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eLife assessment
This manuscript is an important contribution, assessing the role of intraspecific consumer interfer-
ence in maintaining diversity using a mathematical model. Consistent with long-standing ecolog-
ical theory, the authors convincingly show that predator interference allows for the coexistence 
of multiple species on a single resource, beyond the competitive exclusion principle. Notably, the 
model matches observed rank-abundance curves in several natural ecosystems.

Abstract Explaining biodiversity is a fundamental issue in ecology. A long-standing puzzle lies 
in the paradox of the plankton: many species of plankton feeding on a limited variety of resources 
coexist, apparently flouting the competitive exclusion principle (CEP), which holds that the number 
of predator (consumer) species cannot exceed that of the resources at a steady state. Here, we 
present a mechanistic model and demonstrate that intraspecific interference among the consumers 
enables a plethora of consumer species to coexist at constant population densities with only one or 
a handful of resource species. This facilitated biodiversity is resistant to stochasticity, either with the 
stochastic simulation algorithm or individual-based modeling. Our model naturally explains the clas-
sical experiments that invalidate the CEP, quantitatively illustrates the universal S-shaped pattern of 
the rank-abundance curves across a wide range of ecological communities, and can be broadly used 
to resolve the mystery of biodiversity in many natural ecosystems.

Introduction
The most prominent feature of life on Earth is its remarkable species diversity: countless macro- and 
micro-species fill every corner on land and in the water (Pennisi, 2005; Hoorn et al., 2010; de Vargas 
et  al., 2015; Daniel, 2005). In tropical forests, thousands of plant and vertebrate species coexist 
(Hoorn et al., 2010). Within a gram of soil, the number of microbial species is estimated to be 2000–
18,000 (Daniel, 2005). In the photic zone of the world ocean, there are roughly 150,000 eukaryotic 
plankton species (de Vargas et al., 2015). Explaining this astonishing biodiversity is a major focus in 
ecology (Pennisi, 2005). A great challenge stems from the well-known competitive exclusion principle 
(CEP): two species competing for a single type of resources cannot coexist at constant population 
densities (Gause, 1934; Hardin, 1960), or generically, in the framework of consumer-resource models, 
the number of consumer species cannot exceed that of resources at a steady state (MacArthur and 
Levins, 1964; Levin, 1970; McGehee, 1977). On the contrary, in the paradox of plankton, a limited 
variety of resources supports hundreds or more coexisting species of phytoplankton (Hutchinson, 
1961). Then, how can plankton and many other organisms somehow liberate the constraint of CEP?

Ever since MacArthur and Levin proposed the classical mathematical proof for CEP in the 1960s 
(MacArthur and Levins, 1964), various mechanisms have been put forward to overcome the limits 
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set by CEP (Chesson, 2000). Some suggest that the system never approaches a steady state where 
the CEP applies, due to temporal variations (Hutchinson, 1961; Levins, 1979), spatial heterogeneity 
(Levin, 1974), or species’ self-organized dynamics (Koch, 1974; Huisman and Weissing, 1999). 
Others consider factors such as toxins (Czárán et  al., 2002), cross-feeding (Goyal and Maslov, 
2018; Goldford et al., 2018; Niehaus et al., 2019), spatial circulation (Villa Martín et al., 2020; 
Gupta et al., 2021), ‘kill the winner’ (Thingstad, 2000), pack hunting (Wang and Liu, 2020), collec-
tive behavior (Dalziel et al., 2021), metabolic trade-offs (Posfai et al., 2017; Weiner et al., 2019), 
co-evolution (Xue and Goldenfeld, 2017), and other complex interactions among the species 
(Beddington, 1975; DeAngelis et al., 1975; Arditi and Ginzburg, 1989; Kelsic et al., 2015; Grilli 
et al., 2017; Ratzke et al., 2020). However, questions remain as to what determines species diversity 
in nature, especially for quasi-well-mixed systems such as that of plankton (Pennisi, 2005; Sunagawa 
et al., 2020).

Among the proposed mechanisms, predator interference, specifically the pairwise encoun-
ters among consumer individuals, emerges as a potential solution to this issue. Predator interfer-
ence is commonly described by the classical Beddington-DeAngelis (B-D) phenomenological model 
(Beddington, 1975; DeAngelis et  al., 1975). Through the application of the B-D model, several 
studies (Cantrell et al., 2004; Hsu et al., 2013) have shown that intraspecific predator interference 
can break CEP and facilitate species coexistence. However, from a mechanistic perspective, the func-
tional response of the B-D model can be formally derived from a scenario solely involving chasing 
pairs, representing the consumption process between consumers and resources, without accounting 
for pairwise encounters among consumer individuals (Wang and Liu, 2020; Huisman and De Boer, 
1997). Disturbingly, it has been established that the scenario involving only chasing pairs is subject to 
the constraint of CEP (Wang and Liu, 2020), raising doubt regarding the validity of applying the B-D 
model to overcome the CEP.

eLife digest The surface waters of the ocean are teeming with microscopic creatures known as 
plankton, which get carried across vast distances by the currents. In a single ecosystem, thousands 
of plankton species may coexist, all competing for very few types of food sources. According to the 
principle of competitive exclusion, this should not be the case. Indeed, this theory states that the 
population levels of two species competing for the same resource cannot remain steady over time 
– or more generally, that the number of consumer species in an ecosystem cannot be higher than 
the number of resource types on which they rely. And yet, the Earth abounds with examples where a 
limited variety of resources supports a large number of competing yet coexisting consumer species. 
This is known as the paradox of the plankton.

Many models have been proposed to explain how the limitations set by the competitive exclusion 
principle can be overcome, yet it is still unknown how to resolve the paradox of the plankton in a 
steady environment. In response, Kang et al. set out to test whether a phenomenon known as pred-
ator interference, which emerges when two or more individuals of the same species compete for the 
same resources, could help address the paradox of the plankton.

To test this idea, Kang et al. developed a mathematical model of predator interference for multiple 
species of plankton feeding on a limited variety of food sources. The model put predators of the same 
species into encountering pairs to simulate predator interference. In this scenario, a wide range of 
predator species were able to live alongside each other with the numbers of each type of predator 
remaining steady over time.

These results can be understood as follows: as a species becomes more successful at extracting 
resources from its environment, its population grows – and with it, the number of individuals engaged 
in intraspecific interference. Locked in interference, these species become less effective at getting 
food, creating a negative feedback loop that slows down the expansion of the species, allowing 
others to occupy the same niche.

These findings may benefit ecologists and conservationists by offering insights into how to main-
tain biodiversity in ecosystems and protect endangered species. Further work is needed to test how 
well the model applies to other ecosystems.

https://doi.org/10.7554/eLife.93115
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In this work, building upon MacArthur’s consumer-resource model framework (Arthur, 1969; 
MacArthur, 1970; Chesson, 1990), and drawing on concepts from chemical reaction kinetics (Ruxton 
et al., 1992; Huisman and De Boer, 1997; Wang and Liu, 2020), we present a mechanistic model of 
predator interference that extends the B-D phenomenological model (Beddington, 1975; DeAngelis 
et al., 1975) by providing a detailed consideration of pairwise encounters. The intraspecific interfer-
ence among consumer individuals effectively constitutes a negative feedback loop, enabling a wide 
range of consumer species to coexist with only one or a few types of resources. The coexistence state 
is resistant to stochasticity and can hence be realized in practice. Our model is broadly applicable 
and can be used to explain biodiversity in many ecosystems. In particular, it naturally explains species 
coexistence in classical experiments that invalidate CEP (Ayala, 1969; Park, 1954) and quantitatively 
illustrates the S-shaped pattern of the rank-abundance curves in an extensive spectrum of ecological 
communities, ranging from the communities of ocean plankton worldwide (Fuhrman et al., 2008; 
Ser-Giacomi et al., 2018), tropical river fishes from Argentina (Cody and Smallwood, 1996), forest 
bats of Trinidad (Clarke et al., 2005), rainforest trees (Hubbell, 2001), birds (Terborgh et al., 1990; 
Martínez et al., 2023), butterflies (De Vries, 1997) in Amazonia, to those of desert bees (Hubbell, 
2001) in Utah and lizards from South Australia (Cody and Smallwood, 1996).

Results
A generic model of pairwise encounters
Here we present a mechanistic model of pairwise encounters (see Figure 1A), where ‍SC‍ consumer 
species ‍{C1, · · · , CSC }‍ compete for ‍SR‍ resource species ‍{R1, · · · , RSR }‍. The consumers are biotic, while 
the resources can be either biotic or abiotic. For simplicity, we assume that all species are motile 
and move at certain speeds, namely, ‍vCi‍ for consumer species ‍Ci‍ and ‍vRl‍ for resource species ‍Rl‍. For 
abiotic resources, they cannot propel themselves but may passively drift due to environmental factors. 
Each consumer is free to feed on one or multiple types of resources, while consumers do not directly 
interact with one another except through pairwise encounters.

Then, we explicitly consider the population structure of consumers and resources: some wander 
around freely, undergoing Brownian motions; others encounter one another, forming ephemeral 
entangled pairs. Specifically, when a consumer individual ‍Ci‍ and a resource ‍Rl‍ come close within 
a distance of ‍r

(C)
il ‍ (see Figure 1A), the consumer can chase the resource and form a chasing pair: 

‍C
(P)
i

∨
R(P)

l ‍ (see Figure 1B), where the superscript ‘(P)’ represents ‘pair’. The resource can either escape 
at rate ‍dil‍ or be caught and consumed by the consumer with rate ‍kil‍. Meanwhile, when a ‍Ci‍ individual 
encounters another consumer ‍Cj‍ within a distance of ‍r

(I)
ij ‍ (see Figure  1A), they can stare at, fight 

against, or play with each other, thus forming an interference pair: ‍C
(P)
i

∨
C(P)

j ‍ (see Figure 1B). This 
paired state is evanescent, with consumers separating at rate ‍d

′
ij‍. For simplicity, we assume that all ‍r

(C)
il ‍ 

and ‍r
(I)
ij ‍ are identical, respectively, that is ‍∀i, j, l‍, ‍r

(C)
il = r(C)

‍ and ‍r
(I)
ij = r(I)

‍.
In a well-mixed system of size ‍L2‍, the encounter rates among individuals, ‍ail‍ and ‍a

′
ij‍ (see 

Figure  1B), can be derived using the mean-field approximation: 
‍
ail = 2r(C)L−2

√
v2

Ci
+ v2

Rl ‍
 and 

‍
a′ij = 2r(I)L−2

√
v2

Ci
+ v2

Cj ‍
 (see Materials and methods, and Appendix 1—figure 1). Then, we proceed 

to analyze scenarios involving different types of pairwise encounters (see Figure 1B). For the scenario 
involving only chasing pairs, the population dynamics can be described as follows:

	﻿‍




ẋil = ailC
(F)
i R(F)

l − (dil + kil)xil,

Ċi =
SR∑
l=1

wilkilxil − DiCi, i = 1, · · · , SC,

Ṙl = gl({Rl}, {xi}, {Ci}), l = 1, · · · , SR,‍�

(1)

where ‍xil ≡ C(P)
i

∨
R(P)

l ‍, gl is an unspecified function, the superscript ‘(F)’ represents the freely wandering 
population, ‍Di‍ denotes the mortality rate of ‍Ci‍, and ‍wil‍ is the mass conversion ratio (Wang and Liu, 
2020) from resource ‍Rl‍ to consumer ‍Ci‍. With the integration of intraspecific predator interference, we 
combine Equation 1 and the following equation:

	﻿‍ ẏi = a′i[C
(F)
i ]2 − d′iyi,‍� (2)

https://doi.org/10.7554/eLife.93115
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Figure 1. A model of pairwise encounters may naturally break CEP. (A) A generic model of pairwise encounters involving ‍SC‍ consumer species and 

‍SR‍ resource species. (B) The well-mixed model of (A). (C–E) Time courses of two consumer species competing for one resource species. (F–H) Positive 
solutions to the steady-state equations (see Equations S38 and S65): ‍Ṙ = 0‍ (orange surface), ‍̇C1 = 0‍ (blue surface), ‍̇C2 = 0‍ (green surface), that is 
the zero-growth isoclines. The black/red dot represents the unstable/stable fixed point, while the dotted lines in (E) are the analytical solutions of the 
steady-state abundances (marked with superscript ‘(A)’). See Appendix 1—tables 1 and 2 for the definitions of symbols. See Appendix 9 for simulation 
details.

https://doi.org/10.7554/eLife.93115
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where ‍a
′
i = a′ii‍, ‍d

′
i = d′ii‍, and ‍yi ≡ C(P)

i
∨

C(P)
i ‍ represents the intraspecific interference pair (see Figure 1B). 

For the scenario involving chasing pairs and interspecific interference, we combine Equation 1 with 
the following equation:

	﻿‍ żij = a′ijC
(F)
i C(F)

j − d′ijzij, i ̸= j,‍� (3)

where ‍zij ≡ C(P)
i

∨
C(P)

j ‍ stands for the interspecific interference pair (see Figure 1B). In the scenario 
where chasing pairs and both intra- and interspecific interference are relevant, we combine Equations 
1–3, and the populations of consumers and resources are given by 

‍
Ci = C(F)

i +
∑

l
xil + 2yi +

∑
j̸=i

zij
‍
 and 

‍
Rl = R(F)

l +
∑

i
xil

‍
, respectively.

Generically, the consumption and interference processes are much quicker compared to the 
birth and death processes. Thus, in the derivation of the functional response, ‍F (Rl, Ci) ≡ kilxil/Ci‍, 
the consumption and interference processes are supposed to be in fast equilibrium. In all scenarios 
involving different types of pairwise encounters, the functional response in the B-D model is a good 

approximation only for a special case with ‍dil ≈ 0‍ and 
‍
Rl ≫

SC∑
i=1

Ci
‍
 (see Appendix 1—figure 2 and 

Appendix 3 for details).
To facilitate further analysis, we assume that the population dynamics of the resources follows the 

same construction rule as that in MacArthur’s consumer-resource model (Arthur, 1969; MacArthur, 
1970; Chesson, 1990). Then,

	﻿‍

gl({Rl}, {xi}, {Ci}) =





ηlRl(1 − Rl/κl) −
SC∑
i=1

kilxil (for biotic resources);

ζl(1 − Rl/κl) −
SC∑
i=1

kilxil (for abiotic resources).
‍�

(4)

In the absence of consumers, biotic resources exhibit logistic growth. Here, ‍ηl‍ and ‍κl‍ represent the 
intrinsic growth rate and the carrying capacity of species ‍Rl‍. For abiotic resources, ‍ζl‍ stands for the 
external resource supply rate of ‍Rl‍, and ‍κl‍ is the abundance of ‍Rl‍ at a steady state without consumers. 
For simplicity, we focus our analysis on abiotic resources, although all results generally apply to biotic 
resources as well. By applying dimensional analysis, we render all parameters dimensionless (see 
Appendix 7). For convenience, we retain the same notations below, with all parameters considered 
dimensionless unless otherwise specified.

Intraspecific predator interference facilitates species coexistence and 
breaks CEP
To clarify the specific mechanisms that can facilitate species coexistence, we systematically investigate 
scenarios involving different forms of pairwise encounters in a simple case with ‍SC = 2‍ and ‍SR = 1‍. To 
simplify the notations, we omit the subscript/superscript ‘‍l‍’ since ‍SR = 1‍. For clarity, we assign each 
consumer species of unique competitiveness by setting that the mortality rate ‍Di‍ is the only param-
eter that varies with the consumer species.

First, we conduct the analysis within a deterministic framework using ordinary differential equations 
(ODEs). In the scenario involving only chasing pairs, consumer species cannot coexist at a steady 
state except for special parameter settings (sets of measure zero) (Wang and Liu, 2020). In prac-
tice, if all species coexist, the steady-state equations of the consumer species (‍̇Ci = 0‍, i.e. the zero-
growth isolines) yield ‍fi(R(F)) = Di‍ (‍i = 1, 2‍), where ‍fi(R(F))‍ is defined as ‍fi(R(F)) ≡ R(F)/(R(F) + Ki)‍ and 

‍Ki ≡ (di + ki)/ai‍. These equations form two parallel surfaces in the ‍(C1, C2, R)‍ coordinates, making 
steady coexistence impossible (Wang and Liu, 2020; see Figure 1C and F and Appendix 1—figure 
3A–C).

Meanwhile, in the scenario involving chasing pairs and interspecific interference, if all species 
coexist, the zero-growth isolines of the three species (see Equation S65) correspond to three non-
parallel surfaces ‍Ω

′
i(R, C1, C2) = Di‍ (‍i = 1, 2‍), ‍G′(R, C1, C2) = 0‍ (see Figure 1G and Appendix 1—figure 

3D; refer to Appendix 5 for definitions of ‍Ω
′
i‍ and ‍G′‍), which can intersect at a common point (fixed 

point). However, this fixed point is unstable (see Figure 1G and Appendix 1—figure 3D, F), and thus 
one of the consumer species is doomed to extinction (see Figure 1D).

https://doi.org/10.7554/eLife.93115
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Next, we turn to the scenario involving chasing pairs and intraspecific interference. Likewise, 
steady coexistence requires (see Equation S38) that three non-parallel surfaces ‍Ωi(R, C1, C2) = Di‍ 
(‍i = 1, 2‍), ‍G(R, C1, C2) = 0‍ cross at a common point (see Figure 1H and Appendix 1—figure 3G; refer 
to Appendix 4 for definitions of ‍Ωi‍ and ‍G‍). Indeed, this naturally happens, and encouragingly the fixed 
point can be stable. Therefore, two consumer species may stably coexist at a steady state with only 
one type of resources, which obviously breaks CEP (see Figure 1E and Appendix 1—figure 4A). In 
fact, the coexisting state is globally attractive (see Appendix 1—figure 4A), and there exists a non-
zero volume of parameter space where the two consumer species stably coexist at constant popu-
lation densities (see Appendix 1—figure 4B, C), demonstrating that the violation of CEP does not 
depend on special parameter settings. We further consider the scenario involving chasing pairs and 
both intra- and interspecific interference (see Appendix 1—figure 5). Much as expected, the species 
coexistence behavior is very similar to that without interspecific interference.

Intraspecific interference promotes biodiversity in the presence of 
stochasticity
Stochasticity is ubiquitous in nature. However, it is prone to jeopardize species coexistence (Xue 
and Goldenfeld, 2017). Influential mechanisms such as ‘kill the winner’ fail when stochasticity is 
incorporated (Xue and Goldenfeld, 2017). Consistent with this, we observe that two notable cases 
of oscillating coexistence (Koch, 1974; Huisman and Weissing, 1999) turn into species extinction 
when stochasticity is introduced (see Appendix 1—figure 6A, B), where we simulate the models with 
stochastic simulation algorithm (SSA; Gillespie, 2007) and adopt the same parameters as those in the 
original references (Koch, 1974; Huisman and Weissing, 1999).

Then, we proceed to investigate the impact of stochasticity on our model using SSA (Gillespie, 
2007). In the scenario involving chasing pairs and intraspecific interference, species may coexist indef-
initely in the SSA simulations (see Figure 2A and Appendix 1—figure 4D). In fact, the parameter 
region for species coexistence in this scenario is rather similar between the SSA and ODEs studies 
(see Appendix 1—figure 6C, D). Similarly, in the scenario involving chasing pairs and both inter- 
and intraspecific interference, all species may coexist indefinitely in company with stochasticity (see 
Appendix 1—figure 5D).

To further mimic a real ecosystem, we resort to individual-based modeling (IBM; Grimm, 2013; 
Vetsigian, 2017), an essentially stochastic simulation method. In the simple case of ‍SC = 2‍ and ‍SR = 1‍, 
we simulate the time evolution of a 2-D square system in a size of ‍L2‍ with periodic boundary condi-
tions (see Materials and methods for details). In the scenario involving chasing pairs and intraspecific 
interference, two consumer species coexist for long with only one type of resources in the IBM simu-
lations (see Figure 2B and C). Together with the SSA simulation studies, it is obvious that intraspecific 
interference still robustly promotes species coexistence when stochasticity is considered.

Comparison with experimental studies that reject CEP
In practice, two classical studies (Ayala, 1969; Park, 1954) reported that, in their respective laboratory 
systems, two species of insects coexisted for roughly years or more with only one type of resources. 
Evidently, these two experiments (Ayala, 1969; Park, 1954) are incompatible with CEP, while factors 
such as temporal variations, spatial heterogeneity, cross-feeding, etc. are clearly not involved in such 
systems. As intraspecific fighting is prevalent among insects (Boomsma et al., 2005; Dankert et al., 
2009; Chen et al., 2002), we apply the model involving chasing pairs and intraspecific interference 
to simulate the two systems. Overall, our SSA results show good consistency with those of the experi-
ments (see Figure 2D and E and Appendix 1—figure 7). The fluctuations in experimental time series 
can be mainly accounted by stochasticity.

A handful of resource species can support a wide range of consumer 
species regardless of stochasticity
To resolve the puzzle stated in the paradox of the plankton, we analyze the generic case where ‍SC‍ 
consumer species compete for ‍SR‍ resource species (with ‍SC > SR‍) within the scenario involving chasing 
pairs and intraspecific interference. The population dynamics is described by equations combining 
Equations 1, 2 and 4. As with the cases above, each consumer species is assigned a unique compet-
itiveness through a distinctive ‍Di‍.

https://doi.org/10.7554/eLife.93115
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Figure 2. Intraspecific predator interference facilitates species coexistence regardless of stochasticity. (A, B) Time courses of the species abundances 
simulated with ODEs, SSA, or IBM. (C) Snapshots of the IBM simulations. (D, E) A model of intraspecific predator interference explains two classical 
laboratory experiments that invalidate CEP. (D) In Ayala’s experiment, two Drosophila species coexist with one type of resources within a laboratory 
bottle (Ayala, 1969). (E) In Park’s experiment, two Tribolium species coexist for 2 years with one type of food (flour) within a lab (Park, 1954). See 
Appendix 1—figure 7C, D for the comparison between model results and experimental data using Shannon entropies.

https://doi.org/10.7554/eLife.93115


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Physics of Living Systems

Kang, Zhang et al. eLife 2024;13:RP93115. DOI: https://doi.org/10.7554/eLife.93115 � 8 of 50

Strikingly, a plethora of consumer species may coexist at a steady state with only one resource 
species (‍SC ≫ SR‍, ‍SR = 1‍) in the ODEs simulations, and crucially, the facilitated biodiversity can still 
be maintained in the SSA simulations. The long-term coexistence behavior is exemplified in Figure 3 
and Appendix  1—figures 8–10, involving simulations with or without stochasticity. The number 
of consumer species in long-term coexistence can be up to hundreds or more (see Figure 3 and 

Figure 3. Intraspecific interference enables a wide range of consumer species to coexist with only one or a handful of resource species. (A, 
B) Representative time courses simulated with ODEs and SSA. (C, D) A model of intraspecific predator interference illustrates the S-shaped pattern 
of the species’ rank-abundance curves across different ecological communities. The solid icons represent the experimental data (marked with ‘Exp’) 
reported in existing studies (Fuhrman et al., 2008; Cody and Smallwood, 1996; Terborgh et al., 1990; Martínez et al., 2023; Clarke et al., 2005; 
De Vries, 1997; Hubbell, 2001), where the bird community data were collected longitudinally in 1982 and 2018 (Terborgh et al., 1990; Martínez 
et al., 2023). The ODEs and SSA results were constructed from timestamp ‍t = 1.0 × 105‍ in the time series. In the K-S test, the probabilities (p-
values) that the simulation results and the corresponding experimental data come from the same distributions are: ‍p

bird(1982)
ODEs = 0.17‍, ‍p

bird(2018)
ODEs = 0.26‍, 

‍p
butterfly
ODEs = 0.70‍, ‍p

fish
ODEs = 0.88‍, ‍p

bat
ODEs = 0.42‍, ‍p

bat
SSA = 0.48‍, ‍p

lizard
ODEs = 0.96‍, ‍p

lizard
SSA = 0.54‍, ‍p

plankton
ODEs = 0.20‍, ‍p

plankton
SSA = 0.06‍. See Appendix 9 for simulation 

details and the Shannon entropies.

https://doi.org/10.7554/eLife.93115
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Appendix 1—figure 8). To mimic real ecosystems, we further analyze cases with more than one type 
of resources, such as systems with ‍SR = 3‍ (‍SC ≫ SR‍). Just like the case of ‍SR = 1‍ (‍SC ≫ SR‍), an exten-
sive range of consumer species may coexist indefinitely regardless of stochasticity (see Figure 3 and 
Appendix 1—figures 11–14).

We further analyze the scenario involving chasing pairs and both intra- and interspecific interfer-
ence, where multiple consumer species compete for one resource species. Similar to the scenario 
involving chasing pairs and intraspecific interference, all species coexist indefinitely in either ODEs or 
SSA simulation studies (see Appendix 1—figure 5F–H for the cases of ‍SC = 6, 20‍ and ‍SR = 1‍).

Intuitive understanding: an underlying negative feedback loop
For the case with only one resource species (‍SR = 1‍), if the total population size of the resources is 

much larger than that of the consumers (i.e. 
‍
R ≫

SC∑
i=1

Ci
‍
), the functional response ‍F ≡ kixi/Ci‍ and the 

steady-state population of each consumer and resource species can be obtained analytically (see 
Appendix 4.B-C for details). In fact, the functional response of a consumer species (e.g. ‍Ci‍) is nega-
tively correlated with its own population size:

	﻿‍

F (R, Ci) ≈
2R√

(R + Ki)2 + 8βiK2
i Ci + R + Ki

,

‍�
(5)

where ‍βi ≡ a′i /d
′
i‍. The analytical steady-state solutions are highly consistent with the numerical results 

(see Figure 1E and Appendix 1—figure 3H, I) and can even quantitatively predict the coexistence 
region of the parameter space (see Appendix 1—figure 3I).

Intuitively, the mechanisms of how intraspecific interference facilitates species coexistence can 
be understood from the underlying negative feedback loop. Specifically, for consumer species of 
higher competitiveness (e.g. ‍Ci‍) in an ecological community, as the population size of ‍Ci‍ increases 
during competition, a larger portion of ‍Ci‍ individuals are then engaged in intraspecific interference 
pairs which are temporarily absent from hunting (see Equation S59 and Appendix 1—figure 15A, 
B). Consequently, the fraction of ‍Ci‍ individuals within chasing pairs decreases (see Equation S59 and 
Appendix 1—figure 15A, B) and thus form a self-inhibiting negative feedback loop through the func-
tional response (see Equation 5 and Appendix 1—figure 15C). This negative feedback loop prevents 
further increases in ‍Ci‍ populations, results in an overall balance among the consumer species, and thus 
promotes biodiversity (see Appendix 4.C for details).

The S shape pattern of the rank-abundance curves in a broad range of 
ecological communities
As mentioned above, a prominent feature of biodiversity is that the species’ rank-abundance curves 
follow a universal S-shaped pattern in the linear-log plot across a broad spectrum of ecological commu-
nities (Fuhrman et al., 2008; Ser-Giacomi et al., 2018; Cody and Smallwood, 1996; Terborgh et al., 
1990; Martínez et al., 2023; Clarke et al., 2005; Hubbell, 2001; De Vries, 1997). Previously, this 
pattern was mostly explained by the neutral theory (Hubbell, 2001), which requires special parameter 
settings that all consumer species share identical fitness. To resolve this issue, we apply the model 
involving chasing pairs and intraspecific interference to simulate the ecological communities, where 
one or three types of resources support a large number of consumer species (‍SC ≫ SR‍). In each model 
system, the mortality rates of consumer species follow a Gaussian distribution where the coefficient 
of variation was taken around 0.3 (Menon et al., 2003; see Appendix 9 for details). For a broad array 
of the ecological communities, the rank-abundance curves obtained from the long-term coexisting 
state of both the ODEs and SSA simulation studies agree quantitatively with those of experiments 
(see Figure 3C and D and Appendix 1—figures 8–14), sharing roughly equal Shannon entropies and 
mostly being regarded as identical distributions in the Kolmogorov-Smirnov (K-S) statistical test (with 
a significance threshold of 0.05). Still, there is a noticeable discrepancy between the experimental 
data and SSA studies in terms of the species’ absolute abundances (e.g. see Appendix 1—figure 8C): 
those with experimental abundances less than 10 tend to be extinct in the SSA simulations. This is 
due to the fact that the recorded individuals in an experimental sample are just a tiny portion of that 
in the real ecological system, whereas the species population size in a natural community is certainly 
much larger than 10.

https://doi.org/10.7554/eLife.93115
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Discussion
The conflict between the CEP and biodiversity, exemplified by the paradox of the plankton 
(Hutchinson, 1961), is a long-standing puzzle in ecology. Although many mechanisms have been 
proposed to overcome the limit set by CEP (Hutchinson, 1961; Chesson, 2000; Levins, 1979; Levin, 
1974; Koch, 1974; Huisman and Weissing, 1999; Czárán et al., 2002; Goyal and Maslov, 2018; 
Goldford et al., 2018; Villa Martín et al., 2020; Gupta et al., 2021; Thingstad, 2000; Wang and 
Liu, 2020; Dalziel et al., 2021; Posfai et al., 2017; Weiner et al., 2019; Xue and Goldenfeld, 2017; 
Beddington, 1975; DeAngelis et al., 1975; Arditi and Ginzburg, 1989; Kelsic et al., 2015; Grilli 
et al., 2017; Ratzke et al., 2020), it is still unclear how plankton and many other organisms can flout 
CEP and maintain biodiversity in quasi-well-mixed natural ecosystems. To address this issue, we inves-
tigate a mechanistic model with detailed consideration of pairwise encounters. Using numerical simu-
lations combined with mathematical analysis, we identify that the intraspecific interference among the 
consumer individuals can promote a wide range of consumer species to coexist indefinitely with only 
one or a handful of resource species through the underlying negative feedback loop. By applying the 
above analysis to real ecological systems, our model naturally explains two classical experiments that 
reject CEP (Ayala, 1969; Park, 1954), and quantitatively illustrates the universal S-shaped pattern of 
the rank-abundance curves for a broad range of ecological communities (Fuhrman et al., 2008; Ser-
Giacomi et al., 2018; Cody and Smallwood, 1996; Terborgh et al., 1990; Martínez et al., 2023; 
Clarke et al., 2005; Hubbell, 2001; De Vries, 1997).

In fact, predator interference has been introduced long ago by the classical B-D phenomenological 
model (Beddington, 1975; DeAngelis et al., 1975). However, the functional response of the B-D 
model involving intraspecific interference can be formally derived from the scenario involving only 
chasing pairs without consideration of pairwise encounters between consumer individuals (Wang and 
Liu, 2020; Huisman and De Boer, 1997; see Equations S8a and S24a). Yet, it has been demonstrated 
that the scenario involving only chasing pairs is under the constraint of CEP (Wang and Liu, 2020; 
see Appendix 1—figure 3A–C). Therefore, it is questionable regarding the validity of applying the 
B-D model to break CEP (Cantrell et al., 2004; Hsu et al., 2013). From a mechanistic perspective, we 
resolve these issues and show that the B-D model corresponds to a special case of our mechanistic 
model yet without the escape rate (see Appendix 1—figure 2 and Appendix 3 for details).

Our model is broadly applicable to explain biodiversity in many ecosystems. In practice, many more 
factors are potentially involved, and special attention is required to disentangle confounding factors. 
In microbial systems, complex interactions are commonly involved (Goyal and Maslov, 2018; Gold-
ford et al., 2018; Hu et al., 2022), and species’ preference for food is shaped by the evolutionary 
course and environmental history (Wang et al., 2019). It is still highly challenging to fully explain how 
organisms evolve and maintain biodiversity in diverse ecosystems.

Materials and methods
Derivation of the encounter rates with the mean-field approximation
In the model depicted in Figure 1A, consumers and resources move randomly in space, which can 
be regarded as Brownian motions. At moment ‍t‍, a consumer individual of species ‍Ci‍ moves at speed 

‍vCi‍ with velocity ‍vCi (t)‍, while a resource individual of species ‍Rl‍ moves at speed ‍vRl‍ with velocity 

‍vRl (t)‍. Here, ‍vCi‍ and ‍vRl‍ are two invariants, while the directions of ‍vCi (t)‍ and ‍vRl (t)‍ change constantly. 
The relative velocity between the two individuals is ‍uCi−Rl (t) ≡ vRl (t) − vCi (t)‍, with a relative speed 
of ‍uCi−Rl (t)‍. Then, ‍uCi−Rl (t)

2 = v2
Ci

+ v2
Rl
− 2vCi · vRl · cos θCi−Rl (t)‍, where ‍θCi−Rl (t)‍ represents the angle 

between ‍vCi (t)‍ and ‍vRl (t)‍. This system is homogeneous, thus, ‍cos θCi−Rl = 0‍, where the overline stands 
for the temporal average. Then, we obtain the average relative speed between the ‍Ci‍ and ‍Rl‍ indi-

viduals: 
‍
uCi−Rl =

√
v2

Ci
+ v2

Rl ‍
. Likewise, the average relative speed between the ‍Ci‍ and ‍Cj‍ individuals 

is 
‍
uCi−Cj =

√
v2

Ci
+ v2

Cj ‍
. Evidently, ‍uCi−Ci =

√
2vCi‍. Meanwhile, the concentrations of species ‍Ci‍ and ‍Rl‍ 

in a 2-D square system with a length of ‍L‍ are ‍nCi = Ci/L2
‍ and ‍nRl = Rl/L2

‍, while those of the freely 
wandering ‍Ci‍ and ‍Rl‍ are 

‍
nC(F)

i
= C(F)

i /L2
‍
 and 

‍
nR(F)

l
= R(F)

l /L2
‍
.

Then, we use the mean-field approximation to calculate the encounter rates ‍ail‍ and ‍a
′
ij‍ in the 

well-mixed system. In particular, we estimate ‍ail‍ by tracking a randomly chosen consumer indi-
vidual from species ‍Ci‍ and counting its encounter frequency with the freely wandering individuals 

https://doi.org/10.7554/eLife.93115
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from resource species ‍Rl‍ (see Appendix 1—figure 1). At any moment, the consumer individual may 
form a chasing pair with a ‍Rl‍ individual within a radius of ‍r

(C)
il ‍ (see Figure 1A). Over a time interval 

of ‍∆t‍, the number of encounters between the consumer individual and ‍Rl‍ individuals can be esti-
mated by the encounter area and the concentration ‍nRl‍, which takes the value of ‍2r(C)

il nR(F) uCi−R∆t‍ 
(see Appendix  1—figure 1). Combined with 

‍
nR(F)

l
= R(F)

l /L2
‍
, for all freely wandering ‍Ci‍ individ-

uals, the number of their encounters with ‍R(F)‍ during interval ‍∆t‍ is ‍
2r(C)

il uCi−RC(F)
i R(F)

L2 ∆t‍. Meanwhile, 
in the ODEs, this corresponds to ‍aiC(F)

i R(F)∆t‍. Comparing both terms above, for chasing pairs, 

we have 
‍
ail = 2r(C)

il L−2uCi−Rl = 2r(C)
il L−2

√
v2

Ci
+ v2

Rl ‍
. Likewise, for interference pairs, we obtain 

‍
a′ij = 2r(I)

ij L−2uCi−Cj = 2r(I)
ij L−2

√
v2

Ci
+ v2

Cj ‍
. In particular, ‍a

′
ii = 2

√
2vCi r

(I)
ii L−2

‍.

Stochastic simulations
To investigate the impact of stochasticity on species coexistence, we use the stochastic simulation 
algorithm (SSA; Gillespie, 2007) and individual-based modeling (IBM; Vetsigian, 2017; Grimm, 
2013) in simulating the stochastic process. In the SSA studies, we follow the standard Gillespie algo-
rithm and simulation procedures (Gillespie, 2007).

In the IBM studies, we consider a 2D square system with a length of ‍L‍ and periodic boundary 
conditions. In the case of ‍SC = 2‍ and ‍SR = 1‍, consumers of species ‍Ci‍ move at speed ‍vCi‍, while the 
resources move at speed ‍vR‍. The unit length is ‍∆l = 1‍, and all individuals move probabilistically. Specif-
ically, when ‍∆t‍ is small so that ‍vCi∆t ≪ 1‍, ‍Ci‍ individuals jump a unit length with the probability ‍vCi∆t‍. 
In practice, we simulate the temporal evolution of the model system following the procedures below.

Initialization
We choose the initial position for each individual randomly from a uniform distribution in the square 
space, which rounds to the nearest integer point in the ‍x‍-‍y‍ coordinates.

Moving
We choose the destination of a movement randomly from four directions (‍x‍-positive, ‍x‍-negative, 

‍y‍-positive, ‍y‍-negative) following a uniform distribution. The consumers and resources jump a unit 
length with probabilities ‍vCi∆t‍ and ‍vR∆t‍, respectively.

Forming pairs
When a ‍Ci‍ individual and a resource individual get close in space within a distance of ‍r(C)‍, they form a 
chasing pair. Meanwhile, when two consumer individuals ‍Ci‍ and ‍Cj‍ stand within a distance of ‍r(I)‍, they 
form an interference pair.

Dissociation
We update the system with a small time step ‍∆t‍ so that ‍di∆t, ki∆t, d′ij∆t ≪ 1‍. In practice, a random 
number ‍ς ‍ is sampled from a uniform distribution between 0 and 1, that is ‍U (0, 1)‍. If ‍ς < di∆t‍ or 

‍ς < d′ij∆t‍, then the chasing pair or interference pair dissociates into two separated individuals. One 
occupies the original position, while the other individual moves just out of the encounter radius in a 
uniformly distributed random angle. For a chasing pair, if ‍di∆t < ς < (di + ki)∆t‍, then, the consumer 
catches the resource, and the biomass of the resource flows into the consumer populations (updated 
according to the birth procedure), while the consumer individual occupies the original position. Finally, 
if ‍ς > (di + ki)∆t‍ or ‍ς > d′ij∆t‍ , the chasing pair or interference pair maintains the current status.

Birth and death
For each species, we use two separate counters with decimal precision to record the contributions of 
the birth and death processes, both of which accumulate in each time step. The incremental integer 
part of the counter will trigger updates in this run. Specifically, a newborn would join the system 
following the initialization procedure in a birth action, while an unfortunate target would be randomly 
chosen from the living population in a death action.
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Appendix tables and figures

Appendix 1—table 1 Continued on next page

Appendix 1—table 1. Illustrations of symbols in our generic model of pairwise encounters.

Symbols Illustrations

‍Ci‍ The total population of consumer species ‍Ci‍.

‍Rl‍ The total population of resource species ‍Rl‍.

‍C
(F)
i ‍ The freely wandering population of consumer species ‍Ci‍.

‍R
(F)
l ‍ The freely wandering population of resource species ‍Rl‍.

‍xil‍ Chasing pairs formed between individuals from species ‍Ci‍ and ‍Rl‍, i.e. ‍C
(P)
i

∨
R(P)

l ‍.

‍yi‍ Intraspecific interference pairs formed between individuals from species ‍Ci‍, i.e. ‍C
(P)
i

∨
C(P)

i ‍.

‍zij‍ Interspecific interference pairs formed between individuals from species ‍Ci‍ and ‍Cj‍, i.e., ‍C
(P)
i

∨
C(P)

j ‍.

‍r
(C)
il ‍ The upper distance criterion for forming a chasing pair.

‍r
(I)
ij ‍ The upper distance criterion for forming an interference pair.

‍vCi‍ The motility speed of consumer species ‍Ci‍.

‍vRl‍ The motility speed of resource species ‍Rl‍.

‍SC‍ The number of consumer species.

‍SR‍ The number of resource species.

‍ail‍ The encounter rate between a consumers and a resource.

‍dil‍ The escape rate within a chasing pair.

‍kil‍ The capture rate within a chasing pair.

‍a
′
ij‍ The encounter rate among consumer individuals.

‍d
′
ij‍ The separation rate within an interference pair.

‍wil‍ The mass conversion ratio from resource ‍Rl‍ to ‍Ci‍.

‍Di‍ The mortality rate of species ‍Ci‍.

‍κl‍ The steady-state population abundance of resources species ‍Rl‍ in the absence of consumers.

‍ζl‍ The external resource supply rate of species ‍Rl‍.

‍ηl‍ The intrinsic growth rate of species ‍Rl‍ for biotic resources (unused in all analyses).

‍gl‍ The function describing the population dynamics of resource species ‍Rl‍.

‍L‍ The length of the 2-D square system where species coexist.

‍C
(F)
i (+)‍ We count ‍C(F)(+)‍ as ‍C(F)‍, where ”(+)” signifies gaining biomass from resources.

‍vCi‍ The velocity of an individual of species ‍Ci‍.

‍vRl‍ The velocity of an individual of species ‍Rl‍.

‍θCi−Rl‍ The angle between ‍vCi‍ and ‍vRl‍.

‍uCi−Rl‍ The relative velocity between a consumer and a resource.

https://doi.org/10.7554/eLife.93115
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Symbols Illustrations

‍uCi−Rl‍ The relative speed between a consumer and a resource.

‍nCi‍ The concentration of species ‍Ci‍.

‍nRl‍ The concentration of species ‍Rl‍.

‍
nC(F)

i ‍
The concentration of the freely wandering ‍Ci‍.

‍
nR(F)

l ‍
The concentration of the freely wandering ‍Rl‍.

For all the symbols in Appendix 1—tables 1 and 2, the subscript ‘‍l‍’ is omitted if ‍SR = 1‍, and the subscript ‘‍i‍’ is omitted if ‍SC = 1‍.

Appendix 1—table 1 Continued

Appendix 1—table 2 Continued on next page

Appendix 1—table 2. Illustrations of other symbols used in our manuscript.

Symbols Illustrations/Definitions

‍F ‍ The functional response.

‍Ξ‍ The searching efficiency.

‍ς ‍ A random number sampled from a uniform distribution.

‍U ‍ The uniform distribution.

‍N (µ,σ)‍ A Gaussian distribution with a mean of μ and a standard deviation of σ.

‍≡‍ An equal sign for equations defining the symbol on the left-hand side.

‍∆‍ The competitive difference between two consumer species, defined as ‍∆ ≡ (D1 − D2)/D2‍.

‍̂∆‍ The supremum of the competitive difference tolerated for species coexistence.

‍∆t‍ A short time interval.

‍Pi‍ The probability that a consumer individual of the ecological community belongs to species ‍Ci‍.

‍pODEs‍,
‍pSSA‍ The p-value assessing the similarity of simulation results and experimental data.

‍H ‍ The Shannon entropy: ‍
H = −

SC∑
i=1

Pi log2(Pi)
‍.

‍X ‍ The time average of an arbitrary quantity ‍X ‍.

‍δX ‍ The standard deviation of an arbitrary quantity ‍X ‍.

‍⟨X⟩‍ The expectation of a random variable ‍X ‍.

‍τ ‍ The parameter that sets the time scale of a system.

‍Kil‍ ‍Kil ≡ kil+dil
ail ‍.

‍αil‍ ‍αil ≡ Di
wilkil ‍.

‍βi‍ ‍
βi ≡

a′i
d′i ‍.

‍γ ‍ ‍
γ ≡ a′12

d′12 ‍.

‍fi(R(F))‍ ‍fi(R(F)) ≡ R(F)/(R(F) + Ki)‍.

‍ϕ0‍, ‍ϕ1‍, ‍ϕ2‍ ‍ϕ0 ≡ −CR2
‍, ‍ϕ1 ≡ 2CR + KR + R2

‍, ‍ϕ2 ≡ 2βK2 − K − C − 2R‍.

‍Λ‍ The discriminant of Equation S13.

‍ψ‍, ‍φ‍ ‍ψ ≡ ϕ1 − (ϕ2)2/3‍, ‍φ ≡ ϕ0 − ϕ1ϕ2/3 + 2(ϕ2)3/27‍.

https://doi.org/10.7554/eLife.93115
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Symbols Illustrations/Definitions

‍ω‍, ‍θ1‍, ‍θ2‍ ‍ω ≡ −1/2 + i
√

3/2‍, ‍θ1 ≡ (−φ/2 +
√
−Λ/108)1/3

‍, ‍θ2 ≡ (−φ/2 −
√
−Λ/108)1/3

‍.

‍ψ
′
‍, ‍φ

′
‍ ‍ψ

′ ≡ (−4ψ/3)1/2
‍, ‍φ

′ ≡ arccos(−(−ψ/3)−3/2φ/2)/3‍.

‍th‍ The handling time in the B-D model.

‍tw‍ The wasting time in the B-D model.

‍ui(R, C1, C2)‍ Expression of ‍xi‍ using ‍C1‍, ‍C2‍, and ‍R‍ in Equation S33 involving intraspecific interference, see Equation S37.

‍Ωi(R, C1, C2)‍ ‍Ωi(R, C1, C2) ≡ wiki
Ci

ui(R, C1, C2)‍.

‍G(R, C1, C2)‍ ‍G(R, C1, C2) ≡ g(R, u1(R, C1, C2), u2(R, C1, C2), C1, C2)‍, see Equations S33 and S38.

‍o1‍, ‍o2‍ ‍o1 ≡ ζ
κ − k1

2β1K1
− k2

2β2K2 ‍, ‍
o2 ≡ k1(1−α1)

2β1α1(K1)2 + k2(1−α2)
2β2α2(K2)2 ‍.

‍ϖ‍ ‍
ϖ ≡ 1

2 ( 1
κ − k2

2ζβ2K2
) + 1

2

√
( 1
κ − k2

2ζβ2K2
)2 + 2 k2(1−α2)

ζβ2α2(K2)2 ‍.

‍ι1‍, ‍ι2‍ ‍
ι1 ≡ ζ

κ −
SC∑
i=1

ki
2βiKi ‍, ‍

ι2 ≡
SC∑
i=1

ki(1−αi)
2βiαi(Ki)2

‍.

‍u
′
i(R, C1, C2)‍ Expression of ‍xi‍ using ‍C1‍, ‍C2‍, and ‍R‍ in Equation S61 involving interspecific interference, see Equation S64.

‍Ω
′
i(R, C1, C2)‍ ‍Ω

′
i(R, C1, C2) ≡ wiki

Ci
u′i(R, C1, C2).‍

‍G′(R, C1, C2)‍ ‍G
′(R, C1, C2) ≡ g(R, u′1(R, C1, C2), u′2(R, C1, C2), C1, C2)‍, see Equation S61 and S65.

‍ϱ1‍, ‍ϱ2‍ ‍ϱ1 ≡ ζ
κ − k1

γK1
− k2

γK2 ‍, ‍ϱ2 ≡ k1(1−α2)
γK1K2α2

+ k2(1−α1)
γK1K2α1 ‍.

‍χ1‍ ‍
χ1 ≡ k2γ(α1−1)

K1K2α1(4β1β2−γ2) + k1γ(α2−1)
K1K2α2(4β1β2−γ2) −

k12β2(α1−1)
K2

1α1(4β1β2−γ2) −
k22β1(α2−1)

K2
2α2(4β1β2−γ2)‍.

‍χ2‍ ‍
χ2 ≡ k1(γ−2β2)

K1(4β1β2−γ2) + k2(γ−2β1)
K2(4β1β2−γ2) + ζ

κ‍.

Appendix 1—table 2 Continued
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Appendix 1—figure 1. Estimation of the encounter rates with the mean-field approximations. To calculate ‍ail‍ in 
the chasing pair, we suppose that all individuals of species ‍Rl‍ stand still while a ‍Ci‍ individual moves at the speed 
of ‍uCi−Rl ‍ (the relative speed). Over a time interval of ‍∆t‍, the length of zigzag trajectory of the ‍Ci‍ individual is 

approximately ‍uCi−Rl∆t‍, while the encounter area (marked with dashed lines) is estimated to be ‍2r(C)
il uCi−R∆t‍. 

Then, we can estimate the encounter rate ‍ail‍ using the encounter area and concentrations of the species (see 
Materials and methods for details). Similarly, we can estimate ‍a

′
ij‍ in the interference pair.

https://doi.org/10.7554/eLife.93115
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Appendix 1—figure 2. Functional response in scenarios involving different types of pairwise encounter. (A–C) In 
the scenario involving only chasing pair, the red surface/line corresponds to the B-D model (calculated from 
Equation S10b), while the green surface/line represents the exact solutions to our mechanistic model (calculated 
from Equation S7b). The magenta (calculated from Equation S8b) and blue (calculated from Equation S9b) 
surfaces/lines represent the approximate solutions to our model (see Appendix 3.B). (D–F) In the scenario involving 
chasing pairs and intraspecific interference, the red surface/line corresponds to the B-D model (calculated from 
Equation S24b), while the green/line surface represents the exact solutions to our mechanistic model (calculated 
from Equation S17b). The blue surface/line (calculated from Equation S19b) and the magenta surface/line 
(calculated from Equation S21b) represent the quasi-rigorous and the approximate solutions to our model, 
respectively (see Appendix 3.C). (G–I) In the scenario involving chasing pairs and interspecific interference, the 
red surface/line corresponds to the B-D model (calculated from Equation S31b), while the green surface/line 
represents the quasi-rigorous solutions to our mechanistic model (calculated from Equation S27d). The blue 
surface/line (calculated from Equation S29d) represents the approximate solutions to our model (see Appendix 
3.D). In (A–C): ‍k = 0.1‍, ‍a = 0.25‍. In (A): ‍d = 0‍. In (C): ‍R = 104‍, ‍C = 103‍. In (D–F): ‍a = 0.1‍, ‍k = 0.1‍, ‍a′ = 0.12‍, 
‍d′ = 0.1‍. In (D): ‍d = 0‍. In (F): ‍R = 106‍, ‍C = 105‍. In (G–I): ‍a1 = a2 = 0.1‍, ‍k1 = k2 = 0.1‍, ‍a

′
12 = 0.12‍, ‍d

′
12 = 0.1‍. In 

(G): ‍di = 0‍. In (I): ‍R = 106‍, ‍Ci = 105
‍.

https://doi.org/10.7554/eLife.93115
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Appendix 1—figure 3. Numerical solutions in scenarios involving chasing pairs and different types of predator 
interference. Here, ‍SC = 2‍ and ‍SR = 1‍. ‍Di(i = 1, 2)‍ is the only parameter varying with the consumer species (with 

‍D1 > D2‍), and ‍∆ ≡ (D1 − D2)/D2‍ represents the competitive difference between the two species. (A–C) Scenario 
involving only chasing pairs. (A) If all consumer species coexist at steady state, then ‍fi(R(F))/Di = 1‍, where 

‍fi(R(F)) = R(F)/(R(F) + Ki)‍ and ‍Ki = (di + ki)/ai‍. This requires that the three lines ‍y = fi(R)/Di‍ and ‍y = 1‍ share a 
common point, which is generally impossible. (B) The blue plane is parallel to the green one, and hence they do 
not have a common point. (C) Time courses of the species abundances in the scenario involving only chasing pairs. 
The two consumer species cannot coexist at steady state. (D–F) Scenario involving chasing pairs and interspecific 
interference. (G–I) Scenario involving chasing pairs and intraspecific interference. (D, G) Positive solutions to the 
steady-state equations: ‍Ṙ = 0‍ (orange surface), ‍̇C1 = 0‍ (blue surface), ‍̇C2 = 0‍ (green surface). The intersection 
point marked by black/red dots is an unstable/stable fixed point. (E, H) Comparisons between the numerical 
results and analytical solutions of the species abundances at fixed points. Color bars are analytical solutions 
while hollow bars are numerical results. The analytical solutions in (E) and (H) (marked with superscript ‘(A)’) were 
calculated from Equations S68 and S70 and Equation S41, Equation S43, respectively. (F) In this scenario, there 
is no parameter region for stable coexistence. The region below the red surface and above ‍∆ = 0‍ represents 
unstable fixed points. (I) Comparisons between the numerical results and analytical solutions of the coexistence 
region. Here, ‍̂∆‍ represents the maximum competitive difference tolerated for species coexistence. The red and 
cyan surfaces represent the analytical solutions (calculated from Equation S46) and numerical results, respectively. 
The numerical results in (C), (D–F) and (G–I) were calculated from Equations 1 and 4, Equation S42 and S61 
and Equation S33 and S42, respectively. In (C): ‍ai = 0.1‍, ‍ki = 0.1‍, ‍wi = 0.1‍, ‍di = 0.5‍, ‍(i = 1, 2)‍, ‍D1 = 0.002‍, 

‍D2 = 0.001‍, ‍κ = 5‍, ‍ζ = 0.05‍. In (D): ‍ai = 0.05‍, ‍di = 0.05‍, ‍ki = 0.02‍, ‍wi = 0.08‍, ‍(i = 1, 2)‍, ‍D1 = 0.0011‍, 

‍D2 = 0.001‍, ‍κ = 20‍, ‍ζ = 0.01‍, ‍a
′
12 = 0.06‍, ‍d

′
12 = 0.01‍. In (E): ‍ai = 0.04‍, ‍di = 0.2‍, ‍ki = 0.1‍, ‍wi = 0.3‍, ‍(i = 1, 2)‍, 

‍D2 = 0.0008‍, ‍κ = 10‍, ‍ζ = 0.2‍, ‍a
′
12 = 0.048‍, ‍d

′
12 = 0.001‍. In (F): ‍ai = 0.1‍, ‍ki = 0.1‍, ‍wi = 0.1‍, ‍(i = 1, 2)‍, 

‍D2 = 0.001‍, ‍κ = 100‍, ‍ζ = 0.05‍, ‍a
′
12 = 0.12‍. In (G): ‍ai = 0.5‍, ‍a

′
i = 0.625‍, ‍di = 0.5‍, ‍d

′
i = 0.5‍, ‍ki = 0.4‍, ‍wi = 0.5‍, 

Appendix 1—figure 3 continued on next page
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‍(i = 1, 2)‍, ‍D2 = 0.02‍, ‍D1 = 1.2D2‍, ‍κ = 10‍, ‍ζ = 0.1‍. In (H): ‍ai = 0.1‍, ‍a
′
i = 0.12‍, ‍ki = 0.12‍, ‍wi = 0.3‍, ‍di = 0.5‍, 

‍d
′
i = 0.05‍, ‍(i = 1, 2)‍, ‍D2 = 0.02‍, ‍κ = 100‍, ‍ζ = 0.8‍. In (I): ‍ai = 0.5‍, ‍ki = 0.2‍, ‍di = 0.8‍, ‍wi = 0.2‍, ‍(i = 1, 2)‍, 

‍D2 = 0.008‍, ‍κ = 60‍, ‍ζ = 0.8‍.

Appendix 1—figure 4. Intraspecific predator interference facilitates species coexistence regardless of 
stochasticity. Here, we consider the case of ‍SC = 2‍, ‍SR = 1‍. (A) A representative trajectory of species coexistence 
in the phase space simulated with ODEs. The fixed point (shown in red) is stable and globally attractive. (B, 
C) 3D phase diagrams in the ODEs studies. Here, ‍Di‍ is the only parameter that varies with the two consumer 
species, and ‍∆ ≡ (D1 − D2)/D2‍ measures the competitive difference between the two species. The parameter 
region below the blue surface yet above the red surface represents stable coexistence. The region below the 
red surface and above ‍∆ = 0‍ represents unstable fixed points (an empty set). (D) An exemplified transection 
corresponding to the ‍∆ = 0.3‍ plane in (C). (E) Time courses of the species abundances simulated with ODEs or 
SSA. (F) Representative trajectories of species coexistence in the phase space simulated with SSA. The coexistence 
state is stable and globally attractive (see (E) for time courses, SSA results). (A–F) were calculated or simulated 
from Equations 1, 2 and 4. In (A): ‍ai = 0.1‍, ‍a

′
i = 0.125‍, ‍di = 0.1‍, ‍d

′
i = 0.05‍, ‍wi = 0.1‍, ‍ki = 0.1‍, ‍(i = 1, 2)‍, 

‍D1 = 0.0035‍, ‍D2 = 0.0038‍, ‍κ = 100‍, ‍ζ = 0.3‍. In (B): ‍ai = 0.1‍, ‍di = 0.1‍, ‍wi = 0.1‍, ‍ki = 0.1‍, ‍(i = 1, 2)‍, ‍D2 = 0.001‍, 

‍∆ ≡ (D1 − D2)/D2‍, ‍κ = 100‍, ‍ζ = 0.1‍. In (C, D): ‍ai = 0.05‍, ‍a
′
i = 0.065‍, ‍wi = 0.1‍, ‍ki = 0.1‍, ‍(i = 1, 2)‍, ‍D2 = 0.002‍, 

‍∆ ≡ (D1 − D2)/D2‍, ‍κ = 10‍, ‍s = 0.1‍. In (D): ‍∆ = 0.3‍. In (E, F): ‍ai = 0.02‍, ‍a
′
i = 0.025‍, ‍di = 0.7‍, ‍d

′
i = 0.7‍,‍wi = 0.4‍, 

‍ki = 0.05‍, ‍(i = 1, 2)‍, ‍D1 = 0.0160‍, ‍D2 = 0.0171‍, ‍κ = 2000‍, ‍ζ = 5.5‍.

Appendix 1—figure 3 continued
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Appendix 1—figure 5. Outcomes of multiple consumers species competing for one resource species involving 
chasing pairs and intra- and inter-specific interference. (A–E) The case involving two consumer species and one 
resource species (‍SC = 2‍, ‍SR = 1‍). Here, ‍Di‍ is the only parameter that varies with the consumer species (with 

‍D1 > D2‍), and ‍∆ ≡ (D1 − D2)/D2‍ measures the competitive difference between the two species. (A) A 3D phase 
diagram. The parameter region below the blue surface yet above the red surface represents stable coexistence, 
while that below the red surface and above ‍∆ = 0‍ represents unstable fixed points (an empty set). (B) Time 
courses of the species abundances. Two consumer species may coexist with one type of resources at steady state. 
(C) Representative trajectories of species coexistence in the phase space. The fixed point (shown in red) is stable 
and globally attractive. (D) Consumer species may coexist indefinitely with the resources regardless of stochasticity. 
(E) Comparisons between numerical results and analytical solutions of the species abundances at fixed points. 
Color bars are analytical solutions while hollow bars are numerical results. The analytical solutions (marked with 
superscript ‘(A)’) were calculated from Equation S74 and S75. (F–H) Time courses of species abundances in cases 
involving 6 or 20 consumer species and one type of resources (‍SC = 6‍ or 20, ‍SR = 1‍). All consumer species may 
coexist with one type of resource at a steady state, and this coexisting state is robust to stochasticity. (A–C, E, 
G) ODEs results. (D, F) ODEs and SSA results. (H) SSA results. The numerical results in (A–H) were calculated or 
simulated from Equations 1-4. In (A–C): ‍ai = 0.1‍, ‍a

′
i = 0.12‍, ‍ki = 0.1‍, ‍wi = 0.1‍, ‍(i = 1, 2)‍, ‍D2 = 0.004‍, ‍κ = 100‍, 

‍ζ = 0.8‍, ‍a
′
12 = 0.12‍, ‍d

′
12 = 0.5‍. In (B–C): ‍di = 0.3‍, ‍d

′
i = 0.5‍, ‍(i = 1, 2)‍. In (D): ‍ai = 0.1‍, ‍a

′
i = 0.14‍, ‍ki = 0.12‍, 

‍wi = 0.15‍, ‍di = 0.3‍, ‍d
′
i = 0.5‍, ‍(i = 1, 2)‍, ‍D1 = 0.0125‍, ‍D2 = 0.012‍, ‍κ = 300‍, ‍ζ = 5.5‍, ‍a

′
12 = 0.14‍, ‍d

′
12 = 5‍. 

In (E): ‍ai = 0.05‍, ‍a
′
i = 0.06‍, ‍ki = 0.1‍, ‍wi = 0.2‍, ‍di = 0.5‍, ‍d

′
i = 0.15‍, ‍(i = 1, 2)‍, ‍D2 = 0.008‍, ‍κ = 100‍, ‍ζ = 0.8‍, 

‍a
′
12 = 0.06‍, ‍d

′
12 = 0.0005‍. In (F): ‍ai = 0.1‍, ‍a

′
i = 0.14‍, ‍ki = 0.15‍, ‍wi = 0.18‍, ‍di = 2.8‍, ‍d

′
i = 0.02‍, ‍a

′
ij = 0.14‍, 

‍d
′
ij = 0.15‍, ‍(i, j = 1, ..., 6‍, ‍i ̸= j)‍, ‍κ = 600‍, ‍s = 100‍, ‍D1 = 0.0091‍, ‍D2 = 0.0084‍, ‍D3 = 0.0088‍, ‍D4 = 0.0096‍, 

‍D5 = 0.0082‍, ‍D6 = 0.0093‍. In (G–H): ‍ai = 0.1‍, ‍a
′
i = 0.14‍, ‍ki = 0.2‍, ‍wi = 0.18‍, ‍di = 2.8‍, ‍d

′
i = 0.02‍, ‍a

′
ij = 0.14‍, 

‍d
′
ij = 0.8‍, ‍Di = N (1, 0.1) × 0.005‍, ‍(i, j = 1, ..., 20‍, ‍i ̸= j)‍, ‍κ = 1000‍, ‍s = 500‍.

https://doi.org/10.7554/eLife.93115
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Appendix 1—figure 6. The influence of stochasticity on species coexistence. (A, B) Stochasticity jeopardizes 
species coexistence. Koch’s model (Koch, 1974) and Huisman-Weissing model (Huisman and Weissing, 1999) 
were simulated with SSA using the same parameter settings as their deterministic model. Nevertheless, both cases 
of oscillating coexistence are vulnerable to stochasticity. See (Koch, 1974) and (Huisman and Weissing, 1999) for 
the parameters. (C, D) Phase diagrams in the scenario involving chasing pairs and intraspecific interference. Here, 

‍SC = 2‍ and ‍SR = 1‍. ‍Di(i = 1, 2)‍ is the only parameter varying with the consumer species (with ‍D1 > D2‍), and 

‍∆ ≡ (D1 − D2)/D2‍ represents the competitive difference between the two species. (C) The ODEs results. (D) The 
SSA results (with the same parameter region as (C)). The species’ coexisting fraction in each pixel was calculated 
from 16 random repeats. (C) and (D) were calculated from Equations 1, 2 and 4. In (C, D): ‍ai = 0.1‍, ‍a

′
i = 0.125‍, 

‍di = 0.5‍, ‍wi = 0.1‍, ‍ki = 0.1‍, ‍(i = 1, 2)‍, ‍κ = 100‍, ‍ζ = 5‍, ‍D2 = 0.0014‍. 

https://doi.org/10.7554/eLife.93115
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Appendix 1—figure 7. A model of intraspecific predator interference explains two classical experiments 
that invalidate CEP. (A) In Ayala’s experiment (Ayala, 1969), two Drosophila species (consumers) coexisted 
for 40 weeks with the same type of abiotic resources within a laboratory bottle. The time averages (‍C̄i‍) and 
standard deviation (‍δCi‍) of the species’ relative abundances for the experimental data or SSA results are: 

‍

(
R
)
CExp

(
SSA

)
D.serrata_CH_Grp1 = 0.77

(
0.80

)
‍, ‍δ

(
R
)
C Exp

(
SSA

)
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(
0.08

)
‍, ‍

(
R
)
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(
SSA

)
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(
0.73

)
‍, 

‍δ
(

R
)
C Exp

(
SSA

)
D.serrata_CH_Grp2 = 0.14

(
0.07

)
‍, where the superscript ‘(R)’ represents relative abundances. (B) In Park’s 

experiment (Park, 1954), two Tribolium species coexisted for 750 days with the same food (flour). The time 

averages (‍C̄i‍) and standard deviations (‍δCi‍) of the species’ abundances are: ‍C
Exp

(
SSA

)
T.confusum_29◦C = 33.4

(
28.8

)
‍, 

‍δC Exp
(

SSA
)

T.confusum_29◦C = 6.0
(
5.4

)
‍, ‍C

Exp
(

SSA
)

T.castaneuma_29◦C = 48.8
(
47.7

)
‍, ‍δC Exp

(
SSA

)
T.castaneuma_29◦C = 11.9

(
9.9

)
‍. (A, B) The solid 

icons represent the experimental data, which are connected by the dotted lines for the sake of visibility. The solid 
lines stand for the SSA simulation results. (C, D) The Shannon entropies of each time point for the experimental 
or model-simulated communities shown in (B) and Figure 2D and E. Here, we calculated the Shannon entropies 

with 
‍
H
(
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)

= −
SC∑
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Pi
(
t
)

log2
(
Pi

(
t
))

‍
, where ‍Pi(t)‍ is the probability that a consumer individual belongs to 

species ‍Ci‍ at the time stamp of ‍t ‍. The time averages (‍̄H ‍) and standard deviations (‍δH ‍) of the Shannon entropies 

are: 
‍
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(
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‍
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‍
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‍
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‍
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‍
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‍
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‍
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‍
. (E–H) Time courses of the species abundances 

in the scenario involving chasing pairs and intraspecific interference. The time series in (E–H) correspond to 
the long-term version of that shown in Figure 2D, Appendix 1—figure 7A, Figure 2E, Appendix 1—figure 
7B, respectively. (A, B, F–I) were simulated from Equations 1, 2 and 4. In (A): ‍ai = 0.3‍, ‍a

′
i = 0.33‍, ‍wi = 0.018‍, 

‍ki = 4.8‍, ‍d
′
i = 5‍, ‍di = 5.5‍, ‍(i = 1, 2)‍, ‍D1 = 0.0132‍, ‍D2 = 0.010‍, ‍ζ = 35‍, ‍κ = 10000‍. In (B): ‍ai = 0.3‍, ‍a

′
i = 0.36‍, 

‍wi = 0.02‍, ‍ki = 4.5‍, ‍d
′
i = 4‍, ‍di = 4.5‍, ‍(i = 1, 2)‍, ‍D1 = 0.0122‍, ‍D2 = 0.010‍, ‍ζ = 35‍, ‍κ = 10000‍. In(A-B): ‍τ = 0.4‍ 

Day (see Appendix 7).
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Appendix 1—figure 8. A model of intraspecific interference semi-quantitatively illustrates the rank-abundance 
curve of a plankton community (‍SC ≫ SR‍). (A, B) Intraspecific interference enables a wide range of consumers 
species to coexist with one type of resources. (A) Time courses of the species abundances simulated with 
ODEs. (B) Time series of the species abundances simulated with SSA (with theh same as parameter settings 
as (A)). (C) The rank-abundance curve of a plankton community. The solid dots represent the experimental 
data (marked with ‘Exp’) reported in a recent study (Ser-Giacomi et al., 2018) (TARA_139.SUR.180.2000.DNA), 
while the hollow dots and those with ‘+’ center are the ODEs and SSA results constructed from timestamp 
‍t = 5.0 × 105‍ in the time series (see (A) and (B)), respectively. The Shannon entropies of the experimental data 
and simulation results for the plankton community are: ‍H

Plankton
Exp(ODEs,SSA) = 2.85(2.18, 2.00)‍. In the model settings, 

‍SC = 200‍ and ‍SR = 1‍. ‍Di(i = 1, . . . , SC)‍ is the only parameter that varies with the consumer species, which was 
randomly drawn from a Gaussian distribution ‍N (µ,σ)‍. Here, μ and σ are the mean and standard deviation of 
the distribution. The numerical results in (A–C) were simulated from Equations 1, 2 and 4. In (A–C): ‍ai = 0.1‍, 

‍a
′
i = 0.125‍, ‍di = 0.2‍, ‍d

′
i = 0.5‍, ‍wi = 0.2‍, ‍ki = 0.1‍, ‍Di = 0.008 ×N (1, 0.38)‍, ‍(i = 1, · · · , 200)‍, ‍κ = 105‍, ‍ζ = 150‍. 

‍ai = 0.1, a′i = 0.125, d′i = 0.5, di = 0.2, wi = 0.2, ki = 0.1, Di = N (1, 0.38) × 0.008‍

Appendix 1—figure 9. A model of intraspecific interference illustrates the rank-abundance curves across different 
ecological communities (‍SC ≫ SR‍). The solid dots represent the experimental data (marked with ‘Exp’) reported 
in existing studies (Hubbell, 2001; Holmes et al., 1986; Cody and Smallwood, 1996), while the hollow dots and 
those with ‘+’ center are the ODEs and SSA results constructed from timestamp ‍t = 1.0 × 105‍ in the time series 
(see Appendix 1—figure 10A–G), respectively. In the model settings, ‍SR = 1‍, ‍SC = 20‍ (in (A)), 35 (in (B)) or 45 
(in (C)). ‍Di‍ is the only parameter varying with the consumer species, which was randomly drawn from a Gaussian 
distribution. The Shannon entropies of the experimental data and simulation results for each ecological community 
are: ‍H

bird
Exp(ODEs,SSA) = 2.98(3.06, 2.98)‍, ‍H

bee
Exp(ODEs,SSA) = 4.04(4.02, 4.02)‍, ‍H

fish
Exp(ODEs,SSA) = 3.78(3.40, 3.41)‍. In 

the Kolmogorov-Smirnov (K-S) test, the probabilities (p-values) that the simulation results and the corresponding 
experimental data come from identical distributions are: ‍p

bird
ODEs = 0.89‍, ‍p

bird
SSA = 0.88‍, ‍p

bee
ODEs = 0.47‍, ‍p

bee
SSA = 0.75‍, 

‍p
fish
SSA = 0.77‍. With a significance threshold of 0.05, none of the p-values suggest there exists a statistically 

significant difference. The numerical results in (A–C) were simulated from Equations 1, 2 and 4. In (A): ‍ai = 0.1‍, 

‍a
′
i = 0.125‍, ‍di = 0.5‍, ‍d

′
i = 0.6‍, ‍wi = 0.22‍, ‍ki = 0.1‍, ‍Di = 0.016 ×N (1, 0.35)‍, ‍(i = 1, · · · , 20)‍, ‍ζ = 350‍, ‍κ = 106‍. 

In (B): ‍ai = 0.1‍, ‍a
′
i = 0.125‍, ‍di = 0.5‍, ‍d

′
i = 0.6‍, ‍wi = 0.22‍, ‍ki = 0.1‍, ‍Di = 0.012 ×N (1, 0.35)‍, ‍(i = 1, · · · , 35)‍, 

‍ζ = 350‍, ‍κ = 106‍. In (C): ‍ai = 0.1‍, ‍a
′
i = 0.14‍, ‍di = 0.5‍, ‍d

′
i = 0.5‍, ‍wi = 0.2‍, ‍ki = 0.1‍, ‍Di = 0.015 ×N (1, 0.32)‍, 

‍(i = 1, · · · , 45)‍, ‍ζ = 550‍, ‍κ = 106‍.
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Appendix 1—figure 10. Time courses of the species abundances in the scenario involving chasing pairs and 
intraspecific interference. The time series in (A, E), (B, F), (C, G), (D, H), (I, J) and (K) correspond to that shown in 
Appendix 1—figure 9A–C, Figure 3D (bat), Figure 3D (lizard) and Figure 3C (butterfly), respectively.

Appendix 1—figure 11. A model of intraspecific interference illustrates the rank-abundance curves across 
different ecological communities (‍SC ≫ SR‍). The solid dots represent the experimental data (marked with 
‘Exp’) reported in existing studies (Hubbell, 2001; Holmes et al., 1986; Cody and Smallwood, 1996; Clarke 
et al., 2005), while the hollow dots and those with ‘+’ center are the ODEs and SSA results constructed from 
timestamp ‍t = 1.0 × 105‍ in the time series (see Appendix 1—figure 13), respectively. In the model settings, 

‍SR = 3‍, ‍SC = 20‍ (in (A)), 35 (in (B)), 40 (in (C)), 45 (in (D)) or 50 (in (E)). ‍Di‍ is the only parameter varying with 
the consumer species, which was randomly drawn from a Gaussian distribution. The Shannon entropies of the 
experimental data and simulation results for each ecological community are: ‍H

Bird
Exp(ODEs,SSA) = 2.98(2.98, 3.26)‍, 

‍H
Bee
Exp(ODEs,SSA) = 4.04(4.34, 4.35)‍, ‍H

Bat
Exp(ODEs,SSA) = 3.00(3.00, 3.00)‍, ‍H

Fish
Exp(ODEs,SSA) = 3.78(3.28, 3.64)‍, 

Appendix 1—figure 11 continued on next page
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‍H
lizard
Exp(ODEs,SSA) = 4.05(3.94, 3.94)‍. In the K-S test, the p-values that the simulation results and the corresponding 

experimental data come from identical distributions are: ‍p
Bird
ODEs = 0.59‍, ‍p

Bird
SSA = 0.43‍, ‍p

Bee
ODEs = 0.47‍, 

‍p
Bee
SSA = 0.33‍, ‍p

Bat
ODEs = 0.42‍, ‍p

Bat
SSA = 0.27‍, ‍p

Fish
ODEs = 0.22‍, ‍p

Fish
SSA = 0.06‍, ‍p

lizard
ODEs = 0.56‍, ‍p

lizard
SSA = 0.36‍. With a 

significance threshold of 0.05, none of the p-values suggest there exists a statistically significant difference. The 
numerical results in (A–E) were simulated from Equations 1, 2 and 4. In (A–E): ‍ail = 0.1‍, ‍a

′
i = 0.125‍, ‍dil = 0.5‍. 

In (A): ‍d
′
i = 0.3‍, ‍wil = 0.2‍, ‍kil = 0.12‍, ‍κ1 = 8 × 104

‍, ‍κ2 = 5 × 104
‍, ‍κ3 = 3 × 104

‍, ‍Di = 0.021 ×N (1, 0.28)‍, 
‍(i = 1, · · · , 20‍, ‍l = 1, 2, 3)‍, ‍ζ1 = 180‍, ‍ζ2 = 160‍, ‍ζ3 = 140‍. In (B): ‍d

′
i = 0.6‍, ‍wil = 0.2‍, ‍kil = 0.12‍, ‍κ1 = 8 × 104

‍, 

‍κ2 = 5 × 104
‍, ‍κ3 = 3 × 104

‍, ‍Di = 0.017 ×N (1, 0.3)‍, ‍(i = 1, · · · , 35‍, ‍l = 1, 2, 3)‍, ‍ζ1 = 180‍, ‍ζ2 = 160‍, ‍ζ3 = 110‍. 
In (C): ‍d

′
i = 0.4‍, ‍wil = 0.3‍, ‍kil = 0.12‍, ‍κ1 = 105

‍, ‍κ2 = 5 × 104
‍, ‍κ3 = 3 × 104

‍, ‍Di = 0.023 ×N (1, 0.34)‍, 
‍(i = 1, · · · , 40‍, ‍l = 1, 2, 3)‍, ‍ζ1 = 180‍, ‍ζ2 = 120‍, ‍ζ3 = 40‍. In (D): ‍d

′
i = 0.3‍, ‍wil = 0.3‍, ‍kil = 0.12‍, ‍κ1 = 8 × 104

‍, 

‍κ2 = 5 × 104
‍, ‍κ3 = 3 × 104

‍, ‍Di = 0.027 ×N (1, 0.32)‍, ‍(i = 1, · · · , 45‍, ‍l = 1, 2, 3)‍, ‍ζ1 = 80‍, ‍ζ2 = 60‍, ‍ζ3 = 40‍. 
In (E): ‍d

′
i = 0.3‍, ‍wil = 0.3‍, ‍kil = 0.2‍, ‍κ1 = 3 × 105

‍, ‍κ2 = 105
‍, ‍κ3 = 3 × 104

‍, ‍Di = 0.034 ×N (1, 0.34)‍, 
‍(i = 1, · · · , 50‍, ‍l = 1, 2, 3)‍, ‍ζ1 = 380‍, ‍ζ2 = 260‍, ‍ζ3 = 140‍.

Appendix 1—figure 12. A model of intraspecific interference illustrates the rank-abundance curves across 
different plankton communities (‍SC ≫ SR‍). The solid dots represent the experimental data (marked with ‘Exp’) 
reported in a recent study (Fuhrman et al., 2008), while the hollow dots and those with ‘+’ center are the 
ODEs and SSA results constructed from timestamp ‍t = 1.0 × 105‍ in the time series (see Appendix 1—figure 
13), respectively. The plankton community data were obtained separately from the Norwegian Sea (NS) and 
Pacific Station (PS). In the model settings, ‍SR = 1‍ (in (B, C)), 3 (in (A)); ‍SC = 50‍ (in (A, C)), 150 (in (B)). ‍Di‍ is the 
only parameter varying with the consumer species, which was randomly drawn from a Gaussian distribution. 
The Shannon entropies of the experimental data and simulation results for each plankton community are: 

‍H
plankton(NS)
Exp(ODEs,SSA) = 4.67(4.85, 4.90)‍ for ‍SR = 3‍, ‍H

plankton(NS)
Exp(ODEs,SSA) = 4.67(4.74, 4.64)‍ for ‍SR = 1‍. In the K-S test, the 

p-values that the simulation results and the corresponding experimental data come from identical distributions 

are: ‍p
plankton(NS)
ODEs = 0.31‍, ‍p

plankton(NS)
SSA = 0.14‍ for ‍SR = 3‍, ‍p

plankton(NS)
ODEs = 0.46‍, ‍p

plankton(NS)
SSA = 0.37‍ for ‍SR = 1‍. 

With a significance threshold of 0.05, none of the p-values suggest there exists a statistically significant difference. 
The numerical results in (A–C) were simulated from Equations 1, 2 and 4. In (A): ‍ail = 0.1‍, ‍a

′
i = 0.125‍, ‍dil = 0.5‍, 

‍d
′
i = 0.2‍, ‍wil = 0.3‍, ‍kil = 0.2‍, ‍κ1 = 8 × 104

‍, ‍κ2 = 5 × 104
‍, ‍κ3 = 3 × 104

‍, ‍ζ1 = 280‍, ‍ζ2 = 200‍, ‍ζ3 = 150‍, 

‍Di = 0.035 ×N (1, 0.25)‍, ‍(i = 1, · · · , 50‍, ‍l = 1, 2, 3)‍. In (B): ‍ai = 0.1‍, ‍a
′
i = 0.125‍, ‍di = 0.3‍, ‍d

′
i = 0.3‍, ‍wi = 0.3‍, 

‍ki = 0.2‍, ‍Di = 0.025 ×N (1, 0.25)‍, ‍(i = 1, · · · , 150‍, ‍l = 1, 2, 3)‍, ‍ζ = 350‍, ‍κ = 104‍. In (C): ‍ai = 0.1‍, ‍a
′
i = 0.125‍, 

‍di = 0.3‍, ‍d
′
i = 0.3‍, ‍wi = 0.3‍, ‍ki = 0.2‍, ‍ζ = 350‍, ‍κ = 104‍, ‍Di = 0.03 ×N (1, 0.27)‍, ‍(i = 1, · · · , SC)‍.

Appendix 1—figure 11 continued
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Appendix 1—figure 13. Time courses of the species abundances in the scenario involving chasing pairs and 
intraspecific interference. The time series in (A, E), (B, F), (C, G), (D, H), (I, J), (K, L), (M, N) and (O, P) correspond 
to that shown in Appendix 1—figure 11A–E and Appendix 1—figure 12A–C, respectively.

Appendix 1—figure 14. A model of intraspecific interference illustrates the rank-abundance curve of a bird 
community (‍SC ≫ SR‍). (A) The rank-abundance curve. The solid dots represent the bird community data 
(marked with ‘Exp’) collected longitudinally within the same Amazonian region in 1982 (blue) and 2018 (cyan) 
(Terborgh et al., 1990; Martínez et al., 2023). The hollow dots are the ODEs results constructed from 
timestamp ‍t = 1.0 × 105‍ in the time series (see (B)). (B) Time courses of the species abundances simulated with 
ODEs. In the model settings, ‍SR = 3‍ and ‍SC = 250‍ is the only parameter varying with the consumer species, 
which was randomly drawn from a Gaussian distribution. The Shannon entropies of the experimental data and 

simulation results for the bird community are ‍H
bird(1982/2018)
Exp(ODEs) = 5.67/6.63(7.31)‍. In the K-S test, the p-values 

that the simulation results and the corresponding experimental data come from identical distributions are: 

‍p
bird(1982)
ODEs = 0.28‍, ‍p

bird(2018)
ODEs = 0.46‍. With a significance threshold of 0.05, none of the p-values suggest there 

exists a statistically significant difference. (C) Time courses of the species abundances simulated with ODEs 
Appendix 1—figure 14 continued on next page
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corresponding to Figure 3C (bird), and the simulation parameters are the same as Figure 3C (bird). The numerical 
results in (A–C) were simulated from Equations 1, 2 and 4. In (A, B): ‍ail = 0.1‍, ‍a

′
i = 0.125‍, ‍dil = 0.5‍, ‍d

′
i = 0.6‍, 

‍wil = 0.3‍, ‍kil = 0.2‍, ‍Di = 0.032 ×N (1, 0.17)‍, ‍(i = 1, · · · , 250,‍ ‍l = 1, 2, 3)‍, ‍κ1 = 5 × 104
‍, ‍κ2 = 3 × 104

‍, 

‍κ3 = 104
‍, ‍ζ1 = 100‍, ‍ζ2 = 70‍, ‍ζ3 = 40‍.

Appendix 1—figure 15. Intraspecific interference results in an underlying negative feedback loop and 
thus promotes biodiversity. (A, B) The fraction of consumer individuals engaged in pairwise encounter. 

Here, ‍SC = 40‍ and ‍SR = 1‍. xi represents ‍C
(P)
i ∨ R(P)

‍, and yi represents ‍C
(P)
i ∨ C(P)

i ‍ and ‍yi/Ci‍ stand for the 
fractions of consumer individuals within a chasing pair and an interference pair, respectively. The numerical 
results were calculated from Equation S55, while the analytical solutions (marked with superscript ‘(A)’) were 
calculated from Equation S59. The orange surface in (A) is an overlap of the red and yellow surfaces. 
(C) The formation of intraspecific interference results in a self-inhibiting negative feedback loop. In (A, 
B): ‍ai = 0.0015, a′i = 0.0021, di = 0.1, d′i = 0.05, ki = 5‍. In (B): ‍R = 2000‍.

Appendix 1—figure 14 continued
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Appendix 2
The classical proof of Competitive Exclusion Principle (CEP)
In the 1960s, MacArthur (MacArthur and Levins, 1964) and Levin (Levin, 1970) put forward 
the classical mathematical proof of CEP. We rephrase their idea in the simple case of ‍SC = 2‍ and 
‍SR = 1‍, that is two consumer species ‍C1‍ and ‍C2‍ competing for one resource species ‍R‍. In practice, 
this proof can be generalized into higher dimensions with several consumer and resource species. 
The population dynamics of the system can be described as follows:

	﻿‍




Ċi = Ci(fi(R) − Di), i = 1, 2;

Ṙ = g(R, C1, C2).
‍�

(S1)

Here, ‍Ci‍ and ‍R‍ represent the population abundances of consumers and resources, respectively, 
while the functional forms of ‍fi(R)‍ and ‍g(R, C1, C2)‍ are unspecific. ‍Di‍ stands for the mortality rate of 
the species ‍Ci‍. If all consumer species can coexist at steady state, then ‍fi(R)/Di = 1‍ ‍(i = 1, 2)‍. In a 
2-D representation, this requires that three lines ‍fi(R)/Di = 1‍ and ‍y = 1‍ share a common point, which 
is commonly impossible unless the model parameters satisfy special constraint (sets of Lebesgue 
measure zero). In a 3-D representation, the two planes corresponding to ‍fi(R)/Di = 1‍ ‍(i = 1, 2)‍ are 
parallel, and hence do not share a common point (see Wang and Liu, 2020 for details).

https://doi.org/10.7554/eLife.93115
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Appendix 3
Comparison of the functional response with Beddington-DeAngelis (B-
D) model
A B-D model
In 1975, Beddington proposed a mathematical model (Beddington, 1975) to describe the influence 
of predator interference on the functional response with hand-waving derivations. In the same 
year, DeAngelis and his colleagues considered a related question and put forward a similar model 
(DeAngelis et  al., 1975). Essentially, both models are phenomenological, and they were called 
B-D model in the subsequent studies. In practice, the B-D model can be extended into scenarios 
involving different types of pairwise encounters with Beddington’s modelling method. In this section, 
we systematically compare the functional response in B-D model with that of our mechanistic model 
in all the relevant scenarios.

Recalling Beddington’s analysis, the model (Beddington, 1975) consists of one consumer species 
‍C‍ and one resource species ‍R‍ (‍SC = 1‍, ‍SR = 1‍). In a well-mixed system, an individual consumer 
meets a resource with rate ‍a‍, while encounters another consumer with rate ‍a′‍. There are two other 
phenomenological parameters in this model, namely, the handling time ‍th‍ and the wasting time ‍tw‍. 
Both can be determined by specifying the scenario and using statistical physics modeling analysis. In 
fact, Beddington analyzed the searching efficiency ‍ΞB-D‍ rather than the functional response ‍FB-D‍, yet 
both can be reciprocally derived with ‍ΞB-D ≡ FB-D/R‍. Here ‍R‍ stands for the population abundance of 
the resources, and the specific form of ‍ΞB-D‍ is (Beddington, 1975):

	﻿‍
ΞB-D(R, C) = a

1 + athR + a′twC′ ,
‍�

(S2)

where ‍C′ = C − 1‍, and ‍C‍ stands for the population abundance of the consumes. Generally, ‍C ≫ 1‍, 
and thus ‍C′ ≈ C‍.

B Scenario involving only chasing pairs
Here, we consider the scenario involving only chasing pair for the simple case with one consumer 
species ‍C‍ and one resource species ‍R‍ (‍SC = 1, SR = 1‍). When an individual consumer is chasing a 
resource, they form a chasing pair:

	﻿‍
C(F) + R(F) a−⇀↽−

d
C(P) ∨ R(P) k−→ C(F)(+),

‍�

where the superscript ‘(F)’ stands for populations that are freely wandering, and ‘(+)’ signifies gaining 
biomass (we count ‍C(F)(+)‍ as ‍C(F)‍). ‍C(P) ∨ R(P)‍ represents chasing pair (where ‘(P)’ signifies pair), 
denoted as ‍x‍. ‍a‍, ‍d‍ and ‍k‍ stand for encounter rate, escape rate and capture rate, respectively. Hence, 
the total number of consumers and resources are ‍C ≡ C(F) + x‍ and ‍R ≡ R(F) + x‍. Then, the population 
dynamics of the system follows:

	﻿‍




ẋ = aC(F)R(F) − (k + d)x,

Ċ = wkx − DC,

Ṙ = g(R, x, C). ‍�

(S3)

Here, the functional form of ‍g(R, x, C)‍ is unspecific, while ‍D‍ and ‍w‍ represent the mortality rate 
of the consumer species and biomass conversion ratio (Wang and Liu, 2020), respectively. Since 
consumption process is generically much faster than the birth/death process, in deriving the 
functional response, the consumption process is supposed to be in fast equilibrium (i.e. ‍̇x = 0‍). Then, 
we can solve for ‍x‍ with:

	﻿‍ x2 − (R + C + K)x + RC = 0,‍� (S4)

where ‍K = k+d
a ‍, and then,

https://doi.org/10.7554/eLife.93115
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	﻿‍

x = 2RC
(R + C + K)

1

(1 +
√

1 − 4RC
(R + C + K)2 )

.

‍�
(S5)

By definition, the functional response and searching efficiency are:

	﻿‍
FCP(R, C) = kx

C
,
‍�

(S6a)

	﻿‍
ΞCP(R, C) = kx

RC
.
‍�

(S6b)

Hence, we obtain the functional response and searching efficiency in this chasing-pair scenario:

	﻿‍
FCP(R, C)(1) = k (R + C + K)

2C

(
1 −

√
1 − 4RC

(R + C + K)2

)
,
‍�

(S7a)

	﻿‍
ΞCP(R, C)(1) = k (R + C + K)

2RC

(
1 −

√
1 − 4RC

(R + C + K)2

)
.
‍�

(S7b)

Since ‍
4RC

(R+C+K)2 < 4 C
R ≪ 1‍, using first-order approximations in Equation S7a, Equation S7b, we 

obtain 
‍

√
1 − 4RC

(R+C+K)2 ≈ 1 − 2RC
(R+C+K)2 ‍

. Then the functional response and searching efficiency are:

	﻿‍
FCP(R, C)(2) = k R

R + C + K
,
‍�

(S8a)

	﻿‍
ΞCP(R, C)(2) = k

R + C + K
.
‍�

(S8b)

Evidently, there is no predator interference within the chasing-pair scenario, yet the functional 
response form is identical to the B-D model involving intraspecific interference (see Equation 
S2). Meanwhile, using first-order approximations in the denominator of Equation S5, we have 

‍
x ≈ RC

(R+C+K)− RC
(R+C+K) ‍

. Hence,

	﻿‍

FCP(R, C)(3) = k R

(R + C + K) − RC
(R + C + K)

,

‍�
(S9a)

	﻿‍

ΞCP(R, C)(3) = k

(R + C + K) − RC
(R + C + K)

.

‍�
(S9b)

In the case that ‍R ≫ C‍, then ‍R ≫ C > x = R − R(F)‍. By applying ‍R ≈ R(F)‍ in Equation S3, we 
obtain ‍x ≈ RC

R+K ‍. Then,

	﻿‍
FCP(R, C)(4) = k R

R + K
,
‍�

(S10a)

	﻿‍
ΞCP(R, C)(4) = k

R + K
.
‍�

(S10b)

To compare these functional responses with that of the B-D model, we determine the parameters 
th and tw in the B-D model by calculating their ensemble average values in a stochastic framework. 
Using the properties of waiting time distribution in the Poisson process, we obtain ‍⟨th⟩ = 1

k‍ and 

‍⟨tw⟩ = 1
d′ ‍ (in the chasing-pair scenario, ‍a′ = 0‍). By substituting these calculations into Equation S2, 

we have:

	﻿‍
ΞB-D

CP (R, C) = a
1 + Ra/k

= k
k/a + R

,
‍� (S11a)

https://doi.org/10.7554/eLife.93115
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	﻿‍
FB-D

CP (R, C) = kR
k/a + R

.
‍�

(S11b)

In the special case with ‍d = 0‍ and ‍R ≫ C‍, the B-D model is consistent with our mechanistic model: 

‍ΞB-D(R, C) = ΞCP(R, C)(4)‍. Outside the special region, however, the discrepancy can be considerably 
large (see Appendix 1—figure 2A–C for the comparison).

C Scenario involving chasing pairs and intraspecific interference
Here, we consider the scenario with additional involvement of intraspecific interference in the simple 
case of ‍SC = 1‍ and ‍SR = 1‍:

	﻿‍

C(F) + R(F) a−⇀↽−
d

C(P) ∨ R(P) k−→ C(F)(+),

C(F) + C(F) a′−⇀↽−
d′

C(P) ∨ C(P).
‍�

Here, ‍C(P) ∨ C(P)‍ stands for the intraspecific predator interference pair, denoted as ‍y‍; ‍a′‍ and ‍d′‍ 
represent the encounter rate and separation rate of the interference pair, respectively. Then, the total 
population of consumers and resources are ‍C ≡ C(F) + x + 2y‍ and ‍R ≡ R(F) + x‍. Hence the population 
dynamics of the consumers and resources can be described as follows:

	﻿‍




ẋ = aC(F)R(F) − (k + d)x,

ẏ = a′[C(F)]2 − d′y,

Ċ = wkx − DC,

Ṙ = g(R, x, C). ‍�

(S12)

The consumption process and interference process are supposed to be in fast equilibrium (i.e., 

‍̇x = 0, ẏ = 0‍), then we can solve for ‍x‍ with:

	﻿‍ x3 + ϕ2x2 + ϕ1x + ϕ0 = 0,‍� (S13)

where ‍ϕ0 = −CR2
‍, ‍ϕ1 = 2CR + KR + R2

‍, ‍ϕ2 = 2βK2 − K − C − 2R‍ with ‍β = a′/d′‍. The discriminant of 
Equation S13 (denoted as ‍Λ‍) is:

	﻿‍ Λ = −4ψ3 − 27φ2,‍� (S14)

with ‍ψ = ϕ1 − (ϕ2)2/3‍ and ‍φ = ϕ0 − ϕ1ϕ2/3 + 2(ϕ2)3/27‍. When ‍Λ < 0‍, there are one real solution ‍x(1)‍ 
and two complex solutions ‍x(2), x(3)‍, which are:

	﻿‍ x(1) = θ1 + θ2 − ϕ2/3, x(2) = ωθ1 + ω2θ2 − ϕ2/3, x(3) = ω2θ1 + ωθ2 − ϕ2/3,‍� (S15)

where ‍ω = −1/2 + i
√

3/2‍ (‍i‍ stands for the imaginary unit), ‍θ1 = (−φ/2 +
√
−Λ/108)1/3

‍, and 
‍θ2 = (−φ/2 −

√
−Λ/108)1/3

‍. On the other hand, when ‍Λ > 0‍, there are three real solutions ‍x(1), x(2)‍, 
and ‍x(3)‍, which are:

	﻿‍
x(1) = ψ′ cosφ′ − ϕ2/3, x(2) = ψ′ cos(φ′ + 2π

3
) − ϕ2/3, x(3) = ψ′ cos(φ′ + 4π

3
) − ϕ2/3,

‍�
(S16)

where ‍ψ
′ = (−4ψ/3)1/2

‍ and ‍φ
′ = arccos(−(−ψ/3)−3/2φ/2)/3‍. Note that ‍x ∈ [0, min(R, C)]‍, then we obtain 

the exact feasible solution of ‍x‍ (denoted as xext), and hence the functional response and searching 
efficiency are:

	﻿‍
Fintra(R, C)(1) = kxext

C
,
‍�

(S17a)

	﻿‍
Ξintra(R, C)(1) = kxext

RC
.
‍� (S17b)

https://doi.org/10.7554/eLife.93115
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In the case of ‍R ≫ C‍, then ‍R − R(F) = x < C ≪ R‍, and thus ‍R(F) ≈ R‍. Still, the consumption process 
is supposed to be in fast equilibrium (i.e. ‍̇x = 0, ẏ = 0‍), and then we obtain:

	﻿‍

x ≈ RC√
[ 1
2

(K + R)]2 + 2CβK2 + 1
2

(K + R)
.

‍�
(S18)

Consequently,

	﻿‍

Fintra(R, C)(2) = k R√
[ 1
2

(K + R)]2 + 2CβK2 + 1
2

(K + R)
,

‍�
(S19a)

	﻿‍

Ξintra(R, C)(2) = k 1√
[ 1
2

(K + R)]2 + 2CβK2 + 1
2

(K + R)
.

‍�
(S19b)

When ‍β ≪ 1
8C‍ or ‍8βC/(1 + R/K)2 ≪ 1‍, using first-order approximations in the denominator of 

Equation S18, we have:

	﻿‍

x ≈ RC

(K + R) + 2K
(1 + R/K)

βC
,

‍�
(S20)

and then,

	﻿‍

Fintra(R, C)(3) = k R

(K + R) + 2K
(1 + R/K)

βC
,

‍�
(S21a)

	﻿‍

Ξintra(R, C)(3) = k 1

(K + R) + 2K
(1 + R/K)

βC
.

‍�
(S21b)

In the case that ‍8βC/(1 + R/K)2 ≫ 1‍, using first-order approximations in Equation S18, we obtain:

	﻿‍

x ≈ RC

K
√

2Cβ + (K + R)2

8K
√

2Cβ
+ 1

2
(K + R)

,

‍�

(S22)

and thus,

	﻿‍

Fintra(R, C)(4) = k R

K
√

2Cβ + (K + R)2

8K
√

2Cβ
+ 1

2
(K + R)

,

‍�

(S23a)

	﻿‍

Ξintra(R, C)(4) = k 1

K
√

2Cβ + (K + R)2

8K
√

2Cβ
+ 1

2
(K + R)

.

‍�

(S23b)

Meanwhile, the B-D model only fits to the cases with ‍d = 0‍. By calculating the average values 
of ‍th‍ and ‍tw‍ in the stochastic framework, we have ‍⟨th⟩ = 1

k , ⟨tw⟩ = 1
d′ ‍. Thus, we obtain the searching 

efficiency and functional response in the B-D model:

	﻿‍

ΞB-D
intra(R, C) = a

1 + a
k

R + a′

d′
C

= a
1 + R/K |d=0 +βC

,

‍� (S24a)

	﻿‍
FB-D

intra(R, C) = aR
1 + R/K |d=0 +βC

.
‍� (S24b)
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Overall, the searching efficiency (and the functional response) of the B-D model is quite different 
from either the rigorous form ‍Ξintra(R, C)(1)‍, the quasi rigorous form ‍Ξintra(R, C)(2)‍, or the more simplified 
forms ‍Ξintra(R, C)(3)‍ and ‍Ξintra(R, C)(4)‍ (Appendix  1—figure 2D–F). Still, there is a region where 
the discrepancies can be small, namely ‍d ≈ 0‍ and ‍R ≫ C‍ (Appendix 1—figure 2D–F). Intuitively, 
when ‍β ≪ 1

8C‍ and ‍d = 0‍, then 
‍
Ξintra(R, C)(3) = a

1+ a
k R+ 2

(1+R/K) βC‍
. Consequently, if ‍R/K = x/C(F) < 1‍, then 

‍
2

(1+R/K) ∈ [1, 2]‍. In this case, the difference between ‍Ξ
B-D
intra(R, C)‍ and ‍Ξintra(R, C)(3)‍ is small.

In fact, the above analysis also applies to cases with more than one types of consumer species 
(i.e., for cases with ‍SC > 1‍).

D Scenario involving chasing pairs and interspecific interference
Next, we consider the scenario involving chasing pairs and interspecific interference in the case of 
‍SC = 2‍ and ‍SR = 1‍:

	﻿‍

C(F)
i + R(F) ai−⇀↽−

di

C(P)
i ∨ R(P) ki−→ C(F)

i (+), i = 1, 2;

C(F)
1 + C(F)

2
a′12−−⇀↽−−
d′12

C(P)
1 ∨ C(P)

2 .
‍�

Here ‍C
(P)
1 ∨ C(P)

2 ‍ stands for the interspecific interference pair, denoted as ‍z‍; ‍a
′
12‍ and ‍d

′
12‍ represent 

the encounter rate and separation rate of the interference pair, respectively. Then, the total 
population of consumers and resources are ‍Ci ≡ C(F)

i + xi + z‍ and ‍R ≡ R(F) + x1 + x2‍. The population 
dynamics of the consumers and resources follows:

	﻿‍




ẋi = aiC(F)
i R(F) − (ki + di)xi, i = 1, 2;

ż = a′12C(F)
1 C(F)

2 − d′12z,

Ċi = wikixi − DiCi,

Ṙ = g(R, x1, x2, C1, C2). ‍�

(S25)

where the functional form of ‍g(R, x1, x2, C1, C2)‍ is unspecific, while ‍Di‍ and ‍wi‍ represents the 
mortality rates of the two consumers species and biomass conversion ratios. Still, the consumption/
interference process is supposed to be in fast equilibrium, that is ‍̇xi = 0, ż = 0‍. In the case that 
‍R ≫ C1 + C2 > x1 + x2‍, by applying ‍R(F) ≈ R‍, we obtain:

	﻿‍

x1 ≈ 2C1(R/K2 + 1)R/K1√
[γ(C2−C1)+( R

K1
+1)( R

K2
+1)]2 +4γC1( R

K1
+1)( R

K2
+1)+γ(C2−C1)+( R

K1
+1)( R

K2
+1)

,

‍�
(S26a)

	﻿‍

x2 ≈ 2C2(R/K1 + 1)R/K2√
[γ(C1−C2)+( R

K1
+1)( R

K2
+1)]2 +4γC2( R

K1
+1)( R

K2
+1)+γ(C1−C2)+( R

K1
+1)( R

K2
+1)

.

‍�
(S26b)

Then, the searching efficiencies and functional responses are:

	﻿‍

Ξinter
1 (R, C1, C2)(1) =

2k2(R/K1 + 1)R/K2

γ(C1 − C2) + (
R

K1
+ 1)(

R

K2
+ 1) +

√
[γ(C1 − C2) + (

R

K1
+ 1)(

R

K2
+ 1)]2 + 4γC2(

R

K1
+ 1)(

R

K2
+ 1)

,

‍�
(S27a)

	﻿‍

Ξinter
2 (R, C1, C2)(1) =

2k2(R/K1 + 1)/K2

γ(C1 − C2) + (
R

K1
+ 1)(

R

K2
+ 1) +

√
[γ(C1 − C2) + (

R

K1
+ 1)(

R

K2
+ 1)]2 + 4γC2(

R

K1
+ 1)(

R

K2
+ 1)

,

‍�
(S27b)

	﻿‍

F inter
1 (R, C1, C2)(1) =

2k1(R/K2 + 1)R/K1

γ(C2 − C1) + (
R

K1
+ 1)(

R

K2
+ 1) +

√
[γ(C2 − C1) + (

R

K1
+ 1)(

R

K2
+ 1)]2 + 4γC1(

R

K1
+ 1)(

R

K2
+ 1)

,

‍� (S27c)
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	﻿‍

F inter
2 (R, C1, C2)(1) =

2k2(R/K1 + 1)R/K2

γ(C1 − C2) + (
R

K1
+ 1)(

R

K2
+ 1) +

√
[γ(C1 − C2) + (

R

K1
+ 1)(

R

K2
+ 1)]2 + 4γC2(

R

K1
+ 1)(

R

K2
+ 1)

.

‍�
(S27d)

 

Since 
‍

4γ2C1C2
[γC1+γC2)+( R

K1
+1)( R

K2
+1)]2 < 1

‍
, by applying first-order approximation to the denominator of 

Equation S26b, we obtain:

	﻿‍

x1 ≈ C1R

(R + K1) + γK1K2C2
(R + K2)

− γ2K1K2C1C2

[γ(C1 + C2) + ( R
K1

+ 1)( R
K2

+ 1)](R + K2)

,

‍�

(S28a)

	﻿‍

x2 ≈ C2R

(R + K2) + γK1K2C1
(R + K1)

− γ2K1K2C1C2

[γ(C1 + C2) + ( R
K1

+ 1)( R
K2

+ 1)](R + K1)

,

‍�

(S28b)

and the searching efficiencies and functional responses are:

	﻿‍

Ξinter
1 (R, C1, C2)(2) = k1

(R + K1) + γK1K2C2
(R + K2)

− γ2K1K2C1C2

[γ(C1 + C2) + ( R
K1

+ 1)( R
K2

+ 1)](R + K2)

,

‍�

(S29a)

	﻿‍

Ξinter
2 (R, C1, C2)(2) = k2

(R + K2) + γK1K2C1
(R + K1)

− γ2K1K2C1C2

[γ(C1 + C2) + ( R
K1

+ 1)( R
K2

+ 1)](R + K1)

,

‍�

(S29b)

	﻿‍

F inter
1 (R, C1, C2)(2) = k1R

(R + K1) + γK1K2C2
(R + K2)

− γ2K1K2C1C2

[γ(C1 + C2) + ( R
K1

+ 1)( R
K2

+ 1)](R + K2)

,

‍�

(S29c)

	﻿‍

F inter
2 (R, C1, C2)(2) = k2R

(R + K2) + γK1K2C1
(R + K1)

− γ2K1K2C1C2

[γ(C1 + C2) + ( R
K1

+ 1)( R
K2

+ 1)](R + K1)

.

‍�

(S29d)

Likewise, the B-D model only fits to cases with ‍d = 0‍. By calculating the average values in a 
stochastic framework, we obtain ‍⟨t

i
h⟩ = 1

ki ‍, ‍
⟨tiw⟩ = 1

d′12 ‍
 (‍i = 1, 2‍). Then, we obtain the searching 

efficiencies in the B-D model:

	﻿‍

ΞB-D (inter)
1 (R, C1, C2) = a1

1 + a1
k1

R +
a′12
d′12

C2

= a1
1 + R/K1 |d=0 +γC2

,

‍�
(S30a)

	﻿‍

ΞB-D (inter)
2 (R, C1, C2) = a2

1 + a2
k2

R +
a′12
d′12

C1

= a2
1 + R/K2 |d=0 +γC1

.

‍� (S30b)

Consequently, the functional responses in the B-D model are:

	﻿‍
FB-D (inter)

1 (R, C1, C2) = a1R
1 + R/K1 |d=0 +γC2

,
‍� (S31a)
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	﻿‍
FB-D (inter)

2 (R, C1, C2) = a2R
1 + R/K2 |d=0 +γC1

.
‍�

(S31b)

Evidently, the searching efficiencies in the B-D model are overall different from either the quasi 
rigorous form ‍Ξi(R, C1, C2)1‍, or the simplified form ‍Ξi(R, C1, C2)2‍ (Appendix 1—figure 2G–I). Still, 
the discrepancy can be small when ‍d ≈ 0‍ and ‍R ≫ C‍ (Appendix 1—figure 2G–I). Intuitively, when 

‍γ ≪ min(C−1
1 , C−1

2 )‍, we have:

	﻿‍

Ξinter
1 (R, C1, C2)(2) ≈

a1

(1 + a1
k1

R) + γC2
R/K2 + 1

,

‍�
(S32a)

	﻿‍

Ξinter
2 (R, C1, C2)(2) ≈

a2

(1 + a2
k2

R) + γC1
R/K1 + 1

.

‍�
(S32b)

Thus, if ‍R/Ki = xi/C(F)
i < 1‍ (‍i = 1, 2‍), then ‍

1
1+R/Ki

∈ [0.5, 1]‍. In this case, the difference between 

‍Ξ
B-D (inter)
i (R, C1, C2)‍ and ‍Ξ

inter
i (R, C1, C2)(2)‍ is small.
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Appendix 4
Scenario involving chasing pairs and intraspecific interference
A Two consumers species competing for one resource species
We consider the scenario involving chasing pairs and intraspecific interference in the simple case of 
‍SC = 2‍ and ‍SR = 1‍:

	﻿‍

C(F)
i + R(F) ai−⇀↽−

di

C(P)
i ∨ R(P) ki−→ C(F)

i (+),

C(F)
i + C(F)

i
a′i−⇀↽−
d′i

C(P)
i ∨ C(P)

i , i = 1, 2.
‍�

Here, the variables and parameters are just extended from the case of ‍SC = 1‍ and ‍SR = 1‍ 
(see Appendix 3.C). The total number of consumers and resources are ‍Ci ≡ C(F)

i + xi + 2yi‍ and 

‍
R ≡ R(F) +

2∑
i=1

xi
‍
. Then, the population dynamics of the consumers and resources can be described 

as follows:

	﻿‍




ẋi = aiC(F)
i R(F) − (ki + di)xi, i = 1, 2;

ẏi = a′i[C
(F)
i ]2 − d′iyi,

Ċi = wikixi − DiCi,

Ṙ = g(R, x1, x2, C1, C2). ‍�

(S33)

The functional form of ‍g(R, x1, x2, C1, C2)‍ is unspecified. For simplicity, we limit our analysis to abiotic 
resources, while all results generically apply to biotic resources. Besides, we define ‍Ki ≡ (di + ki)/ai‍, 

‍αi ≡ Di/(wiki)‍ and ‍βi ≡ a′i /d
′
i‍ ‍(i = 1, 2)‍. At steady state, from ‍̇xi = 0, ẏi = 0‍, we have:

	﻿‍




xi = C(F)
i R(F)/Ki, i = 1, 2;

yi = βi[C(F)
i ]2.

‍�

(S34)

Note that ‍Ci ≡ C(F)
i + xi + 2yi‍, and 

‍
R ≡ R(F) +

2∑
i=1

xi
‍
. Then,

	﻿‍ R(F) = R/(1 + C(F)
1 /K1 + C(F)

2 /K2),‍� (S35a)

	﻿‍ Ci = C(F)
i + R(F)C(F)

i /Ki + 2βi[C(F)
i ]2, i = 1, 2.‍� (S35b)

By substituting Equation S35a into Equation S35b, we have:

	﻿‍
C(F)

2 = K2
K1

[
RC(F)

1

C1 − C(F)
1 − 2β1[C(F)

1 ]2
− K1 − C(F)

1 ],
‍�

(S36a)

	﻿‍ (C2 − C(F)
2 − 2β2[C(F)

2 ]2)(1 + C(F)
1 /K1 + C(F)

2 /K2) = RC(F)
2 /K2.‍� (S36b)

Then, we can present ‍C
(F)
i ‍ with ‍C1‍, ‍C2‍ and ‍R‍ (‍i = 1, 2‍). By further combining with Equation S34, 

Equation S35a and Equation S36a, we express ‍R(F)‍, ‍xi‍ and ‍yi‍ using ‍C1‍, ‍C2‍ and ‍R‍. In particular, for 

‍xi‍, we have:

	﻿‍ xi = ui(R, C1, C2), i = 1, 2.‍� (S37)

If all species coexist, then the steady-state equations of ‍Ċi = 0‍ and ‍̇R = 0‍ are:

https://doi.org/10.7554/eLife.93115
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	﻿‍




Ω1(R, C1, C2) − D1 = 0,

Ω2(R, C1, C2) − D2 = 0,

G(R, C1, C2) = 0, ‍�

(S38)

where ‍G(R, C1, C2) ≡ g(R, u1(R, C1, C2), u2(R, C1, C2), C1, C2)‍, and ‍Ωi(R, C1, C2) ≡ wiki
Ci

ui(R, C1, C2)‍. 
In practice, Equation S38 corresponds to three unparallel surfaces, which share a common point 
(Figure 1H and Appendix 1—figure 3G). Importantly, the fixed point can be stable, and hence two 
consumer species may coexist at constant population densities.

1 Stability analysis of the fixed-point solution
We use linear stability analysis to study the local stability of the fixed point. Specifically, for an 
arbitrary fixed point ‍E(x1, x2, y1, y2, C1, C2, R)‍, only when all the eigenvalues (defined as ‍λi, i = 1, · · · , 7‍) 
of the Jacobian matrix at point ‍E‍ own negative real parts would the point be locally stable.

To investigate whether there exists a non-zero measure parameter region for species coexistence, 
we set ‍Di‍ ‍(i = 1, 2)‍ to be the only parameter that varies with species ‍C1‍ and ‍C2‍, and then 

‍∆ ≡ (D1 − D2)/D2‍ reflects the completive difference between the two consumer species. As shown 
in Appendix 1—figure 4B, the region below the blue surface and above the red surface corresponds 
to stable coexistence. Thus, there exists a non-zero measure parameter region to promote species 
coexistence, which breaks CEP.

2 Analytical solutions of the species abundances at steady state
At steady state, since ‍̇xi = ẏi = Ċi = 0‍ ‍(i = 1, 2)‍, then,

	﻿‍




xi = αiCi,

C(F)
i = KiαiCi/R(F),

yi = βi(KiαiCi)2[R(F)]−2.‍�

(S39)

Meanwhile, ‍Ci = C(F)
i + xi + 2yi‍, and ‍Ci, R > 0‍. Then, we have:

	﻿‍
Ci = (1 − αi)[R(F)]2 − KiαiR(F)

2βi(Kiαi)2 .
‍�

(S40)

If the resource species owns a much larger population abundance than the consumers (i.e. 

‍R ≫ C1 + C2‍), then ‍R ≫ x1 + x2‍, and ‍R(F) ≈ R‍. Thus,

	﻿‍
Ci = (1 − αi)R2 − KiαiR

2βi(Kiαi)2 .
‍�

(S41)

By further assuming that the population dynamics of the resources follow identical construction 
rule as the MacArthur’s consumer-resource model (MacArthur, 1970), we have:

	﻿‍ g(R, x1, x2, C1, C2) = ζ(1 − R/κ) − (k1x1 + k2x2),‍� (S42)

Since ‍̇R = 0‍, then

	﻿‍
R =

−o1 +
√

o2
1 + 4o2ζ

2o2
,
‍�

(S43)

where ‍o1 ≡ ζ
κ − k1

2β1K1
− k2

2β2K2 ‍ and ‍o2 ≡ k1(1−α1)
2β1α1(K1)2 + k2(1−α2)

2β2α2(K2)2 ‍
Equations. S41, S43 are the analytical solutions of species abundances at steady state when 

‍R ≫ C1 + C2‍. As shown in Figure 1E, the analytical solutions agree well with the numerical results 
(the exact solutions). To conduct a systematic comparison for different model parameters, we assign 

‍Di‍ to be the only parameter varying with species ‍C1‍ and ‍C2‍ (‍D1 > D2‍), and define ‍∆ ≡ (D1 − D2)/D2‍ as 
the competitive difference between the two consumer species. The comparison between analytical 
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solutions and numerical results is shown in Appendix 1—figure 3H. Clearly, they are close to each 
other, exhibiting very good consistency.

Furthermore, we test if the parameter region for species coexistence is predictable using the 
analytical solutions. Since ‍Di‍ is the only parameter that varies with the two-consumer species, the 
supremum of the competitive difference tolerated for species coexistence (defined as ‍̂∆‍) corresponds 
to the steady-state solutions that satisfy ‍R, C2 > 0‍ and ‍C1 = 0+

‍, where ‍0+‍ stands for the infinitesimal 
positive number. To calculate the analytical solutions at the upper surface of the coexistence region, 
where ‍∆ = ∆̂‍ and ‍C1 = 0+

‍, we further combine Equation S41 and then obtain (note that ‍R > 0‍):

	﻿‍
R = K1α1

1 − α1
.
‍�

(S44)

Meanwhile, ‍α1 = α2(∆ + 1)‍. Thus, for the upper surface of the coexistence region:

	﻿‍ α1 = α2(∆̂ + 1).‍� (S45)

Combining Equations S43-S45, we have:

	﻿‍
∆̂ = 1

α2(κ1ϖ + 1)
− 1,

‍�
(S46)

where 
‍
ϖ ≡ 1

2 ( 1
κ − k2

2ζβ2K2
) + 1

2

√
( 1
κ − k2

2ζβ2K2
)2 + 2 k2(1−α2)

ζβ2α2(K2)2 .
‍
 When ‍R ≫ C1 + C2‍, the comparison of ‍̂∆‍ 

obtained from analytical solutions with that from numerical results (the exact solutions) are shown in 

Appendix 1—figure 3I, which overall exhibits good consistency.

B ‍SC‍ consumers species competing for ‍SR‍ resources species
Here, we consider the scenario involving chasing pairs and intraspecific interference for the generic 
case with ‍SC‍ types of consumers and ‍SR‍ types of resources. Then, the population dynamics of the 
system can be described as follows:

	﻿‍




ẋil = ailC
(F)
i R(F)

l − (kil + dil)xil,

ẏi = a′ii[C
(F)
i ]2 − d′iiyi,

Ċi =
SR∑
l=1

wilkilxil − DiCi,

Ṙl = gl({Rl}, {xi}, {Ci}), i = 1, · · · , SC, l = 1, · · · , SR.‍�

(S47)

Note that Equation S47 is identical with Equations 1-2, and we use the same variables and 
parameters as that in the main text. Then, the populations of the consumers and resources are 

‍
Ci = C(F)

i +
SR∑
l=1

xil + 2yi
‍
 and 

‍
Rl = R(F)

l +
SC∑
i=1

xil
‍
. For convenience, we define ‍Kil ≡ (dil + kil)/ail‍, 

‍αil ≡ Dil/(kilwil)‍ and ‍βi ≡ a′ii/d
′
ii‍ (‍i = 1, · · · , SC‍, ‍l = 1, · · · , SR‍).

1 Analytical solutions of species abundances at steady state
At steady state, from ‍̇xil = 0, ẏi = 0‍, and ‍̇Ci = 0‍, we have:

	﻿‍




xil = C(F)
i R(F)

l /Kil,

yi = βi[C(F)
i ]2,

Ci =
SR∑
l=1

xil/αil =
SR∑
l=1

C(F)
i R(F)

l /(Kilαil).
‍�

(S48)

Meanwhile 
‍
Ci = C(F)

i +
SR∑
l=1

xil + 2yi
‍
, and note that ‍Ci > 0‍, thus,

	﻿‍
C(F)

i = 1
2βi

[−1 +
SR∑
l=1

( 1
αil

− 1)
R(F)

l
Kil

].
‍� (S49)

https://doi.org/10.7554/eLife.93115
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Combined with Equation S49, and then,

	﻿‍
Ci =

SR∑
l=1

R(F)
l

2βiαilKil
[−1 +

SR∑
l′=1

( 1
αil′

− 1)
R(F)

l′

Kil′
].

‍�
(S50)

We further assume that the specific function of ‍gl({Rl}, {xi}, {Ci})‍ satisfies Equation 4, that is

	﻿‍
gl({Rl}, {xi}, {Ci}) = ζl(1 − Rl/κl) −

SC∑
i=1

kilxil.
‍�

(S51)

By combining Equations S48, S49 and S51, we have:

	﻿‍
ζl(1 − Rl

κl
) =

SC∑
i=1

kil
2βiKil

[−1 +
SR∑

l′=1
( 1
αil′

− 1)
R(F)

l′

Kil′
]R(F)

l .
‍�

(S52)

If the population abundance of each resource species is much more than the total population of 

all consumers (i.e. 
‍
Rl ≫

SC∑
i=1

Ci(l = 1, · · · , SR)
‍
), then 

‍
Rl ≫

SC∑
i=1

xil
‍
 and ‍R

(F)
l ≈ Rl‍. Thus,

	﻿‍
( ζl
κl

−
SC∑
i=1

kil
2βiKil

+
SR∑

l′=1

SC∑
i=1

kil
2βiKil

( 1
αil′

− 1) Rl′

Kil′
)Rl = ζl,

‍�
(S53)

with ‍l = 1, · · · , SR‍. Equation S53 is a set of second-order algebraic differential equations, which is 
clearly solvable.

In fact, when ‍SR = 1, SC ≥ 1‍, and 
‍
Rl ≫

SC∑
i=1

Ci
‍
 ‍(l = 1)‍, we can explicitly present the analytical solution 

of the steady-state species abundances. To simplify the notations, we omit the ‘‍l‍’ in the sub-/super-
scripts since ‍SR = 1‍. Then, we have:

	﻿‍




R =
−ι1 +

√
ι21 + 4ι2ζ

2ι2
,

Ci = 1
2βiαiKi

[( 1
αi

− 1) R
Ki

− 1]R, i = 1, · · · , SC.
‍�

(S54)

Here 
‍
ι1 ≡ ζ

κ −
SC∑
i=1

ki
2βiKi ‍

 and 
‍
ι2 ≡

SC∑
i=1

ki(1 − αi)
2βiαi(Ki)2

‍

C Intuitive understanding: an underlying negative feedback loop
Intuitively, how can intraspecific predator interference promote biodiversity? Here, we solve this 
question by considering the case that ‍SC‍ types of consumers compete for one resource species. 
The population dynamics of the system are described in Equations S47 and S51 with ‍SR = 1‍. To 
simplify the notations, we omit the ‘‍l‍’ in the subscript since ‍SR = 1‍. The consumption process and 
interference process are supposed to be in fast equilibrium (i.e. ‍ẋi = 0, ẏi = 0‍). Then, we have a set of 
equations to solve for ‍xi‍ and ‍yi‍ given the population size of each species:

	﻿‍





xi = C(F)
i R(F)/Ki,

yi = βi[C(F)
i ]2,

Ci = C(F)
i + xi + 2yi,

R = R(F) +
SC∑
i=1

xi.
‍�

(S55)

In the first three sub-equations of Equation S55, by getting rids of ‍C
(F)
i ‍, we have,

	﻿‍





2βi[
xi

R(F) ]2 + xi + Kixi
R(F) − Ci = 0,

yi = 1
2

[Ci − xi −
xi

R(F) ].
‍� (S56)

https://doi.org/10.7554/eLife.93115
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Then, by regarding ‍R(F)‍ as a temporary parameter, we solve for ‍xi‍ and ‍yi‍:

	﻿‍




xi = 2R(F)Ci√
(R(F) + Ki)2 + 8βiK2

i Ci + R(F) + Ki

,

yi = 1
2

[Ci − (1 + Ki
R(F) )xi]. ‍�

(S57)

If the total population size of the resources is much larger than that of consumers (i.e. 
‍
R ≫

SC∑
i=1

Ci
‍
), 

then 
‍
R ≫

SC∑
i=1

xi
‍
 and ‍R(F) ≈ R‍, and thus we get the analytical expressions of ‍xi‍ and ‍yi‍:

	﻿‍




xi ≈
2RCi√

(R + Ki)2 + 8βiK2
i Ci + R + Ki

,

yi ≈
Ci
2

[1 − 2(R + Ki)√
(R + Ki)2 + 8CiβiK2

i + R + Ki

].

‍�

(S58)

Note that the fraction of ‍Ci‍ individuals engaged in chasing pairs is ‍xi/Ci‍, while that for individuals 
trapped in intraspecific interference pairs is ‍yi/Ci‍. With Equation S58, it is straightforward to obtain 
these fractions:

	﻿‍




xi/Ci ≈
2R√

(R + Ki)2 + 8βiK2
i Ci + R + Ki

,

yi/Ci ≈
1
2

(1 − 2(R + Ki)√
(R + Ki)2 + 8βiK2

i Ci + R + Ki

).

‍�

(S59)

where both ‍xi/Ci‍ and ‍yi/Ci‍ are bivariate functions of ‍R‍ and ‍Ci‍. From Equation S59, it is clear that 
for a given population size of the resource species, ‍yi/Ci‍ is a monotonously increasing function of 
‍Ci‍, while ‍xi/Ci‍ is a monotonously decreasing function of ‍Ci‍. In Appendix 1—figure 15A, B, we see 
that the analytical results are highly consistence with the exact numerical solutions. By definition, the 
functional response of ‍Ci‍ species is ‍F ≡ kixi/Ci‍, and thus,

	﻿‍

F (R, Ci) ≈
2R√

(R + Ki)2 + 8βiK2
i Ci + R + Ki

,

‍�
(S60)

Evidently, the function response of ‍Ci‍ species is negatively correlated with the population size 
of itself, which effectively constitutes a self-inhibiting negative feedback loop (Appendix 1—figure 
15C).

Then, we have a simple intuitive understanding of species coexistence through the mechanism 
of intraspecific interference. In an ecological community, consumer species that of higher/lower 
competitiveness tend to increase/decrease their population size in the competition process. Without 
intraspecific interference, the increasing/decreasing trend would continue until the system obeys CEP. 
In the scenario involving intraspecific interference, however, for species of higher competitiveness 
(e.g. ‍Ci‍), with the increase of ‍Ci‍’s population size, a larger portion of ‍Ci‍ individuals are then engaged 
in intraspecific interference pair which are temporarily absent from hunting (Appendix 1—figure 
15A, B). Consequently, the functional response of ‍Ci‍ drops, which prevents further increase of 

‍Ci‍’s population size, results in an overall balance among the consumer species, and thus promotes 
species coexistence.

https://doi.org/10.7554/eLife.93115
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Appendix 5
Scenario involving chasing pairs and interspecific interference
Here, we consider the scenario involving chasing pairs and interspecific interference in the 
case of ‍SC = 2‍ and ‍SR = 1‍ , with all settings follow that depicted in Appendix 3. D. Then, 

‍Ci ≡ C(F)
i + xi + z, R ≡ R(F) + x1 + x2‍, and the population dynamics follows (identical with Equation 

S25):

	﻿‍




ẋi = aiC(F)
i R(F) − (ki + di)xi, i = 1, 2;

ż = a′12C(F)
1 C(F)

2 − d′12z,

Ċi = wikixi − DiCi,

Ṙ = g(R, x1, x2, C1, C2). ‍�

(S61)

Here, the functional form of ‍g(R, x1, x2, C1, C2)‍ is unspecified. For convenience, we define 

‍Ki ≡ (di + ki)/ai‍, ‍αi ≡ Di/(wiki)‍ ‍(i = 1, 2)‍ and ‍γ ≡ a′12/d′12‍. At steady state, from ‍̇xi = 0‍ ‍(i = 1, 2)‍ and 
‍̇z = 0‍, we have:

	﻿‍




xi = C(F)
i R(F)/Ki, i = 1, 2;

z = γC(F)
1 C(F)

2 .
‍�

(S62)

Note that ‍Ci ≡ C(F)
i + xi + z‍ and ‍R ≡ R(F) + x1 + x2‍, then,

	﻿‍




C1 = C(F)
1 + R(F)C(F)

1 /K1 + γC(F)
1 C(F)

2 ,

C2 = C(F)
2 + R(F)C(F)

2 /K2 + γC(F)
1 C(F)

2 ,

R = R(F)(1 + C(F)
1 /K1 + C(F)

2 /K2). ‍�

(S63)

Then, we can express ‍C
(F)
1 , C(F)

2 ‍ and ‍R(F)‍ with ‍C1, C2‍ and ‍R‍. Combined with Equation S62, ‍xi‍ and ‍z‍ 
can also be expressed using ‍C1, C2‍ and ‍R‍. In particular, for ‍xi‍, we have:

	﻿‍ xi = u′i(R, C1, C2), i = 1, 2.‍� (S64)

If all species coexist, by defining ‍Ω
′
i(R, C1, C2) ≡ wiki

Ci
u′i(R, C1, C2)‍ , then, the steady-state equations 

of ‍Ċi = 0‍ ‍(i = 1, 2)‍ and ‍̇R = 0‍ are:

	﻿‍





Ω′
1(R, C1, C2) − D1 = 0,

Ω′
2(R, C1, C2) − D2 = 0,

G′(R, C1, C2) = 0, ‍�

(S65)

where ‍G
′(R, C1, C2) ≡ g(R, u′1(R, C1, C2), u′2(R, C1, C2), C1, C2)‍.

Here, Equation S65 corresponds to three unparallel surfaces and share a common point 
(Figure 1G and Appendix 1—figure 3A). However, all the fixed points are unstable (Appendix 1—
figure 3F), and hence the consumer species cannot stably coexist at steady state (Figure 1D).

A Analytical results of the fixed-point solution
We proceed to investigate the unstable fixed point where ‍R, C1, C2 > 0‍. From ‍̇xi = 0‍, ‍̇z = 0‍, ‍̇Ci = 0‍, 
and note that ‍Ci ≡ C(F)

i + xi + z‍, we have:

	﻿‍




Ci = KiαiCi(R(F))−1 + αiCi + z, i = 1, 2;

z = γK1α1K2α2(R(F))−2C1C2.
‍� (S66)

https://doi.org/10.7554/eLife.93115
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Since ‍Ci > 0‍, then:

	﻿‍




C1 = (1 − α2)[R(F)]2 − K2α2R(F)

γK1α1K2α2
,

C2 = (1 − α1)[R(F)]2 − K1α1R(F)

γK1α1K2α2
.
‍�

(S67)

If ‍R ≫ C1 + C2‍, then ‍R ≫ x1 + x2‍ and ‍R(F) ≈ R‍, we have:

	﻿‍




C1 = (1 − α2)R2 − K2α2R
γK1α1K2α2

,

C2 = (1 − α1)R2 − K1α1R
γK1α1K2α2

.
‍�

(S68)

Still, we assume that the population dynamics of the resource species follows Equation S42. At 
the fixed point, ‍̇R = 0‍. We have:

	﻿‍
ζ(1 − R

κ
) = k1α1C1 + k2α2C2.

‍�
(S69)

Combined with Equation S68, we can solve for ‍R‍:

	﻿‍
R =

−ϱ1 +
√

ϱ2
1 + 4ϱ2ζ

2ϱ2
.
‍�

(S70)

where ‍ϱ1 ≡ ζ
κ − k1

γK1
− k2

γK2 ‍ and ‍ϱ2 ≡ k1(1−α2)
γK1K2α2

+ k2(1−α1)
γK1K2α1 ‍.

Equation S68, Equation S70 are the analytical solutions of the fixed point when ‍R ≫ C1 + C2‍. 
As shown in Appendix 1—figure 3E, the analytical predictions agree well with the numerical results 
(the exact solutions).

https://doi.org/10.7554/eLife.93115
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Appendix 6
Scenario involving chasing pairs and both intra- and inter-specific 
interference
Here, we consider the scenario involving chasing pairs and both intra- and inter-specific interference 
in the simple case of ‍SC = 2‍ and ‍SR = 1‍:

	﻿‍

C(F)
i + R(F) ai−⇀↽−

di

C(P)
i ∨ R(P) ki−→ C(F)

i (+),

C(F)
1 + C(F)

2
a′12−−⇀↽−−
d′12

C(P)
1 ∨ C(P)

2 ,

C(F)
i + C(F)

i
a′i−⇀↽−
d′i

C(P)
i ∨ C(P)

i , i = 1, 2.
‍�

We adopt the same notations as that depicted in Appendix 4.A and Appendix 5. Then, 

‍Ci ≡ C(F)
i + xi + 2yi + z‍ and ‍R ≡ R(F) + x1 + x2‍, and the population dynamics of the system can be 

described as follows:

	﻿‍




ẋi = aiC(F)
i R(F) − (ki + di)xi,

ż = a′12C(F)
1 C(F)

2 − d′12z,

ẏi = a′i[C
(F)
i ]2 − d′iyi,

Ċi = wikixi − DiCi,

Ṙ = g(R, x1, x2, C1, C2), i = 1, 2.‍�

(S71)

Here, the functional form of ‍g(R, x1, x2, C1, C2)‍ follows Equation S42. For convenience, we 
define ‍Ki ≡ (di + ki)/ai,αi ≡ Di/(wiki),βi ≡ a′i /d

′
i‍, and ‍γ ≡ a′12/d′12, (i = 1, 2)‍. At steady state, from 

‍̇xi = 0, ẏi = 0, ż = 0‍, and ‍̇Ci = 0, (i = 1, 2)‍, we have:

	﻿‍




xi = αiCi,

C(F)
i = KiαiCi(R(F))−1,

yi = βi(KiαiCi)2[R(F)]−2,

z = γK1α1K2α2[R(F)]−2C1C2.‍�

(S72)

Combined with ‍Ci ≡ C(F)
i + xi + 2yi + z‍, and since ‍Ci > 0‍ ‍(i = 1, 2)‍, then,

	﻿‍




(1 − α1)(R(F))2 − K1α1R(F) = 2β1(K1α1)2C1 + γK1α1K2α2C2,

(1 − α2)(R(F))2 − K2α2R(F) = 2β2(K2α2)2C2 + γK1α1K2α2C1.
‍�

(S73)

A Analytical solutions of species abundances at steady state
If ‍R ≫ C1 + C2‍, then ‍R ≫ x1 + x2‍ and thus ‍R(F) ≈ R‍. Combined with Equation S73, we obtain:

	﻿‍




C1 = R (2β2K2α2(1 − α1) − γK1α1(1 − α2))R + (γ − 2β2)K1α1K2α2
K2

1α
2
1K2α2(4β1β2 − γ2)

,

C2 = R (2β1K1α1(1 − α2) − γK2α2(1 − α1))R + (γ − 2β1)K1α1K2α2
K1α1K2

2α
2
2(4β1β2 − γ2)

.
‍�

(S74)

Using ‍̇R = 0‍ and ‍R > 0‍, we have:

	﻿‍
R = −χ2 +

√
(χ2)2 + 4χ1ζ

2χ1
,
‍� (S75)

https://doi.org/10.7554/eLife.93115
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where 
‍
χ1 ≡ k2γ(α1−1)

K1K2α1(4β1β2−γ2) + k1γ(α2−1)
K1K2α2(4β1β2−γ2) −

k12β2(α1−1)
K2

1α1(4β1β2−γ2) −
k22β1(α2−1)

K2
2α2(4β1β2−γ2)‍

, and 

‍χ2 ≡ k1(γ−2β2)
K1(4β1β2−γ2) + k2(γ−2β1)

K2(4β1β2−γ2) + ζ
κ‍. Equations S74-S75 are the analytical solutions of the species 

abundances at steady state when ‍R ≫ C1 + C2‍. As shown in Appendix 1—figure 5E, the analytical 
calculations agree well with the numerical results (the exact solutions).

B Stability analysis of the coexisting state
In the scenario involving chasing pairs and both intra- and inter-specific interference, the behavior 
of species coexistence is similar to that without interspecific interference. Evidently, the influence of 
interspecific interference would be negligible if ‍d

′
12‍ is extremely large, and vice versa for intraspecific 

interference if both ‍d
′
1‍ and ‍d

′
2‍ are tremendous. In the deterministic framework, the two-consumer 

species may coexist at constant population densities (Appendix  1—figure 5B), and the fixed 
points are globally attracting (Appendix 1—figure 5C). Furthermore, there is a non-zero measure 
of parameter set where both consumer species can coexist at steady state with only one type of 
resources (Appendix  1—figure 5A). In the stochastic framework, just as the scenario involving 
chasing pairs and intraspecific interference, the coexistence state can be maintained along with 
stochasticity (Appendix 1—figure 5D).

https://doi.org/10.7554/eLife.93115
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Appendix 7
Dimensional analysis for the scenario involving chasing pairs and both 
intra- and inter-specific interference
The population dynamics of the system involving chasing pairs and both intra- and inter-specific 
interference are shown in Equations 1-4:

	﻿‍




ẋil = ailC
(F)
i R(F)

l − (dil + kil)xil,

ẏi = a′i[C
(F)
i ]2 − d′iyi,

żij = a′ijC
(F)
i C(F)

j − d′ijzij

Ċi =
SR∑
l=1

wilkilxil − DiCi,

Ṙl = ζl(1 − Rl/κl) −
SC∑
i=1

kilxil,
‍�

(S76)

with ‍l = 1, · · · , SR‍; ‍i, j = 1, · · · , SC‍, and ‍i ̸= j‍. Here, 
‍
Ci = C(F)

i +
∑

l
xil + 2yi +

∑
i̸=j

zij
‍
 and 

‍
Rl = R(F)

l +
∑

i
xil

‍
 

represent the population abundances of the consumers and resources in the system. In fact, there 
are already several dimensionless variables and parameter in Equation S76, namely ‍xil‍, ‍yi‍, ‍zij‍, 

‍C
(F)
i ‍, ‍R

(F)
l ‍, ‍Ci‍, ‍Rl‍, ‍wil‍, ‍κl‍. To make all terms dimensionless, we define ‍̃t = t/τ ‍, where ‍τ = D̃1/D1‍ and 

‍D̃1‍ is a reducible dimensionless parameter which is freely to take any positive values. Besides, we 
define dimensionless parameters ‍̃ail = ailτ ‍, ‍̃dil = dilτ ‍, ‍̃kil = kilτ ‍, ‍̃a

′
i = a′iτ ‍, ‍d̃

′
i = d′iτ ‍, ‍̃a

′
ij = a′ijτ ‍, ‍d̃

′
ij = d′ijτ ‍, 

‍̃Di = Diτ ‍ and ‍̃ζl = ζlτ ‍. By substituting all the dimensionless terms into Equation S76, we have:

	﻿‍




ẋil = ãilC
(F)
i R(F)

l − (d̃il + k̃il)xil,

ẏi = ã′i[C
(F)
i ]2 − d̃′iyi,

żij = ã′ijC
(F)
i C(F)

j − d̃′ijzij

Ċi =
SR∑
l=1

wilk̃ilxil − D̃iCi,

Ṙl = ζ̃l(1 − Rl/κl) −
SC∑
i=1

k̃ilxil.
‍�

(S77)

For convenience, we omit the notation ‘ ˜ ’ and use dimensionless variables and parameters in the 
simulation studies unless otherwise specified.

https://doi.org/10.7554/eLife.93115
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Appendix 8
Approximations applied in the pairwise encounter model
For consumers within a paired state, either in a chasing pair or an interference pair, the consumer 
may die following the mortality rate. Thus, in the scenario involving chasing pairs and both intra- and 
inter-specific interference, the population dynamics of the system should be described as follows:

	﻿‍




ẋil = ailC
(F)
i R(F)

l − (dil + kil + Di)xil,

ẏi = a′i[C
(F)
i ]2 − (d′i + Di)yi,

żij = a′ijC
(F)
i C(F)

j − (d′ij + Di + Dj)zij

Ċi =
SR∑
l=1

wilkilxil − DiCi, i = 1, · · · , SC,

Ṙl = ζl(1 − Rl/κl) −
SC∑
i=1

kilxil, l = 1, · · · , SR.
‍�

(S78)

However, since predation or interference processes are generally much faster than birth and 
death processes, that is ‍Di << kil, dil, d′i , d′ij‍, the influence of mortality rate in a paired state is 
negligible. Therefore, we have used the following approximations throughout our manuscript: 

‍(kil + dil + Di) ≈ (kil + dil)‍, ‍(d
′
i + Di) ≈ d′i‍,‍(d

′
ij + Di + Dj) ≈ d′ij‍. Hence, the approximated population 

dynamics is described as follows:

	﻿‍




ẋil = ailC
(F)
i R(F)

l − (dil + kil)xil,

ẏi = a′i[C
(F)
i ]2 − d′iyi,

żij = a′ijC
(F)
i C(F)

j − d′ijzij

Ċi =
SR∑
l=1

wilkilxil − DiCi, i = 1, · · · , SC,

Ṙl = ζl(1 − Rl/κl) −
SC∑
i=1

kilxil, l = 1, · · · , SR,
‍�

(S79)

which is identical to those shown in the main text.

https://doi.org/10.7554/eLife.93115
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Appendix 9
Simulation details of the main text figures
In Figure  1C and F: ‍ai = 0.1‍, ‍di = 0.5‍, ‍wi = 0.1‍, ‍ki = 0.1‍, ‍(i = 1, 2)‍, ‍D1 = 0.002‍, ‍D2 = 0.001‍, ‍κ = 5‍, 
‍ζ = 0.05‍. In Figure 1D and G: ‍ai = 0.02‍, ‍a

′
ij = 0.021‍, ‍di = 0.5‍, ‍d

′
ij = 0.01‍, ‍wi = 0.08‍, ‍ki = 0.03‍, ‍i, j = 1, 2‍, 

‍i ̸= j‍, ‍D2 = 0.001‍, ‍D1 = 0.0011‍, ‍κ = 20‍, ‍ζ = 0.01‍ . In Figure  1E and H: ‍ai = 0.5‍, ‍a
′
i = 0.625‍, ‍di = 0.5‍, 

‍d
′
i = 0.02‍, ‍wi = 0.2‍, ‍ki = 0.4‍, ‍(i = 1, 2)‍, ‍D1 = 0.0286‍, ‍D2 = 0.022‍, ‍κ = 10‍, ‍ζ = 0.5‍. Figure 1C and F were 

calculated or simulated from Equations 1, 4. Figure 1D and G were calculated or simulated from 
Equations 1, 3 and 4. Figure 1E and H were calculated or simulated from Equations 1, 2 and 4. 
The analytical solutions in Figure 1E were calculated from Equations S41 and S43.

In Figure 2A: ‍ai = 0.02‍, ‍a
′
i = 0.025‍, ‍di = 0.7‍, ‍d

′
i = 0.7‍, ‍wi = 0.4‍, ‍ki = 0.05‍, ‍(i = 1, 2)‍, ‍D1 = 0.0160‍, 

‍D2 = 0.0171‍, ‍κ = 2000‍, ‍ζ = 5.5‍. In Figure 2B–C: ‍L = 100‍, ‍r(C) = 5‍, ‍r(I) = 5‍, ‍vCi = 1‍, ‍vR = 0.1‍, ‍ai = 0.2010‍, 

‍a
′
i = 0.2828‍, ‍di = 0.7‍, ‍d

′
i = 0.8‍, ‍wi = 0.33‍, ‍ki = 0.2‍, ‍(i = 1, 2)‍, ‍D1 = 0.0605‍, ‍D2 = 0.0600‍, ‍κ = 1000‍. In 

Figure 2D: ‍ai = 0.3‍, ‍a
′
i = 0.33‍, ‍wi = 0.018‍, ‍ki = 4.8‍, ‍di = 5.5‍, ‍d

′
i = 5‍, ‍(i = 1, 2)‍, ‍D1 = 0.011‍, ‍D2 = 0.010‍, 

‍κ = 10000‍, ‍ζ = 35‍. In Figure  2E: ‍ai = 0.2‍, ‍a
′
i = 0.24‍, ‍di = 4.5‍, ‍d

′
i = 4‍, ‍wi = 0.02‍, ‍ki = 4.5‍, ‍(i = 1, 2)‍, 

‍D1 = 0.0120‍, ‍D2 = 0.010‍, ‍κ = 10000‍, ‍ζ = 35‍. In Figure 2D and E: We set ‍τ = 0.4‍ Day (see Appendix 
7). This results in an expected lifespan of Drosophila serrata in the model settings of 

‍τ /D2 = 40‍ days and that of Drosophila pseudoobscura ‍τ /D1 = 36.4‍ days, which roughly 
agrees with experimental data showing that the average lifespan of D. serrata is 34 
days for males and 54 days for females (Narayan et  al., 2022), and the average lifespan 
of D. pseudoobscura is around 40 days for females (Gowaty et  al., 2010). The time 
averages (‍̄Ci‍) and standard deviations (‍δCi‍) of the species' relative/absolute abundances 

for the experimental data or SSA results are as follows: ‍

(
R
)
CExp

(
SSA

)
D.serrata_AR_Grp1 = 0.53

(
0.55

)
‍, 

‍δ
(

R
)
C Exp

(
SSA

)
D.serrata_AR_Grp1 = 0.12

(
0.09

)
‍, ‍

(
R
)
C Exp

(
SSA

)
D.serrata_AR_Grp2 = 0.59

(
0.61

)
‍, ‍δ
(

R
)
C Exp

(
SSA

)
D.serrata_AR_Grp2 = 0.10

(
0.12

)
‍, 

‍C
Exp

(
SSA

)
T.confusum_24◦C = 29.1

(
28.6

)
‍, ‍δC Exp

(
SSA

)
T.confusum_24◦C = 5.4

(
5.2

)
‍, ‍C

Exp
(

SSA
)

T.castaneuma_24◦C = 45.9
(
54.5

)
‍, where the 

superscript ‘(R)’ represents relative abundances. A comparison of Shannon entropies in the 
time series between experimental data and SSA results is presented in Appendix 1—figure 7C 
and D. Figure 2A–E were simulated from Equations 1, 2, and 4. See Appendix 1—figure 7E 
and G for the long-term time series of all species in Figure 2D and E, respectively.

Model settings in Figure 3A–B and D (plankton): ‍ail = 0.1‍, ‍a
′
i = 0.125‍, ‍dil = 0.5‍, ‍d

′
i = 0.2‍, ‍wil = 0.3‍, 

‍kil = 0.2‍, ‍κ1 = 8 × 104
‍, ‍κ2 = 5 × 104

‍, ‍κ3 = 3 × 104
‍, ‍ζ1 = 280‍, ‍ζ2 = 200‍, ‍ζ3 = 150‍, ‍Di = 0.03 ×N (1, 0.25)‍, 

‍(i = 1, · · · , SC‍, ‍l = 1, · · · , SR)‍, ‍SC = 140‍ and ‍SR = 3‍. Model settings in Figure 3C (bird): ‍ai = 0.1‍, ‍a
′
i = 0.125‍, 

‍di = 0.5‍, ‍d
′
i = 0.5‍, ‍wi = 0.3‍, ‍ki = 0.2‍, ‍κ = 105‍, ‍ζ = 110‍, ‍Di = 0.02 ×N (1, 0.28)‍, ‍(i = 1, · · · , SC)‍, ‍SC = 250‍ 

and ‍SR = 1‍. Model settings in Figure  3C (fish): ‍ai = 0.1‍, ‍a
′
i = 0.14‍, ‍di = 0.5‍, ‍d

′
i = 0.5‍, ‍wi = 0.2‍, 

‍ki = 0.1‍, ‍κ = 106‍, ‍ζ = 550‍, ‍Di = 0.015 ×N (1, 0.32)‍, ‍(i = 1, · · · , 45)‍, ‍SC = 45‍ and ‍SR = 1‍. Model settings 
in Figure  3C (butterfly): ‍ai = 0.1‍, ‍a

′
i = 0.125‍, ‍di = 0.5‍, ‍d

′
i = 0.3‍, ‍wi = 0.3‍, ‍ki = 0.2‍, ‍κ = 105‍, ‍ζ = 300‍, 

‍Di = 0.034 ×N (1, 0.35)‍, ‍(i = 1, · · · , SC)‍, ‍SC = 150‍ and ‍SR = 1‍. Model settings in Figure 3D (bat): ‍ai = 0.1‍, 

‍a
′
i = 0.125‍, ‍di = 0.5‍, ‍d

′
i = 0.5‍, ‍wi = 0.2‍, ‍ki = 0.1‍, ‍κ = 106‍, ‍ζ = 250‍, ‍Di = 0.013 ×N (1, 0.34)‍, ‍(i = 1, · · · , SC)‍, 

‍SC = 40‍ and ‍SR = 1‍. Model settings in Figure 3D (lizard): ‍ai = 0.1‍, ‍a
′
i = 0.125‍, ‍di = 0.5‍, ‍d

′
i = 0.5‍, ‍wi = 0.2‍, 

‍ki = 0.1‍, ‍κ = 106‍, ‍ζ = 250‍, ‍Di = 0.014 ×N (1, 0.34)‍, ‍(i = 1, · · · , SC)‍, ‍SC = 55‍ and ‍SR = 1‍. In Figure 3A–
D, the mortality rate ‍Di‍ is the only parameter that varies with the consumer species, which was 
randomly sampled from a Gaussian distribution ‍N (µ,σ)‍, where μ and σ are the mean and 
standard deviation of the distribution. The coefficient of variation of the mortality rates (i.e. ‍σ/µ‍) 
was chosen to be around 0.3, or more precisely, the best-fit in the range of 0.15–0.43. This range 
was estimated from experimental results (Menon et  al., 2003) using the two-sigma rule. These 
settings for the mortality rates also apply to those in Appendix  1—figures 8–14. Figure  3A–D 
were simulated from Equations 1, 2 and 4. See Appendix 1—figures 10K, C, D, H, I, J and 14C, 
Figure 3A and B for the time series of Figure 3C (‍ODEsSR=1

bird ‍), Figure 3C (‍ODEsSR=1
butterfly‍), Figure 3C 

(‍ODEsSR=1
fish ‍), Figure 3D (‍ODEsSR=1

bat ‍), Figure 3D (‍SSASR=1
bat ‍), Figure 3D (‍ODEsSR=1

lizard‍), Figure 3D (‍SSASR=1
lizard‍), 

Figure  3D (‍ODEsSR=3
plankton‍) and Figure  3D (‍SSASR=3

plankton‍), respectively. The Shannon entropies of the 
experimental data and simulation results for each ecological community are: ‍H

bird(1982)
Exp(ODEs) = 5.67(6.79)‍, 

‍H
bird(2018)
Exp(ODEs) = 6.63(6.79)‍, ‍H

butterfly
Exp(ODEs) = 4.78(4.12)‍, ‍H

fish
Exp(ODEs) = 3.78(3.40)‍, ‍H

lizard
Exp(ODEs,SSA) = 4.05(3.57, 3.50)‍. 

Here the Shannon entropy 
‍
H = −

SC∑
i=1

Pi log2(Pi)
‍
, where ‍Pi‍ is the probability that a consumer individual 

belongs to species ‍Ci‍.

https://doi.org/10.7554/eLife.93115
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