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Abstract Everyday life requires an adaptive balance between distraction-resistant maintenance of
information and the flexibility to update this information when needed. These opposing mechanisms
are proposed to be balanced through a working memory gating mechanism. Prior research indicates
that obesity may elevate the risk of working memory deficits, yet the underlying mechanisms remain
elusive. Dopaminergic alterations have emerged as a potential mediator. However, current models
suggest these alterations should only shift the balance in working memory tasks, not produce overall
deficits. The empirical support for this notion is currently lacking, however. To address this gap, we
pooled data from three studies (N = 320) where participants performed a working memory gating
task. Higher BMI was associated with overall poorer working memory, irrespective of whether there
was a need to maintain or update information. However, when participants, in addition to BMI level,
were categorized based on certain putative dopamine-signaling characteristics (single-nucleotide
polymorphisms [SNPs]; specifically, Tag1A and DARPP-32), distinct working memory gating effects
emerged. These SNPs, primarily associated with striatal dopamine transmission, appear to be linked
with differences in updating, specifically, among high-BMI individuals. Moreover, blood amino

acid ratio, which indicates central dopamine synthesis capacity, combined with BMI shifted the
balance between distractor-resistant maintenance and updating. These findings suggest that both
dopamine-dependent and dopamine-independent cognitive effects exist in obesity. Understanding
these effects is crucial if we aim to modify maladaptive cognitive profiles in individuals with obesity.

elLife assessment

The present study provides valuable evidence on the neurochemical mechanisms underlying
working memory in obesity. The authors' approach considering specific working memory operations
(maintenance, updating) and putative dopaminergic genes is solid, though the inclusion of a more
direct measure of dopamine signaling would have strengthened the work.
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Introduction

In order to function efficiently in a dynamic environment, we must be able to resist distractions while
simultaneously being open to update information in response to evolving goals and task require-
ments. This tension demands a delicate balance, which is thought to be governed by one of our
core cognitive control systems — our working memory (WM). Computational and neurophysiological
theories propose a metaphorical ‘gate’ that regulates the access to WM (Badre, 2012; O’Reilly and
Frank, 2006; Chatham and Badre, 2015). When the gate is closed, WM representations are isolated
from perceptual input and interference is prevented. When the gate is opened, rapid updating is
allowed. Evidence strongly implicates the prefrontal cortex (PFC) in distractor-resistant maintenance,
while updating is thought to be supported by the striatum (Miller and Cohen, 2001; D'Ardenne
et al., 2012; Braver and Cohen, 2000). Importantly, the neurotransmitter dopamine plays a crucial
role in balancing these complementary processes. Within the PFC, tonic dopamine levels mediate
maintenance in an inverted-U-shaped manner: very high and very low levels promote gate opening,
while medium levels promote gate closing (Durstewitz and Seamans, 2008; Cools and D’Esposito,
2011). Within the striatum, phasic increases in dopamine are needed to signal WM updating (Hazy
et al., 2006; D'Ardenne et al., 2012). Importantly, the effectiveness of phasic rises in dopamine to
override PFC tonic signals depends on initial baseline dopamine levels in the striatum (Cools and
D’Esposito, 2011, van Schouwenburg et al., 2010; Ranganath and Jacob, 2016). Decreases in
tonic dopamine levels in the striatum seem to raise the threshold for updating signals, thus potentially
hindering updating (O’Reilly and Frank, 2006). Supporting this, worse updating of WM contents can
be observed in unmedicated patients with Parkinson’s disease (Fallon et al., 2017a), older individ-
uals (Podell et al., 2012), or more generally, in individuals with lower dopamine synthesis capacity
(Colzato et al., 2013). Notably, dominance in one WM process typically comes at the cost of the other
(Dreisbach and Fréber, 2019; Fallon et al., 2017b). Consequently, an individual’s capacity to ignore
or update (ir)relevant information may vary according to their baseline dopamine levels (e.g. Cools
and D’Esposito, 2011; Furman et al., 2021; Jongkees, 2020).

Interestingly, the intricate relationship between dopamine levels and WM gating might be key
in further understanding discrepancies in the literature regarding WM functioning in obesity. While
many studies show reduced (general) WM in obese individuals (e.g. Yang et al., 2020; Yang et al.,
2019, Yang et al., 2018; Gonzales et al., 2010; Coppin et al., 2014), there are others who do not
find such associations (e.g. Calvo et al., 2014, Schiff et al., 2016; Alarcén et al., 2016). Based on
the above considerations, these inconsistencies may be due to prior studies not clearly differentiating
between distractor-resistant maintenance and updating in the context of WM. This distinction may be
crucial, however, as indirect evidence hints at potential specific alterations in these two sub-processes
in obesity. For instance, obesity has been associated with aberrant dopamine transmission, with there
being an abundance of literature linking obesity to changes in D2 receptor availability in the stri-
atum (see, e.g., Horstmann et al., 2015). However, results are not consensual, with studies reporting
decreased, increased, or unchanged D2 receptor availability in obesity (Ribeiro et al., 2023; Janssen
and Horstmann, 2022; see Darcey et al., 2023, for a potential explanation). Additionally, there are
reports of differences in dopamine transporter availability in both obese humans (Chen et al., 2008;
but also see Pak et al., 2023) and rodents (Narayanaswami et al., 2013; Jones and Fordahl, 2021,
Hamamah et al., 2023). The observed changes in dopamine are often interpreted as being due to
chronic dopaminergic overstimulation resulting from overeating (Volkow and Wise, 2005; Volkow
et al., 2008) and altered reward sensitivity as a consequence thereof (Blum et al., 1996). Considering
that WM gating is highly dependent on dopamine signaling, such changes could theoretically alter the
balance between maintenance and updating processes in obesity. Next to this, obesity has frequently
been associated with functional and structural changes in WM gating-related brain areas, implying
another pathway through which WM gating might get affected. At the level of the PFC, studies have
reported reduced gray matter volume and compromised white matter microstructure in individuals
with obesity (Debette et al., 2014; Kullmann et al., 2016; Morys et al., 2024, Lv et al., 2024), and
functional changes become evident with frequent reports of decreased activity in the dorsolateral
PFC during tasks requiring cognitive control (e.g. Morys et al., 2018; Xu et al., 2017). Notably, Han
et al., 2022, observed significantly lower spontaneous dIPFC activity during rest, potentially indicating
reduced baseline dIPFC activity in obesity. On the level of the striatum, gray matter volume seems to
correlate positively with measures of obesity (Horstmann et al., 2011), and individuals with obesity
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show greater activation of the dorsal striatum in response to high-calorie food stimuli compared to
normal-weight individuals, indicating a stronger dopamine-dependent reward response to food cues
(Stice et al., 2008; Small et al., 2003). Additionally, changes in connectivity between and within the
striatum and PFC in obesity, both structurally (Li et al., 2023) and functionally (Verdejo-Roman et al.,
2017a; Contreras-Rodriguez et al., 2017), have been reported. Although these studies mostly inves-
tigate brain function in relation to food and reward processing, changes in these areas may also impair
the ability to adequately engage in WM gating processes, as activity in affective (reward) and cogni-
tive fronto-striatal loops immensely overlap (Janssen et al., 2019). On the behavioral level, individuals
with obesity consistently demonstrate impairments in food-specific (Janssen et al., 2017) but also
non-food-specific goal-directed behavioral control (Janssen et al., 2020) and reinforcement learning
(Weydmann et al., 2024). It seems that difficulties with integrating negative feedback may be central
to these alterations (Mathar et al., 2017, Kienméki et al., 2010), which could explain a poten-
tial insensitivity to the negative consequences associated with (over) eating. Crucially, in humans, a
substantial contribution to (reward) learning is mediated by WM processes (Moustafa et al., 2008,
Collins and Frank, 2012, Collins and Frank, 2018, Collins et al., 2014; Collins et al., 2017, West-
brook et al., 2024). The observed difficulties in reward learning in obesity may hence partly be rooted
in a failure to update WM with new reward information, suggesting cognitive issues that extend
beyond mere difficulties in valuation processes. However, empirical support for this interpretation is
currently lacking. A more nuanced understanding of the effects of obesity on WM is crucial, however,
as it could lead to more targeted intervention options.

In the present study, we therefore aim to examine potential obesity-dependent alterations in WM
gating. To this end, we pooled together data on body mass index (BMI; kg/m?) and a WM gating task
from three different studies conducted in our lab. In light of the behavioral and neuropharmacolog-
ical findings discussed above, we hypothesized that individuals with a high BMI would display worse
updating, potentially offset by enhanced distractor-resistant maintenance.

Given dopamine’s central role in WM gating, such behavioral patterns might be driven by the
altered dopamine signaling observed in obesity (as discussed above). However, in addition to this,
inherent predispositions with respect to dopamine signaling may also contribute. In this context,
several single-nucleotide polymorphisms (SNPs) related to dopamine transmission have garnered
significant attention in recent years. For instance, catechol-O-methyltransferase (COMT) Val158Met
activity primarily influences dopamine breakdown in the PFC (Tunbridge et al., 2004; Sesack et al.,
1998), and carrying the Met allele of this SNP is associated with reduced COMT activity, leading
to higher synaptic dopamine levels (Bilder et al., 2004). Consistent with this, individuals with the
Met allele tend to perform better on tasks that require stable maintenance of WM representations
compared to those with the Val allele (Berryhill et al., 2013; Farrell et al., 2012, Savitz et al., 2006).
Furthermore, the Taq1A polymorphism has been associated with D2 receptor density in the striatum.
A-allele carriers of this polymorphism exhibit lower receptor density and show distinct performance
patterns on tasks involving WM updating (Pohjalainen et al., 1998; Jénsson et al., 1999; Eisenstein
et al., 2016; Stelzel et al., 2010; Persson et al., 2015; Li et al., 2019). Interestingly, Tag1A and
COMT have been demonstrated to interactively affect WM functioning (Berryhill et al., 2013; Xu
et al., 2007, Garcia-Garcia et al., 2011; Stelzel et al., 2009; Wishart et al., 2011; Persson and Sten-
fors, 2018). Consequently, we aim to examine this interactive effect and assess if it varies with BMI. In
addition, PPP1R1B and C957T gene polymorphisms have also been linked to WM (Hotte et al., 2006;
Ma et al., 2022; Smith et al., 2014; Xu et al., 2007; Klaus et al., 2019; Jacobsen et al., 2006). The
PPP1R1B polymorphism (rs?07094) codes for dopamine and cAMP-regulated neuronal phosphopro-
tein (DARPP-32) — a protein that potently modulates dopamine D1-dependent synaptic plasticity in
the striatum (Ouimet et al., 1984; Calabresi et al., 2000; Lindskog et al., 2006; Girault and Nairn,
2021). The C957T (rs6277) polymorphism, on the other hand, is known to impact dopamine D2 mRNA
translation (Duan et al., 2003) and postsynaptic D2 receptor availability in the striatum (Hirvonen
et al., 2005). Both polymorphisms have also been associated with (diet-induced) weight gain (Sharma
and Fulton, 2013; Hu et al., 2006; Miiller et al., 2012). Their effect on BMI-dependent WM gating,
however, remains unknown. In order to test the impact of these four candidate polymorphisms, we
also added participants’ genetic information to our analyses. We hypothesized that BMI-dependent
distractor-resistant maintenance and/or updating of WM representations would be modulated by (1)
an interaction of COMT and Taq1A, a main effect of (2) DARPP-32, and/or a main effect of (3) C957T.
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Table 1. Sample characteristics.

Project All BEDOB GREADT WORMCRI

N (male) 320 (166) 156 (43) 86 (86) 78 (37)
mean mean mean mean
(sd) min  max (sd) min max  (sd) min max (sd) min max
26.38 29.172 24.025 23.217

BMI (6.35) 17.51 4554 (7.695) 17.51 4554 (2.799) 18.632 36.419 (2.735) 18.929 29.888
105.41 101.575 109.151 107.731

1Q (10.61) 71 122 (11.979) 71 122 (7.249) N 118 (10.416) 74 118
26.93 26.879 26.756 26.799

Age (6.82) 1217 4975 (8.907) 12167 4975 (4.474) 18 40 (3.859) 20.106 36.290
54.89 55.839 57.046 50.584

DFS (11.61) 33 97 (10.163) 35 91 (15.107) 33 97 (8.546) 34 71

In addition to our primary investigations, we further conducted exploratory analyses on a subsa-
mple of our data. Two of the three studies had data available on the ratio of phenylalanine and
tyrosine to other large neutral amino acids. This ratio represents the peripheral dopamine precursor
availability and can be considered a potential proxy for central dopamine synthesis capacity (Leyton
et al., 2004, Montgomery et al., 2003). Existing evidence suggests that this measure may be linked
to WM performance in a diet-dependent manner (Hartmann et al., 2020). By looking at amino acid
ratio and its connection to BMI-dependent WM gating, we sought to assess the possible influence of
dopamine at the system level.

Results

Sample descriptives

Three participants were excluded from the analyses, as they performed below chance (<50% correct
in all four conditions). One subject was excluded as they reported that they didn't perform the task
properly during the post-task strategy assessment. The final sample thus consisted of 320 partici-
pants. The average age of the sample was 26.93 years (SD = 6.82, min = 12.17, max = 49.75). There
were 166 males. Mean BMI was 26.38 kg/m? (SD = 6.35, min = 17.51, max = 45.54). Mean 1Q was
105.41 (SD = 10.61, min = 71, max = 122). Data for Dietary Fat and free Sugar Questionnaire (DFSQ)
was missing for five subjects. Mean DFSQ score was 54.89 (SD = 11.61, min = 33, max = 97). Please
refer to Table 1 for a list of full sample characteristics (per study).

Taq1A genotype moderates the association between BMI and WM
updating, independent of COMT

First, to test how BMI would relate to WM gating, we ran a logistic regression model predicting trial-
based accuracy by the interaction of task condition and BMI. As expected, final results showed a
significant main effect of BMI on overall task performance (x? = 16.80, df = 1, peorectea<0.001), such
that BMI was negatively associated with accuracy (OR = 0.84, Cl = 0.78-0.91, see Figure 1). Against
our main hypothesis, however, there was no difference in this effect between the WM conditions: the
two-way interaction between BMI and condition was insignificant (x % = 2.66, df = 3, peoectea>1), indi-
cating no evidence for BMI to have different effects across our WM conditions. We found significant
main effects of 1Q, gender, tiredness, and concentration (all corrected p-values<0.008). As expected,
IQ and concentration were positively associated with task performance (ORq = 1.24, Cl,o = 1.14-1.35;
ORconcentration = 1-30, Cleoncentration = 1.20-1.41), while tiredness predicted task performance in a negative
manner (OR = 0.87, Cl = 0.80-0.95). Males performed worse than females on the task (OR = 0.86, Cl =
0.82-0.97). Please refer to Table 2 the full model output displaying the original, uncorrected p-values.

When investigating the interactive effects of COMT and Tag1A on BMI-dependent WM gating
(model 2), results reveal that the four-way interaction of BMI x condition x COMT x Taq1A was non-
significant (x 2 = 4.09, df = 6, Peonecies™1)- This indicates that the two SNPs did not have the expected
differential effects on WM gating. There were no main effects of COMT (%2 = 0.159, df=2, porectea™1)
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Figure 1. Main effect of BMI on working memory performance (model 1). Increasing BMI was associated with
worse performance (Peormected < 0.001, OR = 0.84). This trend was similar for all four conditions, as there was no
interaction between BMI and condition (peoreces > 1). Shaded areas represent the 95% confidence intervals. N =

320.

or Taq1A (x 2 = 1.13, df=1, peomectea>1), and all other two- or three-way interactions involving COMT
were insignificant (all corrected p-values>0.34). Interestingly, however, we could observe a signif-
icant three-way interaction between Taq1A genotype, BMI, and condition (x? = 12.40, df=3, pe.
rected=0.024), indicating that Taq1A genotype might moderate BMI-dependent effects on WM gating.
Please refer to Table 3 for the full output of the final model displaying the original, uncorrected

p-values.

To further investigate the significant Tag1A x condition x BMI interaction, we ran simple effects
analyses, testing the Taq1A-BMl interaction separately for each condition. These analyses showed that
the BMI-genotype interaction was significant in the update condition (p=0.002), but not in the other
three conditions (all p-values>0.079), suggesting that the effect was specific to updating and hence

Table 2. Full output for the model investigating the BMI-condition interaction (model 1).

Chisq Df Pr(>Chisq)
(Intercept) 3623.78 1 <0.001
condition 282.00 3 <0.001
zBMI 16.80 1 <0.001
zZIQ 25.10 1 <0.001
Gender 10.50 1 0.001
zZWM_tired 36.00 1 <0.001
zZWM_conc 9.19 1 0.002
condition:zBMI 2.66 3 0.447

N = 320; Marginal R¥conditional R? = 0.069/0.172.
Note: uncorrected p-values are displayed.
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Table 3. Full output for the model investigating the COMT-Taq1A-BMI-condition interaction (model
2).

Chisq Df Pr(>Chisq)
(Intercept) 3228.77 1 <0.001
condition 212.81 3 <0.001
COMT 0.16 2 0.923
Tagl1A 1.13 1 0.288
zBMI 22.15 1 <0.001
zIQ 24.09 1 <0.001
Gender 7.53 1 0.006
ZWM_tired 12.39 1 <0.001
zZWM_conc 30.80 1 <0.001
condition:COMT 10.30 6 0.113
condition:Tagq1A 4.69 3 0.196
COMT:Tag1A 2.47 2 0.291
condition:zBMI 3.49 3 0.322
COMT:zBMI 0.86 2 0.650
Tag1A:zBMI 2.98 1 0.085
condition:COMT:Tag1A 2.09 6 0.911
condition:COMT:zBMI 6.29 6 0.391
condition:Tagq1A:zBMI 12.40 3 0.006
COMT:Taq1A:zBMI 3.68 2 0.159
condition:COMT:Tag1A:zBMI 4.09 6 0.665

N=318.Marginal R¥/conditional R* = 0.076/0.173.
Note: uncorrected p-values are displayed.

might drive the observed overall three-way interaction (Figure 2). Further post hoc examination of
the effects on updating revealed that, the association between BMI and performance was significant
for Al-carriers (95% Cls: —0.488 to -0.190), with 33.9% lower probability to score correctly per unit
change in BMI, but non-significant for non-A1-carriers (95% Cls: —0.153 to 0.129; 1.22% lower prob-
ability). Interestingly, compared to all other conditions, in the update condition, the negative associ-
ation between BMI and task performance was weakest for non-A1-carriers (estimate = -0.012, SE =
0.072, but strongest for Al-carriers estimate = -0.339, SE = 0.076; see Figure 2 and Supplementary
file 1A), emphasizing that genotype impacts this condition the most. To further check if this difference
in slope was statistically significant across conditions, we stratified the sample into Taq1A subgroups
(A1+ vs. A1-) and assessed whether BMI affected task performance differently across conditions sepa-
rately for each subgroup. This analysis revealed no significant difference in the relationship between
BMI and task performance across conditions among A1+ individuals (Pswircondition=0-219). However,
within the A1- subgroup, a significant interaction effect between BMI and condition emerged (pPswi-con-
4iion=0.049). Collectively, these findings suggest that the absence of the A1-allele is linked to improved
task performance, particularly in the context of updating, where it seems to mitigate the otherwise
negative effects of BMI.

In order to determine whether our results stemmed from mere match/non-match response biases
or from proper ignoring/updating, we conducted a follow-up analysis, investigating the effects of
the probe type presented at the end of each trial. The probe could either be the target item, a
completely novel item, or a distractor item, meaning that the probe was one of the items that had
to be encoded initially, but then be overwritten. Thus, a distractor probe measures the cognitive
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Figure 2. Interaction of Tag1A genotype, BMI, and condition on working memory performance (model 2). The two-way interaction of Taq1A and
BMI was significant in the update condition only (p = 0.002). In this condition, carrying the A-allele led to a 33.9% decrease in performance with each
increasing unit of BMI (SE = 7.58), while there was only a 1.22% (SE = 7.21%) decrease in non-carriers. Shaded areas represent the 95% confidence

intervals. N = 318.

challenge of updating in its most exact form, while a target or novel item primarily assays match/non-
match responses. For this analysis, we thus subset our data, including updating trials only, and re-ran
our model augmented with the factor probe type. Results showed a significant main effect of probe
type (x? = 94.11, df = 2, p<0.001). Trials where the probe was a distractor were the hardest (mean
accuracy = 86.44%), followed by target probe trials (mean accuracy = 91.58%), and novel probe trials
(94.96%). The three-way interaction between probe type, BMI, and Taq1A genotype was not signifi-
cant (x?=1.645, df = 2, p = 0.439), indicating that the probe type did not affect the BMI-Taq1A inter-
action in updating trials. High-BMI A-allele carriers were worse than non-carriers in all three probe trial
types similarly. However, this pattern was most pronounced in the distractor condition (see Figure 3).

DARPP-32 genotype moderates the association between BMI and WM
updating

Investigation of the effects of DARPP-32 on BMI-dependent WM gating revealed a similar picture
to Taq1A. We found a significant three-way interaction of DARPP-32, BMI, and condition (x? =
20.21, df = 3, Peorrectea<0.001), such that DARPP-32 interacted with BMI in the update condition only
(Ppost hoc=0.006). Please refer to Table 4 for the full output of the final model displaying the orig-
inal, uncorrected p-values. Once more, further examination of the observed DARPP-32, BMI, and
condition interaction showed that, in the update condition, the negative association between BMI
and task performance was weakest and non-significant for A/A (estimate = -0.044, SE = 0.066; 95%
Cls: —0.174-0.086), but strongest and significant for G-carrying individuals (estimate = -0.324, SE =
0.079; 95% Cls: —0.478 to — 0.170). See Supplementary file 1B and Figure 4. Splitting the sample
into DARPP subgroups (A/A vs. G-carrier) revealed that in both subgroups, there was significant inter-
action effect of BMI and condition on task performance (paa=0.034, pc.carie=0.003). In the case of
DARPP, it hence appears that carrying the disadvantageous G-allele could exacerbate the negative
effects of BMI, while the more advantageous allele (A/A) might mitigate them — once again particularly
in the context of updating. Again, post hoc analyses investigating the effect of probe type, showed
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Figure 3. Interaction of Taq1A genotype, BMI, and probe type in updating trials only. There was no significant three-way interaction between probe
type, BMI and Tag1A (p = 0.439). The BMI - Tag1A interaction was in a similar direction in all trials. There was a significant main effect of probe type (p <
0.001). Trials where the probe was a distractor had lowest probability to be correct. Shaded areas represent the 95% confidence intervals.

that this effect was strongest and significant in distractor (p = 0.046) and target (p = 0.008) trials, but
not in trials where the probe was a novel item (p = 0.242, see Figure 5). Furthermore, there was a
significant main effect of probe type (p < 0.001), with distractor trials having the lowest overall prob-
ability to be correct.

Table 4. Full output for the model investigating the DARPP-BMI-condition effect (model 3).

Chisq Df Pr(>Chisq)
(Intercept) 3511.81 1 <0.001
DARPP 0.03 1 0.853
zBMI 17.18 1 <0.001
condition 274.62 3 <0.001
zIQ 25.10 1 <0.001
zZWM_conc 35.27 1 <0.001
ZWM_tired 10.52 1 0.001
Gender 9.17 1 0.002
DARPP:zBMI 0.18 1 0.668
DARPP:condition 1.00 3 0.801
BMI:condition 3.61 3 0.307
DARPP:BMl:condition 20.21 3 <0.001

N = 320. Marginal R¥conditional R? = 0.071/0.173.

Note: uncorrected p-values are displayed.
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Figure 4. Interaction of DARPP-32, BMI, and condition on working memory performance (model 3). The two-way interaction of DARPP-32 and BMI was

significant in the update condition only (p = 0.006). In this condition, carrying the G-allele led to a 32.4% decrease in performance with each increasing
unit of BMI (SE = 7.86), while there was only a 4.39% (SE = 6.61) decrease in A/A homozygots. Shaded areas represent the 95% confidence intervals. N =

320.

No association of C957T with BMI-dependent WM gating

Our analysis revealed no significant main effect of the C957T polymorphism (x?2 = 0.03, df = 1,
Peorrectea™1)- All other main effects stayed significant (all corrected p<0.012), except for the effect of
BMI (%2 = 3.49, df = 1, peorected=0.247). Furthermore, we found no substantial evidence for two- or
three-way interactions involving the C957T polymorphism (all corrected p>0.186), suggesting that
C957T does not significantly interact with BMI or one of our WM conditions. See Table 5 for the full
model output with original uncorrected p-values. Because the main effect of BMI dissipated when
including C957T in the model, we ran an additional exploratory analysis to check whether this poly-
morphism directly related to BMI. A separate Im() model, predicting BMI by C957T, showed no asso-
ciation between the two (p=0.2432), indicating that the BMI effect is probably not masked by the
presence of the C957T polymorphism.

BMI-dependent alterations in WM gating are associated with

peripheral dopamine synthesis capacity

When investigating potential influences of dopamine changes on the system level (model 5), we found
2=10.88,df =3
Peorrected<0.049). Post hoc simple effects analyses suggested that this interaction seems to be driven

a significant three-way interaction between amino acid ratio, BMI, and condition ( x

by differential performance specifically in update vs. ignore (x2 = 5.57, df = 1, p=0.018). As BMI
increases, higher ratios of amino acids promote better performance in updating, but worse perfor-
mance in ignoring (see Figure 6, upper panel). All other comparisons (update vs. control short; ignore
vs. control long; control long vs. control short, update vs. control long, ignore vs. control short) did
not yield significant differential relationships between amino acid ratio and BMI (all p-values>0.168).
The main effects of BMI, condition, and amino acid ratio were insignificant (all peyrected™>1). The main
effect of z-1Q (%2 = 11.64, df = 1, Peorectea=0.002) and z-concentration (x? = 18.60, df = 1, pe.
ected<0.001) were significant, both relating positively to performance (ORq = 1.28, OR ncentration = 1-33).
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Figure 5. Interaction of dopamine and cAMP-regulated neuronal phosphoprotein (DARPP)-32 genotype, body mass index (BMI), and probe type for
update trials only. There was a significant three-way interaction between probe type, BMI, and DARPP-32 (p = 0.005). Post hoc analyses showed that the
BMI-DARPP interaction was significant in distractor (p=0.046) and target (p=0.008) trials, but not in trials where the probe was a novel item (p=0.242).
There was a significant main effect of probe type (p<0.001). Trials where the probe was a distractor had lowest probability to be correct. Shaded areas
represent the 95% confidence intervals.

Table 5. Full output for the model investigating the C957T-BMI-condition effect (model 4).

Chisq Df Pr(>Chisq)
(Intercept) 328.55 1 <0.001
C957T 0.03 1 0.859
zBMI 3.49 1 0.062
condition 48.06 3 <0.001
zIQ 25.30 1 <0.001
zZWM_conc 33.66 1 <0.001
ZWM_tired 10.54 1 0.001
Gender 8.85 1 0.003
C957T:zBMI 0.36 1 0.548
C957T:condition 7.97 3 0.047
BMI:condition 0.31 3 0.958
C957T:BMl:condition 0.07 3 0.995

N=318. Marginal R?/conditional R? = 0.070/0.171.
Note: uncorrected p-values are displayed.
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Figure 6. Interaction of Amino Acid Ratio, BMI and condition (model 5). For illustration purposes, amino acid ratio was artificially grouped into high,

middle, and low. The difference in condition (Pignore vs. update < 0.001) becomes especially apparent when looking at individuals with high amino acid ratios:

With each increasing unit of BMI, performance gets worse in ignore, but better in update. There were no significant differences in the relationship of
amino acid ratio and BMI comparing all other conditions against each other (all p > 0.168). Shaded areas represent the 95% confidence intervals. N =

160.

Table 6. Full output for the final model investigating the amino acid ratio-BMI-condition effect

(model 5).
Chisq Df Pr(>Chisq)

(Intercept) 13.31 1 <0.001
AAratio 0.58 1 0.444
zBMI 0.98 1 0.321
condition 343 3 0.330
zIQ 11.64 1 <0.001
zZWM_conc 18.60 1 <0.001
Gender 5.08 1 0.024
AAratio:zBMI 0.32 1 0.570
AAratio:condition 8.69 3 0.034
BMI:condition 9.80 3 0.020
AAratio:BMl:condition 10.88 3 0.012
N = 160. Marginal R¥/conditional R* = 0.068/0.170.
Note: uncorrected p-values are displayed.
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The interactions between BMI and condition (x ? = 9.80, df = 3, pcomectea=0.081), and between amino
acid ratio and condition (x % = 8.69, df = 3, Peorectea=0.135) were not significant. BMI and amino acid
ratio showed no significant two-way interaction (x 2 = 0.322, df = 1, pconeciea™ 1). Please refer to Table 6
for the full model output with original uncorrected p-values. Because there was an extreme BMI
data point, we re-ran the model excluding this data point to check whether the results still hold. The
three-way interaction between amino acid ratio, BMI, and condition became trend-significant (p.,.
rected=0.064, see Supplementary file 1C for a full model output with original uncorrected p-values).

Further exploratory analyses on multiple gene-gene and gene-amino
acid ratio interaction effects

Because possible interactions of all SNPs presented in this paper have been shown (Zmigrod and
Robbins, 2021; Frank and Hutchison, 2009, Smith et al., 2014; Xu et al., 2007), we additionally
checked for multiple gene-gene interactions in a highly explorative manner. First, because specific
C957T and Taq1A interaction effects on WM have been reported (Frank and Hutchison, 2009), we
check for a BMI- and condition-dependent interaction of these two SNPs. There were no significant
interaction effects (all pyncorected™>0.138). Furthermore, we ran a model where we investigated the inter-
action of C957T and COMT, as also these two SNPs have been shown to interact (Xu et al., 2007).
There was a significant condition:C957T:COMT:BMI interaction effect (pyncomectea=0.026). Last but not
least, since our initial analyses showed significant effects for each, we also looked at how amino acid
ratio and Taq1A, and amino acid and DARPP would interact. For the latter, we found a significant
condition:AAratio:DARPP:BMI interaction effect (Puncorrectea=0.03). Full outputs for all models can be
found in Supplementary file 1D-G .

Discussion

The present investigation sought to evaluate whether obesity might be associated with impairments
in WM gating. Consistent with previous literature (Yang et al., 2020; Yang et al., 2019, Yang et al.,
2018; Gonzales et al., 2010; Coppin et al., 2014; Hartmann et al., 2023), we found evidence for
impairments in overall WM in individuals with a high BMI. Yet, we could not observe the expected
interaction of BMI and condition, indicating no specific associations between BMI and WM gating.
Interestingly, however, distinct effects of BMI on gating became apparent when taking into account
potential changes in inherent dopamine signaling. Specifically, Tag1A and DARPP-32 particularly
affected performance in the updating condition. Against our expectation, however, we did not find
evidence for an interaction effect of COMT and Tag1A on BMI-dependent WM gating, nor did we
find any effects of C957T.

Selective BMI-genotype effects on WM updating

Our findings are partially in line with our hypothesis. While we did observe the expected worsening
of updating WM contents in individuals with a high BMI, this effect was not exclusive to updating.
Only when participants — along with BMI — were categorized based on certain putative dopamine-
signaling characteristics, distinct effects on updating became apparent. This finding is compelling as it
demonstrates a rarely observed selective effect. Notably, it were the Taq1A and DARPP-32 SNPs that
selectively modulated WM updating in a BMI-dependent manner. Intriguingly, both of these SNPs
are associated with, predominantly, striatal dopamine signaling (Hemmings and Greengard, 1986;
Meyer-Lindenberg et al., 2007, Gluskin and Mickey, 2016), implying a targeted modulation of
processes occurring within the striatum. Both, the A-allele (Tag1A) and the G-allele (DARPP-32), have
previously been considered risk alleles for various conditions and behaviors involving maladaptive
cognitive flexibility, such as addiction (Smith et al., 2008, Munafo et al., 2007; Deng et al., 2015),
schizophrenia (Meyer-Lindenberg et al., 2007, Gonzalez-Castro et al., 2016; Albert et al., 2002), or
impaired reinforcement learning (Frank et al., 2007, Doll et al., 2011). Noteworthy, our data revealed
that differences in updating appeared to be driven by the non-risk allele groups. Despite increasing
BMI, performance remained stable. This pattern suggests that possessing the more advantageous
genotype could potentially mitigate the generally negative effects of a high BMI on WM updating.
Moreover, in the normal-weight BMI range, carriers of a risk allele (in both, Tag1A and/or DARPP)
slightly outperformed their non-risk allele carrying counterparts. This is especially intriguing as it
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emphasizes that carrying a ‘risk allele’ can in fact be advantageous under certain cognitive demands
— a claim that has also been put forward by, e.g., Stelzel et al., 2010. Finally, the effects of genotype
were particularly pronounced in trials where the probe was a distractor, suggesting that the effect is
primarily due to ‘real’ updating, i.e., when initially encoded items need overwriting, as opposed to
simple match/non-match responses (as in novel vs. target probe items).

Potential mechanistic accounts

Mechanistically, our findings are potentially due to differential go/no-go path activation in the basal
ganglia — pathways that are crucially involved in governing WM gating. In essence, the D1 pathway
modulates the ‘go’ signaling responsible for updating, while the D2 pathway facilitates ‘no-go’
signaling crucial for distractor-resistant maintenance (Frank and O’Reilly, 2006). Considering Tag1A,
evidence points at increased striatal dopamine synthesis and corresponding increases in striatal BOLD
signals in A-carriers compared to non-carriers (Laakso et al., 2005; Stelzel et al., 2010). These findings
suggest that the phasic dopamine signal needed to trigger ‘go’ (i.e. updating), might be enhanced
in A-carriers. This aligns with the idea that A-carriers, who possess fewer D2 receptors (Thompson
et al., 1997, Pohjalainen et al., 1998; Jénsson et al., 1999), fall more within the ambit of the D1/
go-dominant regime (Klein et al., 2007). Our data support this speculation by revealing slightly better
updating performance in A-carriers in the normal-weight BMI range. However, as BMI increases, the
possession of a greater D2 receptor density seems to become advantageous, as evidenced by the
lack of a negative correlation between BMI and updating performance in non-A carriers. We speculate
that this phenomenon could potentially be attributed to the compensating effects of this genotype.
While individuals with fewer D2 receptors (A1+) may have quicker saturation of receptors regard-
less of dopamine levels, in those with more D2 receptors (A1-) saturation may be slower. This could
contribute to a more finely tuned balance between ‘go’ and 'no-go’ signaling, despite potential alter-
ations in dopamine tone in obesity (Horstmann et al., 2015; but also see Darcey et al., 2023 or
Janssen and Horstmann, 2022). Clearly, the current data cannot provide empirical evidence for these
speculations, and further discrete research is needed to establish firm conclusions. Regarding DARPP,
we found that carrying the G-allele significantly exacerbated the negative effects of BMI, while the
more advantageous allele (A/A) mitigated them, once again particularly in the context of updating.
Interestingly, the G-allele has been associated with reduced striatal D1 efficacy (Meyer-Lindenberg
et al., 2007). Moreover, Frank et al., 2007, and Doll et al., 2011, showed that carrying a G-allele
was associated with worse go-learning — a process requiring activation of the same go-pathway that
is likely to be activated during updating of WM contents. Similarly, Frank and Hutchison, 2009,
demonstrate that the G-carrier group compared to the A/A allele group displayed worse approach
learning — again a process relying on go-path activation. However, there were no effects of DARPP on
no-go learning (Frank et al., 2007), which requires D2-mediated no-go path activation. Our results
hence broadly align with the literature and suggest that, particularly, markers of striatal go-signaling
modulate BMI-dependent effects on WM updating. Collectively, our observations hint at the potential
of advantageous genotypes to moderate the adverse impacts of high BMI on cognitive functions.

Possible accounts for the absence of COMT and C957T effects

Considering that according to the prevailing models, PFC, and striatum interact to foster effective
WM gating (Cools and D’Esposito, 2011), the question arises as to why we could not observe the
expected COMT-Taq1A interaction on BMI-dependent WM gating. We posit several explanations for
the absence of the anticipated interaction. First, these polymorphisms may indeed exert a limited
interactive effect on WM gating. In line with this notion, prior findings concerning the interactive
effects of COMT and Tag1A on WM have yielded contradictory results. For instance, Garcia-Garcia
et al.,, 2011, and Stelzel et al., 2009, reported patterns of COMT-Taq1A interactions in the context
of WM updating that were consistent in terms of direction of effect. In contrast, Wishart et al., 2011,
observed an opposing interaction pattern, while Persson and Stenfors, 2018, did not identify any
COMT-Tag1A interaction at all. All these studies explored genotype interactions using paradigms that
either assessed the two memory processes separately (Garcia-Garcia et al., 2011; Wishart et al.,
2011, Persson and Stenfors, 2018) or in a manner that they were not distinctly discernible (Berry-
hill et al., 2013). None of them examined the comprehensive interaction of COMT, Taq1A, and WM
updating vs. ignoring within a single paradigm, as we did here. Second, it has recently been debated
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whether COMT has a noteworthy effect on cognition. Some meta-analyses find (small) effects (Barnett
et al., 2007), while others don't (Geller et al., 2017, Barnett et al., 2008; also see Goldman et al.,
2009, Wacker, 2011, Barnett et al., 2011, for a discussion on the meta-analysis from Barnett et al.,
2008). Beyond this, the absence of significant effects related to COMT could further be interpreted as
underscoring the selectiveness of our observed effects. COMT effects are predominantly observed in
the PFC (Mier et al., 2010; Egan et al., 2001 ; Kienméki et al., 2010) and rather tied to maintenance
of WM contents (Nolan et al., 2004; Rosa et al., 2010). This lends weight to the interpretation that
distractor-resistant maintenance, or prefrontal processes, remain unaffected by BMIL. In a similar vein,
also our findings concerning the C957T polymorphism bolster the selective nature of our findings.
Much like COMT, this polymorphism is presumably more involved in WM maintenance, i.e., prefrontal-
related functioning. Supporting this notion, Xu et al., 2007, found an association between the C957T
polymorphism and specifically maintenance of (phonological and serial) information, but not with
other tasks requiring updating. Furthermore, this polymorphism has also been associated with D2
binding potential in extrastriatal regions (Hirvonen et al., 2009) and greater WM-related activity
in PFC (Li et al., 2019). Lastly, the results with respect to C957T involvement in striatal-dependent
cognition are mixed (see, e.g., discussion part in Baker et al., 2013), indicating that C?57T may not
be a good candidate for influencing striatal-dependent processes.

Selective modulation of WM gating: system-level dopamine versus
genetic profiles

Our BMI-gene findings show a selective modulation of WM updating, as opposed to the previously
observed trade-off between ignoring and updating (e.g. Fallon et al., 2017b; see Cools, 2019, for
an extensive review). To the best of our knowledge, none of the previous studies investigating WM
gating in relation to dopamine signaling have found such a selective modulation. We speculate that
this is because previous studies looked at broader changes in the dopamine system, i.e., by using drug
manipulations or comparing Parkinson’s vs. healthy controls, rather than particular genetic profiles.
Such broad 'system-level’ dopamine changes may impact both PFC-facilitated distracter resistance
and striatal-dependent updating. This, in turn, might foster the commonly observed inverted-U-
shaped relationship between dopamine and cognition: In cases where baseline dopamine levels
are low, a dopamine increase (for instance, through agonists) would enhance ignoring, albeit at the
expense of updating. Conversely, at medium baseline dopamine levels an increase would lead to
impaired ignoring, potentially benefiting updating (for a more detailed discussion, see Cools and
D’Esposito, 2011). Indeed, we also see this pattern when looking at system-level dopaminergic
changes: depending on BMI, low (or high) peripheral dopamine synthesis capacity (as indicated by
blood amino acid ratios) was associated with worsening of distractor-resistant maintenance, while
improving updating (or vice versa). It should be noted that the sample for our amino acid analyses was
much smaller (N = 160) than the one used for the SNP analyses (N = 320), and the BMI range for this
sub-sample was narrower (mean = 23.63, SD = 2.78, min = 18.63, max = 36.42). This was because only
two of the three studies had the data on amino acids available. Interestingly, the system-level effect of
amino acid ratio becomes visible in a healthy to overweight BMI range, indicating that already small
changes in BMI can promote different dopamine-dependent cognitive profiles.

Strengths and limitations

A major strength of this study is that it was the first to probe gene-gene interactions on a direct WM
maintenance and updating comparison. This is a notable advantage, as previous studies have usually
examined these aspects in separate paradigms, which might have contributed to the heterogeneous
results regarding SNP interaction effects on WM (see above). Another main strength of our study is
the sizable sample. However, despite this relatively large size, our sample was still not big enough for
systematic and reliable analysis of multiple gene-gene interactions. This would be of interest however,
as possible interactions of all SNPs presented in this paper have been shown (Zmigrod and Robbins,
2021, Frank and Hutchison, 2009; Smith et al., 2014; Xu et al., 2007). Such analyses would require
even larger cohorts, as the effect sizes of single SNPs are usually small. We nevertheless report the
outcome of such highly explorative models in our exploratory analyses for the purpose of transpar-
ency and to guide future studies. Yet, those results should be interpreted with caution. Furthermore,
an additional limitation is that our data is slightly skewed toward participants within the normal BMI
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range. The effective sample size to detect meaningful genotype effects (e.g. for COMT or C957T)
might thus have been too small, particularly at higher BMI levels. Future studies may address this
limitation by recruiting a more balanced sample, including more individuals with higher BMI. Addition-
ally, the correlational nature of our findings highlights the need for more direct experimental manipu-
lations of dopaminergic processes in obesity. Previous studies have established a causal link between
dopamine and WM gating through drug manipulations (Fallon et al., 2017b). Applying a similar
approach to an obese sample could help establish a clearer causal link between dopamine activity and
WM gating in the context of obesity. Lastly, the sample used for this study was very heterogeneous,
as it was pooled from three separate studies. The BMI distribution, for instance, was significantly
different depending on gender. BMI was higher in females. This was because females were over-
represented in the BEDOB study, which had the largest BMI range (refer to Table 1). Although we
ran control analyses to account for this heterogeneity, we cannot exclude the possibility that certain
properties of the data distribution could have influenced our results.

Overall conclusions

Overall, our data aligns with previous evidence for WM impairments in obesity. However, selective
effects of BMI on WM gating — specifically updating — become visible only when accounting for
genetic markers of striatal dopamine transmission. This level of specificity adds a new nuance to
existing research as it demonstrates condition-specific effects of BMI on WM. Previous research, that
generally utilized drug manipulations, consistently demonstrated system-level modulations, leading
to a trade-off between ignoring and updating information. While we also observe this trade-off when
examining more comprehensive system-level relationships (i.e. blood amino acid ratio), the specificity
of our SNP-related findings to updating sets them apart from previous studies. Our results hence pave
the way for new individualized treatments for obesity, as they highlight the potential of advantageous
genotypes to mitigate the adverse effects of high BMI on cognitive functions that require updating of
information, and suggest that previously documented deficits in reward learning, which partially rely
on information updating, could potentially be targeted more specifically when taking genotypes into
account.

Materials and methods

Participants

The data used in this study were collected in the scope of three separate pre-registered cross-sectional
studies, which are all part of a larger line of research in the O’Brain Lab: GREADT (see https://osf.
io/w9e5y), BEDOB (see https://osf.io/fyn6q), and WORMCRI (see https://osf.io/zdmkx). The studies
were conducted in compliance with the principles of the Declaration of Helsinki and authorized by the
Ethics Committee of the Medical Faculty at the University of Leipzig (400/18-ek; 385/17-ek; 172/19-
ek). All participants provided written informed consent before participation and were compensated
for their time. Prior to participation, participants were screened for a history of clinical drug or alcohol
abuse, neurological or psychiatric disorders, and first-degree relative history of neurological or psychi-
atric disorders. Symptoms of depression were assessed via a screening interview using the Structured
Clinical Interview for DSM-IV (SCID, Wittchen, 1997, in BEDOB & WORMCRI) or Beck Depression
Inventory (BDI, Beck et al., 1996; in GREADT).

Study design

All measures relevant to the present study were collected in a comparable manner. In all studies,
participants were first asked to come to the lab for a screening session where in- and exclusion criteria
were checked. Weight and height were measured to calculate BMI. After inclusion, blood samples
were taken from the participants to assess COMT Val"*®Met, Taq1A, C957T, and DARPP-32 genotypes.
Analysis of these SNPs was performed in the laboratory for ‘Adiposity and diabetes genetics’ at the
Medical Research Center, University Leipzig, Leipzig, Germany. In WORMCRI and GREADT, we also
took serum blood samples in order to extract information on the amino acid profiles. Participants,
therefore, came overnight-fasted for these two studies. Serum blood samples were analyzed at the
‘Institut fur Laboratoriumsmedizin, Klinische Chemie und Molekulare Diagnostik (ILM)" Universitatsk-
linikum Leipzig, Germany. After the blood draw, participants did a number of neuropsychological tests
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Figure 7. Schematic illustration of the task structure and experimental conditions. The task consists of three task phases. In the encoding phase,
participants have to remember two target stimuli (signaled by the letter “T"), or are presented with a centered cross (short control trials). In the
interference phase, participants either have to ignore two non-target stimuli (ignore trials; signaled by the letter “N”) or allow two new stimuli (again
marked by a “T") to replace the previously remembered target stimuli (update trials). No-interference trials (short and long control) do not require any
manipulations in the interference phase. At the end of each trial, participants evaluate whether a presented figure was a target figure or not. Figure
reused from Hartmann et al. (2023) with permission.

among which were the digit span task (Hilbert et al., 2014; Wechsler, 2008; assessing baseline WM),
and a proxy for 1Q in BEDOB: ‘Wortschatztest’ (Schmidt and Metzler, 1992; assessing verbal 1Q); in
GREADT and WORMCRI: ‘Wiener Matrizen Test’ (Formann et al., 2011). After that, participants filled
in several questionnaires, of which the DFSQ (Francis and Stevenson, 2013; Fromm and Horstmann,
2019; assessing eating behavior), was subject to all three studies. On the second test day, participants
completed the WM task (described below), either during fMRI (GREADT and BEDOB) or during EEG
(WORMCRI). After completion of the task, all participants were asked to indicate the level of tiredness
and concentration they felt during the task on a 10-point Likert scale. For a more detailed description
of each study’s design, please refer to the respective pre-registration mentioned above.

WM task

Participants completed a modified version of a delayed match-to-sample task originally designed
by Fallon and Cools, 2014. This modified version has already been described in Hartmann et al.,
2023, and Herzog et al., 2023. The task comprises four conditions (Figure 7). In the ignore condi-
tion, testing distractor-resistant maintenance, participants first have to memorize two target stimuli,
signaled by the letter ‘T’ centered in between the two. Next, they are presented with two new stimuli,
this time marked by a centered ‘N’, indicating non-targets which have to be ignored. After that, partic-
ipants are presented with a probe stimulus and have to determine whether one of the first two target
stimuli matches the presented probe. In the update condition, participants are first shown two target
stimuli (centered ‘T’). After that, they see a new set of target stimuli (again indicated by a centered
‘T'). These two new stimuli replace the previously presented stimuli as the target and thus have to be
evaluated for a match when the probe is presented subsequently. The two control conditions do not
have any interference and are matched to the temporal delay between encoding the to-be-matched
targets and probe. The probe is presented for 2000 ms. The task is separated into four blocks, with
each block entailing 8 trails of each condition, interleaved among all blocks. Each block thus consists
of 32 trials. The total number of trials in the task amounts to 128. Feedback is presented after each of
those blocks. Each trial is separated by a jittered inter-trial interval ranging from 2000 to 6000 ms. The
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stimuli are randomly computer-generated, monochromatic RGB ‘spirographs’. The primary outcome
measure is accuracy. The total duration of the task is approximately 30 min.

Statistical analyses of behavioral data

All behavioral analyses were performed in R in RStudio v4.2.2 (Dreisbach and Fréber, 2019; R Devel-
opment Core Team, 2015). Given the within-subject design of our study, we used generalized linear
mixed models of the ‘Ime4’ package to analyze the primary outcome measure of the WM task: accu-
racy. We ran a logistic regression using glmer() with a binomial link function. We used trial-by-trial
information for each subject with binary coded response (0 = incorrect; 1 = correct). Trials with a
reaction time <200 ms and >2000 ms were excluded, as those trials can be considered false alarms
and misses, respectively. Trials with a reaction time >2000 ms were excluded, as they reflect misses.
To first test our main hypothesis that WM gating is altered, depending on BMI, we built a trial-based
regression model including the interaction of the within-subject factor condition (ignore vs. update
vs. control long vs. control short) and the continuous between-subject factor BMI. We further probed
the influence of several potential covariates: study (GREADT vs. BEDOB vs. WORMCRI), IQ, Age,
DFSQ, binge-eating phenotype, tiredness, concentration, and gender. Using the anova() function
from the ’stats’ package, we compared AIC and BIC (Akaike, 1979, Stone, 1979) of the full model
against multiple simpler version of the model. We found the best-fitting models (lowest AIC and
BIC) to include I1Q, tiredness, concentration, and gender (see Supplementary file 1 below). Due to
model convergence problems, the continuous predictors BMI, 1Q, tiredness, and concentration were
z-scored. Furthermore, the model did not converge with a maximal random structure (including the
within-subject factor ‘condition’). The random structure of the model was thus reduced to include the
factor ‘subject’ only, thereby accounting for the repeated measures taken from each subject. The final
model was:

accuracy ~ condition x BMI + IQ + tiredness + concentration + gender + (1lsubject) )

To test how BMI-dependent WM gating is moderated by the respective dopamine proxy (SNP or
amino acid ratio), we ran four additional models, each including the respective between-subject factor
as an additional factor of interest. Model fit was again assessed using AIC and BIC for each model
(see Supplementary file 1H). Again, due to convergence issues, the random structure of the models
included the factor ‘subject’ only. The final models were:

accuracy ~ COMT * TaqlA * condition x BMI + IQ + tiredness + concentration + gender + (1lsubject) (2)
accuracy ~ DARPP x condition * BMI + 1Q + tiredness + concentration + gender + (1lsubject) (3)
accuracy ~ C957T x condition x BMI + IQ + tiredness + concentration + gender + (1lsubject) (4)
accuracy ~ aminoacidratio % condition x BMI + IQ + concentration + gender + (llsubject) (5)

As we ran four additional models testing similar hypotheses, all main results for these models were
corrected for multiple comparisons using Bonferroni correction, i.e., p-values were multiplied by 4.
Model outputs were called using the Anova() function, from the ‘car’ package. Reported odds ratios
(OR) are retrieved from exponentiating the log-odds coefficients called with the summary() function.
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