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This work explores the physical principles underlying fluid flow and luminal transport within the 
endoplasmic reticulum. Its important contribution is to highlight the strong physical constraints 
imposed by viscous dissipation in nanoscopic tubular networks. In particular, the work presents 
convincing evidence based on theoretical analysis that commonly discussed mechanisms such as 
tubular contraction are unlikely to be at the origin of the observed transport velocities. As such, it 
will be of relevance to cell biologists and physicists interested in organelle dynamics. As this study 
is solely theoretical and deals with order of magnitude estimates, its main conclusions await experi-
mental validation.

Abstract The endoplasmic reticulum (ER), the largest cellular compartment, harbours the 
machinery for the biogenesis of secretory proteins and lipids, calcium storage/mobilisation, and 
detoxification. It is shaped as layered membranous sheets interconnected with a network of tubules 
extending throughout the cell. Understanding the influence of the ER morphology dynamics on molec-
ular transport may offer clues to rationalising neuro-pathologies caused by ER morphogen mutations. 
It remains unclear, however, how the ER facilitates its intra-luminal mobility and homogenises its 
content. It has been recently proposed that intra-luminal transport may be enabled by active contrac-
tions of ER tubules. To surmount the barriers to empirical studies of the minuscule spatial and temporal 
scales relevant to ER nanofluidics, here we exploit the principles of viscous fluid dynamics to generate 
a theoretical physical model emulating in silico the content motion in actively contracting nanoscopic 
tubular networks. The computational model reveals the luminal particle speeds, and their impact in 
facilitating active transport, of the active contractile behaviour of the different ER components along 
various time–space parameters. The results of the model indicate that reproducing transport with 
velocities similar to those reported experimentally in single-particle tracking would require unrealisti-
cally high values of tubule contraction site length and rate. Considering further nanofluidic scenarios, 
we show that width contractions of the ER’s flat domains (perinuclear sheets) generate local flows with 
only a short-range effect on luminal transport. Only contractions of peripheral sheets can reproduce 
experimental measurements, provided they are able to contract fast enough.

Introduction
The mammalian endoplasmic reticulum (ER) is the single largest intracellular structure (see sketch in 
Figure 1a). The organelle is made up of membranous sheets interconnected with the nuclear enve-
lope and branching out into a planar network of tubules extending throughout the cell periphery 
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(Figure 1b, Voeltz et al., 2002). The ER dynamics on a second scale include the cytoskeleton-assisted 
tubular network restructuring (Lee and Chen, 1988; Chambers et al., 2022) and an interconversion 
between two distinct forms, including a narrower form covered by membrane curvature-promoting 
proteins (Wang et al., 2022). The ER morphology and its dynamics presumably enable and facili-
tate its functions: the ER is responsible for the production, maturation, and quality-controlled folding 
of secretory and membrane proteins, which constitute approximately a third of the cell’s proteome 
(Ghaemmaghami et  al., 2003). The organelle’s membranes also harbour the lipid biosynthesis 

Figure 1. Sketch of the cellular geometry with nomenclature of the subcellular structures discussed in the paper. 
(a) Cross-section of cell showing nucleus and endoplasmic reticulum (ER) (adapted from image in public domain). 
(b) Cut through cross-section of the tubular ER network at the edge of cell. (c) Sketch of the contraction and 
expansion of the tubular junctions (3D view and cross-section); contractions leads to flow leaving the junction 
into the network while expansions lead to flow leaving the network and entering the junction. (d) Contraction and 
expansion of the peripheral sheets. (e) Contraction and expansion of the tubules driven by pinching (3D view and 
cross-section). (f) Contraction and expansion of the perinuclear sheets.

Panel A adapted from image in public domain (Ruiz Villarreal, 2006).

https://doi.org/10.7554/eLife.93518
https://commons.wikimedia.org/wiki/File:Endomembrane_system_diagram_notext.svg
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machinery, while its lumen stores calcium. The contiguous nature of the ER is believed to ensure an 
efficient delivery of all these components across the cell periphery. In particular, ER luminal conti-
nuity and transport were demonstrated to kinetically limit calcium delivery for local release (Crapart 
et al., 2024). The sensitivity of neurons with long axonal extensions to ER defects in ER morphogens 
suggests that a perturbed ER transport may link ER integrity and neurodegeneration. Such a link might 
help explain why mutations in genes involved in ER shaping cause neuronal diseases, including motor 
neuron degeneration of hereditary spastic paraplegia (Blackstone et al., 2011), sensory neuropathy 
(Kornak et al., 2014) and retinitis pigmentosa (Arno et al., 2016).

Timely transport of the content within the ER is therefore integral to the function of the cell. The 
geometry and dimensions of several cell types with extensive ER-containing projections (e.g. neurons 
and astrocytes) pose a kinetic challenge for material distribution with physiological timing. These 
considerations predict the need for an active luminal transport to ensure timely material homogeni-
sation across the vast ER. Empirically, the active nature of the ER luminal transport is suggested by a 
series of observations which include the sensitivity of Green fluorescent protein (GFP) bulk mobility 
(measured by Fluorescence recovery after photobleaching (FRAP) and photoactivation) to ATP deple-
tion (Nehls et al., 2000; Holcman et al., 2018). However, these bulk fluorescence intensity dynamics 
techniques do not provide information on transport mode. By default, the intensity dynamics were 
historically fitted to diffusion models and the mobility kinetics was often expressed in terms of effec-
tive diffusion coefficients. Measurements of single-particle motion and chasing locally photoactivated 
luminal protein marker over distances, circumvent this limit and indicate inconsistencies with molec-
ular diffusion (Konno et al., 2024).

However, the mechanism for generating ER luminal flows remains unclear. Understanding the mode 
of material exchange across the organelle is crucial for rationalising the ER shaping defect-related 
neuronal pathologies (Blackstone, 2018), identifying factors controlling ER transport and informing 
the development of ER transport modulation approaches with health benefits. Based on ER marker 
velocity fluctuations measured in single-particle tracking and the detection of transient narrowing 
points in the tubules by improved super-resolution and electron microscopy (Holcman et al., 2018), it 
has been postulated that these active flows may result from the stochastic contractility (pinching and 
unpinching) of ER tubules at specific locations along their lengths (see sketch in Figure 1e); other plau-
sible mechanisms for flow generation were also considered. However, measurements for testing this 
pinching hypothesis are currently inaccessible, due to limitations in space–time resolution of live cell 
microscopy; the live cell-compatible super-resolution techniques achieve resolution of ∼80 nm at the 
relevant speed, while the tubular radius is estimated in the range 30–60 nm (Gao et al., 2019; Schro-
eder et al., 2019; Konno et al., 2024). Improvement in resolution currently can only be achieved by 
trading off speed. To circumvent these experimental difficulties, in the current study we use mathe-
matical modelling to quantitatively analyse the relevant scenarios of actively contractility-driven flows 
and to explore how various sets of spatiotemporal parameters of ER contractility may produce flows 
facilitating solute transport in quantitative agreement with experimental measurements.

We illustrate as a simple schematic in Figure 1 the different contractility mechanisms in the different 
regions of the ER and where they are located in relation to the cell centre/nucleus. The ER close 
to the cell nucleus is geometrically complex, consisting of stacks of perinuclear sheets (Figure 1a). 
Away from the nucleus, the ER geometry simplifies considerably and the ER at the cell periphery is 
comprised of a planar network of tubules (Figure 1b). In the current work, we study flows and trans-
port in this planar, tubular region; this is also the region of the ER network in which single-particle 
tracking measurements were carried out in Holcman et al., 2018. We consider as potential driving 
mechanisms for the observed solute transport the contractility of components located in the same 
planar tubular region, namely, tubular junctions (Figure 1c), peripheral sheets (Figure 1d), and tubules 
(Figure 1e), as well the contractility of perinuclear sheets (Figure 1f) located closer to the nucleus.

First, assuming that the flow is driven by tubule contractions (shown schematically in Figure 1e), we 
construct a physical and mathematical model of the ER network and solve it for the flows inside the 
network (description in Materials and methods). We use our model to carry out numerical simulations 
to study the motion of Brownian particles carried by these flows and show that the tubule pinching 
hypothesis is not supported by the results of our model (Tubule contractility-driven ER luminal motion 
yields inadequate transport kinetics), a result independent of the network geometry (Tubule pinching-
induced transport is network-geometry independent and fails to facilitate luminal homogenisation). 

https://doi.org/10.7554/eLife.93518
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The failure of active pinching to drive strong flows can be rationalised theoretically by deriving a 
rigorous upper-bound on the rate of transport induced by a single pinch (Theoretical analysis of advec-
tion due to a single pinch explains weak pinching-induced transport), including possible coordination 
mechanisms (Marginal addition of coordinated contractility to luminal transport). Only by increasing 
both the length of pinches and their rate beyond admissible values can we produce particle speeds 
in agreement with measurements (A combination of high frequency and pinch length is required to 
replicate experimental particle speeds). We then explore in (Luminal transport kinetics derived from 
contractile ER tubular junctions and sheets) two different hypotheses as possible explanations for the 
active ER flows, first the pinching of the junctions between tubules (Figure 1c) and then the pinching 
of the two types of ER sheets, perinuclear (Figure 1f) and peripheral (Figure 1d). We investigate the 
conditions under which these contractility mechanisms would be consistent with the experimental 
measurements of active transport in Holcman et al., 2018.

The question of how the ER homogenises its content across cell expanses is an open problem 
which extends to the fundamentals of cell biology. Even though it is highly debated in the field, it 
is extremely difficult to study due to the enormous technical limits of directly observing intraorgan-
ellar nanofluidics. Thus, our study represents a meaningful effort to break through this impasse by 
conducting a meticulous analysis of nanofluidic scenarios. The findings we present constitute the best 
currently possible endeavour to shed light on this challenging problem. Our results do suggest that 
the biological origin of solute transport in ER networks remains open and call for extensive empirical 
exploration of the alternative mechanisms for flow generation.

Results
Tubule contractility-driven ER luminal motion yields inadequate 
transport kinetics
To assess the kinetics of particle motion in the lumen of tubular structures, detailed in Figure 1, in 
response to their contractility, we generate an in silico simulation model of the process. The model 
incorporates local calculations for the low Reynolds number hydrodynamics of a contracting tubule, 
assuming in the first instance the no-slip boundary conditions at the tubule walls (i.e. Poiseuille hydro-
dynamics), into a global analysis of the flows throughout the network geometry, by using Kirchhoff’s 
laws and standard graph theoretical results (see Materials and methods for details).

We initially implement the model’s numerical simulations of particle transport in a reconstructed 
ER network of a COS-7 cell (Holcman et al., 2018) (which we label C0, see Network modelling) with 
tubules locally contracting stochastically according to the spatiotemporal parameters suggested by 
microscopy measurements (Holcman et al., 2018). We will therein refer to these contractions, illus-
trated in Figure 1e, as ‘pinching’, with the relevant parameters being the duration and frequency of 
pinch events, and the length that the pinch sites occupy along the tubule (for details of the pinching 
kinematics, see Materials and methods, Pinch modelling). An estimate reveals that these pinches are 
indeed afforded by biologically realistic forces, of the order of 30 pN (see Materials and methods, 
Estimate of forces required for pinches).

The fluid flows in the edges of the network (model in Hydrodynamic modelling computed as 
detailed in Solving the hydrodynamic network model) reveal a rapid direction alternation of luminal 
currents (on average with a frequency of approximately 50Hz), as reflected in the changes of the 
axial velocity sign (Figure 2a), with an average flow speed of 1.3µm/s (see also Video 1). Further-
more, the resulting instantaneous speed distribution of Brownian particles advected by these flows 
(methodology in Simulating particle transport) is considerably shifted relative to the experimental 
counterpart (Holcman et al., 2018) towards lower values (Figure 2b). Similarly, the distribution of 
average edge traversal speeds (defined precisely in Data processing: instantaneous speeds and 
average edge traversal speeds) from our simulations (mean 4.4µm/s, solid blue line in Figure 2c) is 
lower than the experimentally measured speed distribution (mean 45µm/s; Figure 2c, inset) by an 
order of magnitude.

Moreover, the results for all measures of transport under pure diffusion, in the absence of pinching-
induced flows, are virtually indistinguishable from those where the pinching-driven flows are included 
(see Figure  2b, c). Within the framework of transport theory, this conclusion can be rationalised 
by estimating the relevant Péclet numbers that measure the relative importance of advection and 

https://doi.org/10.7554/eLife.93518


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology | Physics of Living Systems

Htet et al. eLife 2024;13:RP93518. DOI: https://doi.org/10.7554/eLife.93518 � 5 of 31

diffusion. Using the average value ‍̄U ∼ 1.3‍ µm/s of the mean flow speeds over time and edges as 
a velocity scale, we may estimate a mean Péclet number as ‍Pe ∼ ŪR/D‍. Using ‍R = 30‍ nm and the 
measured diffusivity ‍D ≈ 0.6‍ µm2 s−1 (Holcman et al., 2018), this leads to the estimate ‍Pe ∼ 0.07‍. Flows 
affect transport for Péclet numbers above order-one values (Leal, 2007), and therefore the pinching-
driven flows have a negligible influence on the transport inside the ER network. In order for fluid 
motion to have a noticeable effect, one would thus need flows to be either stronger, or sustained in 
one direction for longer. The chaotic flows produced by the pinching events with stochastic parame-
ters suggested by resolution-limited microscopy (Holcman et al., 2018) appear too weak to generate 
fast, non-diffusive edge traversals.

Importantly, our conclusions remain unchanged upon relaxing the no-slip boundary conditions, an 
important point to consider since the tubule membranes themselves could be moving in response 
to the nanoscale fluid flow. This can be modelled by introducing a finite slip boundary condition to 
couple the membrane-bound lipids with luminal flows (see Materials and methods, Incorporating slip 
boundary conditions for details). Our simulations show that slip boundary conditions have virtually 
no effect on the average edge traversal speeds (Figure  3a). Physically, while a non-zero wall slip 

a.

b.

c.

C1-C4, flow + diffusion

C0

C0

C0

C1-C4, diffusion only Honeycomb, flow + diffusiond. e. f.

Figure 2. A quantitative test of the pinching-tubule hypothesis. (a) Cross-sectionally averaged flow velocities in a typical edge as obtained in our 
simulations. Histograms of instantaneous speeds (b) and edge traversal speeds (c) using data from simulations in the C0 network with flow (blue) and 
with just diffusion (red). The insets in (b) and (c) illustrate the distributions of instantaneous speeds and average edge traversal speeds, respectively, as 
experimentally measured in Holcman et al., 2018. The symbols indicate the values taken by the probability mass function and the curves are log-
normal distributions fitted to all average edge traversal speeds obtained. Histograms of average edge traversal speeds obtained from simulations in 
networks C1–C4 from Figure 9d with flow (d) and only diffusion (e) and from simulations in the regular honeycomb network with active flows (f). The 
inset in (f) illustrates the honeycomb geometry. Points indicate mean ± 1 SD over the four networks (C1–C4) of normalised frequencies in each speed 
range; curves are log-normal (d–f) or normal (f) distributions fitted to all average edge traversal speeds for each set of pinch parameters. The means of 
the original simulation results and of the fitted distributions are indicated in the legends in each of (c–f).

https://doi.org/10.7554/eLife.93518
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does change the shape of the flow profiles in the 
tubules (Figure 3b), it does not modify the cross-
sectionally averaged flow speeds which directly 
affect global particle transport. These results 
justify our use of Poiseuille hydrodynamics (no-
slip boundary conditions) throughout this work.

Tubule pinching-induced transport 
is network geometry independent 
and fails to facilitate luminal 
homogenisation
To estimate the contribution of the network geom-
etry to the outcomes of our transport simulations, 
we compare results across four different ER struc-
tures, which we label C1–C4. We illustrate these 
reconstructed networks along with the source 
data in Figure 9. The distributions of the average 
edge traversal speeds appear insensitive to ER 

structure variations for both pinching-induced and exclusively diffusional transport. This is reflected 
in the small deviations from the mean of the data points averaged across the different structures 
(Figure 2d, e). Furthermore, pinching-induced flows inside a regular honeycomb network (Figure 2f, 
inset) with a typical ER edge length (1 µm) appear to be within a reasonable variance compared to the 
natural networks. Therefore, this mathematical idealisation of the ER network geometry can be used 
for exploring the consequences of the network ultrastructure contractility on transport kinetics in a 
standardised manner.

To test the effectiveness of the particle velocities for facilitating luminal material exchange across 
the ER, we track homogenisation kinetics by measuring intermixing of particles of two distinct colours 
equally seeded in each half of a honeycomb network at ‍t = 0‍ (Figure 4; see also Video 2 for the 
flows inside such a network driven by pinches with the parameters from Holcman et al., 2018). The 
measure of homogenisation is given by the variance ‍Var(ϕ(t)) ≡ Var(nb(t) − nr(t))‍ over 20 regions of 
the network (Figure 4a, horizontal lines) of the difference between the numbers ‍nb‍ (blue) and ‍nr‍ (red) 
of particles of each colour in region; note ‍Var = 0‍ represents perfect homogeneity. The measures of 
mixing over time for pure diffusion and active transport with parameters (Holcman et al., 2018) from 
Figure 2 show a nearly complete overlap (Figure 4e; see also Video 3 and Video 4), distinct from 
faster mixing under stronger flows in a network driven by pinches whose lengths are increased to their 

Video 1. Flows in an active C0 network pinching with 
the original pinch parameters. Edges are colour-coded 
with magnitude of instantaneous flow.

https://elifesciences.org/articles/93518/figures#video1

Figure 3. Impact of non-zero slip length on transport and flow. (a) Distributions of average edge traversal speeds 
in simulations of a C1 network pinching with the original pinch parameters as measured in Holcman et al., 2018 
and used in Figure 2, for different slip lengths ‍λ = 0, 3, 30‍, and 300 nm. (b) Longitudinal flow profile ‍u(r)‍ inside a 
cylindrical tubule for different slip lengths, all with the same volume flux ‍Q‍; an increase of the slip length leads to a 
redistribution of the flow in the cross-section.

https://doi.org/10.7554/eLife.93518
https://elifesciences.org/articles/93518/figures#video1
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maximum possible value (i.e. the length of the tubule) and which are in addition sped up by a factor of 
10 (see Video 5; see also (A combination of high 
frequency and pinch length is required to replicate 
experimental particle speeds) for a discussion of 

Figure 4. Mixing by active pinching flows. (a) Initial configuration of blue and red particles in honeycomb network. The strips used to quantify mixing 
are illustrated in black dotted line. The configuration after ‍t = 3‍ s of mixing in a passive network with no flow (b), an active network pinching with the 
original pinch parameters (c), and an active network pinching with maximally long pinches at 10 times the original rates (d). (e) The measure of mixing 

‍Var(ϕ(t))‍ against ‍t ‍ for the passive network (blue), the network pinching with the original parameters (red), and the network pinching with maximally 
long and 10× faster pinches (yellow).

Video 2. Flows in an active honeycomb network 
pinching with the original pinch parameters. Edges are 
colour-coded with magnitude of instantaneous flow.

https://elifesciences.org/articles/93518/figures#video2

Video 3. Mixing in time in a passive honeycomb 
network with no flow.

https://elifesciences.org/articles/93518/figures#video3

https://doi.org/10.7554/eLife.93518
https://elifesciences.org/articles/93518/figures#video2
https://elifesciences.org/articles/93518/figures#video3
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the effects of artificially strong pinch parameters 
on average edge traversal speeds). This indicates 
that the presumed biological pinching parame-
ters would be inadequate to facilitate ER luminal 
material exchange.

Theoretical analysis of advection 
due to a single pinch explains 
weak pinching-induced transport
The slow luminal transport driven by the pinching-
induced flows is intrinsically linked to the volume 
of fluid expelled by each pinch during a contrac-
tion. The fundamental reason underlying the 
weak pinching-induced transport is that individual 
pinches are very weak generators of flow; even 
in the best possible configuration, the volumes of 
fluid pushed by each pinch are too small to impact 
luminal transport. Specifically, in Materials and 
methods (Advection due to a single pinch), we 
mathematically show that, given a pinch of length 

‍2L‍, the maximum displacement ‍∆zmax‍ a suspended particle may be advected by an individual pinch is

	﻿‍
∆zmax = 8

3
L.

‍�
(1)

Using the experimentally measured average value of the pinch length ‍2L = 0.14‍ µm (Holcman et al., 
2018), a typical pinch can then propel a particle by a maximum distance of ‍∆zmax ≈ 0.19‍ µm.

This may, equivalently, be framed in terms of velocities. A transported particle experiences an 
average velocity during the contraction of at most ‍Vmax = 8L/3T ‍, where ‍T ‍ is the duration of a contrac-
tion or a relaxation. Using the pinch length as above and the average values of ‍2T = 0.213‍ s (Holcman 
et al., 2018) this leads to the estimate ‍Vmax ≈ 3.9‍ µm/s, which is an order of magnitude smaller than 
the measured typical edge traversal speed of ‍∼ 45‍ µm/s, consistent with the order-of-magnitude 
difference between the measurements and the predictions of the computational model.

Note that a slip boundary condition keeps the volume flux expelled out of (or driven into) the 
pinching regions unchanged, but decreases the maximum flow speed (see Figure 3). Therefore, a 
non-zero slip length would only decrease the theoretical maximum advective displacement ‍∆zmax‍ 

a suspended particle can achieve; therefore slip 
length plays no significant role in our theoret-
ical argument to rationalise the weak pinching-
induced transport.

Marginal addition of coordinated 
contractility to luminal transport
The theoretical upper bound in the previous 
section for the maximum luminal transport 
producible by an individual pinch is realisable only 
in the hypothetical situation where the flow gener-
ated by the pinch is all directed to one end of the 
tubule that is when the other end is effectively 
blocked. Moreover, content transport produced 
during the contraction of a single tubule would 
then be reversed when the tubule relaxes back to 
its original state, with a single pinch site expected 
to exhibit only reciprocal (i.e. time-reversible) 
motions. Any advection contributing to edge 

Video 4. Mixing in time in an active honeycomb 
network pinching with the original pinch parameters.

https://elifesciences.org/articles/93518/figures#video4

Video 5. Mixing in time in an active honeycomb 
network pinching with maximally long pinches at 10 
times the original rates.

https://elifesciences.org/articles/93518/figures#video5

https://doi.org/10.7554/eLife.93518
https://elifesciences.org/articles/93518/figures#video4
https://elifesciences.org/articles/93518/figures#video5
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traversals must thus be dominated by non-reciprocal motions of multiple pinches resulting in net 
displacements of solute particles.

The simplest system capable of producing non-reciprocal motions consists of two pinches, and 
the optimal sequence of motions to maximise the resulting advective particle displacement is illus-
trated in Figure 5. We show in Materials and methods (Extension to nonlinear interactions between 
two pinches) that this is indeed the optimal two-pinch coordination, which results in a time-averaged 
displacement equal to the upper bound derived in Equation 1. Since this optimal sequence of motions 
involves one pinch site starting a pinch halfway through the pinching of the other site, it is reasonable 
to estimate its duration as ‍3T ‍, and therefore an average particle speed of ‍8L/9T ≈ 1.3‍ µm/s. The low 
particle speed achievable by the optimal coordination between two pinches suggests that a very high 
level of coordination among multiple tens of pinches per tubule would be required to reproduce the 
measured edge traversals.

A combination of high frequency and pinch length is required to 
replicate experimental particle speeds
Since the magnitude of ER contractility suggested by microscopy (Holcman et al., 2018) (pinch lengths 
and frequency) does not explain the measured speeds, we set out to explore different sets of param-
eters that may generate particle velocities closer to the experimental measurements. The currently 
achievable imaging spatiotemporal resolution limits the detection of tubular diameter contractility 
by microscopy. Therefore, it is reasonable to postulate that the relevant parameters may have been 
underestimated. We simulate ER transport varying individually or in combination the values of pinch 
duration ‍2T ‍, waiting time ‍Twait‍ between successive pinches on a tubule, and pinch length ‍2L‍.

We first decrease both the original (Holcman et al., 2018) values of ‍T ‍ and ‍Twait‍ by the same factor 
of ‍1/α‍, where ‍α ≥ 1‍, and simulate particle transport in the honeycomb network (Figure 6a). In effect, 
this simply ‘fast-forwards’ the flows in the original active network by a factor of ‍α‍, and Brownian parti-
cles of the original diffusivity are released into this sped-up flow. Instantaneous and edge traversal 
speeds exhibit corresponding increases when we increase the value of ‍α‍ (Figure 6a). An extreme 
value of ‍α = 100‍ produces an average edge traversal speed distribution that peaks at around 8 µm/s 
(Figure 6a). Similar results are observed in the C0 network from a COS-7 cell (Figure 6b). The longer 
tails of these distributions (compared to those from the honeycomb network) result from the variation 
in edge lengths in the real network, with shorter edges, across which edge traversals are correspond-
ingly fast, contributing to the tails.

These results suggest that, in order to produce average edge traversal speeds of the same order 
as the experimental values, we would need an active network sped up by an unrealistic factor consid-
erably greater than 100, probably on the order of ‍α ∼ O(103)‍ or higher and corresponding to multiple 
thousands of pinches occurring on average per second on each tubule. Similarly, it takes an extreme 

Figure 5. Illustration of coordination mechanism allowing the interactions between two pinch in series to induce 
the net transport of a suspended particle; the mechanism is akin to small-scale peristalsis. Red dot indicates the 
position of a particle on the tubule’s centreline at each step of the coordination mechanism.

https://doi.org/10.7554/eLife.93518
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increase in pinch site size spanning the entire length of an average tubule, only to yield an average 
edge traversal speed of ‍∼ 10‍ µm/s (Figure 6d).

Next, we attempt to obtain a better fit to experimental data by combining changes in both the 
pinches’ time and geometry parameters. In Figure 6e, f, these maximally long pinches are sped up by a 
factor of ‍α = 5‍ and 10, respectively, which yields speeds averaging around 30 µm/s and above 60 µm/s, 
respectively. Notably, the tail of the speeds distribution appear longer than that seen in the experiments.

Figure 6. Impact of spatiotemporal pinch parameters on transport. Histograms of instantaneous speeds (top) and average edge traversal speeds 
(bottom), for an active honeycomb network (a) and the reconstructed C0 network from Figure 9a–c (b) with pinch parameters ‍T ‍ and ‍Twait ‍ decreased to 
‍1/α‍ times the original values from Holcman et al., 2018, and the same measured diffusivity ‍D = 0.6µm2s−1‍. Histograms of instantaneous speeds (top) 
and average edge traversal speeds (bottom) for the C1–C4 networks from Figure 9d with varying pinch parameters: original parameters from Holcman 
et al., 2018 (c); pinch length increased to the total length of the tubule (d); a fivefold increase in the rate of pinching and pinch length set to the total 
length of the tubule (e); a tenfold increase in the rate of pinching and pinch length set to the total length of the tubule (f). Bottom rows: points indicate 
mean ± 1 SD over the four networks (C1–C4) of normalised frequencies in each speed range; curves are log-normal distributions fitted to all average 
edge traversal speeds for each set of pinch parameters; insets show means of original simulation results and of fitted distributions.

https://doi.org/10.7554/eLife.93518
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Luminal transport kinetics derived from contractile ER tubular junctions 
and sheets
As shown above, establishing effective transport in a tubular constriction-driven model based on real-
istic ER fluid dynamics requires a set of questionable assumptions, compelling us to explore alterna-
tives. Thus, we set out to investigate how ER luminal transport would be impacted by the contractility 
of its structural components with volumes larger than tubules: (1) the tubular junctions (Figure 1c), (2) 
the perinuclear ER sheets (Figure 1f), and (3) the peripheral sheets (Figure 1d).

First, we run numerical simulations of transport driven by contracting junctions on an ER network 
(C1 from Figure 9d; sketch of junctions in Figure 1c). Since junctions contracting at the tubular pinch 
temporal parameters measured experimentally yielded inadequate transport, we consider contrac-
tions/relaxations with duration ‍2T ‍ exponentially distributed with a mean of ‍α−1‍ times the original 
value in Holcman et al., 2018 and the waiting time ‍Twait‍ between subsequent contractions/relax-
ations exponentially distributed with a mean ‍β

−1
‍ times the original value (i.e. values of ‍α > 1‍ and 

‍β > 1‍ reflecting faster and more frequent pinches). Naturally, the results depend on the choice of the 
volume ‍∆V ‍ expelled by a junction during each contraction. Using fluorescence microscopy images, 
we may estimate the volume in junctions (see Materials and methods, Experimental estimates of 
junction volumes). We assume that the junction volumes are drawn from a normal distribution with 
the same mean and SD as our data set that is the distribution N(0.0045 µm3, 0.0021 µm3). Volumes 
greater than the maximum value in our experimental estimate (0.0081 µm3) or less than the minimum 
value (0.0020 µm3) are rejected.

We show the results in Figure 7a. The thick solid line illustrates a set of values of ‍(α,β)‍ which 
produces distributions of average edge traversal speeds with means similar to the experimental values 
in Holcman et al., 2018, and the dashed lines 1 SD away. We are interested in values of ‍(α,β)‍ close to 
unity because this corresponds to junctions which pinch with similar pinch durations and frequencies 
as the experimentally observed tubule pinches and are therefore biologically plausible; ‍(α,β) ≈‍ (2.5,2) 
is the closest pair on this line to unity. However, only for ‍α ≈ 1‍ do we obtain average edge traversal 
speed distributions of reasonable shapes (i.e. approximately Gaussian), which would require a large 

‍β = 5‍ to match experimental results quantitatively.
Furthermore, the assumption that the entire junction volume is expelled during a contraction may 

not be realistic, as it would require extreme bending/extension of tubule walls and the ability of the 
entire junction to empty and fill out during each contraction. Reducing the volume ‍∆V ‍ expelled in 
each contraction to two-thirds of the estimated distribution of the junction’s volume (results shown 
in Figure 7b) or to half (Figure 7c) causes the average edge traversal speeds to drop considerably. 
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Figure 7. Transport driven by contracting tubular junctions. Contour plots of the mean values of the average edge traversal speeds obtained from 
simulations of our model in a junction- and tubule-driven C1 network from Figure 9 with different values of ‍(α,β)‍ and with contraction volumes ‍∆V ‍ 
expelled during each contraction drawn from (a) the normal distribution estimated for the junction volumes ‍N(0.0045, 0.0021)‍ (in µm3); (b) two-thirds the 
estimated normal distribution for the junction volume; and (c) half the estimated distribution for the junction volume. Thick solid black lines indicate the 
mean of the average edge traversal speed distribution reported in Holcman et al., 2018 (45.01 µm/s) and thick dotted black lines indicate mean ± SD 
(45.01 ± 12.75 µm/s).

https://doi.org/10.7554/eLife.93518
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The lower the proportion of the junction volume expelled during a contraction, the faster the pinches 
are required to be (i.e. large value of ‍α‍) and the larger the frequencies of the pinch events (large ‍β‍) in 
order to produce reasonably high average edge traversal speeds.

Next, we consider the particle transport generated by two types of ER sheets contracting and 
relaxing over a duration ‍2T ‍ (see Materials and methods for details). The perinuclear sheets are shaped 
as contiguous layers of flat cisternae with a luminal volume larger than the tubules branching from 
these structures (see sketch in Figure 1f). Accordingly, their contraction with ‍2T = 5‍ s and  ‍Vsheet‍ = 
10 µm3 yields a mean average traversal speed of 35 µm/s consistent with the single-particle tracking 
experiments (see Figure 8b). However, the speeds distribution tails towards higher values (Figure 8a, 
b), something that has not be observed experimentally so far; it may be that high velocities cannot 
be recovered in experiments due to the constraints on linkage distance imposed to ensure trajectory 
fidelity in particle tracking.

Furthermore, our simulations reveal that the flow decays sharply with distance away from the sheet 
where it originated as it branches out into tubules. This is illustrated in Figure 8c, d and we further 
quantify the spatial gradient of the average edge traversal speeds across Cartesian 2D coordinates 
in Figure 8e, revealing the stark contrast between the homogeneous profile for contracting junctions 
(red dotted line) vs sheet-driven transport (blue solid line). The short range of influence afforded 
by contracting perinuclear ER sheets thus argues against its ability to sustain mixing flows and fast 
particle transport on the distal tubular network.

Instead, we explore whether the peripheral sheets (i.e. the smaller flat inter-tubular ER regions, see 
sketch in Figure 1d) may overcome the range limit. The peripheral sheets have volumes significantly 
larger than tubules and junctions, which we estimated at 0.12 µm ± 0.04 µm3 (see Figure 13 and Mate-
rials and methods, Experimental estimates of volumes of peripheral sheets for details). This suggests 
that the peripheral sheets could produce average edge traversal speeds compatible with experimental 
measurements. Assuming that a sheet typically occupies the area enclosed by a ‘triangle’ of tubules, 
we may incorporate the transport inside a sheet-driven network using our model for contracting junc-
tions (also referred to as ‘nodes’ in our graph theoretical methodology), but with junction volumes 
set to the measured sheet volumes (see Experimental estimates of volumes of peripheral sheets for 
details) and with either (1) each node expelling one third of the volume expelled by a contracting 
sheet (since a peripheral sheet is in contact with three nodes on average), or (2) a contracting node 
expelling the entire volume expelled by a contracting sheet, but with only one-third of the junctions 
actively contracting at any one time. If we further assume that during each contraction a peripheral 
sheet expels half its total volume so that in simulation (1) node ‍k‍ expels a volume ‍Vk/6‍ in each contrac-
tion and in simulation (2) each active node ‍k‍ expels a volume ‍Vk/2‍, then nodes which contract at rates 
‍α−1 = 2.5‍ and ‍α−1 = 5‍ times slower than the tubule pinches in Holcman et al., 2018 in simulations (1) 
and (2), respectively, give average edge traversal speeds in the correct range of 40 µm/s (Figure 8f, 
g). The contraction of peripheral sheets may thus be offered as a plausible mechanism for fast luminal 
transport, provided they are able to contract with sufficiently high rates.

Furthermore, by relating the work done by a peripheral sheet contraction to the dissipation 
due to the flows induced inside the sheet and in the rest of the network, the energetic cost of one 
such contraction may be estimated to be of the order of 1000 molecules of ATP (see Materials and 
methods, Energetic cost estimate for contracting peripheral sheets for details). For reference, a 
kinesin motor protein uses one molecule of ATP to move 8 nm (Coy et  al., 1999; Schnitzer and 
Block, 1997), whereas a muscle fibre consumes hundreds of thousands of ATP per second (Barclay, 
2017). These peripheral sheet contractions may be directly ATP-driven, or they might come as a result 
of other mechanical processes in the cell, similar to mechanisms generating cytoplasmic mixing flow 
(Klughammer et al., 2018; Guo et al., 2014; Lin et al., 2016).

Discussion
A better understanding of the interplay between ER structure and function via luminal transport 
speeds may hold clues to explaining the sensitivity of cells with extensive projections, such as sensory 
and motor neurons, to defects in ER shaping proteins. It is tempting to speculate that disturbed ER 
luminal transport, the kinetics of which is particularly important for communication across vast axonal 
lengths, underlies selective vulnerability of long neurons.

https://doi.org/10.7554/eLife.93518
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Figure 8. Transport driven by contracting perinuclear sheets or peripheral sheets. Distributions of instantaneous speeds (a) and average edge traversal 
speeds (b) obtained from simulations of the C1 network from Figure 9 driven by the contraction of a perinuclear sheet. In these simulations, the sheet 
undergoes one contraction + relaxation lasting ‍2T = 5‍ s, and expels a volume ‍Vsheet = 10‍ µm3 of fluid during a contraction. Colour maps of normalised 
average edge traversal speeds obtained from simulations of the C1 network from Figure 9 driven by contraction of tubules + sheets (c) and junctions + 
tubules (d), respectively. (e) The speeds averaged along the ‍y‍ direction of the network, ‍V(x)‍, are plotted against ‍x‍, to effectively project the information 
onto one dimension from c (blue solid line) and d (red dashed line). (f, g) Histograms of average edge traversal speeds (dots) and normal fits (lines) and 
mean AETS (inset) in C1 networks with parameters adjusted as follows to approximate a network with peripheral sheets: Junction ‍k‍ expels a volume 

‍Vk/6‍ of fluid in each pinch, the pinches are ‍α−1 = 2.5‍ times slower than the original tubule pinches, and all nodes actively pinch (f); and node ‍k‍ expels 
a volume ‍Vk/2‍ of fluid in each pinch, the pinches are ‍α−1 = 5‍ times slower than the original tubule pinches, and only a third of the nodes actively pinch 
(g).

https://doi.org/10.7554/eLife.93518
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The motion of solutes in cellular compartments is now understood to be facilitated by active compo-
nents. This is evident from direct motion measurements and the dependence of motion speed on the 
availability of ATP-contained energy (Dayel et al., 1999; Nehls et al., 2000; Holcman et al., 2018; 
Koslover et al., 2017). The origin of these active driving forces is, however, challenging to identify. 
The cytoplasm’s currents are often believed to originate from the motion of large complexes such as 
ribosomes and large vesicle cargo shuttled by cytoskeleton-mediated motorised transport (Koslover 
et al., 2017). In the case of enhanced transport in the lumen of the ER tubules, the contractility of 
tubules has been suggested as the flow generating mechanism, and indeed such tubule deformations 
have been observed in microscopy (Holcman et  al., 2018). However, establishing a direct empir-
ical link between tubule contraction and active flows, or experimentally testing other hypotheses 
for the driving mechanism behind ER solute transport, remain currently unattainable. In this study, 
we thus propose a physical modelling approach, which provides a platform to explore the nanoflu-
idics behaviour of biological systems such as the ER network. The outcomes of our simulations for a 
contractile ER argue against the plausibility of local pinch-driven flow; pinches with frequency and size 
on the order of those estimated by microscopy yield significantly lower speeds than single-particle 
tracking measurements, as well as no enhancement of mixing beyond that from passive diffusion. 
The deficit stems from the fact that the displaced fluid volume upon local contraction is too small to 
generate sufficient particle transport.

Given the uncertainty of the empirical measurements for ER tubule deformation, due to the limits 
in the spatiotemporal resolution of organelle structure imaging, the pinch parameters may have 
been significantly underestimated. This sanctions exploring a wider range of spatiotemporal param-
eters in our simulations, which revealed that a combination of a higher frequency with a much larger 
pinch length may provide higher particle speeds that are comparable to the single-particle tracking 
measurements. Furthermore, our modelling results suggest the possibility of transport by luminal 
width contractions of larger volume ER subdomains (which are contiguously interconnected with the 
network). In that respect, the contraction of peripheral (i.e. inter-tubular) sheets, in particular yields 
speed values in a plausible range provided they are able to contrast fast enough. In contrast, the 
contraction of large-volume perinuclear sheets leads to fast transport but with a limited spatial range 
and with flows that would not impact transport beyond a few microns into the peripheral network. 
Similarly, the alternative scenario of contractility of tubular junctions appears unlikely as particle 
speeds similar to experiments could only appear for junctions pinching at up to eight times faster 
than experimentally observed contracting tubules.

The modelling approach in this study, although focused on the ER network, provides a step forward 
towards understanding intraorganellar fluid dynamics. Our simulation results rule out several scenarios, 
which seemed physically intuitive but are nevertheless unable to explain the observed enhanced 
luminal transport. Furthermore, our results generate a set of potentially testable predictions that 
can be used to validate or refute each of the envisaged transport mechanisms. For example, as fluid 
expulsion from peripheral sheets appears to be in broad in agreement with single-particle tracking 
measurements data under even conservative assumptions, future measurements may explore whether 
an active luminal motion is more pronounced and faster in proximity to peripheral sheets. Moreover, 
a set of improved spatiotemporal resolution measurements of particle tracking and structural contrac-
tions will be needed to complete the physical picture of ER luminal transport.

While our study allowed us to test different plausible scenarios, questions remain open as to the 
force generation mechanisms responsible for the observed pinching dynamics. We have estimated in 
Estimate of forces required for pinches that forces on the order of 30 pN would be required to peri-
odically contract the tubules as seen empirically. The force exerted by a single molecular motor has 
been estimated to be on the order of 6 pN (Fisher and Kolomeisky, 1999), so the required forces for 
pinching may be provided by several motors working together (Jülicher et al., 1997). Recently discov-
ered hydro-osmotic instabilities could also contribute to shape fluctuations and pinching, although 
they are predicted to have much longer wavelengths than the typical size of a pinching region (AlIzzi 
et al., 2018). In contrast, the mechanisms involving topological remodelling of the ER, such as the 
well-documented process of ring closure (Guo et al., 2018), occur over timescales of minutes and 
therefore cannot account for the millisecond-scale transport measured here.

We have used in silico fluidics modelling for our conclusions, particularly in identifying new physically 
permitted mechanisms of luminal propulsion, and our simulations should be regarded as theoretical 

https://doi.org/10.7554/eLife.93518
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predictions demonstrating physical plausibility rather than mere speculation. We have explored theo-
retically the consequences of structural fluctuations which presumably do take place. Fluctuations in 
width of the flat ER areas, in particular, are expected since the structures appear dynamic in live light 
microscopy and narrowing/extension points are observable in electron microscopy (Heinrich et al., 
2021; Wu et al., 2017). Furthermore, variability in the areas of flat ER that are observable in electron 
microscopy can be explained by capturing the structures in different states of fluctuations. It should 
be expected that the mobile elastic structure such as ER sheets would not exhibit rigidity required to 
prohibit fluctuations.

In conclusion, it is worth emphasising that our in silico fluid dynamical modelling reveals that 
for structural fluctuation-based mechanisms to facilitate luminal motion, assumptions currently not 
supported by empirical data are required. This warrants explorations of alternative mechanisms for 
ER luminal transport, for example anomalous diffusion driven by the fluctuations of macromolecular 
complexes (Koslover et al., 2017) or by osmotic forces, as previously suggested (Holcman et al., 
2018).

Materials and methods
Here, we describe the mathematical and physical model for the fluid mechanics and transport driven 
by active contractions in the ER. This requires the introduction of a network model for the geometry of 
the ER (Network modelling) and individual pinches (Pinch modelling) and a framework for the hydro-
dynamics of pinching tubules (Hydrodynamic modelling). Our solution method for the flows inside our 
network is then described in Solving the hydrodynamic network model. From simulations of Brownian 
particles advected by these flows (Simulating particle transport) quantitative measures of particle 
transport (Data processing: instantaneous speeds and average edge traversal speeds) are extracted 
for comparison with experiment. Boundary slip is incorporated into our model in Incorporating slip 
boundary conditions. The force required to pinch a tubule is estimated in Estimate of forces required 
for pinches. In Derivation of theoretical bounds for active flows driven by pinching tubules, we present 
in detail the derivations of the theoretical results discussed in Theoretical analysis of advection due 
to a single pinch explains weak pinching-induced transport (transport upper bound by a single pinch) 
and Marginal addition of coordinated contractility to luminal transport (coordination of pinches). 
Finally, modifications of our model to explore alternative flow generation mechanisms are discussed in 
Modelling of alternative flow generation mechanisms, and the energetic cost in contracting a periph-
eral sheet is estimated in Energetic cost estimate for contracting peripheral sheets.

Network modelling
We represent the ‘skeleton’ of a two-dimensional ER network as a planar graph with each node 
assigned a position ‍x ∈ R2‍. Given an edge of the network labelled ‍(i, j)‍ and of length ‍|xi − xj| = l‍, we 
model the lumen of the corresponding tubule to occupy a cylinder of radius ‍R‍ whose axis lies along 
the edge and has length ‍l‍. This assumption avoids the intrinsic difficulty in defining a precise boundary 
between a tubule and a tubular junction, as well as leading to a simplified model of the intra-nodal 
dynamics of a solute particle (see below); since the tubules are long compared to the size of the junc-
tions, the impact of their small overlap can be safely neglected.

We mathematically reconstruct a model ER network, which we refer to as C0, using the skeleton 
image of the COS7 ER network given in Supplementary file 3 of Holcman et al., 2018; this network 
is reproduced in Figure 9a. We use the multi-point tool in ImageJ (Schneider et al., 2012) to place 
numbered points at the positions of the nodes on the source skeleton image, and then obtain a list of 
the indices and position coordinates of each node. The edges are then manually tabulated as a list of 
pairs of nodes; this gives us all the information required to construct a mathematical graph as shown 
in Figure 9b, with the original network superimposed on the mathematical model in Figure 9c. Note 
that in what follows we work with the largest connected component of the source skeleton image in 
order to study transport in a fully connected network. We also use the same procedure to extract the 
graph structures from microscopy images, of four smaller ER networks which we label C1–C4 (original 
network with mathematical graph superimposed in Figure 9d). In Figure 9e, we show the distribu-
tions of the edge (tubule) lengths in each of the C0–C4 networks, as well as the mean edge lengths, 
the mean degrees (the degree of a node is the number of edges connected to it), and the number of 

https://doi.org/10.7554/eLife.93518
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Figure 9. Model ER networks and their statistics. (a) Skeleton image of COS7 ER reproduced from Supplementary figure 3 of Holcman et al., 2018. 
(b) Model ER graph (blue solid lines) reconstructed from (a) using ImageJ. (c) Experimental images in (a) superimposed with mathematical model from 
(b). (d) Microscopy images of four different COS7 ER networks (labelled C1–C4) with reconstructed model networks (blue solid lines) superimposed. 
(e) Distributions of edge lengths in the C0–C4 networks. Bottom right: mean edge lengths, mean degrees (i.e. number of edges connected to a node) 
and number of nodes of the C0–C4 networks.
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nodes. The mean edge lengths are around 1 µm and mean degrees are approximately 3. In order to 
compare the biological network to an idealised ER system, we also consider a honeycomb network, 
that is one where every node (apart from those at the boundaries) has a degree of 3, with all edge 
lengths exactly 1 µm.

Pinch modelling
To describe the pinches (Figure 1e), we consider a model where the kinematics of each pinch is fully 
prescribed in time. We therefore assume that the active biochemical forces responsible for the defor-
mation of the tubules balance with the elastic resistance of the tubules and with the dissipative forces 
in the fluid in such a way that the pinches occur as described.

The geometrical model for a pinch is illustrated in Figure 10. Each tubule is assumed to have a pinch 
site at its midpoint (i.e. with ‍L1 = L2‍); we make this simplifying assumption in our simulations, after 
verifying that more general pinch locations (‍L1 ̸= L2‍) have virtually no effect on particle transport. The 
pinching events occur at the pinch sites stochastically and independently of each other. Each pinch is 
defined geometrically by three parameters from a random distribution (see below): (1) the duration of 
a pinch ‍2T ‍, (2) the time ‍Twait‍ between the end of a pinch and the beginning of a new one on the same 
site, and (3) the length of a pinch ‍2L‍ (see Figure 10). We assume for simplicity that all pinches are 
axisymmetric so that using the notation of Figure 10, each tubule remains a cylinder of time-varying 
radius denoted by ‍r = a(z, t)‍. Pinches are assumed to have reflectional symmetry about the plane in 
the cross-section through the centre of the pinch (i.e. in Figure 10 each pinch is characterised by the 
same length ‍L‍ on either side of it). The total length of a tubule is denoted by ‍l = L1 + 2L + L2‍, so the 
portion before the pinch has length ‍L1‍, and that after the pinch is of length ‍L2‍.

We model the geometrical profile of each pinch of length ‍2L‍ as following a linear radius change 
(see Figure 10). Within a pinch located at ‍z = z0‍, the radius of the cylinder is therefore given by

	﻿‍
a(z, t) = b(t) + [R − b(t)] |z − z0|

L
, −L ≤ z−z0 ≤ L.

‍�
(2)

Figure 10. Mathematical model of a pinching tubule. The tubule has a radius of ‍R‍ outside the pinch, ‍a(z, t)‍ in the pinch (where ‍z‍ is the axial 
coordinate), and ‍b(t)‍ at its narrowest point that is the centre of the pinch. The portion of the tubule before the tubule has length ‍L1‍ while that after has 
length ‍L2‍; the pinch is symmetric and has a length ‍2L‍. ‍Q1, Q2, Q3,‍ and ‍Q4‍ denote the volume fluxes through the tubule in the four different regions as 
indicated. The pressures at the end of the tubule are ‍p = p1‍ at ‍z = 0‍ and ‍p = p2‍ at ‍z = L1 + 2L + L2‍.

https://doi.org/10.7554/eLife.93518
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The time-varying function ‍b(t) ≤ R‍ is therefore the minimum pinch radius in the centre of the tubule. 
As the simplest modelling choice, we assume in our simulations that ‍b‍ changes in time sinusoidally and 
thus will use ‍b(t) = (R + b0)/2 + (R − b0) cos(πt/T)/2‍, where ‍t‍ is time after the pinch begins and ‍b0‍ is the 
value of ‍b‍ halfway in time through the pinch. Choosing a smooth time variation for the function ‍b(t)‍ 
will ensure the continuity of fluxes in time (see Equation 10 later). We have verified that changing the 
pinch shape to a smoother geometry has essentially no impact on the fluid volume expelled/taken in, 
and therefore no significant effect on the flows/transport.

In our simulations, the stochastic pinch parameters are drawn from the distributions measured 
in Holcman et  al., 2018. The pinch duration ‍2T ‍ is therefore drawn from an exponential distribu-
tion with rate parameter ‍λ = ln 10/0.167‍ s−1 (so the mean value is ‍2T = 0.0725‍ s), the time between 
pinches ‍Twait‍ from an exponential distribution with rate parameter ‍λwait = ln 10/0.851‍ s−1 (mean value 

‍Twait = 0.370‍ s) and the pinch length ‍2L‍ from a uniform distribution with mean µm and variance 

‍σ
2 = (0.062/ ln 10)µm2 ≈ (0.040 µm)2

‍. Throughout we set the tubule radius ‍R = 30‍ nm and ‍b0 = 0.01R‍ 
(recall from Figure 10).

Hydrodynamic modelling
Hydrodynamics of network
We assume that the fluid occupying the ER network is Newtonian. Flow inside the network occurs at 
low Reynolds number, which can be justified as follows. From experiments in Holcman et al., 2018, 
we know that velocity scale relevant to ER flows is of the order ‍U ∼ 10−5‍ ms−1. With a typical tubule 
radius ‍R ∼ 10−8‍ m and a kinematic viscosity of at least that of water ‍ν ≈ 10−6‍ m2 s−1, we obtain a 
Reynolds number of the order ‍Re = UR/ν ∼ 10−7‍, so the flow is indeed Stokesian and inertial effects 
in the fluid can be safely neglected.

At a typical instance in time, a tubule undergoing contraction (or relaxation) causes a net volume 
flux to exit (or enter) the corresponding tubule. In the context of our graph theoretical model, we 
therefore model each pinch site as a ‘pinch node’ generating a net hydrodynamic source/sink when-
ever the tubule contracts/relaxes.

However, since it is not guaranteed that the total volume created by all pinching events always adds 
up to zero, we need a mechanism for the corresponding net volume to exit, or enter, the network. We 
achieve this through a number of ‘exit nodes’ that allow mass to be globally conserved, located at the 
periphery of the network. From a hydrodynamic standpoint, we impose the pressure condition ‍p = p0‍ 
at each exit node to model their connection to a large fluid reservoir.

We numerically tested the robustness of our results to the details of the exit nodes by repeating 
simulations with different configurations. The exact choices of exit nodes turn out to not affect the 
transport results shown below provided there are sufficiently many of them to avoid channelling 
the entire network’s worth of pinch-induced flow into a few tubules towards the exterior, thereby 
producing artificially strong flows.

Hydrodynamic model for a pinch
Flow rate
The velocity field in a straight cylindrical tubule at low Reynolds number is the classical parabolic 
Poiseuille flow (Batchelor, 1967). When integrated over a cross-section of the tubule, this flow yields 
the Hagen–Poiseuille law relating the pressure change ‍∆p‍ across a length ‍l‍ of a tubule to the a net 
volume flux ‍Q‍ in the positive axial direction,

	﻿‍
∆p = − 8µl

πR4 Q,
‍�

(3)

where μ is the dynamic viscosity of the Newtonian fluid. Note that when ‍Q > 0‍ our notation leads to 

‍∆p < 0‍, meaning that the pressure decreases across the length of the channel.
The result in Equation 3 is valid for a straight (i.e. not pinching) tubule, and we need to generalise 

it to the case of a pinching tubule. Consider first a more general axisymmetric pipe whose radius ‍a(z, t)‍ 
varies with axial position ‍z‍ and time. We may use the long-wavelength (lubrication) solution to Stokes’ 
equations for the streamwise velocity ‍u(z, r, t)‍ and flux ‍Q(z, t)‍ inside such a pipe into which a flux ‍Q1(t)‍ 
enters at ‍z = 0‍ (Alim et al., 2013),

https://doi.org/10.7554/eLife.93518
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	﻿‍
u(z, r, t) = 2 Q(z, t)

πa(z, t)2

[
1 −

(
r

a(z, t)

)2
]

,
‍�

(4)

where

	﻿‍
Q(z, t) = Q1(t) − 2π

ˆ z

0
a(̃z, t)∂a(̃z, t)

∂t
dz̃.

‍�
(5)

The equality in Equation 5 can be derived using an intuitive mass conservation argument, inde-
pendently of the inspired ansatz in Equation 4. Conservation of mass inside a small section ‍[z, z + δz]‍ of 
the cylinder requires ‍Q(z) − Q(z + δz) = 2πaȧδz + O(δz2)‍. Considering the limit ‍δz → 0‍ and integrating 
the resulting expression for ‍∂Q/∂z‍ from 0 to ‍z‍ yields Equation 5.

In order for the no-slip boundary conditions at ‍r = a(z, t)‍ to be satisfied, and also to satisfy the 
incompressibility condition ‍∇ · u = 0‍, the radial component of the velocity, ‍v(z, r, t)‍, is necessarily non-
zero and given by Alim et al., 2013 as

	﻿‍
v(z, r, t) = ∂a(z, t)

∂t
r

a(z, t)

[
2 −

(
r

a(z, t)

)2
]

+ 2∂a(z, t)
∂z

Q(z, t)r
πa(z, t)3

[
1 −

(
r

a(z, t)

)2
]

.
‍�

(6)

Our geometrical model for each pinch in Pinch modelling yields straightforwardly a piecewise linear 
expression for ‍a(z, t)‍ in different regions of the tubule, with the time dependence entering only 
through the value of the pinch radius ‍b(t)‍. Denoting by ‍Qi‍ (‍1 ≤ i ≤ 4‍) the fluxes in the four regions of 
the pinched tubules shown in Figure 10, we may substitute the linear shape functions into Equation 
5 and obtain

	﻿‍
Q2 = Q1 −

2πḃ(z − L1)2

L

(
R
2
− (R − b)(z − L1)

3L

)
,
‍�

(7)

	﻿‍

Q3 = Q1 − 2πḃL
(

R
6

+ b
3

)

−2πḃ[z − (L1 + L)]
{

b + R − 2b
2L

[z − (L1 + L)] − R − b
3L2 [z − (L1 + L)]2

}
,
‍�

(8)

	﻿‍
Q4 = Q1 − 2πḃL

(
R
3

+ 2b
3

)
.
‍�

(9)

Note that the final expression may be rearranged as

	﻿‍
Q4 − Q1 = −2πḃL

(
R
3

+ 2b
3

)
,
‍�

(10)

which may be interpreted as the instantaneous volume source/sink during a contraction/relaxation at 
a pinch site.

Pressure drop
We next need to compute the pressure drop in the pinches. We integrate the ‍z‍-component of the 
Stokes equation

	﻿‍

∂p
∂z

= 1
r
∂

∂r

(
r∂u
∂r

)
+ µ

∂2u
∂z2 ,

‍�
(11)

along ‍0 ≤ z ≤ L1 + 2L + L2‍, and use the solution for ‍u‍, to obtain

	﻿‍

∆p ≡ p2 − p1 = −8µ
π

´ L1+2L+L2
0

Q(z, t)
a(z, t)4 dz + µ

∂u
∂z

∣∣∣∣
L1+2L+L2

0

≈ −8µ
π

ˆ L1+L

0

Q(z)
a(z, t)4 dz

︸ ︷︷ ︸
I1

−8µ
π

ˆ L1+2L+L2

L1+L

Q(z)
a(z, t)4 dz

︸ ︷︷ ︸
I2

.

‍�

(12)
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Here, the second term on the right-hand side of Equation 12 has vanished because ‍∂zu ∝ ∂z(Q/a2)‍ 
but ‍Q‍ and ‍a‍ are approximately constant at the entrance and exits of the tubule when the pinch site is 
sufficiently far from the ends of the tubule so that the flow is fully developed there.

Using the expression (Equation 7) for ‍Q2‍, an integration yields

	﻿‍
I1 = −8µQ1L1

πR4 − 8µ
π

[
LQ1

3(R − b)

(
1
b3 − 1

R3

)
+
ˆ L1+L

L1

Q2(z) − Q1
a(z, t)4 dz

]

‍�
(13)

and, by symmetry,

	﻿‍
−I2 = 8µQ4L2

πR4 − 8µ
π

[
− LQ4

3(R − b)

(
1
b3 − 1

R3

)
+
ˆ L1+L

L1+2L+L2

−Q3(z) + Q4
a(z, t)4 dz

]
.
‍�

(14)

Subtracting these two results (and noting the integrals cancel out by symmetry) we obtain the modi-
fied Hagen–Poiseuille expression for a pinching tubule as

	﻿‍
∆p = −8µ

π

[
L1
R4 + L

3(R − b)

(
1
b3 − 1

R3

)]
Q1 − 8µ

π

[
L2
R4 + L

3(R − b)

(
1
b3 − 1

R3

)]
Q4.

‍�
(15)

Note that this relationship is linear in each of ‍Q1‍ and ‍Q4‍, and is to be solved alongside Equation 10 to 
relate the flow rates and pressure drops to the change in size of the pinches. Importantly, the classical 
Hagen–Poiseuille law is recovered as ‍b → R‍ since Equation 14 becomes in that limit

	﻿‍
∆p = −8µ(L1 + 2L + L2)Q1

πR4 ,
‍�

(16)

which agrees with Equation 3 when taking ‍l = L1 + 2L + L2‍.

Solving the hydrodynamic network model
The incorporation of pinches as ‘dummy nodes’ into the graph theoretical framework of Network 
modelling along with Equations 10 and 14 for the necessary pinch-related quantities allow us to 
reduce the problem of determining the time-dependent flows in an active pinching network into the 
simpler problem of solving at each instant for the instantaneous fluxes inside a ‘passive’ network with 
newly added nodes, appropriate sources/sinks, and modified pressure drops. Note that since the 
flows at these sub-cellular scales are inertialess (i.e. Stokes flows), we are able to effectively decouple 
time from our problem and solve the problem in the quasi-steady limit.

For each edge (i.e. tubule) ‍(i, j)‍ in the network, we define ‍Qij‍ to be the flow rate from node ‍i‍ to 
node ‍j‍, with the sign convention that flow is from ‍i‍ to ‍j‍ if ‍Qij > 0‍. For mathematical convenience, we 
define ‍Qij = 0‍ in all cases where ‍(i, j)‍ is not an edge in the graph. The goal is to solve for the values of 
the ‍Qij‍’s corresponding to each edge.

After the incorporation of the dummy nodes, we denote by ‍N ‍ the number of nodes and ‍E‍ the 
number of edges. We label the nodes such that ‍{1, . . . , M}‍ denotes the ‍M ‍ exit nodes. Let ‍qi‍ be the 
source or sink carried by the ‍ith‍ node (so that ‍qi = 0‍ if ‍i‍ is a normal node, ‍qi‍ is as specified by the RHS 
of Equation 10 if ‍i‍ is a pinch node, and ‍qi‍ is a quantity to be determined if ‍i‍ is an exit node). Our 
‍M + E‍ independent variables are therefore ‍{qi|i = 1, . . . , M}‍ (that is, the sources/sinks carried by the 
exit nodes), and the ‍Qij‍’s corresponding to each edge. To obtain their values, we employ the viscous 
hydraulic analogues of Kirchhoff’s laws.

Kirchhoff’s first law (K1)
The first equation is that mass is conserved at each junction, that is, for each node ‍i‍ we have

	﻿‍
∑

j Qij = qi,‍� (17)

which gives us therefore ‍N ‍ equations. Note that these equations together imply global conservation 
of mass, ‍

∑N
i=1 qi = 0‍.

https://doi.org/10.7554/eLife.93518
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Kirchhoff’s second law (K2)
The second equation is a statement of consistency of pressure, namely that the pressure change around 
any cycle (i.e. closed loop) of the network is zero. Therefore, in a given cycle ‍C = {v1, v2, . . . , vn, vn+1 = v1}‍, 
if ‍∆pvivi+1‍ denotes the pressure change from node ‍vi‍ to node ‍vi+1‍, we necessarily have

	﻿‍
∑n

i=1 ∆pvivi+1 = 0.‍� (18)

Note that the pressure change across a node is negligible.

The K2 statement in Equation 18 applies to all cycles in the graph, which would give us more equa-
tions than we need since the vectors of coefficients in Equation 18 are linearly dependent. Instead, we 
need a minimal set of linearly independent K2 equations, corresponding to the cycles in a cycle basis 
of the graph, and we need only apply K2 to these cycles.

To construct a cycle basis of the graph ‍G‍, we use standard results from graph theory (Wilson, 
2015). We first construct a spanning tree ‍T ‍, defined as a connected subgraph which contains all the 
nodes of ‍G‍ and no cycle, as shown in Figure 11a on an example. Any tree ‍T ‍ has ‍N − 1‍ edges. There-
fore, there are ‍E − (N − 1)‍ edges in the graph ‍G‍ but not in the spanning tree ‍T ‍; for each such edge 
‍e‍, we denote by ‍Ce‍ the unique cycle in the graph created by adding the edge ‍e‍ to the tree ‍T ‍ (see 
Figure 11b). The set of all such cycles ‍Ce‍ is then a cycle basis of ‍G‍, and thus there are ‍E − (N − 1)‍ 
cycles in this set. There are therefore ‍E − N + 1‍ independent cycles in the cycle basis.

To compute the spanning tree ‍T ‍ we use a breadth-first search algorithm (Goodrich and Tamassia, 
2015). We start from an arbitrary node and explore its neighbouring nodes. We add to ‍T ‍ any previ-
ously unexplored node (and the corresponding edge) which does not result in the creation of a cycle 
in ‍T ‍. We then repeat this (in an arbitrary order) on the neighbours of the previous generation of nodes 
added to ‍T ‍, until no more nodes are left to explore. This is illustrated on an example in Figure 11c.

A similar algorithm is also used to compute the cycles ‍Ce‍ in the cycle basis. This time, however, 
denoting ‍e = (i, j)‍, the algorithm is started from ‍i‍ and set to terminate as soon as ‍j‍ is visited, yielding 
a path in the tree from ‍i‍ to ‍j‍, which, together with the original edge ‍(i, j)‍, completes a cycle.

Pressure boundary conditions at exit nodes
At this point in the modelling, we have ‍M + E‍ independent variables (the flow rates in each edge and 
at the exit nodes), ‍N ‍ equations from K1 (i.e. Equation 17), and ‍E − N + 1‍ equations from K2 (i.e. Equa-
tion 18). The remaining ‍M − 1‍ equations follow from requiring the exit nodes to be at the same pres-
sure, modelling their connection to a common fluid reservoir. This is ensured by the  ‍M − 1‍ equations

	﻿‍

∑
1→j

∆p = 0
‍�

(19)

Figure 11. Elements of graph theory required to model the ER network. (a) A graph ‍G‍ (black solid lines) and its spanning tree ‍T ‍ (black dots). (b) The 
unique cycle ‍Ce‍ (red) formed by adding an edge ‍e ∈ G\T ‍ to ‍T ‍. (c) A breadth-first search (BFS) starting at the rightmost node; the graph is explored in 
the order red, green, blue.
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for ‍j = 2, . . . , M ‍, where the sum ‍
∑

1→j‍ is defined to be over any path  from node 1 to node ‍j‍. Note that 
thanks to Kirchhoff’s second law, this quantity is independent of the specific path taken from 1 to ‍j‍.
We then solve the resulting linear system of ‍M + E‍ equations numerically. Note that we do not need 
to specify the value of the fluid viscosity μ in our algorithm because it cancels out in the K2 equations, 
Equation 18, and in the pressure boundary condition equation, Equation 19.

Simulating particle transport
With our solution for the flows in the active network at each instant of time, we now proceed to track 
the motion of Brownian particles inside the network using a discretisation of their stochastic equations 
of motion, as a model for the transport of proteins in the ER network.

We use the simplest approach where we superimpose Brownian motion onto advection by the flow 
inside each tubule. Let ‍x(t)‍ denote the position of a Brownian particle in a tubule and ‍xn‍ the finite-
difference approximation of ‍x(n∆t)‍, where ‍∆t‍ is a discrete time step. The displacement of the particle 
at each time step can be obtained approximately using an explicit first-order Euler scheme

	﻿‍ xn+1 = xn + U(xn, t)∆t + X(∆t),‍� (20)

where ‍U‍ is the instantaneous flow velocity, and the random noise term ‍X(∆t)‍ is drawn from a zero-
mean Gaussian with variance ‍⟨X(∆t)X(∆t)⟩ = 2D∆tI‍, where ‍D‍ is the Brownian diffusivity of the particle. 
In our simulations, we take the diffusion constant to be the mean intranode diffusivity measured 
in Holcman et al., 2018, ‍D ≈ 0.6‍ µm2 s−1. We include interactions between particles and walls by 
assuming that particles perfectly reflect off walls (i.e. elastic collisions). The particles are modelled as 
rigid spheres of diameter 5 nm, and the size of the particle matters only during elastic collisions with 
the walls of the tubules. As relevant in the limit of low volume fraction, we neglect hydrodynamic inter-
actions between particles and perform ensemble averaging of the trajectories of many independent 
particles.

When a particle enters a node, we model its dynamics as follows. We consider a particle to have 
entered a node only if it has reached the end of a tubule, say of length ‍l‍, at which instance we assign 
the particle to the node point (i.e. the single-point associated with the node in the graph description 
of the ER network). Although nodes contain a three-dimensional volume, their typical nodal length 
scale is of the order ‍R ≪ l‍, and thus approximating them by point nodes is appropriate on the scale 
of the whole network. To decide towards which of the connected tubules the particle leaves the 
node, we estimate the values of the Péclet number ‍Pe‍ in each of the tubules. We define a local Péclet 

‍Pei = UiR/D‍ where ‍Ui‍ is the mean flow velocity through tubule ‍i‍, with ‍Ui > 0‍ for flow out of the node 
and ‍Ui ≤ 0‍ otherwise. We then assume that the particle enters a neighbouring tubule ‍i‍ connected to 
the node with a probability proportional to ‍max(Pei + 1, 0)‍. This ensures that we have the expected 
behaviour in both limits of ‍Pe‍: at high (positive) Péclet numbers, the probability is proportional to the 
flow speeds in each of the connected tubules, while at low Péclet the exit of the node is limited by 
diffusion and thus the exit is equally likely in each tubule.

Data processing: instantaneous speeds and average edge traversal 
speeds
During each simulation, we compute the edge traversal speeds as follows. A particle is defined to 
traverse an edge ‍(i, j)‍ if it travels from node (i.e. junction) ‍i‍ to node ‍j‍, or from ‍j‍ to ‍i‍, without visiting ‍i‍ or 

‍j‍ in between. The corresponding edge traversal time is then the time between the arrival at the target 
node and the most recent departure from the node of origin. The edge traversal speed is naturally 
defined as the length of the tubule ‍(i, j)‍ divided by the edge traversal time.

The average edge traversal speed associated with an edge ‍(i, j)‍ is then defined as the mean over 
all edge traversal events across ‍(i, j)‍ of the edge traversal speeds.

In addition, we also compute for each particle the ‘instantaneous’ speeds defined by 

‍Vn = |X(tn+1) − X(tn)|/∆t‍, where ‍tn = n∆t‍ with ‍∆t = 18‍ ms, which is the same temporal resolution as in 
the particle tracking carried out in Holcman et al., 2018.

Incorporating slip boundary conditions
The methodology we have detailed thus far assumes no-slip boundary conditions at the tubule walls 
for the fluid flow. However, the membrane-bound lipids themselves could also flow in response to the 
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nanoscale luminal flows. This may be modelled by introducing a finite slip boundary condition on the 
tubule wall. The slip boundary conditions with a slip length ‍λ ≥ 0‍ at the wall ‍r = a(z, t)‍ are given by

	﻿‍
u = −λ

∂u
∂r

,
‍�

(21)

and ‍(u − ∂a
∂t er) · n = 0‍, with ‍n = ∂a

∂z ez − er‍, which simplifies to

	﻿‍
v − ∂a

∂z
u = ∂a

∂t
.
‍�

(22)

We may then derive the long-wavelength solution for the flow field inside an axisymmetric deforming 
tubule as follows. Using an ansatz for the axial component ‍u‍ that is motivated by the uniform-radius 
Poiseuille flow with slip,

	﻿‍

u(r, z, t) = 2

1 + 4λ
a(z, t)

Q(z, t)
πa(z, t)2

[
1 −

(
r

a(z, t)

)2
+ 2λ

a(z, t)

]
,

‍�

(23)

we may solve the incompressibility condition ‍
1
r
∂
∂r (rv) + ∂u

∂z = 0‍. Regularity at ‍r = 0‍ constrains the inte-
gration constant to be zero, yielding

	﻿‍

v(r, z, t) = 1

1 + 4λ
a(z, t)

∂a(z, t)
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+ 2
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+ 2 −

(
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,

‍�

(24)

which automatically satisfies the boundary condition in Equation 22. Note that the mass conservation 
equations are not affected by the introduction of a slip length.

Using the new solution for ‍u‍, the modified Hagen–Poiseuille expression with slip may be derived 
as before to be

	﻿‍

∆p = −8µ
π
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L1
R4 + L

64λ3(R − b)

[
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R
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R

(
1 − 2λ
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Q4,

‍�

(25)

which does recover the no-slip result as ‍λ → 0‍.
These results may then be used to simulate particle transport with slip boundary conditions. In 

Figure 3a, we plot the distributions of average edge traveral speeds obtained from simulations of a 
C1 network pinching with the original pinch parameters from Holcman et al., 2018 for four different 
values of the boundary slip length. In Figure 3b, we further display the profiles of the longitudinal flow 
(Equation 23) for different slip lengths with the volume flux fixed.

Estimate of forces required for pinches
In this section, we derive an order-of-magnitude estimate for the forces required to pinch an ER 
tubule.

We first estimate the difference in the membrane’s elastic energy, ‍∆E = Epinched − Eunpinched‍, 
between the pinched (‍Epinched‍) and unpinched configurations (‍Eunpinched‍). In the absence of sponta-
neous curvature, the Helfrich free energy ‍h‍ per unit area of a membrane is given by

	﻿‍
h = kc

2
(2H)2 + k̄K,

‍�
(26)
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where ‍kc‍ and ‍̄k‍ are bending rigidities, ‍H ‍ is the mean curvature, and ‍K ‍ is the Gaussian curvature 
(Helfrich, 1973). The mean and Gaussian curvatures may be expressed in terms of the principal curva-
tures ‍κ1,κ2‍ as ‍H = (κ1 + κ2)/2‍ and ‍K = κ1κ2‍. We take ‍κ1‍ and ‍κ2‍ to be the principal curvatures in the 
directions normal and parallel, respectively, to the tubule’s longitudinal axis.

The dominant contribution to ‍∆E‍ is from ‍Epinched‍, specifically from the region near the centre of the 
pinch, taken to be at ‍z = 0‍, where the tubule radius is smallest. We have ‍κ1 = 1/a(z, t)‍ and ‍κ2 = O(R/L2),‍ 
yielding ‍H = 1/2a + O(R/L2)‍ and ‍K = O(R/aL2)‍. The dominant contribution to the membrane energy 

‍E = 2π
´ L
−L ha dz‍ is therefore from ‍H ‍, in a neighbourhood of ‍z = 0‍. Since real pinches do not have 

kinks, a linear term, for the purposes of estimating membrane energy, is unphysical, and we expect 

‍a(z, t0) = b0 + O(z2)‍ near ‍z = 0‍, where ‍b0‍ is the pinch radius in the centre of the pinch in the maximally 
contracted state and ‍t0‍ denotes a time at which the tubule is in a pinched state. We may therefore 
write ‍a(z) = b0 + Rz2/L2

‍ to obtain an order-of-magnitude estimate of the membrane energy in the 
pinched state.

Evaluating the integral for ‍Epinched‍ then yields the leading-order estimate

	﻿‍
∆E ∼ kc

L√
b0R

,
‍�

(27)

We may take ‍kc, k̄ ∼ 50 kBT ‍ (‍kB‍ is the Boltzmann constant times and ‍T ‍ the room temperature) (Faizi 
et al., 2019), with estimate values ‍R = 30 nm‍ and ‍L = 70 nm‍. The minimum pinch radius ‍b0‍ may be 
estimated to be 10 nm allowing for membrane thickness and incomplete squeeze, yielding

	﻿‍ ∆E ∼ 8 × 10−19J.‍� (28)

The hydrodynamic contribution to the energy expenditure during a pinch may be calculated as the 
sum of the dissipation inside the pinch and in the rest of the network (see Energetic cost estimate 
for contracting peripheral sheets for an analogous calculation for a contracting peripheral sheet). We 
find that the hydrodynamic contribution is negligible compared to the elastic component of the work 
done to pinch a tubule.

An estimate for the force required to pinch the tubule may then finally be obtained as 

‍F ∼ ∆E/R ∼ 30 pN‍.

Derivation of theoretical bounds for active flows driven by pinching 
tubules
Advection due to a single pinch
In this section, we calculate an upper bound for the axial distance ‍∆z‍ a particle can be advected by 
the flow produced by an individual pinch. Recall the formula for the volume ‘source’ due to a pinch,

	﻿‍
q = −2

3
πḃL(R + 2b).

‍�
(29)

Among all possible ways for a particle to be transported by a pinch, an upper bound on the trans-
port distance ‍∆z ≤ ∆zmax‍ can be reached if all of the following conditions are satisfied: (1) All of the 
source flows to one side of the pinch (i.e. there is no leakage on the other side); (2) The particle travels 
outside the pinching region (axial flows within the pinching region produce smaller advective displace-
ments than those outside, as may be verified numerically); (3) The particle travels along the centreline 
of the tubule (i.e. at twice the cross-section averaged flow velocity, a standard Poiseuille result); (4) The 
minimum pinch radius ‍b0‍ (recall from Figure 10) is 0.

Under conditions (1) and (2), the cross-section averaged speed corresponding to maximal transport 
generated from a single pinch can then be computed using Equation 29 as

	﻿‍
πR2Ū(t) = −2

3
πḃL(R + 2b).

‍�
(30)

Using condition (3), the position of the particle along the centreline ‍z(t)‍ satisfies then the ordinary 
differential equation

	﻿‍
ż = 2Ū(t) = − 4L

3R2 ḃ(R + 2b).
‍�

(31)

https://doi.org/10.7554/eLife.93518
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Integrating this equation from ‍t = 0‍ (start of contraction, with ‍b(0) = R‍) to ‍T ‍ (end of contraction, with 

‍b(T) = b0‍) then leads to

	﻿‍
∆z = 8L

3

(
1 − b0

2R
− b2

0
2R2

)
.
‍�

(32)

The value of ‍∆z‍ is maximised when ‍b0 = 0‍ (i.e. when condition (4) holds), yielding the upper bound

	﻿‍
∆z ≤ ∆zmax = 8

3
L.

‍�
(33)

Extension to nonlinear interactions between two pinches
An isolated pinch is only capable of reciprocal motions. The simplest system capable of producing 
non-reciprocal motions is illustrated in Figure 5 and consists of two pinch sites arranged in series near 
the midpoint of a long horizontal tubule.

We may calculate an upper bound on the net particle displacement that can be achieved after both 
pinch sites pinch exactly once. We make the assumptions (2)–(4), and in addition, allow pinches to 
spend extended amounts of time in their completely closed state; any deviation from these assump-
tions will result in net transport that is further reduced.

How can we maximise the positive (i.e. rightward in Figure 5) particle displacements induced by 
the contractions, and minimise the magnitude of the negative (leftward) displacement induced by 
relaxations? As in the figure, let us denote the pinch on the left ‘pinch 1’ and that on the right ‘pinch 
2’. Pinch 1 produces maximum positive displacement (magnitude ‍4L/3‍, i.e. half of the optimal value 
from Equation 33) when pinch 2 is completely open, that is, when the hydrodynamic resistance to its 
right is minimal. Pinch 2 then produces maximum positive displacement (of magnitude ‍8L/3‍, i.e. the 
optimal value in Equation 33) when pinch 1 is completely closed and all pinch-induced flow continues 
to be directed rightwards. Similarly, pinch 1 produces minimal negative displacement when pinch 2 
is completely closed (zero average displacement, since no flow is then allowed to escape to the right 
of pinch 2), while pinch 2 then produces a negative displacement of magnitude ‍4L/3‍ to the left when 
pinch 1 is completely open. These optima can be achieved by the non-reciprocal sequence of motions 
illustrated in Figure 5: close pinch 1, close pinch 2, open pinch 1, and open pinch 2. The coordination 
between two pinches can therefore be used to generate the net displacement of ‍8L/3‍ equal to the 
theoretical upper bound from Equation 33.

Modelling of alternative flow generation mechanisms
We have described in detail our modelling of a network driven by the pinching of tubules. In this 
study, we explore two other flow generation mechanisms: the contraction of tubular junctions and the 
contraction of ER sheets. Our model for pinching tubules is readily generalised to account for these 
mechanisms, as we describe below.

Experimental estimates of junction volumes
From fluorescence microscopy images of ER networks, we measure the fluorescence intensity of junc-
tions (i.e. the number of pixels in a junction multiplied by the mean intensity per pixel). We can 
then translate this intensity into an estimate of junction volume, assuming that intensity is directly 
proportional to volume. In order to calibrate the fluorescence intensity, we use our measurements for 
tubules. Specifically, we use the measured intensities of tubules and their known volumes, obtained by 
measurements of tubule lengths and the assumption that they are cylinders of radius 30 nm, in order 
to determine the proportionality constant to convert between pixel intensity and volume. Our new 
measurement of the intensities of the junctions then allows us to obtain estimates of their volumes; 
we obtain twelve values, ranging between 0.0020 and 0.0081 µm3, with a mean of 0.045 µm3 and an 
SD of 0.0021 µm3.

Mathematical modelling of contractions of tubular junctions
To include the contribution of tubular junctions into the model (Figure 1c), we assume that in addi-
tion to the pinch sites along tubules, each tubular junction pinches independently of other tubules 

https://doi.org/10.7554/eLife.93518
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and other tubular junctions. Given a junction, we assume that it expels the same volume ‍∆V ‍ of fluid 
during a contraction for all its pinches (and takes in the same volume when it relaxes). Each pinch 
is assumed to create a sinusoidal flow source, so a pinch lasting for a time ‍2T ‍ produces a flow rate 

‍S(t) = ∆V sin(πt/T)π/2T ‍ at a time ‍t‍ measured from the beginning of the pinch, where the numerical 
factors in ‍S(t)‍ are chosen such that the volume expelled during a contraction is indeed ‍

´ T
0 S(t) dt = ∆V ‍. 

We accommodate the flows from the junctions mathematically by modifying our K1 equations, Equa-
tion 17, to allow the normal nodes to also carry non-zero sources (as opposed to just the pinch nodes, 
as was the case before); the other equations in the model remain unchanged.

Mathematical modelling of contractions of perinuclear sheets
In the tubule-pinching model, we included ‍M ‍ exit nodes located towards the exterior of the network 
and through which flow could enter and exit the system in order to conserve mass. To account for the 
connection to a perinuclear sheet (Figure 1f), we now assign a number of these exit nodes, denoted 

‍M2 < M ‍, to be ‘sheet nodes’, i.e. nodes which are directly connected to a perinuclear sheet, so that a 
number ‍M1 = M − M2 > 0‍ of exit nodes remain. This is illustrated in Figure 12, where we show the C1 
network from Figure 9 with both sheet nodes (blue asterisks) and exit nodes (red squares).

A sheet contraction + relaxation lasting a time ‍2T ‍ produces a total source ‍Ssheet(t) = Vsheetπ sin(πt/T)/2T ‍ 
at a time ‍t‍ from the beginning of the pinch, where again, the integral of ‍Ssheet‍ over a contraction gives 
a volume ‍Vsheet‍ of fluid expelled by the sheet.

Similarly to the mathematical model with tubular pinches only, our independent variables are the 
‍E‍ tubule fluxes, the ‍M1‍ sources at the exit nodes, and the ‍M2‍ sources at the sheet nodes. As before, 
the K1 (Equation 17) and K2 (Equation 18) equations give us ‍E + 1‍ equations. The requirement (anal-
ogous to Equation 19) that the exit nodes are at the same mechanical pressure gives us ‍M1 − 1‍ 
equations. We make the additional assumption that the sheet nodes are all at the same mechanical 

4 6 8 10 12 14 16 18 20 22
-18
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Figure 12. Illustration of the C1 network from Figure 9 with ‍M1 = 13‍ exit nodes (red squares) and ‍M2 = 9‍ 
perinuclear sheet nodes (blue asterisks).

https://doi.org/10.7554/eLife.93518
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pressure (i.e. that they are connected to the same reservoir), which provides an additional ‍M2 − 1‍ 
equations. Requiring that the sources at the sheet nodes sum to the prescribed flow rate ‍Ssheet‍ yields 
one additional equation, so we again have a system of ‍E + M ‍ independent linear equations.

Experimental estimates of volumes of peripheral sheets
To model the contraction of peripheral sheets (Figure  1d), we need to estimate their contained 
volumes. Using the open-source image analysis software Fiji (Schindelin et al., 2012), we identify 
nine regions roughly occupied by peripheral sheets in a microscopy image of an ER network; this is 
illustrated in yellow in Figure 13. We then measure their areas (in µm2) and convert them to volumes 
by multiplication with the diameter of a tubule, taken as 60 nm, assuming that the effective thickness 
of a sheet is equal to the tubular diameter. From our nine data values, we finally obtain a mean sheet 
volume of 0.12 µm3 and an SD of 0.04 µm3.

Energetic cost estimate for contracting peripheral sheets
The dominant energy expenditure in deforming a pinching tubule is in creating the large membrane 
curvatures at the narrowest sections of the pinch, and much less work is done against the small volumes 
of fluid displaced (Estimate of forces required for pinches). A contracting peripheral sheet, however, 
displaces a relatively large volume of fluid without attaining the extreme curvatures required in a 
pinching tubule. We therefore expect, intuitively, that the hydrodynamic contribution will dominate 

Figure 13. Estimation of areas of peripheral sheets, taken as the regions encircled in yellow.

Figure 14. Mathematical idealisation of two contracting peripheral sheets as two paraboloids for the purpose of 
computing an order-of-magnitude estimate of the energy expended to contract a peripheral sheet.

https://doi.org/10.7554/eLife.93518
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the energy expenditure budget. We now explicitly show this by estimating both elastic and hydrody-
namic contributions.

To derive an order-of-magnitude estimate of the energetic cost, we consider an idealisation of 
a peripheral sheet consisting, in the relaxed state, of two parallel circular membranes ‍r < R‍ located 
at ‍z = ±D‍, and in the fully contracted state, of two paraboloids at ‍z = ±Dr2/R2‍ (see Figure 14). The 
membranes deform as paraboloids between these two states, and we denote the ‘vertical’ distance 
between the two membranes as ‍d(r, t)‍. We take ‍R = 0.8‍ µm, the value consistent with a sheet thickness 
‍2D = 60‍ nm and the mean sheet volume (in the fully relaxed state) of ‍2πR2D = 0.12‍ µm3 (see estimation 
in Experimental estimates of volumes of peripheral sheets).

To estimate the elastic contribution, we present an argument similar to the one carried out in 
Estimate of forces required for pinches. In the fully contracted state, the principal curvatures of one 
membrane scales as ‍∼ 2D/R2‍, so the Gaussian curvature ‍K ∼ 4D2/R4‍ and the mean curvature ‍H ∼ 2D/R2‍, 
yielding the Helfrich energy density ‍h ∼ k[2H2 + K] ∼ 12kD2/R4‍, where ‍k‍ is the typical bending rigidity. 
The total bending energy of the fully contracted membrane is then ‍E ∼ πR2h ∼ 2 × 10−20 J‍. In the 
relaxed state, the membranes are flat and have zero bending energy. Thus, the total energy required 
to contract the two membranes can be estimated as

	﻿‍ ∆E ≈ 4 × 10−20 J.‍� (34)

To estimate the hydrodynamic contribution, we first note that the work done instantaneously by the 
contracting sheet against the fluid, of dynamic viscosity μ, say, is the sum of dissipation rate in the 
sheet itself and the dissipation rate in the rest of the ER network outside the sheet due to the sheet-
induced flows. Any work done against the fluid outside the ER network is neglected since flows decay 
over short length scales across the network.

We first consider the contribution from within the sheet. We may use lubrication theory to estimate 
the flows inside a contracting peripheral sheet since the sheet is fairly flat. The leading-order lubrica-
tion flow between the contracting membranes (located at ‍z = ±d(r, t)‍) is in the radial direction, and 
given by ‍ur = − 1

µ
∂p
∂r (d2 − z2)‍, where the unknown radial pressure gradient ‍

∂p
∂r ‍ may be calculated from 

mass conservation ‍2πr
´ d
−d ur dz = − ∂

∂t
(´ r

0 4πr′d(r′, t) dr′
)
‍, thus yielding a radial velocity

	﻿‍
ur = −

3
´ r

0 r′ḋ dr′

2rd3 (d2 − z2).
‍�

(35)

The dominant contribution to the rate-of-strain tensor is ‍erz ≈ 1
2
∂ur
∂z ∼ 3R

2DT ‍, where ‍T ∼ 0.5‍ s is the 
contraction duration (in the main text we considered a value of ‍T ‍ of 2.5 or 5 times larger than the 
experimentally measured pinch duration; here we take 5). Therefore, the total work done over a 
contraction scales as the total dissipation rate times the contraction duration ‍T ‍, and we scale

	﻿‍
Winside ∼ 2µ 9R2

4D2T2 × 2πR2DT = 9πµR4

DT
.
‍�

(36)

Taking the viscosity of the intra-luminal fluid to be 10 times that of water, this is computed to be

	﻿‍ Winside ∼ 8 × 10−18 J.‍� (37)

The dissipation rate in the network outside the sheet may be estimated by calculating the total dissi-
pation rate in an idealised network consisting of ‘generations’ of tubules, each of length 1 µm, with the 
first generation consisting of three tubules connected to the peripheral sheet, and each tubule in the 
‍ith‍ generation branching out into three tubules of the ‍(i + 1)th

‍ generation ad infinitum. The dissipation 
rate due to a Poiseuille flow of flux ‍q‍ inside a tubule of length ‍l‍ and radius ‍R‍ may be calculated to be

	﻿‍
Dtube = 8µq2l

πR4 .
‍�

(38)

Denoting by ‍Q‍ the total volume flux created by the contracting sheet, we may calculate the dissipation 
rate in the network of tubules by summing the above expression across all the tubules as follows. The 
‍ith‍ generation of tubules is comprised of ‍3i‍ tubules each carrying a flux of ‍Q/3i

‍. Summing the total 
dissipation rates across all generations gives

https://doi.org/10.7554/eLife.93518
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	﻿‍
Dnetwork =

∞∑
i=1

3i 8µl
πR4

(
Q
3i

)2
= 4µQ2l

πR4 .
‍�

(39)

We may scale ‍Q‍ as ‍Q ∼ Vs/2T ‍, recalling our assumption that each peripheral sheet contraction expels 
half of the volume ‍Vs‍ contained in the sheet (which is consistent with the paraboloidal membrane 
profile we have taken for the fully contracted sheet). The total dissipation over the contraction dura-
tion ‍T ‍ in this network of tubules is therefore

	﻿‍
Woutside ∼ µV2

s l
πR4T

.
‍�

(40)

Scaling the sheet volume with its mean value ‍Vs ∼ 0.12‍ µm3, we may compute this to be

	﻿‍ Woutside ∼ 10−16 J.‍� (41)

The total work done during a contraction is therefore ‍W = Winside + Woutside ∼ 10−16 J‍. Given that the 
energy released by the hydrolysis of one ATP molecule is of the order of ‍10−19J‍ (Bray, 2001), we thus 
estimate that each contraction of a peripheral sheet would require on the order of 1000 molecules of 
ATP.
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