohorts with genome 
resequencing of AML-related mutations (Supplementary file 1a; Tyner et al., 2018; Li et al., 2016; 
Greif et al., 2018; Shlush et al., 2017; Parkin et al., 2013; Rothenberg-Thurley et al., 2018; Strat-
mann et al., 2021). For each patient, we collected mutation variant allele frequency (VAF), karyotype, 
time to relapse, and overall survival when available. This resulted in a dataset containing 2111 muta-
tions across 216 patients at paired diagnosis and relapse timepoints.

Recurrently mutated genes within this cohort were consistent with previous studies with NPM1, 
DNMT3A, FLT3, RUNX1, and TET2 being among the most frequently mutated genes (Figure 1a). 
We previously showed that genes associated with epigenetic regulation such as DNMT3A, TET2, 
IDH1/2, and ASLX1 are pre-leukemic mutations that accumulate in HSCs and initiate leukemogenesis 
(Jan et al., 2012; Corces-Zimmerman et al., 2014). The VAF of mutations in epigenetic regulators 
was overall stable at relapse, consistent with the idea that these mutations are founder events occur-
ring early during AML evolution and suggesting that the persistence of these mutations may play 
a role in AML resistance and progression (Figure 1b, Figure 1—figure supplement 1a). FLT3 and 
other signaling molecules such as those in the Ras family, including KRAS, NRAS, and PTPN11, were 
frequently lost at relapse (Figure  1b, Figure  1—figure supplement 1b). Mutations in WT1 were 
gained at relapse in 10.8% of cases in this study, a frequency greater than any other gene evaluated. 
Patients with WT1 gain took significantly longer to relapse relative to patients that had WT1 mutations 
already present at diagnosis (Figure 1—figure supplements 1c and 2a).

https://doi.org/10.7554/eLife.93019
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To evaluate genetic clonal patterns at relapse, we utilized the available genomic VAF data with 
standardized cutoffs for detection, acquisition, and elimination of mutations to infer the acquisition 
and elimination of clones at relapse. Each mutation was categorized as (1) gained (VAF from <0.05 at 
diagnosis to >0.1 at relapse), (2) lost (VAF from >0.1 at diagnosis to <0.05 at relapse), or (3) stable (not 
meeting criteria for gained or lost) at relapse. Each patient was categorized into one of four different 
bins based on the AML driver mutations detected at diagnosis and relapse: stable (no change in muta-
tions between diagnosis and relapse), gain (acquisition of mutations at relapse); loss (loss of muta-
tions at relapse); and gain and loss (both gain and loss of mutations at relapse) (Figure 1c). Notably, 
93 cases (43%) exhibited stable mutation profiles at relapse. There were no significant differences in 
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Figure 1. Meta-analysis of genomic change in relapsed AML. (a) Oncoprint of recurrently mutated genes from published relapsed AML dataset. Genetic 
alterations are color coded according to dynamics between disease state: stable at relapse, gained at relapse, or lost at relapse. The number of gained, 
lost, and stable mutations as well as percentage of patients with mutations in each gene are displayed on the right and left sides of the plot respectively. 
(b) Ternary plot of recurrently mutated genes from dataset analysis depicting mutational dynamics between diagnosis and relapse (restricted to genes 
with at least 20 events in our cohort). The sides of the plot correspond to the percentage of mutations displaying the indicated dynamic (gained, lost, 
or stable at relapse), the size of each dot indicates the number of mutations detected for that gene. (c) Schematic of clonal ‘bins’ each patient was 
categorized into based on mutational data. Bar chart on the right depicts the proportion of patients assigned to each clonal bin. (d) Survival analysis 
of patients based on sample clonality data gathered for each patient group. ‘Stable’ clonality refers to patients with equivalent mutations detected at 
diagnosis and relapse, ‘Unstable’ refers to patients that had any change in mutations at relapse (log-rank test p<0.05).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Plots depicting change in variant allele frequency for detected ‘pre-leukemic’ epigenetic modifier mutations (a), RAS pathway 
mutations (b), or WT1 mutations (c) in meta-analysis relapsed AML cohort.

Figure supplement 2. Gene-specific clonal analysis and multivariate analysis of relapse-free-survival based on clonality.

https://doi.org/10.7554/eLife.93019


 Research article﻿﻿﻿﻿﻿﻿ Cancer Biology | Genetics and Genomics

Nuno, Azizi et al. eLife 2024;13:e93019. DOI: https://doi.org/10.7554/eLife.93019 � 5 of 26

these clonal group frequencies across individual genes, and there was no clear enrichment of specific 
epigenetic mutations such as DNMT3A, TET2, or IDH1/2 in our stable samples, indicating that clonal 
evolution categories are unlikely to be driven by or associated with specific mutations (Figure 1—
figure supplement 2b). Patients with stable clonality had a significantly shorter time to relapse rela-
tive to patients who gained and/or lost mutations at relapse when corrected for differences in age and 
sex (Figure 1d, Figure 1—figure supplement 2c; HR = 1.56, p=0.007). These data indicate that little 
to no somatic genetic evolution occurs in driver mutations in a substantial portion of relapsed AML 
cases and that these cases are associated with a shorter time to relapse.

Epigenetic evolution is an important non-genetic factor in AML relapse
The identification of many clonally stable relapsed patients led us to hypothesize that non-genetic or 
epigenetic factors may contribute to relapse in these cases. To evaluate this hypothesis, we identi-
fied 26 AML patients treated at Stanford with available banked diagnosis and relapse samples. The 
majority of these patients were treated with induction chemotherapy consisting of cytarabine with 
anthracycline and all patients entered clinical remission prior to eventually relapsing (Supplementary 
file 1b). We FACS-purified bulk AML blasts from each of these patients to exclude residual lympho-
cytes and subjected these cells to ATAC-seq and genotyping with a targeted panel of AML-associated 
genes (Blast immunophenotype: CD45-mid SSC-hi non-CD34 +CD38-, Figure 2a). We used a custom 
genotyping pipeline to identify pathogenic mutations occurring at VAF >5% (see Methods) and incor-
porated available cytogenetic data to assign each patient to a clonal group (Supplementary file 1c 
and d). We observed a similar pattern of frequently mutated genes in this patient cohort, with NPM1, 
FLT3, DNMT3A, and TET2 occurring most frequently (Figure  2b). We classified each sample into 
clonal categories as described above and strikingly, we also observed a clonal pattern with a similar 
proportion of samples in each of the clonal bins defined above, with roughly 40% of our cohort exhib-
iting no mutation changes at relapse indicating that they were clonally stable (Figure 2c). Of note, 
our VAF cutoff and classification accurately classified all mutations as stable, gained, or lost; all stable 
mutations had an absolute VAF change of <0.1 with the exception of one mutation which had a VAF 
change of 0.35. We observed that time-to-relapse in patients with stable clonal evolution was not 
significantly different compared to non-stable cases, although this may be limited by the small sample 
size (p=0.2; Figure 2—figure supplement 1a).

Chromatin accessibility has been extensively used to profile epigenetic gene regulatory landscapes 
and programs (Corces et al., 2016; Granja et al., 2019). We sought to identify such non-genetic 
factors playing a role in the evolution of the different genomic clonal evolution groups. As a readout 
for epigenetic similarity, we calculated the Pearson product moment correlation of ATAC-seq signal 
normalized for reads in peaks across all peaks between diagnosis and relapse timepoints for each 
patient and compared these values between all clonal bins (Figure 2d). The different clonal groups 
showed varying levels of epigenetic change at relapse. Notably, relapsed samples with stable clonal 
evolution were epigenetically dissimilar to their diagnosis counterparts suggesting that epigenetic 
evolution may drive relapse in these cases. In addition, samples with both gain and loss of mutations 
showed substantial epigenetic changes at relapse which may be attributable to mutational changes 
occurring in these samples and/or to epigenetic factors (Mean DX-REL correlation: Stable-0.914, 
Gain-0.929, Loss-0.950, Gain +Loss−0.802). Collectively, these data suggest that epigenetic evolution 
may drive relapse in AML, particularly in cases that do not acquire or lose mutations.

Cell cycle and metabolic pathways of epigenetic evolution underlie 
relapse in mutationally stable AML
The clonally stable group exhibited substantial chromatin accessibility changes at relapse suggesting 
that epigenetic evolution may contribute to resistance in these cases. To identify the specific regu-
latory elements and pathways involved, we identified regions of chromatin accessibility that were 
enriched or depleted at relapse in mutationally stable AMLs. Of 115,551 features in the global peak 
set, 2373 peaks were enriched and 6145 peaks were depleted across all stable samples (Figure 2—
figure supplement 1b). To identify chromatin changes localized to specific gene loci, we generated 
chromatin accessibility ‘gene accessibility scores’ across all samples. This approach has been shown 
to predict the relative RNA expression of individual genes (Granja et al., 2019; Granja et al., 2021). 
We therefore used these scores to identify differentially accessible genes across stable samples with 

https://doi.org/10.7554/eLife.93019
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Figure 2. Chromatin accessibility change in stable and non-stable relapsed AML. (a) Schematic of relapse sample acquisition and preparation. 
(b) Oncoprint of recurrently mutated genes in samples analyzed from Stanford University patient cohort (n=26). (c) Bar chart depicting fractions 
of patients from Stanford patient cohort in each clonal bin. (d). Violin plot depicting global chromatin accessibility similarity of diagnosis/relapse 
pairs based on ATAC-seq data. Each dot represents a value calculated for each patient based on overall chromatin accessibility similarity between 
diagnosis and relapse samples. (e) Volcano plot depicting differentially accessible genes at relapse in patients within the Stable clonal bin. (f) Heatmap 
depicting the accessibility of the top differential genes at diagnosis and relapse in mutationally stable samples Left: Accessibility displayed for stable 
samples. Right: accessibility displayed for non-stable samples. (g). Gene set enrichment analysis (GSEA) of differentially open or closed accessible 
genes calculated with ATAC-seq gene scores in mutationally stable samples. Top enriched or de-enriched pathways crossing significance threshold of 
padj <0.05 are shown.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Relapse-free-survival and differential chromatin analysis of the Stanford AML cohort.

Figure 2 continued on next page

https://doi.org/10.7554/eLife.93019
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the underlying hypothesis that differential chromatin accessibility may act as a proxy for transcriptomic 
changes in these samples (Figure 2e and f; Granja et al., 2019; Granja et al., 2021). We found that 
histone genes, epigenetic regulators, and the surface marker CD69 displayed increased accessibility 
at relapse across samples (Figure 2f, Supplementary file 1e). Differentially accessible genes in stable 
samples were not significantly differentially accessible in non-stable samples (AMLs that gained and/
or lost mutations at relapse), indicating that mutationally stable samples undergo specific epigenetic 
evolution distinct from other AMLs (Figure  2f). We additionally evaluated whether relapse acces-
sibility changes were specific to certain mutational groups based on our genotyping data. For the 
genes FLT3, TET2, DNMT3A, and NPM1 (genes with more than five mutant cases), we did not find any 
chromatin loci with evolution at relapse that was significantly different between mutant and wildtype 
cases.

To analyze the association between chromosomal regions and genes that were found to be differ-
entially accessible across stable samples, we searched for chromosomal loci with a higher proportion 
of either significantly enriched or depleted peaks relative to the global peak set with the hypothesis 
that large regions of chromosomal accessibility change may represent copy number alterations or 
changes in topologically associated domain activity associated with relapse. We found that certain 
genomic loci displayed a widespread increase in average accessibility at relapse paired with increased 
accessibility of specific genes in those regions. This was in contrast to the rest of the genome where 
average accessibility and gene accessibility change at relapse were not correlated. For example, chro-
mosome 6 contained a region of increased relapse accessibility spanning approximately 100 kb which 
contained numerous histone and cell-cycle-associated genes (Figure  2—figure supplement 1c). 
These locations may represent regions of co-regulated chromatin which evolve to allow for resistance 
and relapse.

We performed gene set enrichment analysis of genes with increased accessibility at relapse in 
stable samples and found enrichment of pathways associated with increased cell cycling, metabo-
lism, and cell stress responses. These pathways were consistent with increased aggressiveness of 
relapsed AML and a response to genotoxic chemotherapy, as well as chromatin regulators, histones, 
and targets of transcription factors such as MYC (Figure 2g). We additionally examined transcrip-
tion factor motif enrichment within differentially accessible chromatin peaks to identify trans regula-
tory factors important in mutationally stable relapse samples (Figure 2—figure supplement 1d). We 
found depletion of AP1 family motifs, such as FOS and JUN, which have been demonstrated to be 
important in various genetically defined subtypes of AML, as well as CEBPA and SPI1, both critical 
regulators of myeloid cell differentiation (Assi et al., 2019). Conversely, we observed an enrichment 
of FOXO family factors in the stable relapse samples, as well as the GATA family (known regulators 
of early progenitors in hematopoietic development) and E2F (Rosenbauer and Tenen, 2007). These 
results suggest differential transcription factor activity and activation of relapse-specific biological 
pathways in mutationally stable relapse cases.

We then utilized healthy hematopoietic cell type chromatin profiles to identify the closest normal 
cell type for AML samples. We previously used the CIBERSORT algorithm to quantify the cell type 
contribution to overall AML chromatin states (Corces et  al., 2016). A follow-up study utilized 
latent semantic indexing projection of either single-cell ATAC or pseudo-single-cell ATAC (derived 
from bulk ATAC profiles) to healthy hematopoietic single-cell ATAC data to identify the closest 
normal cell type for single-cell ATAC profiles (Granja et al., 2019). We applied the latter, single-cell 
specific, methodology to our data in order to identify the closest normal cell types for diagnosis 
and relapse samples and by proxy, the differentiation status of these AMLs as determined by their 
chromatin state. Briefly, for each bulk AML sample, a ‘pseudo-single cell’ ATAC-seq dataset was 
generated as previously described (Granja et  al., 2019). This pseudo-single cell data was then 
projected to a reference of healthy hematopoietic ATAC-seq data, and each pseudo-single cell was 
assigned the closest normal cell type using a k-nearest neighbors clustering approach Figure 2—
figure supplement 2a and b. The closest normal cell types for diagnosis and relapse pairs were 
then compared across samples. This analysis revealed that at diagnosis, most AMLs mapped to 

Figure supplement 2. Projection of bulk AML ATAC samples to healthy hematopoietic single-cell manifold demonstrates shifts in epigenetic 
differentiation states at relapse.

Figure 2 continued

https://doi.org/10.7554/eLife.93019
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different regions within the myeloid/monocyte compartment and that at relapse, AMLs overall 
became less differentiated with chromatin reflecting a more CMP/GMP/progenitor-like cell state 
(Figure 2—figure supplement 2b). Evaluating individual cases showed that every sample which 
was myeloid/monocyte-like at diagnosis became less differentiated at relapse and that samples 
that were progenitor-like at diagnosis generally stayed within that compartment (Figure 2—figure 
supplement 2c, d and e). These analyses indicate that the overall chromatin state of relapsed AML 
becomes less differentiated, which may result in epigenetic fitness associated with drug resistance 
and increased proliferation.

Epigenetic evolution at relapse is primarily driven by non-leukemic 
stem cell populations
Leukemia stem cells (LSCs) are thought to be of critical importance in AML relapse, serving as a 
chemoresistant self-renewing reservoir for disease propagation after initial therapy (Thomas and 
Majeti, 2017; Jordan, 2007). As LSCs increase in frequency at relapse, we sought to determine if 
the relapse-associated chromatin signature detected in the mutationally stable cases was reflective 
of an LSC epigenetic signature (Ho et al., 2016). We examined the chromatin accessibility profile 
and epigenetic evolution that occurs within populations enriched for LSCs, identified by expression 
of CD99 and TIM3 within the CD34 +CD38- population, markers that have been previously validated 
for distinguishing leukemic stem cells from non-leukemic residual HSCs (Jan et al., 2011). As CD34 
expression can be variable in AML cases, we identified 10 patients within our cohort that contained 
a sortable CD34 +CD38 CD99 + TIM3 + population of cells in both diagnosis and relapse samples. 
We FACS-purified both this LSC-enriched population and the remaining non-LSC AML cells in these 
samples (designated ‘mature non-LSCs’) and subjected them to ATAC-seq (Figure 3a). The immuno-
phenotype used to enrich LSCs is incompletely defined in the relapse setting, however, we found 
that that CD34 + CD38 CD99 + TIM3 + cells from relapse samples, mapped epigenetically to less-
differentiated healthy cell states relative to non LSC-enriched samples, consistent with the hypoth-
esis that the ‘LSC’ immunophenotype works effectively for enrichment in both diagnosis and relapse 
samples (Figure 2—figure supplement 2b).

Comparison of chromatin accessibility at diagnosis and relapse showed that LSCs underwent less 
global epigenetic change at relapse, indicating that most of the chromatin accessibility change at 
relapse occurs in the non-LSC compartment (Figure 3b). We next investigated how regions becoming 
differentially accessible in LSCs were related to chromatin changes in the non-LSC compartment and 
vice versa. This analysis revealed that almost half of the features with significant chromatin changes 
in LSCs were also differentially accessible in non-LSC cells (Figure 3c and d). However, fewer than 
5% of features that were differentially accessible in non-LSCs were differentially accessible in the LSC 
compartment (Figure 3c and d). These results indicate that chromatin changes may be inherited in a 
directional manner within the AML hierarchy; chromatin changes in LSCs are passed on to their non-
LSC progeny, but not vice versa. Overall, these results indicate that epigenetic changes detected in 
relapse samples are the result of chromatic accessibility alterations in both LSC and non-LSC compart-
ments, rather than a change in the number or proportion of LSCs at relapse.

We aimed to determine whether epigenetic changes in the bulk AML at relapse (the bulk relapse 
signature identified in Figure 2) could be attributed to evolution of LSC-specific epigenetic features. 
We directly compared the gene accessibility signature identified in the stable relapse samples to an 
epigenetic signature derived by comparing LSCs to non-LSCs at diagnosis. The stable sample bulk 
AML relapse signature was strikingly similar to the LSC signature at diagnosis, indicating that a signif-
icant proportion of the epigenetic changes observed at relapse are due to changes in LSC frequency 
or evolution of non-LSC cells toward a more LSC-like state (Figure 3—figure supplement 1A and B).

To examine the LSC-specific pathways involving differentially accessible genes within these cells, 
we performed GSEA using our gene score data (Figure 3e). Enriched programs included many of 
those that were found in the bulk leukemia, including inflammatory pathways such as interferon-γ and 
IL-2/STAT5 signaling, as well as an upregulation of KRAS signaling pathway-related genes. Several 
pathways enriched in bulk leukemia at relapse, such as MYC target genes, were not enriched in LSCs 
at relapse, suggesting that LSCs undergo epigenetic alterations distinct from the bulk population 
(Figure 3f, leading edge genes depicted in Figure 2f). Overall, these results suggest that epigenetic 
evolution is more prominent in non-LSCs, that epigenetic change occurring in LSCs are reflected in 

https://doi.org/10.7554/eLife.93019
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Figure 3 continued on next page
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non-LSCs but not vice-versa, and that LSC epigenetic changes at relapse partially, but incompletely, 
reflect changes in the bulk leukemia cells.

Single-cell ATAC-seq identifies epigenetically defined subpopulations at 
diagnosis and relapse
Several studies performed in AML, as well as glioblastoma and lung adenocarcinoma, have demon-
strated intratumoral epigenetic heterogeneity that may contribute to disease progression and evolu-
tion (Torres et al., 2016; Tavernari et al., 2021). We sought to identify mechanisms of epigenetic 
evolution, particularly in cases lacking clonal somatic mutational changes at relapse, and hypothesized 
two different mechanisms: intracellular evolution, where the epigenome of individual cells changes to 
a relapse-specific state, or intercellular evolution, where evolutionary pressure selects for a subset of 
cells present at diagnosis that harbor a pre-existing relapse signature. To explore these possibilities, 
we performed 10 X single-cell ATAC-seq (scATAC-seq) on three diagnosis and relapse sample pairs, 
each of which contained distinct and varied AML-related genetic lesions (Supplementary file 1b and 
c), underwent varying degrees of epigenetic change at relapse according to our bulk analysis, and, 
importantly, exhibited no mutational clonal evolution. We additionally analyzed one sample pair which 
underwent epigenetic and genomic change at relapse. We employed previously validated compu-
tational tools to analyze epigenetic heterogeneity within and between samples (Figure 4a; Corces 
et al., 2018; Granja et al., 2019; Granja et al., 2021).

Dimensionality reduction analysis of selected single-cell ATAC samples revealed substantial 
inter- and intra-patient heterogeneity (Figure  4b). In patient SU142 (MLL-rearranged), diagnosis 
and relapse clusters were indistinguishable from each other, indicating that little epigenetic change 
occurred during relapse in this case (Figure 4—figure supplement 1a). In patients SU360 (SF3B1 and 
KMT2D mutant secondary AML), SU484 (IDH1/FLT3-ITD/NPM1 mutant), and SU892 (RUNX1-mutant/
FLT3-TKD), there were substantial epigenetic differences between diagnosis and relapse, along with 
significant heterogeneity within each timepoint (Figure 4c and d, Figure 4—figure supplement 1a). 
Each sample and timepoint contained several epigenetically defined cell subpopulations, indicating 
that epigenetically defined clusters can exist independent of mutational differences (Figure 4—figure 
supplement 1a).

We hypothesized that in genetically stable AMLs, there may exist cells at diagnosis with epigenetics 
states more amenable to selection during therapy ultimately driving relapsed disease. To test this 
hypothesis, we calculated the epigenetic similarity between all diagnosis and relapse clusters by 
comparing global chromatin accessibility. Multiple samples contained discreet clusters at diagnosis 
which were epigenetically more similar to clusters at relapse relative to other cells at diagnosis 
(Figure 4c and d, Figure 4—figure supplement 1b). Specifically, in patient SU360, diagnosis clusters 
7, 8, and 9, which represented 24% of the AML at diagnosis, grouped with several of the relapse 
clusters (Figure  4c). Similarly, for patient SU892, a sample that displayed more substantial global 
epigenetic change at relapse, we found that diagnosis clusters 1 and 2, representing 14% of the AML 
at diagnosis, were most similar to relapse cells (Figure 4d). These analyses indicate that there exists 
substantial epigenetic heterogeneity within AMLs at multiple therapeutic timepoints and that some 
diagnosis subpopulations contain epigenetic states similar to cells at relapse.

purple) are highlighted in each plot. Cutoffs for adjusted p value of<0.05 are depicted as dashed lines in both plots. (d) Bar plot comparing fraction of 
significantly differentially accessible peaks in non-LSCs that were also differentially accessible in LSCs and vice versa. (e) Gene set enrichment analysis 
(GSEA) of differentially open or closed accessible genes calculated using gene scores from ATAC-seq data from LSC samples. A positive NES indicates 
that the pathway was upregulated at relapse relative to diagnosis based on the gene accessibility data. Top pathways crossing significance threshold of 
padj <0.05 are shown. (f) GSEA plot of exemplar gene pathway enriched in bulk Stable ATAC-seq samples (HALLMARK_MYC_TARGETS_V2) applied to 
either non-LSC gene score data set (left) or LSC gene score data set (right).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Comparison between AML relapse signature and LSC signature.

Figure 3 continued

https://doi.org/10.7554/eLife.93019


 Research article﻿﻿﻿﻿﻿﻿ Cancer Biology | Genetics and Genomics

Nuno, Azizi et al. eLife 2024;13:e93019. DOI: https://doi.org/10.7554/eLife.93019 � 11 of 26

All AML scATAC
Dimentional Reduction

UMAP Dimension 1

U
M

AP
 D

im
en

si
on

 2

UMAP Dimension 1

U
M

AP
 D

im
en

si
on

 2

UMAP Dimension 1

U
M

AP
 D

im
en

si
on

 2

UMAP Dimension 1

U
M

AP
 D

im
en

si
on

 2

−0.0010.000 0.001 0.002 0.003 0.004
Relapse Signature Score

−0.002 0.000 0.002 0.004 0.006
Relapse Signature Score

−0.010 −0.005 0.000 0.005 0.010
Relapse Signature Score

−0.003 0.000 0.003 0.006
Relapse Signature Score

Relapse Signature Score

UMAP Dimension 1

U
M

AP
 D

im
en

si
on

 2

SU142 DX
SU142 REL
SU360 DX
SU360 REL
SU484 DX
SU484 REL
SU892 DX
SU892 REL

e.

b.

Relapse

Diagnosis

REL

DX

Low High

AML Single Cell
Chromatin Data 

Identify Epigenetic
Clusters

Cluster Similarity
& Relapse Signature

Enrichment

 Sample 
Prep

 Cell Sorting 
and Nuclei 

Isolation

 10X Single-cell
ATAC-seq

 Independent Clustering

 Joint Clustering

DX REL

a.

Cluster Epigenetic Similarity

D
X_

C
2

R
EL

_C
9

D
X_

C
5

D
X_

C
6

D
X_

C
4

D
X_

C
1

R
EL

_C
6

R
EL

_C
7

R
EL

_C
5

R
EL

_C
4

D
X_

C
3

D
X_

C
9

D
X_

C
8

R
EL

_C
8

D
X_

C
7

R
EL

_C
3

R
EL

_C
1

R
EL

_C
2

timepoint
cluster
Pearson

0
0.2
0.4
0.6
0.8
1

timepoint
DX
REL

cluster
C1
C2

C3
C4

C5
C6

C7

Cluster Epigenetic Similarity

D
X_

C
2

D
X_

C
1

R
EL

_C
1

R
EL

_C
3

R
EL

_C
2

D
X_

C
7

D
X_

C
6

D
X_

C
5

D
X_

C
4

D
X_

C
3

timepoint
cluster
Pearson

−0.5
0
0.5
1

timepoint
DX
REL

1
2

3

4

5

6

7

8
9

1
2

3

4

5

6

7

8
9

1
2

3

4

5

6

7

8
9

1
2

3

4

5

6

7

8
9

1
2

3

4

5

6

7

8
9

1
2

3

4

5

6

7

8
9

1
2

3

4

5

6

7

8
9

1
2

3

4

5

6

7

8
9

1
2

3

4

5

6

7

8
9

1
2

3

4

5

6

7

8
9

1
2

3

4

5

6

7

8
9

1
2

3

4

5

6

7

8
9

1
2

3

4

5

6

7

8
9

1
2

3

4

5

6

7

8
9

1
2

3

4

5

6

7

8
9

1
2

3

4

5

6

7

8
9

1
2

3

4

5

6

7

8
9

1

23

45
6

7

8

9

1

23

45
6

7

8

9

1

23

45
6

7

8

9

1

23

45
6

7

8

9

1

23

45
6

7

8

9

1

23

45
6

7

8

9

1

23

45
6

7

8

9

1

23

45
6

7

8

9

1

23

45
6

7

8

9

1

23

45
6

7

8

9

1

23

45
6

7

8

9

1

23

45
6

7

8

9

1

23

45
6

7

8

9

1

23

45
6

7

8

9

1

23

45
6

7

8

9

1

23

45
6

7

8

9

1

23

45
6

7

8

9

UMAP 1

U
M

AP
 2

UMAP 1

U
M

AP
 2

Diagnosis

Relapse

1 2

3

4

5

6

7

1 2

3

4

5

6

7

1 2

3

4

5

6

7

1 2

3

4

5

6

7

1 2

3

4

5

6

7

1 2

3

4

5

6

7

1 2

3

4

5

6

7

1 2

3

4

5

6

7

1 2

3

4

5

6

7

1 2

3

4

5

6

7

1 2

3

4

5

6

7

1 2

3

4

5

6

7

1 2

3

4

5

6

7

1 2

3

4

5

6

7

1 2

3

4

5

6

7

1 2

3

4

5

6

7

1 2

3

4

5

6

7

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

UMAP 1

U
M

AP
 2

UMAP 1

U
M

AP
 2

Diagnosis

Relapse

cluster
C1
C2

C3
C4

C5
C6

C7

SU360 SU892

SU360 SU892SU142 SU484

c. d.

C8
C9
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A relapse-like epigenetic signature is present at diagnosis in relapse-
fated AML
The finding that certain diagnosis clones display relapse-like epigenetic states raises the possibility 
that specific epigenetic signatures may be selected for during therapy. To further determine whether 
cellular subsets at diagnosis harbored relapse-like epigenetic states, we scored each cell from our 
single-cell ATAC-seq data using the relapse signature determined from our clonally stable bulk 
ATAC-seq cohort (Figure 2f), and evaluated if it was enriched in any diagnosis cells (Figure 4e). As 
expected, relapse cells in patients SU360, SU484, and SU892 were enriched for the relapse signature 
to a significantly greater degree than diagnosis cells. Notably, in these three cases, subpopulations 
of cells were identified at diagnosis that harbored the relapse signature at levels comparable to the 
relapse cells. These results suggest that intercellular epigenetic heterogeneity and evolution may be 
mechanisms contributing to relapsed AML.

Single-cell ATAC-seq reveals relapsed AML cell state evolution
Next, we sought to determine how AML differentiation states changed at relapse at the single-cell 
level. We utilized latent semantic index projection to map AML scATAC-seq data onto a reference 
constructed from healthy hematopoietic cell scATAC data (Figure 4—figure supplement 2a and b). 
Each AML cell was classified based on the healthy hematopoietic cell type to which it mapped closest 
in epigenetic space according to this projection. We found that the differentiation status of each AML 
sample broadly reflected the results obtained from our analyses of bulk AML profiles (Figure 4—figure 
supplement 2c–d). However, single-cell mapping allowed for a significantly more granular identifica-
tion of the differentiation status for all AML subpopulations in each sample. Significantly, the differen-
tiation status as determined by the closest normal cell type changed substantially at relapse with cells 
either becoming more HSPC-like or mapping to a different hematopoietic lineage altogether. Consis-
tent with our bulk data and with what we expected for a myeloid disease, patient SU484 mapped 
to the myeloid compartment at diagnosis, and at relapse became substantially more immature with 
most relapse cells becoming CMP/LMPP-like (Figure 4—figure supplement 2e). Patient SU892 diag-
nosis cells also largely mapped to the myeloid lineage, but the relapse cells interestingly appeared 
to project onto more dendritic/basophil and erythroid-like states, perhaps reflecting an overall more 
neomorphic relapsed cell state than could be mapped onto one cell-type (Figure 4—figure supple-
ment 2f). Interestingly, case SU360 showed substantial epigenetic differences between diagnosis and 
relapse when comparing global AML profiles in both the bulk and single-cell data with an increase in 
the fraction of cells mapping to the DC/Basophil-like compartment (Figure 4—figure supplement 
2d). Altogether, these data show that the epigenetic-based lineage status of AML subpopulations 
can change dramatically at relapse and that modulation of cell-type specific epigenetic programs is 
associated with relapse.

Mitochondrial single-cell ATAC-seq reveals intracellular and convergent 
evolution in mutationally stable AML at relapse
Our initial single-cell ATAC-seq experiments provided evidence that there was substantial epigenetic 
change within, and possible selection of, AML subclones unrelated to somatic mutation change. To 
definitively identify the subclonal chromatin changes occurring within these subpopulations at relapse, 
we employed mitochondrial single-cell ATAC-seq (mtscATAC-seq), a technique which leverages 
genetic variants accumulating naturally within the mitochondrial genome as an endogenous barcode 
to track cell populations while simultaneously capturing their chromatin accessibility profile (Lareau 
et  al., 2021). We performed mtscATAC-seq on the 10  X Chromium platform using FACS-purified 

patient samples showing heat signature for Stable sample relapse ATAC-seq signature (from Figure 2). Inset UMAP shows cells colored according to 
diagnosis or relapse samples. Overall relapse score for each sample is quantified in plots at the bottom.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Single-cell SNN clusters and between-cluster epigenetic similarities.

Figure supplement 2. Projection of AML scATAC samples to healthy hematopoietic single-cell manifold demonstrates shifts in epigenetic 
differentiation states at relapse.

Figure 4 continued

https://doi.org/10.7554/eLife.93019
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AML blasts from the four patients interrogated above. With this method, we were able to link AML 
subclones defined by mitochondrial mutations (henceforth referred to as ‘mitoclones’) between diag-
nosis and relapse, evaluate clonal dynamics, and identify epigenetic differences between mitoclones 
within and between timepoints (Figure 5a). Importantly, these mitoclones were identified agnostic of 
any somatic mutations previously characterized in these samples, allowing for the unbiased evaluation 
of subclonal dynamics in samples with no significant change in driver mutational profile at relapse. 
Additionally, the ability of this methodology to accurately identify mitochondrial variants and mito-
clones as well as compare epigenetic differences between these clones has been previously validated 
(Lareau et al., 2021; Rückert et al., 2022).

The genomically stable AML cases evaluated in our study showed some level of subclonal hetero-
geneity in their respective mitoclones. In samples SU142, SU360, and SU892, 95% of the AML cells at 
diagnosis and relapse constituted 3–4 mitoclones (Figure 5b). Reconstruction of mitoclone evolution 
during therapy showed that at relapse, mitoclone dynamics were stable with no significant change 
in the size of mitochondrially defined clones (Figure 5c). Importantly, many of the mitoclones were 
epigenetically distinct from one another at diagnosis, indicating that different epigenetic programs 
were active across these populations at diagnosis (Figure 5d).

To determine how epigenetic profiles changed between individual mitoclones at relapse, we calcu-
lated the global epigenetic similarity between all diagnosis mitoclones and separately, calculated the 
epigenetic similarity between all relapse mitoclones. In the genomically stable samples, there was a 
significant change in the bulk AML epigenetic profile at relapse, with relapse mitoclones overall clus-
tering separately from diagnosis mitoclones. Additionally, mitoclones at relapse were epigenetically 
more similar to each other than mitoclones at diagnosis in two of three stable samples evaluated 
(Figure 5d). When taken together, these two observations suggest that all relapse mitoclones evolve 
toward a distinct epigenetic state while also becoming epigenetically more similar to each other, 
demonstrating convergent epigenetic evolution in these populations.

We further evaluated epigenetic change across all genomic features between specific mitoclones. 
In SU360, for example, mitoclone 1 and mitoclone 2, clones with distinct evolutionary origins, showed 
similar patterns of accessibility change at relapse (Figure  5—figure supplement 1a). These data 
support the idea that single AML cells give rise to lineage-biased and epigenetically distinct subclones 
that may contribute to resistance and relapse independent of genomic alterations. In addition, intra-
cellular epigenetic evolution can occur across AML subclones with convergent epigenetic evolution of 
distinct AML clones in patients with stable genomic profiles at relapse.

Mitochondrial single-cell ATAC-seq reveals evolution of epigenetically 
distinct AML subpopulations at relapse
We further utilized mitochondrial tracing to profile the clonal and epigenetic profile of SU484, a case 
in which a FLT3 point mutation detected at diagnosis was lost and a FLT3-internal tandem duplication 
(ITD) was gained at relapse. While the stable samples profiled had relatively simple mitochondrial 
clonal heterogeneity, clonal structure was considerably more complex in SU484. We identified 12 
mitoclones that underwent various levels of selection, elimination, and outgrowth, and which had 
distinctive epigenetic profiles at both diagnosis and relapse, reflecting a subclonal heterogeneity not 
evident through the investigation of somatic driver mutations and their dynamics (Figure 5—figure 
supplement 1b–d). Mitoclone 2, present at a frequency of 0.2% at diagnosis was selected, making up 
36% of the AML cells at relapse, reflecting the selection of a clone likely associated with the FLT3-ITD 
driver mutation (Figure 5—figure supplement 1c). The small number of detectable mitoclone 2 cells 
at diagnosis were epigenetically distinct from other clones, suggesting that this clone contained a 
more favorable epigenetic state amenable to selection following therapy (Figure 5—figure supple-
ment 1d). At relapse, mitoclone 2 cells became epigenetically distinct from mitoclone 2 cells at diag-
nosis, indicating that there was both selection for and evolution of this clone during therapy. On the 
other hand, several diagnosis mitoclones in SU484 appeared to undergo negative selection including 
mitoclones 1, 3, and 4 (Figure 5—figure supplement 1c). While these ‘unfit’ clones were distinct in 
their origins, they contained similar epigenetic profiles at diagnosis associated with their elimination 
at relapse (Figure 5—figure supplement 1d).

To further explore epigenetic differences between mitoclones, we mapped SU484 cells to the 
healthy hematopoietic reference and identified the closest normal cell type for different clones. 

https://doi.org/10.7554/eLife.93019
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Figure 5. Mitochondrial-based clonal tracing paired with single-cell chromatin accessibility in stable AMLs. (a) Scheme for sample processing and 
analysis of mitochondrial single-cell ATAC-seq (mtscATAC-seq). (b) Heatmap of mitochondrial variant heteroplasmy values across all single cells for each 
genomically stable sample. Only variants passing filtering criteria are shown. Cells are ordered based on the cluster they are assigned to. (c) Fishplots of 
inferred mitochondrial clone evolution at diagnosis and relapse based on mitochondrial cluster frequencies in (B). (d) Heatmap of epigenetic similarity 
across all major mitoclones for each sample (left). Boxplot of inter-clone epigenetic similarity at diagnosis and relapse (means compared using unpaired 
student’s t-test) (right).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Mitochondrial-based clonal tracing paired with single -cell chromatin accessibility in a genetically non-stable AML.

Figure 5 continued on next page
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Strikingly, certain clone-defining mitochondrial variants were lineage biased. In SU484, one mito-
chondrial clone/variant was restricted to the myeloid compartment while others were distinctly 
progenitor-like (Figure 5—figure supplement 1e). Notably, mitoclone #2 that expanded at relapse 
was progenitor-like at diagnosis. In the stable samples with no mitoclone changes, mitoclones did not 
display lineage bias with diffuse mapping across multiple lineages in the hierarchy.

We additionally scored different mitoclones using our previously identified relapse signature and 
found that in all relapse samples, all clones displayed higher relapse-signature scores (Figure 5—
figure supplement 2). In addition, in SU484, clone 0 and 2 which survived and expanded at relapse 
respectively had epigenetic states at diagnosis with higher relapse scores relative to clones that were 
eliminated during therapy. These data indicate that certain epigenetically distinct clones may be 
primed to relapse. Overall, these results demonstrate that epigenetic factors contribute to resistance 
and relapse in bulk AML and within epigenetically defined subclones that persist into relapse.

Discussion
Relapsed AML remains a significant clinical challenge, and the mechanisms driving this disease state 
are incompletely understood. In this study, we found that many AML cases undergo no mutational 
evolution at relapse, suggesting alternative, non-genetic means that drive AML evolution during treat-
ment and after remission. Our genotyping and chromatin accessibility analysis of paired diagnosis and 
relapsed AML samples indicates that genomic evolution and epigenetic evolution are two intertwined, 
yet independent mechanisms contributing to relapse, with specific epigenetic alterations occurring 
commonly across genetically stable samples. These findings are consistent with a prior study that 
identified diversity in cytosine methylation change at AML relapse, independent of genetic evolution 
(Li et al., 2016). We further found that epigenetic changes are not a reflection of increased leukemia 
stem cell proportion at relapse but represent alterations in regulatory sequences occurring across all 
subpopulations in the AML hierarchy. Single-cell ATAC-seq and analysis of mitoclones in diagnosis 
and relapse cell populations shows that convergent intracellular evolution occurs, with distinct mito-
clones developing similar epigenetic features at relapse. This information further underscores the 
importance of the role of epigenetic factors in the clinical progression and pathogenesis of leukemia. 
Further and larger scale studies will need to be conducted to link specific mutational profiles with 
epigenetic alterations and clonal evolutionary patterns to understand the molecular mechanisms of 
AML relapse and guide future diagnostic tools and therapies.

Leukemia stem cells (LSCs) have long been thought of as a potential reservoir for relapse after 
clinical remission (Dick, 2005; Thomas and Majeti, 2017; Jordan, 2007). Our data indicates that 
epigenetic changes occurring in LSCs contribute significantly to the overall epigenetic evolution 
taking place in each AML, likely driving the observed resistance and relapse of these cases. Interest-
ingly, the LSC-enriched cells we investigated exhibited epigenetic stability between the diagnosis 
and relapse, suggesting that while non-LSC epigenetic changes are derived from changes occurring 
in stem cells, the LSC-enriched cells may indeed represent a latent population contributing to even-
tual relapse (Shlush et al., 2017; Parkin et al., 2017). Our gene score data further suggests that 
these cells acquired inflammatory genetic programs at relapse, consistent with past reports of residual 
relapse-prone cells induced by chemotherapy (Duy et al., 2021). Further studies involving remission 
samples and epigenetic analysis of latent LSC populations across disease states could clarify the role 
of these cells in the initiation of AML relapse.

Single-cell mitochondrial ATAC-seq demonstrated that during chemotherapy, the AML as a whole 
evolves, with all populations changing their epigenetic state to occupy a distinct chromatin profile. 
At the same time, relapse mitoclones became epigenetically more similar to each other after chemo-
therapy in multiple samples, revealing a pattern of epigenetic convergent evolution. This is consistent 
with the idea of specific epigenetic traits and pathways being selected for during therapy, demon-
strated by our bulk ATAC-seq data. These findings demonstrate that epigenetic evolution occurs in 
similar ways across genomically stable AMLs and that within these AMLs, epigenetic selection results 
in the convergence of global epigenetic states across clones.

Figure supplement 2. Clone-specific epigenetic relapse scores at diagnosis and relapse timepoints.

Figure 5 continued
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The stable cases in our relapsed AML cohort exhibited a shared chromatin accessibility signa-
ture, suggesting the existence of a favorable epigenetic state contributing to eventual relapse which 
reflected activation of cell cycle gene pathways and DNA damage response. Based on this bulk 
ATAC-seq data, we hypothesized that epigenetic evolution could occur via different clonal mecha-
nisms: either intercellular epigenetic evolution, wherein epigenetic cell clones with fixed chromatin 
states could be selected for at relapse, or intracellular epigenetic evolution, whereby cell popula-
tions across the entire AML adopt similar alterations in chromatin accessibility that permit survival 
and chemoresistance. Our single-cell ATAC sequencing data demonstrated that in some patients, 
epigenetically defined subpopulations of AML cells are selected for during therapy based on their 
epigenetic similarity to relapse epigenetic states, independent of genomic stability. In addition, our 
mitochondrial tracing data revealed that the mitoclones in the genetically stable AMLs were stable 
and did not demonstrate the selection of specific mitochondrial clones at relapse. We hypothesize 
that the selection of epigenetically defined clones is not detected by mitochondrial tracing since the 
AMLs analyzed in this study relapsed over the course of months and that there may not have been 
time for mitochondrial variants to accumulate in the epigenetically defined clones that were selected 
for at relapse in the stable samples.

Notably, we performed mitochondrial tracing in one genetically non-stable sample and found 
that there was substantial selection for and against multiple mitoclones in this sample. Although this 
represents a single AML, when considered alongside the stable samples, our data is consistent with 
the idea that mitochondrial variant heteroplasmy and dynamics capture AML evolution over longer 
periods of time and their stability is independent of the selection for epigenetic states or clones that 
occurs during shorter periods of time. In addition, the stability of mitoclones at relapse in the stable 
samples is consistent with the findings from our genetic studies that showed clonal stability, indicating 
that the samples we classified as stable in our study truly did not acquire or lose genetically defined 
clones during therapy and that our genetic studies were adequately powered to classify samples into 
clonal groups.

Several mechanisms could account for the epigenetic plasticity reported in many of the AML 
relapse patients from this study. Virtually all the samples queried here harbored mutations in epigen-
etic modifiers regulating chromatin, such as DNA methylation, histone methylation, or transcription 
factors such as RUNX1, reflecting the known landscape of epigenetic disruption by recurrent muta-
tions in AML. It is possible that the altered chromatin state conferred by the loss of function of these 
regulators creates a permissive epigenetic state, allowing a ‘flexibility’ of the epigenome taken advan-
tage of by cancer cells to grant an evolutionary growth or survival advantage, as has been previously 
postulated (Corces and Corces, 2016). Several studies in the past have highlighted the importance 
of the non-coding regulatory genome in leukemia, and cancer generally (Li et al., 2020; Zhang and 
Meyerson, 2020). We additionally hypothesize that since shorter time to relapse was associated with 
stable relapses, a lack of genomic evolution at relapse may result from a lack of time for mutations 
to accumulate and clonally expand. Alternatively, the shorter time to relapse in stable AMLs may be 
due to inherently more aggressive disease in these cases. The data reported here further reinforce the 
utility of chromatin accessibility as a readout for cell identity and epigenetic landscape. Future anal-
ysis of epigenetic mechanisms of relapsed AML will require the analysis of chromatin modifications, 
including DNA (hydroxy)methylation and histone marks, to specifically characterize the modification 
of gene regulatory sequences and specific pathways driving epigenetic evolution at different stages 
of leukemia and tumorigenesis.

The diversity of clonal evolutionary patterns characterized by our single-cell data highlights the 
challenge of developing novel therapeutics for, and curing, relapsed leukemia. Although we identify 
a broadly relapse-specific chromatin signature for mutationally stable samples, we note that there 
remains striking heterogeneity between patients in the dynamics by which various leukemic clones 
grow or recede at relapse. Our data also suggests mutational evolution and epigenetic evolution are 
connected, yet ultimately separate phenomena, as we observed several samples where one process 
appears to occur in the absence of the other. Moreover, we also identify several patients where 
there is little apparent clonal evolution, either via genetic variant marks or epigenetic configuration, 
begging the question of how these cases gain the ability to relapse. Additionally, other cell-extrinsic 
factors, interactions with the immune system and/or microenvironment, metabolic pathways, or other 
processes not made apparent through our analysis may have provided additional factors contributing 

https://doi.org/10.7554/eLife.93019
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to relapse. Future efforts to detail the cellular mechanisms of relapse and identify therapeutic avenues 
will likely require analyzing patient-specific mutations or epigenome-specific chromatin features to 
combat relapsed cell clones. Altogether, this study demonstrates the heterogeneity and importance 
of epigenetic evolutionary mechanisms including convergent evolution in the relapse of AML.

Methods
Relapsed AML genomic meta-analysis
A PubMed literature search was performed to identify papers studying mutational profiles in relapsed 
AML samples. Studies were screened manually and included in the meta-analysis if paired AML 
samples from both diagnosis and relapse timepoints were profiled, next generation sequencing was 
utilized, and raw or processed sequencing as well as clinical data were publicly available. After inclu-
sion and exclusion, a total of seven studies were identified which contained paired diagnosis-relapse 
genotyping data from a total of 312 AML patients.

Mutation and clinical data from all studies was standardized and collated using R for further anal-
yses and patients were filtered out of the cohort if data was not available to evaluate mutation VAFs 
at both diagnosis and relapse. After filtering, the cohort consisted of 216 patients which were used in 
further analysis. Gene name, variant allele frequency, and genomic location were consolidated for all 
reported mutations for each study. Age, sex, ELN risk stratification, AML type (de novo vs secondary), 
days to relapse, and karyotype were consolidated for each patient when available. We utilized an 
approach previously described in multiple other studies to define the gain and loss of mutations at 
relapse (Greif et al., 2018; Parkin et al., 2013; Rothenberg-Thurley et al., 2018; Stratmann et al., 
2021). Mutations were defined as ‘gained’ if the VAF went from below 0.05 to above 0.1 between 
diagnosis and relapse timepoints. Mutations were defined as ‘lost’ if the VAF went from above 0.1 
to below 0.05 between diagnosis and relapse. All other mutations were classified as ‘stable’. Impor-
tantly, all studies utilized in the meta-analysis had detection cutoffs at or below 0.05, allowing us to 
standardize the classification of mutations into gained, lost, and stable categories. For mutations with 
non-quantifiable VAFs (FLT3 ITD and NPM1 insertions), mutations were classified as either absent or 
present based on the analytical methods used in the associated studies.

The combined meta-analysis dataset was then utilized for downstream analyses. The ‘oncoprint’ 
mutation map was generated using custom scripts and the ComplexHeatmap package in R. The 
ternary plot for mutation visualization was generated using a modified oncoprint matrix data file (avail-
able in supplement) and the Ternary package in R. Relapse free survival between genomically ‘stable’ 
and ‘unstable’ cases was compared using Kaplan-Meier analysis; significance was determined using 
cox proportional hazards analysis using age and sex as covariates in the model (R packages survival 
and survminer).

Human AML samples
Human AML samples were obtained and banked from patients at the Stanford Medical Center with 
informed consent, according to institutional review board (IRB)-approved protocols (Stanford IRB, 
18329 and 6453). Patients were consented for sample collection and consent to publish was obtained 
at the time of sample collection. This study was performed per the IRBs using the sample bank. Thus, 
for this study, there was no direct contact with patients and no additional procedures. Mononuclear 
cells from each sample were isolated by Ficoll separation, resuspended in 90% FBS +10% DMSO, and 
cryopreserved in liquid nitrogen. All analyses conducted here on AML cells used freshly thawed cells.

Cell sorting
Cell samples were first thawed and incubated at 37 °C with 200 U/mL DNase in IMDM +10% FBS. 
To enrich for CD34 + cells, magnetic bead separation was performed using MACS beads (Miltenyi 
Biotech) according to the manufacturer’s protocol.

For cell staining and sorting, the following antibody cocktail was used with the sorting schemes 
shown in Figures 2A, 3A and 5A for respective cell type and library preparation:

•	 CD34-APC, clone 581, Biolegend, at 1:50 dilution.
•	 CD38-PE-Cy7, clone HB7, Biolegend, 1:25 dilution.
•	 CD19-PE-Cy5, clone H1B9, BD Biosciences, 1:50 dilution

https://doi.org/10.7554/eLife.93019
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•	 CD20-PE-Cy5, clone 2H7, BD Biosciences, 1:50 dilution
•	 CD3-APC-Cy7, clone SK7, BD Biosciences, 1:25 dilution
•	 CD99-FITC, clone TU12, BD Biosciences, 1:20 dilution
•	 TIM3-PE, clone 344823, R and D Systems, 1:20 dilution
•	 CD45-KromeOrange, clone J.33, Beckman Coulter at 1:25 dilution

Samples were sorted using a Becton Dickinson FACS Aria II. AML blasts were resuspended and 
kept in cold FACS buffer containing 1 ug/mL propidium iodide prior to and after sorting. Cells were 
then immediately prepared for downstream processing.

Targeted genome sequencing
Targeted next generation sequencing (NGS) was performed using commercially available reagents 
according to the manufacturer’s specifications. Briefly, purified genomic DNA was sheared using 
a Covaris S220 instrument to 250  bp fragments, end repair and adapter ligation was performed 
using the Celero DNA-Seq kit (Tecan Genomics, Redwood City, CA, USA) and hybrid capture was 
performed using the xGen AML Cancer Panel (IDT, Coralville, IA, USA). Libraries were sequenced on 
the Illumina HiSeq platform. Variant calling was performed using an established pipeline in the Majeti 
Lab as described below. Briefly, after quality control and read trimming, reads were aligned to the 
hg38 reference genome using BWA-MEM Li and Durbin, 2009, sorted, indexed and de-duplicated 
using SAMTools Li et al., 2009 and Picard (http://broadinstitute.github.io/picard); RRID:SCR_006525, 
Version: 2.23.9, respectively. Variants were called using Mutect2 (Cibulskis et al., 2013), VarScan2 
(Koboldt et al., 2012) and VarDict (Lai et al., 2016) in parallel. Only variants called by ≥ 2 callers 
were retained and annotated using SnpEff (Cingolani et al., 2012). Called variants were then used to 
determine major mutational shifts between disease states; ‘major clone’ mutations were defined as 
mutations having a detected average variant allele frequency of greater than 5%. Mutations were also 
categorized according to known disease relevance by sorting into three ‘tiers’: Tier 1 mutations known 
to play a role in AML and hematologic malignancies, Tier 2 mutations with known or potential onco-
genic activity, and Tier 3, synonymous variants or variants of unknown significance. Tier 3 variants were 
filtered out prior to evaluating genomic evolution at relapse. All mutations were manually reviewed 
using IGV to visualize bam files for validation and verification of pathogenicity.

Bulk ATAC-seq library preparation and sequencing
Sorted AML blasts were prepared for ATAC-seq as previously described (Corces et al., 2017). A total 
of 5000–50,000 cells were washed in cold FACS buffer and spun at 4 °C for 5 min at 500 rcf in a fix-
angled centrifuge. Cell pellets were then resuspended in 50 µL of ATAC-seq resuspension buffer (RSB: 
10 mM Tris-HCl pH 7.4, 10 mM NaCl, and 3 mM MgCl2 in water) with 0.1% NP40, 0.01% digitonin, 
and 0.1% Tween-20 and incubated on ice for three minutes. After lysis, 1 mL of ATAC-seq RSB with 
0.1% Tween-20 was added and tubes were inverted six times to mix. Isolated nuclei were then spun at 
4 °C for 10 min at 500 rcf in a fix-angled centrifuge. Supernatant was removed and nuclei were resus-
pended in 50 µL transposition mix (25 uL 2xTD buffer, 2.5 µL Tn5 transposase (100 nM final), 16.5 µL 
PBS, 0.5 µL 1% digitonin, 0.5 µL 10% Tween-20, and 5 L nucµlease-free water). Transposition reac-
tions were incubated at 37 °C for 30 min in a thermomixer with shaking at 1000 rpm. Reactions were 
cleaned up using Qiagen MinElute Reaction Cleanup kits and processed as previously described. All 
libraries were amplified with a target concentration of 20 μl at 4 nM, which is equivalent to 80 femto-
moles of product. All libraries were sequenced on an Illumina NextSeq with 75 bp paired end reads.

Bulk ATAC-seq pre-processing, peak calling and merging, and count 
matrix generation
ATAC-sea data was processed based on workflows similar to Corces et al., 2018. First, read trimming 
and quality control was performed using trim_galore using default parameters. Reads were aligned 
to the GRCh38 reference genome using bowtie2 and the --very-sensitive option. Aligned reads 
were converted to bam format and sorted using SAMtools, and deduplicated using Picard MarkDu-
plicates. Reads were subsequently indexed and mitochondrial reads were removed using SAMTools. 
TagAlign bed files from technical replicate libraries were generated using bedtools, shifted to find 
ATAC-seq cut sites, and pooled. Peaks were called using MACS2 using p-value cut-off of 0.01 and 
peaks falling within black list regions (https://sites.google.com/site/anshulkundaje/projects/blacklists) 
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were removed. A consensus peak set was generated using methods from Corces et al., 2018. Briefly, 
called peaks were merged by merging all peak bed files and using an iterative removal process to 
resolve overlapping peaks. This approach resulted in a consensus set of 115,551 500 bp fixed-width 
peaks covering accessible regions represented in at least two or more samples. Count matrices were 
generated using the consensus peak set, and the number of Tn5 cut sites in each peak were calculated 
using the CountOverlaps function from the GenomicRanges package in R.

Diagnosis vs relapse chromatin similarity
Global chromatin similarity between diagnosis and relapse samples for each patient was calculated by 
first averaging the peaks counts per million vector between replicates across all samples and taking 
the pearson-product moment correlation between diagnosis and relapse timepoints. This approach 
was utilized for both bulk AML ATAC-seq samples and LSC-enriched ATAC-seq samples.

Gene accessibility scores
Accessibility scores were generated across all genes across all samples utilizing an approach previ-
ously described in Granja et al., 2021 which was shown to estimate the expression levels of a gene 
more faithfully than other methods (Granja et  al., 2021). Using the ArchR approach, a 5  kb tile 
matrix was utilized and for each gene, tiles falling within TSS-5kb to TTS were assigned a weight 
of 1+e^–1, and flanking tiles were assigned a weight using an exponential decay model of e^(-
abs(distance)/5000)+e^–1. Tiles were assigned a weight of 0 if they ran into adjacent genes or if they 
were >20,000 bp from the gene. Tn5 insertions were normalized per tile, and summed per gene to 
generate a gene accessibility score. These scores were then used to generate a gene accessibility 
score matrix which was utilized in subsequent analyses.

Differential accessibility
Differential accessibility analysis was performed using the Tn5 cut sites per peak matrix or gene acces-
sibility scores matrix. Raw count matrices were utilized as input to the DESeq2 model for this purpose. 
The DESeq model was used with default parameters to normalize the data and perform differential 
accessibility analysis across all features. Differential accessibility was performed across stable samples 
between diagnosis and relapse timepoints using patient labels as covariates to control for between 
patient differences.

Chromatin accessibility gene set enrichment analysis
Gene set enrichment analysis was performed using the GSEA Mac App v4.2.3 (Broad Institute, 
Inc) and the fgsea R package using a gene accessibility score matrix described above pre-ranked 
according to relapse vs diagnosis ATAC gene accessibility log fold change. Results were filtered by 
p-adjusted <0.05.

Bulk projection to healthy hematopoietic reference
To map bulk AML ATACseq samples to a healthy single cell reference and determine closest normal 
cell types, we utilized an approach from Granja et  al., 2019. This approach involved the genera-
tion of pseudo-single cell ATACseq samples from bulk samples and the utilization of latent semantic 
indexing to project these pseudo-single cell libraries to the healthy reference. Briefly, pseudo-single 
cell samples were generated for each bulk ATAC sample by sampling reads to generate 250 pseudo-
single cells per sample. These pseudo-single cell samples were then subjected to LSI and projection 
to the healthy hematopoietic reference. For full details, see ‘Projection to healthy hematopoietic 
reference’ below, and Granja et al., 2019.

Leukemia stem cell chromatin accessibility analysis
ATACseq data from sorted LSC-enriched cell populations was processed in a similar way as the bulk 
AML cells (described above).

10X single-cell ATAC-seq
Sorted AML blasts were prepared with 10 X Genomics Chromium Single Cell ATAC Kit v1.1 according 
to the manufacturer’s specifications. Samples were uniquely barcoded and quantified using an Agilent 
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BioAnalyzer 2100 or a KAPA qPCR quantification kit. Sample libraries were loaded onto an Illumina 
NovaSeq and sequenced with 50x8 × 16 x50 read configuration with an average of 25,000 paired end 
reads per single cell.

scATAC-seq analysis
scATAC-seq data was processed using a combination of cellranger, ArchR, and custom analysis scripts 
described below. All analysis was performed in R version 4.0.5 unless otherwise specified.

Data processing, dimensional reduction, and data filtering
scATAC fastq files were processed using the cellranger pipeline with standard parameters. Fragment 
files from cellranger were processed with the ArchR software to generate Arrow files using the create-
ArrowFiles function for each single-cell sample which were subsequently stored locally for down-
stream processing. Using ArchR, doublet scores were assigned to each cell and cells deemed to be 
doublets by ArchR were removed from all samples. Next, latent semantic indexing, batch correction, 
and clustering were performed using the ArchR functions addIterativeLSI, addHarmony, and addClus-
ters functions, respectively.

To visualize the accessibility of specific genes across cells, we utilized the ArchR function addGene-
ScoreMatrix to generate a gene accessibility score matrix for each sample. These matrices were used 
in downstream analyses to visualize and quantify gene-specific chromatin accessibility. Samples in 
the study were visualized using UMAP dimensional reduction which was performed using the ArchR 
addUMAP function and default parameters. Upon visualization of clusters, we observed that for three 
of four samples, there existed a low percentage of cells that clustered separately from the bulk of AML 
cells. We hypothesized that these differences were biologically relevant or were caused by residual 
healthy immune cells captured and sequenced during sample preparation. To test this, we quantified 
and visualized the accessibility of genes shown to be highly expressed in T cell (CD89, TLR4, GZMA, 
CD247), B cell (TCL1, CD37), monocyte (CD209), and other cell subsets. Clusters that exhibited high 
accessibility of these genes which were overall epigenetically dissimilar to the bulk of the sample were 
filtered and excluded from downstream analysis as they were deemed to be residual contaminating 
healthy immune cells.

Projection to healthy hematopoietic reference
In order to identify the closest normal celltypes associated with cells in the AML single cell ATACseq 
data, we used an approach from Granja et al., 2019 which involves Latent Semantic Indexing (LSI) 
and projection of the sparse single cell data onto a single cell ATACseq manifold derived from healthy 
hematopoietic cell types (Granja et al., 2019). This approach ultimately results in a low dimensional 
representation of both the healthy hematopoietic reference data as well as the AML single cell ATAC 
data through which the projection can be visualized and the closest normal cell type for each AML cell 
can be calculated. For full details of analysis, please see the codebase for this manuscript or Granja 
et al., 2019.

Following the application of LSI, dimensional reduction was further performed using the UMAP 
algorithm as described in Granja et al. The output of the UMAP projection was used to visualize the 
AML cells alongside the healthy hematopoietic scATAC reference. To classify AML cells based on their 
nearest healthy hematopoietic neighbors in epigenetic space, we used the LSI dimensional reduction 
output from both healthy and diseased cell states and classified each disease cell based on the top 10 
healthy cells that it was closest to in LSI space using the knn function in the class package in R. These 
classifications were then used for visualization and quantification of the overall differentiation status 
and closest normal cell types for each cell and overall AML for each sample.

Relapse chromatin score
We generated a ‘relapse chromatin score’ for each cell evaluated using scATACseq in the study to 
determine how ‘relapse-like’ each cell was and whether there was variability in relapse-like states 
within samples. To generate a relapse score for each cell, we utilized the addFeatureCounts function 
from ArchR to sum the ATAC enrichment across the top 500 genes in our relapse signature derived 
from the bulk stable samples (analysis shown in Figure 2). We then subtracted from this value the sum 
of the bottom 500 genes from the same relapse signature. This resulted in a single numerical value 
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per cell with higher values indicating that the cell contained an epigenetic state more similar to bulk 
relapse samples and less similar to diagnosis relapse samples. We then visualized and quantified these 
values across all cells and samples evaluated in the study.

mtscATAC-seq
Library preparation and sequencing
Mitochondrial single-cell ATAC-seq was performed as previously described (Lareau et  al., 2021). 
Modifications were made to the 10  X Single-cell ATAC-seq protocol to accommodate capture of 
mitochondrial reads: briefly, freshly sorted AML blast cells were washed in PBS and fixed in 1% formal-
dehyde in PBS for 10 min at room temperature. Fixation was quenched with glycine to a final concen-
tration 0.125 M, then washed twice in PBS and spun at 400 × g for 5 min in a fixed-angle centrifuge 
at 4 °C. Cells were then treated with a gentle lysis buffer consisting of 10  mM Tris-HCl pH 7.4, 10  mM 
NaCl, 3  mM MgCl2, 0.1% NP40, and 1% BSA for 3  min on ice, then 1  ml of chilled wash buffer (10  mM 
Tris-HCl pH 7.4, 10  mM NaCl, 3  mM MgCl2, 1% BSA) and mixed by inversion before centrifugation. 
Cells were then processed with 10 X Chromium Single Cell ATAC Kit v1.1 according to the manufac-
turer’s protocol. Samples were uniquely barcoded and quantified using an Agilent BioAnalyzer 2100. 
Sample libraries were loaded onto an Illumina NovaSeq and sequenced with 50x8 × 16 x50 read 
configuration with an average of 25,000 paired end reads per single cell.

mt-scATAC-seq analysis mgatk variant heteroplasmy identification
Raw sequencing reads were demultiplexed using CellRanger-ATAC mkfastq and aligned to the host 
reference genome using CellRanger-ATAC v2.0 with default settings. Somatic mitochondrial DNA 
mutations were called using the mgatk software v0.6.2 using the `tenx` mode and the default param-
eters. Somatic mutations used for mitoclone analyses were determined from the default output of the 
mgatk workflow, including the variantStats file and subsequently clustering the per-mutation, per-cell 
heteroplasmy matrix.

Clone and evolution hierarchy identification
Mitochondrial clones were identified as previously described in Lareau et al., 2021. First, mitochon-
drial variants were filtered based on heuristics previously described in Lareau et al. Variants were 
deemed high quality if the number of cells the variant was detected in was greater than 3, strand 
correlation during sequencing was greater than 65%, and mean coverage at the locus was greater 
than 10 reads. The variants which passed filtering were manually extracted and used in subsequent 
steps. Next, these variants were read into a variant by cell matrix containing heteroplasmy values 
for each variant in each cell. This matrix was then binarized and the seuratSNN function from the R 
package Seurat was used to cluster the matrix and identify unsupervised clusters of cells grouped by 
their mitochondrial variants. Clustering resolution was manually selected as previously described. The 
average heteroplasmy for each variant in each cluster was inspected to verify that clusters were not 
primarily driven by low heteroplasmy variants. The clonal hierarchy for each sample was determined 
manually by building a clonal evolution tree based on shared and exclusive mitochondrial variants 
across all clusters for each sample. The resulting hierarchy and corresponding mito-clone frequencies 
were plotted using the fishplot package in R.

Mitoclone projection
Cells were projected to the healthy hematopoietic reference as described above. Mitochondrial vari-
ants were then mapped to the projection plot to display the differentiation status of cells containing 
various mitochondrial variants.

Clone chromatin similarity
Clone similarity was calculated by generating a pseudo-bulk ATACseq sample for each cluster and 
then taking the pearson-product moment correlation across all peaks between pairs of clusters. This 
process was performed between all diagnosis clusters and all relapse clusters independently, and the 
resulting inter-time point similarities were compared between diagnosis and relapse for each sample.
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