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Abstract Revealing protein binding sites with other molecules, such as nucleic acids, peptides, 
or small ligands, sheds light on disease mechanism elucidation and novel drug design. With the 
explosive growth of proteins in sequence databases, how to accurately and efficiently identify these 
binding sites from sequences becomes essential. However, current methods mostly rely on expen-
sive multiple sequence alignments or experimental protein structures, limiting their genome-scale 
applications. Besides, these methods haven’t fully explored the geometry of the protein structures. 
Here, we propose GPSite, a multi-task network for simultaneously predicting binding residues 
of DNA, RNA, peptide, protein, ATP, HEM, and metal ions on proteins. GPSite was trained on 
informative sequence embeddings and predicted structures from protein language models, while 
comprehensively extracting residual and relational geometric contexts in an end-to-end manner. 
Experiments demonstrate that GPSite substantially surpasses state-of-the-art sequence-based 
and structure-based approaches on various benchmark datasets, even when the structures are not 
well-predicted. The low computational cost of GPSite enables rapid genome-scale binding residue 
annotations for over 568,000 sequences, providing opportunities to unveil unexplored associations 
of binding sites with molecular functions, biological processes, and genetic variants. The GPSite 
webserver and annotation database can be freely accessed at https://bio-web1.nscc-gz.cn/app/​
GPSite.

eLife assessment
The authors introduce a valuable machine-learning model for predicting binding sites of diverse 
ligands, including DNA, RNA, peptides, proteins, ATP, HEM, and metal ions, on proteins. The 
method is freely accessible and user-friendly. The authors have conducted thorough benchmarking 
and ablation studies, providing convincing evidence of the model's overall performance, despite 
some imperfections of the comparisons to other methods that arise from intrinsic differences 
between training methods and data.

Introduction
Proteins perform most biological functions by specifically interacting with other molecules such as 
nucleic acids, peptides, proteins, or small ligands of various kinds (Alipanahi et al., 2015; Rolland 
et al., 2014; Andreini et al., 2009). Knowledge of these binding interfaces benefits protein function 
prediction, disease mechanism understanding, and novel drug design (Lee et al., 2007; Wang et al., 
2017; Wells and McClendon, 2007). Although experimental techniques such as X-ray crystallog-
raphy and nuclear magnetic resonance spectroscopy can solve the native complex structures to detect 
binding sites, they are costly, time-consuming, and unsuitable for proteins with unknown binding 
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partners. With the explosive growth of proteins in sequence databases (UniProt Consortium, 2023; 
Sayers et al., 2023), developing effective and efficient computational methods to recognize potential 
binding regions from sequences in a large-scale manner is imperative to fill the gap between genome 
and phenome.

A conventional way to predict binding interfaces is comparative modeling, which employs alignment 
algorithms to transfer known binding residues from similar templates to the query proteins (Zhang 
et al., 2010; Yang et al., 2013; Esmaielbeiki et al., 2016). Nevertheless, this strategy will be seri-
ously restricted when no high-quality template exists. Therefore, methods based on machine learning 
and deep learning have prevailed in recent years, which can be divided into sequence-based and 
structure-based approaches according to their used protein information. Sequence-based methods 
leverage machine learning classifiers (e.g. support vector machine) to learn local binding characteris-
tics from sequence contexts in a sliding window (Yan and Kurgan, 2017; Taherzadeh et al., 2016a; 
Zhao et al., 2018; Yu et al., 2013), or employ deep learning models like transformer Vaswani et al., 
2017 to capture global dependencies (Wang et al., 2022; Yuan et al., 2022c). Despite requiring only 
readily available protein sequences, these predictors are of limited accuracy due to the lack of tertiary 
structure information. On the other hand, experimental structure-based approaches are often more 
effective. Earlier methods encode protein structures as 2D images (Xia et al., 2020) or 3D voxels 
(Jiménez et al., 2017), which are processed via grid-based convolutional neural networks. Current 
approaches tend to handle protein structures as graphs composed of surface point clouds (Gainza 
et al., 2020; Li and Liu, 2023), atoms (Tubiana et al., 2022; Krapp et al., 2023b) or residues (Xia 
et al., 2021; Yuan et al., 2021), and adopt geodesic convolution or graph neural networks (GNNs) to 
learn the binding-relevant spatial patterns. Unfortunately, the expressive capacities of most methods 
remain restricted, as the geometry of the structure is not yet fully explored. More importantly, both 
present sequence- and structure-based predictors are hampered for high-throughput practices at 
the genome scale for two reasons. Firstly, the dependency on evolutionary profiles from multiple 
sequence alignments (MSA) for most methods leads to high computational expense and occasion-
ally subpar performance for shallow sequence alignments. Secondly, albeit powerful when native 
structures are available, structure-based methods will exhibit performance declines for unbound or 
predicted structures, probably owing to their sensitivity towards details and errors in the structures.

Our previous work (Yuan et al., 2022b) has validated the feasibility of exploiting predicted struc-
tures from AlphaFold2 (Jumper et al., 2021) for training to enhance the model’s robustness, yet the 
computationally intensive structure prediction pipeline still restrains its application to novel sequences 
absent from the AlphaFold Protein Structure Database (Tunyasuvunakool et al., 2021). Since protein 
sequence can be regarded as a language in biology, unsupervised pre-training with language models 
has recently been applied to protein sequence representation learning and has displayed competitive 
or better results than manually engineered evolutionary features in different downstream tasks (Yuan 
et al., 2022c; Rives et al., 2021; Elnaggar et al., 2022; Unsal et al., 2022; Yuan et al., 2023c). Based 
on this, ESMFold (Lin et al., 2023) replaces evolutionary information from MSA with a large-scale pre-
trained protein language model to directly infer atomic-level protein structure from single sequence. 
This results in an order-of-magnitude acceleration of prediction while maintaining accuracy nearly 
as alignment-based methods including AlphaFold2. Therefore, it is promising to develop a fast and 
accurate model tailored for large-scale sequence-based binding site prediction based on the recent 
advances in protein representation learning and structure prediction with language models.

To facilitate protein structure modeling, geometric deep learning techniques have recently flour-
ished in protein docking (Stärk et al., 2022), protein structure pre-training (Zhang et al., 2022b), 
protein design (Dauparas et al., 2022; Gao et al., 2022), and binding site prediction (Gainza et al., 
2020; Li and Liu, 2023; Tubiana et al., 2022; Krapp et al., 2023b), since they can better manipulate 
data with no natural grid-like topology than 3D convolutional neural networks. Among these, current 
geometric binding site predictors are mostly built on surface point clouds (Gainza et al., 2020; Li and 
Liu, 2023) or atom graphs (Tubiana et al., 2022; Krapp et al., 2023b). However, although the binding 
interface is mainly comprised of surface atoms, the global structure of the protein in general influ-
ences how the interface is formulated and how the binding partner is interacted with, which should 
be modeled. Besides, the calculation of protein surfaces and mapping of their properties are usually 
time-consuming, while methods based on full atom graphs are memory-consuming and thus difficult 
to process long sequences. Consequently, designing a geometry-aware message passing mechanism 

https://doi.org/10.7554/eLife.93695
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on residue graphs to synergistically integrate sequence and structure information is potentially more 
suitable for the binding site prediction task.

In this study, we propose GPSite (Geometry-aware Protein binding Site predictor), a fast, accu-
rate, and versatile network for concurrently predicting binding residues of 10 types of biologically 
relevant molecules including DNA, RNA, peptide, protein, ATP, HEM, and metal ions (Zn2+, Ca2+, 
Mg2+, Mn2+) in a multi-task framework. GPSite was trained on informative sequence embeddings 
and predicted structures generated by pre-trained protein language models, and thus does not rely 
on MSA or native structures. To better capture the high-level bio-physicochemical characteristics in 
the predicted structures, a comprehensive geometric featurizer along with an edge-enhanced graph 
neural network is designed to extract the residual and relational geometric contexts in an end-to-end 
manner. Experiments demonstrate that GPSite substantially surpasses state-of-the-art sequence-
based and structure-based approaches on various benchmark datasets, even under conditions where 
the predicted structures are of lower quality. GPSite runs fast enough to process genome-scale 
sequence databases such as the entire Swiss-Prot (UniProt Consortium, 2023), allowing for rapid 
binding residue annotations for over 568,000 sequences. Further analyses indicate that such anno-
tations can promote discoveries in associations of binding sites with molecular functions, biological 
processes, and genetic variants. Besides the standalone code, we also provide the GPSite webserver 
and annotation database at https://bio-web1.nscc-gz.cn/app/GPSite.

Results
The geometry-aware protein binding site predictor (GPSite)
GPSite is a geometry-aware versatile protein binding site predictor that can fast and accurately iden-
tify binding residues of DNA, RNA, peptide, protein, ATP, HEM, and metal ions (Zn2+, Ca2+, Mg2+, Mn2+) 
from protein sequences. As shown in Figure 1 and detailed in Methods, an input protein sequence 
is fed to the pre-trained language model ProtTrans (Elnaggar et al., 2022) and the folding model 
ESMFold to generate informative sequence embedding and predicted structure, respectively. From 
the predicted structure, the coordinates of the N, Cα, C, and O atoms as well as the centroid of the 
heavy sidechain atoms are gathered, and DSSP (Kabsch and Sander, 1983) is employed to calculate 
the relative solvent accessibility and secondary structure for each residue. Then, a protein radius graph 
is built where residues constitute the nodes and adjacent nodes are connected by edges. In addition 
to the residue features by ProtTrans and DSSP, an end-to-end geometric featurizer is designed to 
construct a local coordinate system for each residue and extract geometric features capturing the 
arrangements of backbone and sidechain atoms in or between residues. Specifically, the geometric 
node features consist of intra-residue distances between two atoms (including the sidechain centroid), 
relative directions of other inner atoms or sidechain centroid to Cα, as well as the bond and torsion 
angles. Similarly, the geometric edge features comprise inter-residue distances between atoms from 
the two neighboring residues, relative directions of all atoms in the adjacent residue to Cα of the 
central residue, and spatial orientation between the two reference frames of the neighboring nodes.

To learn the residue representations by considering multi-scale interactions in node, edge, and 
global context levels, we design a GNN with message passing, edge update and global node 
update acting on this geometric-aware attributed graph. The message passing layer adopts the 
multi-head attention in transformer enhanced by edge features to aggregate information from the 
local neighborhood and update the central node. Then the features of an edge are updated using 
its connecting nodes. Finally, a gated attention is applied to update the node states using the 
global context information. Benefiting from the above pipeline, GPSite is invariant to rotation and 
translation. Besides, GPSite leverages the multi-task learning strategy, where the GNN is shared 
among different ligands to capture the common binding-relevant characteristics, followed by 10 
ligand-specific multilayer perceptrons (MLPs) to mine the binding patterns of particular molecules. 
This framework also reduces the time for inference of multiple ligands by the concurrent prediction 
fashion. In conclusion, GPSite is distinguished from the previous approaches in four key aspects. 
First, profiting from the effectiveness and low computational cost of ProtTrans and ESMFold, GPSite 
is liberated from the reliance on MSA and native structures, thus enabling genome-wide binding 
site prediction. Second, unlike methods that only explore the Cα models of proteins (Xia et al., 
2021; Ingraham et al., 2019), GPSite exploits a comprehensive geometric featurizer to fully refine 
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knowledge in the backbone and sidechain atoms. Third, the employed message propagation on 
residue graphs is global structure-aware and time-efficient compared to the methods based on 
surface point clouds (Gainza et al., 2020; Li and Liu, 2023), and memory-efficient unlike methods 
based on full atom graphs (Tubiana et al., 2022; Krapp et al., 2023b). Residue-based message 
passing is also less sensitive towards errors in the predicted structures. Last but not least, instead 
of predicting binding sites for a single molecule type or learning binding patterns separately for 
different molecules, GPSite applies multi-task learning to better model the latent relationships 
among different binding partners.

Figure 1. The overview of GPSite. The protein sequence is input to the pre-trained language model ProtTrans and the folding model ESMFold to 
generate the sequence embedding and predicted structure, respectively. According to the structure, a protein radius graph is constructed where 
residues constitute the nodes and adjacent nodes are connected by edges. In addition to the pre-computed residue features of ProtTrans embedding 
and DSSP structural properties, a comprehensive, end-to-end geometric featurizer is employed to extract the geometric node features including 
distance, direction and angle, as well as geometric edge features between residues including distance, direction and orientation. Here, the R group 
denotes the centroid of the heavy sidechain atoms. The resulting geometric-aware attributed graph is input to a shared GNN to perform edge-
enhanced message passing for capturing the common binding-relevant characteristics among different molecules. Finally, 10 ligand-specific MLPs 
are adopted to learn the binding patterns of particular molecules in a multi-task manner. Examples of the applications of GPSite include binding site 
identification and protein-level Gene Ontology (GO; Ashburner et al., 2000) function prediction.

https://doi.org/10.7554/eLife.93695
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GPSite outperforms state-of-the-art methods
We collected 10 binding site benchmark datasets for the 10 ligands from Protein Data Bank (PDB; 
Berman et al., 2000) as detailed in Methods, which were combined to train and evaluate GPSite 
using the five-fold cross-validation and independent test sets. As shown in Appendix 2—table 2, 
GPSite obtains average area under the receiver operating characteristic curve (AUC) values over the 
10 ligand types of 0.918 and 0.921; as well as average area under the precision-recall curve (AUPR) 
values of 0.603 and 0.594 on the cross-validation and independent tests, respectively. The consistent 
performance on the validation and test sets indicates the robustness of our model. In Figure 2A, the 
receiver operating characteristic (ROC) curves and the precision-recall curves on the 10 test sets are 
plotted to overview the performance of GPSite for different ligands.

To demonstrate the effectiveness of our method, we compared GPSite with 9 sequence-based 
predictors including DRNApred (Yan and Kurgan, 2017), NCBRPred (Zhang et al., 2021), SVMnuc 
(Su et al., 2019), GraphSite (Yuan et al., 2022b), PepBind (Zhao et al., 2018), PepNN-Seq (Abdin 
et al., 2022), PepBCL (Wang et al., 2022), TargetS (Yu et al., 2013), and LMetalSite (Yuan et al., 
2022c), as well as 15 structure-based predictors including NucBind (Su et al., 2019), COACH-D (Wu 
et al., 2018), GraphBind (Xia et al., 2021), GeoBind (Li and Liu, 2023), aaRNA (Li et al., 2014), 
PepNN-Struct (Abdin et al., 2022), DeepPPISP (Zeng et al., 2020), SPPIDER (Porollo and Meller, 
2007), MaSIF-site (Gainza et  al., 2020), GraphPPIS (Yuan et  al., 2021), ScanNet (Tubiana et  al., 

A

C

B

Figure 2. The performance of GPSite and the state-of-the-art methods. (A) The ROC and precision-recall curves of GPSite on the 10 binding site test 
sets. The numbers in the legends are areas under the curves. (B–C) The AUPR values of the top-performing methods in each test set. The methods 
marked with * denote evaluations using the ESMFold-predicted structures as input.

https://doi.org/10.7554/eLife.93695
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2022), PeSTo (Krapp et al., 2023b), DELIA (Xia et al., 2020), MIB (Lin et al., 2016), and IonCom 
(Hu et al., 2016) (see Brief introductions to the competitive methods for more details). Figure 2B 
and C show the results of the top-performing predictors in the test sets, where GPSite surpasses 
all other sequence-based and even experimental structure-based methods in AUPR for more than 
16.5%, 13.2%, 55.4%, 1.7%, 27.7%, 10.8%, 7.0%, 14.8%, 17.1%, and 13.4% in the DNA, RNA, peptide, 
protein, ATP, HEM, Zn2+, Ca2+, Mg2+, and Mn2+ binding site test sets, respectively. The results of more 
contending methods and criteria (e.g. AUC and F1-score) are tabulated in Appendix 2—table 3. 
Given the substantial overlap between our protein-binding site test set and the training set of PeSTo, 
we conducted separate training and comparison using the datasets of PeSTo, where GPSite still 
demonstrates a remarkable improvement over PeSTo (see Performance comparison between GPSite 
and PeSTo). Moreover, GPSite is computationally efficient, achieving comparable or faster prediction 
speed compared to other top-performing methods (Appendix 3—figure 1).

Although trained on predicted protein structures, GPSite can also adopt native structures as input 
for prediction whenever applicable. By doing this, extra performance boosts can be gained with 
average AUPR increase of 7.8% (Appendix 3—figure 2). However, experimental structures are not 
always available in real-world scenarios, such as genome-scale sequence databases. To this end, for 
the best experimental structure-based method (measured by AUPR) in each test set, we also investi-
gated the impact on performance when using ESMFold-predicted structures as input. As expected, 
the performance of these methods mostly decreases substantially utilizing predicted structures for 
testing, because they were trained with high-quality native structures. For example, the AUPR of 
GraphBind for predicting RNA-binding sites decreases from 0.506 to 0.433, compared to the AUPR of 
0.573 by GPSite. Similarly, the AUPR of ScanNet drops from 0.476 to 0.399, compared to the AUPR 
of 0.484 by GPSite for predicting protein-binding sites. Therefore, in the practical situations where 
experimental structures are unavailable, the superiority of our method will be further reflected.

GPSite is robust for low-quality predicted structures
Since GPSite is built on ESMFold, it is necessary to examine the quality of the predicted structures and 
its impact on the model performance. Figure 3B and Appendix 3—figure 3 show the distributions 
of TM-scores between native and predicted structures calculated by US-align (Zhang et al., 2022a) 
in the 10 benchmark datasets, where most proteins are accurately predicted with TM-score >0.7 (see 
also Appendix 2—table 5). Overall, ESMFold achieves median TM-scores of 0.89, 0.76, 0.93, 0.93, 
0.94, 0.94, 0.93, 0.94, 0.95, and 0.96 for the DNA, RNA, peptide, protein, ATP, HEM, Zn2+, Ca2+, 
Mg2+, and Mn2+ datasets, respectively (Appendix 2—table 6). We next explored whether GPSite can 
maintain its performance on low-quality predicted structures. Figure 3A presents the performance of 
GPSite on ESMFold-predicted structures with TM-score >0.7 or ≤0.7, and the comparisons with the 
leading structure-based methods in the test sets of DNA, RNA, and peptide. Reasonably, compared 
to the well-predicted proteins, the performance of GPSite is inferior on the subsets of proteins with 
TM-score  ≤0.7. Nevertheless, GPSite continues to outshine the most advanced structure-based 
methods input with ESMFold-predicted structures or even experimental structures. Similar trends are 
also observed for the rest of the ligands in Appendix 3—figure 4. Given the infrequency of low-quality 
predicted structures except for the RNA test set, we took a closer inspection of the 104 proteins with 
predicted structures of TM-score <0.5 in the RNA test set. In this subset, GraphBind achieves AUPR 
values of 0.455 and 0.376 using native and predicted structures, respectively, compared to the AUPR 
of 0.516 by GPSite. As shown in Figure 3C with lines fit to the per-protein TM-score and AUPR using 
linear regression, GPSite consistently outperforms GraphBind using predicted structures regardless 
of the prediction quality of ESMFold, and is only surpassed by GraphBind input with native structures 
on proteins of extremely low quality (TM-score <0.3). An example is presented in Case study for the 
ribosome biogenesis protein ERB1 for illustration. To sum up, ESMFold could produce high-quality 
structures in most cases, and even for the low-quality predicted structures, GPSite is robust enough to 
generate reliable predictions better than current state-of-the-art structure-based methods.

We finally illustrate a potential reason for the robustness of GPSite by an example from the test set 
where GPSite is able to discern among various interfaces even though the structure is not perfectly 
predicted. Figure 3D shows the structure of the human glucocorticoid receptor (GR), a transcription 
factor that binds DNA and assembles a coactivator peptide to regulate gene transcription (PDB: 
7PRW, chain A). The DNA-binding domain of GR also consists of two C4-type zinc fingers to bind 

https://doi.org/10.7554/eLife.93695
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Figure 3. The performance of GPSite on low-quality predicted structures. (A) The performance of GPSite on structures of different qualities, and 
the comparisons with the best experimental structure-based methods in the test sets of DNA, RNA, and peptide. The experimental structure-based 
methods input with ESMFold-predicted structures are marked with *. (B) Distributions of the TM-scores between native and predicted structures in the 
DNA, RNA and peptide datasets. (C) The correlations between the prediction quality of ESMFold and the performance of GPSite and GraphBind on the 
RNA-binding site test set when TM-score <0.5. The scatters denote the average TM-score and AUPR for each bin after sorting the proteins according 
to the TM-scores and evenly dividing them into 20 discrete bins. The lines are fit to the original data (without binning) using linear regression. (D) The 
glucocorticoid receptor (GR) in complex with DNA, a coactivator peptide, and Zn2+ ions (PDB: 7PRW). The ESMFold-predicted protein structure (gray) is 
superimposed to the native structure (cyan) using US-align (TM-score=0.72). The ligands are colored in orange. (E) Superposition of the native (cyan) and 
predicted (gray) DNA-binding domains of GR (TM-score=0.96). (F–H) The Zn2+, DNA and peptide binding site predictions by GPSite for the predicted 
GR structure in cartoon or surface view. True positives, false positives and false negatives are colored in green, red and yellow, respectively. The ligands 
in orange were subsequently added based on the native complex structure to show the quality of the predictions by GPSite.

https://doi.org/10.7554/eLife.93695
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Zn2+ ions. Although the structure of this protein is not perfectly predicted (TM-score=0.72), the local 
structures of the binding domains of peptide and DNA are actually predicted accurately as viewed by 
the superpositions of the native and predicted structures in Figure 3D and E. Therefore, GPSite can 
correctly predict all Zn2+ binding sites and precisely identify the binding sites of DNA and peptide with 
AUPR values of 0.949 and 0.924, respectively (Figure 3F, G and H).

The effects of protein features and model designs
To reveal the roles of distinct protein features and model designs in GPSite, we conducted compre-
hensive ablation studies. As shown in Figure 4A and Appendix 2—table 7, when removing the Prot-
Trans embeddings from GPSite, the model yields inadequate performance (average AUPR of 0.516 
among the 10 test sets) due to the complete neglect of the sequence information in proteins. The 
introduction of one-hot sequence encodings or MSA profile (elaborated in Generation of the evolu-
tionary features from MSA) partially restores the performance to average AUPR of 0.545 or 0.568, 
respectively. Nevertheless, the utilization of language model representations in GPSite attains the 
highest average AUPR of 0.594. To further understand the advantages of ProtTrans over the evolu-
tionary features from MSA, we compared their performance against the number of effective homolo-
gous sequences (Neff) of the proteins from the combined test set of the 10 ligands. Neff is an HHblits 
(Remmert et al., 2011) parameter quantifying the effective size of homologous sequence cluster. 
As evidenced in Figure  4B and Appendix  2—table 8, ProtTrans consistently obtains competitive 
or superior performance compared to the MSA profile. Notably, for the target proteins with few 

Figure 4. The effects of protein features and model designs. (A) Ablation studies on sequence and structure information in the DNA, RNA, and peptide 
test sets. The average performance of the 10 test sets is also shown. (B) Performance comparison between GPSite and the baseline model using MSA 
profile for proteins with different Neff values in the combined test set of the 10 ligands. (C) Performance boosts in AUPR using GPSite compared to 
the single-task baseline. (D) Visualization of the distributions of residues encoded by raw feature vectors (left) or hidden embedding vectors from the 
pre-trained shared network in GPSite (right) for the unseen carbohydrate-binding site dataset using t-SNE. The binding and non-binding residues 
are colored in red and gray, respectively. (E) The performance when using the hidden embeddings from GPSite as input features to train an MLP for 
carbohydrate-binding site prediction, and its comparisons with other methods.

https://doi.org/10.7554/eLife.93695
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homologous sequences (Neff <2), ProtTrans surpasses MSA profile significantly with an improvement 
of 3.9% on AUC (p-value = 4.3 × 10–8). On the other hand, removing the structure information (imple-
mented by a transformer model solely input with ProtTrans sequence features) obtains the worst 
performance with an average AUPR of 0.484 (Figure 4A). This observation indicates that the knowl-
edge of protein structure may be more critical than sequence information in binding site prediction 
tasks. Additionally, the removal of the geometric featurizer within GPSite also causes a substantial 
decline in performance (average AUPR from 0.594 to 0.533), attesting to the significance of GPSite’s 
perception of protein geometry. We also assessed the benefit of training with predicted instead of 
native structures, which brings an average AUPR increase of 4.2% as detailed in The effect of training 
with predicted structures.

We next elucidate the benefits of the multi-task framework in GPSite by comparing it with a base-
line approach in which a model is trained and evaluated for each dataset separately. As depicted 
in Figure 4C and Appendix 2—table 7, GPSite consistently outperforms the single-task baseline, 
especially for the ligands with limited training data. For instance, directly fitting a model on the HEM 
training set with only 176 proteins reaches an AUPR of 0.716 for the test set. Alternatively, combining 
datasets of diverse ligands in a multi-task framework brings an AUPR increase of 0.086 for HEM. This 
suggests that multi-task learning can compensate for the scarcity of training data by leveraging a 
shared network trained on a larger dataset encompassing different types of ligand-binding proteins 
that potentially share similar binding patterns. We also conducted cross-type evaluations to investi-
gate the specificity of the ligand-specific MLPs and the inherent similarities among different ligands in 
The cross-type performance of the multi-task network in GPSite.

Residues that are conserved during evolution, exposed to solvent, or inside a pocket-shaped 
domain are inclined to participate in ligand binding. During the preceding multi-task training process, 
the shared network in GPSite should have learned to capture such common binding mechanisms. Here 
we show how GPSite can be easily extended to the binding site prediction for other unseen ligands by 
adopting the pre-trained shared network as a feature extractor. We considered a carbohydrate-binding 
site dataset from Sun et al., 2022 which contains 100 proteins for training and 49 for testing. We first 
visualized the distributions of residues in this dataset using t-SNE (van der Maaten and Hinton, 
2008), where the residues are encoded by raw feature vectors encompassing ProtTrans embeddings 
and DSSP structural properties, or latent embedding vectors from the shared network of GPSite 
trained on the 10 molecule types previously. As shown in Figure 4D, the binding and non-binding 
residues overlap and are indistinguishable when encoded by raw feature vectors. On the contrary, the 
latent representations from GPSite effectively improve the discriminability between the binding and 
non-binding residues. Employing these informative hidden embeddings as input features to train a 
simple MLP exhibits remarkable performance with an AUC of 0.881 (Figure 4E), higher than that of 
training a single-task version of GPSite from scratch (AUC of 0.853) or other state-of-the-art methods 
such as MTDsite (Sun et al., 2022) and SPRINT-CBH (Taherzadeh et al., 2016b). These results high-
light the effectiveness of multi-task learning and the scalability of GPSite to unseen ligands.

Large-scale binding site annotation for Swiss-Prot
In light of the efficiency and effectiveness of GPSite, we sought to annotate and analyze the poten-
tial binding interfaces of various kinds for the entire Swiss-Prot database. For this task, we applied 
ESMFold to predict the structures of 568,326 sequences in Swiss-Prot, which required approximately 
8.5 days as described in Methods. Typically, it takes 16 s to predict the structure of a protein with 
500 residues, or 100 s for 1000 residues (Appendix 3—figure 6). The feature extraction and GPSite 
inference procedures overall cost about 5 hr. All ESMFold-predicted structures accompanied by the 
binding site annotations for Swiss-Prot are freely available in our user-friendly GPSiteDB database 
(https://bio-web1.nscc-gz.cn/database/GPSiteDB). Appendix  3—figure 7 further illustrates the 
distributions of the protein length and the predicted TM-score (pTM) estimated by ESMFold for the 
Swiss-Prot sequences, where most proteins are no longer than 500 residues and predicted with high 
confidence (pTM >0.8). For the subsequent downstream analyses, we only considered the predicted 
structures with pTM >0.7, resulting in a total of 370,140 structures.

Exploiting the residue-level binding site annotations, we could readily extend GPSite to discrimi-
nate between binding and non-binding proteins of various ligands. Specifically, a protein-level binding 
score indicating the overall binding propensity to a specific ligand can be generated by averaging the 

https://doi.org/10.7554/eLife.93695
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top k predicted scores among all residues. Empirically, we set k to 5 for metal ions and 10 for other 
ligands, considering the distributions of the numbers of binding residues per sequence observed 
in the training set. As depicted in Figure 5A, the GPSite binding scores for proteins with the corre-
sponding ligand-binding molecular functions are significantly higher than those without such anno-
tations in Swiss-Prot (p-value <10–165 for all ligands according to Mann–Whitney U test; Mann and 
Whitney, 1947). The accuracy of the GPSite protein-level binding scores is further validated by the 

C

D E

A B

Figure 5. Analyses of Swiss-Prot based on the binding site annotations by GPSite. (A) The distributions of the binding scores assigned by GPSite for 
proteins with or without certain ligand-binding molecular function in GO. (B) The ROC curves when using the GPSite binding scores to distinguish 
between binding and non-binding proteins of various ligands. (C) The percentage of proteins predicted as binding to DNA and RNA by GPSite to be 
annotated with certain biological process in Swiss-Prot. Only the specific biological process terms with depth ≥8 in the GO directed acyclic graph are 
considered, among which the top 15 terms with the highest percentages are displayed. (D) The percentage of surface pathogenic or benign natural 
variant sites within GPSite-predicted interfaces. The baseline is the probability of a random surface residue being annotated as an interface residue. 
(E) The pathogenic probabilities of variants located in non-binding sites or different types of binding sites predicted by GPSite.

https://doi.org/10.7554/eLife.93695


 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Yuan et al. eLife 2024;13:RP93695. DOI: https://doi.org/10.7554/eLife.93695 � 11 of 39

ROC curves in Figure 5B, where GPSite achieves satisfactory AUC values for all ligands except protein 
(AUC of 0.608). This may be ascribed to the fact that protein-protein interactions are ubiquitous in 
living organisms while the Swiss-Prot function annotations are incomplete (see GPSite is effective 
for completing the function annotations in Swiss-Prot). Moreover, we attempted to gather the top 
20,000 proteins with the highest GPSite binding scores for each ligand to expand the binding function 
annotations in Swiss-Prot. We could immediately notice that the GPSite-predicted binding proteins 
are involved in biological processes consistent with existing knowledge as shown in Figure 5C and 
Appendix 3—figure 8. For instance, the DNA-binding proteins predicted by GPSite are prone to 
participate in DNA repair, DNA-templated transcription, DNA recombination and replication, while 
the RNA-binding proteins are inclined to perform translation and RNA modification.

Capitalizing on the predicted structures and annotations within GPSiteDB, cell biologists are 
empowered to easily locate the genetic variants and assess their potential disruptions in protein-
ligand interactions and pathogenicity. This facilitates the establishment of rational working hypoth-
eses to propel therapeutic development in a more informed manner. Here we conduct analyses on 
the associations between binding sites and genetic variants for the human proteome as an example. 
Notably, 20.67% of the pathogenic variant sites on the surfaces of the predicted structures fall in the 
GPSite-predicted interfaces, higher than the benign variants (11.97%) or the random baseline (16.35%) 
as described in Figure 5D. Consistent trend is observed in Appendix 3—figure 9 when considering 
variants in the entire structure (rather than solely on surface). Besides, we investigated the pathogenic 
probabilities of variants in different locations in Figure 5E. As expected, the pathogenicity of variants 
located in the predicted binding sites is higher than those in the non-binding sites. Interestingly, our 
analysis uncovered that the pathogenic probabilities of variants in the predicted binding sites of ATP 
and metal ions surpass those of other ligands. One possible reason is that the binding interfaces of 
ATP and metal ions typically comprise small pockets formed by a limited number of residues. Conse-
quently, variants affecting even a single residue within such pockets may exert a substantial influence 
on the overall pocket functionality and lead to diseases.

Discussion
In this study, we present GPSite to accurately and efficiently predict protein binding sites of diverse 
biologically relevant molecules including DNA, RNA, peptide, protein, ATP, HEM, and metal ions. By 
leveraging the informative sequence embeddings and predicted structures from pre-trained language 
models, GPSite is liberated from the reliance on MSA or experimental protein structures. To encap-
sulate the high-level bio-physicochemical characteristics in the predicted structures, GPSite incorpo-
rates a comprehensive geometric featurizer and an edge-enhanced graph neural network to refine 
both residual and relational geometric contexts in an end-to-end manner. GPSite also stands out 
from the previous approaches by applying a multi-task framework to effectively model the intrinsic 
relationships among different binding partners. Results across various benchmark datasets indicate 
that GPSite substantially outperforms state-of-the-art sequence-based and structure-based methods, 
even under conditions where the predicted structures are of lower quality. Finally, we demonstrate 
GPSite’s scalability to genome-scale sequence databases by annotating binding sites for over 568,000 
sequences in Swiss-Prot within 9 days. Further analyses suggest that these annotations are not only 
accordant with existing knowledge but also capable of facilitating discoveries of unexplored biology 
in protein function and genetic variant.

Despite the noteworthy advancements achieved by GPSite, there remains scope for further 
improvements. GPSite may be improved by pre-training (Zhang et  al., 2022b) on the abundant 
predicted structures in ESM Metagenomic Atlas (Lin et al., 2023), and then fine-tuning on binding site 
datasets. Besides, the hidden embeddings from ESMFold may also serve as informative protein repre-
sentations. Additional opportunities for upgrade exist within the network architecture. For example, 
a variational Expectation-Maximization framework (Zhao et al., 2022) can be adopted to handle the 
hierarchical atom-to-residue graph structure inherent in proteins. Meta-learning (Finn et al., 2017) 
could also be explored in this multi-task scenario, which allows fast adaptation to unseen tasks with 
limited labels.

As the gap between unannotated and annotated sequences is expanding at an unparalleled rate, 
GPSite serves as a reliable, efficient, versatile and user-friendly tool for unraveling the extensive and 
dynamic landscape of protein-ligand interactions. By harnessing the capabilities of GPSite, researchers 

https://doi.org/10.7554/eLife.93695
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can readily uncover fresh biological functions of proteins, gain valuable insights into the underlying 
pathogenic mechanisms of gene mutations, or design novel drugs targeting specific binding pockets.

Methods
Benchmark datasets
The benchmark datasets for evaluating binding site predictions of DNA, RNA, peptide, ATP, and HEM 
are constructed from BioLiP (Zhang et al., 2024), a database of biologically relevant protein-ligand 
complexes primarily from PDB. For each ligand, we collected the corresponding binding proteins with 
resolutions of ≤3.0 Å and lengths of 50–1500 from BioLiP released on 29 March 2023. A binding residue 
is defined if the smallest atomic distance between the target residue and the ligand is <0.5 Å plus the 
sum of the Van der Waal’s radius of the two nearest atoms. We combined the binding site annotations 
of identical sequences and then removed redundant proteins sharing sequence identity >25% over 
30% alignment coverage using CD-HIT (Fu et al., 2012). Finally, each benchmark dataset was split 
into a training set with proteins released before 1 January 2021, as well as an independent test set 
with proteins released from 1 January 2021 to 29 March 2023. Besides, the benchmark dataset of 
protein-protein binding sites is directly from Yuan et al., 2021, which contains non-redundant tran-
sient heterodimeric protein complexes dated up to May 2021. Surface regions that become solvent 
inaccessible on complex formation are defined as the ground truth protein-binding sites. The bench-
mark datasets of metal ion (Zn2+, Ca2+, Mg2+, and Mn2+) binding sites are directly from Yuan et al., 
2022c, which contain non-redundant proteins dated up to December 2021 from BioLiP. Combining all 
these 10 datasets results in a total of 8441 training sequences and 1838 test sequences. Details of the 
statistics of these benchmark datasets are given in Appendix 2—table 1.

Structure prediction and preprocessing
We harnessed ESMFold, a fast and accurate end-to-end model to predict protein structures from 
sequences. ESMFold is based on a language model with 3B parameters pre-trained over sequences 
in UniRef50 (Suzek et al., 2007), and a folding head similar to AlphaFold2 trained on experimental 
structures from PDB and predicted structures from AlphaFold2. The structure prediction for our 
whole benchmark datasets (~10,200 sequences, ~300 amino acids on average) cost only ~28 hr on an 
NVIDIA A100 GPU. For each residue in the predicted structures, we gathered the coordinates of the 
N, Cα, C and O atoms as well as the centroid of the heavy sidechain atoms (denoted as R). In this way, 
the structure of a protein can be represented by a coordinate matrix ‍X ∈ Rn×5×3‍ , with ‍n‍ denoting the 
number of residues.

Protein features
GPSite leverages the pre-trained protein language model ProtTrans (version: ProtT5-XL-U50) to 
generate sequence features efficiently, thus bypassing slow sequence alignments. ProtTrans is a 
transformer-based auto-encoder named T5 (Raffel et al., 2020) pre-trained with the BERT’s denoising 
objective (Kenton and Toutanova, 2019), essentially learning to predict the masked amino acids. 
Concretely, ProtTrans contains 3B parameters, which was first trained on BFD (Steinegger et  al., 
2019) and then fine-tuned on UniRef50. We extracted the output from the last ProtTrans encoder 
layer as sequence representations, containing a 1024-dimensional vector for each residue. The infer-
ence cost of ProtTrans is extremely low, and the embedding extraction process for our whole bench-
mark datasets can be done within 5 min on an NVIDIA A100 GPU. The feature values in the sequence 
embeddings are further normalized to scores between 0 and 1 as follows:

	﻿‍
vnorm = v − vmin

vmax − vmin ‍� (1)

where ‍v‍ is the original feature value, and ‍vmin‍ and ‍vmax‍ are the minimum and maximum values of this 
feature type observed in the training set, respectively. In addition, we also calculated two structural 
properties from the predicted structures using DSSP: (i) Relative solvent accessibility (RSA), which 
is the normalized solvent accessible surface area (ASA) by the maximum ASA of the corresponding 
amino acid type. (ii) One-hot secondary structure profile representing one of the eight secondary 
structure states.

https://doi.org/10.7554/eLife.93695
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The architecture of GPSite
The overall architecture of GPSite is shown in Figure 1. First, the protein sequence is input to the 
pre-trained language model ProtTrans and the folding model ESMFold to generate the sequence 
embedding and predicted structure, respectively. Second, a protein radius graph is constructed from 
the structure, where residues constitute the nodes and adjacent nodes (distance between Cα<15 Å) 
are connected by edges. In addition to the pre-computed residue features (ProtTrans embedding 
and structural properties by DSSP), a comprehensive, end-to-end geometric featurizer is employed 
to extract the geometric node features including distance, direction and angle, as well as geometric 
edge features between residues including distance, direction and orientation. Third, the resulting 
geometric-aware attributed graph is input to a shared GNN with message passing, edge update 
and global node update, to capture the common binding-relevant characteristics among different 
molecules. Finally, 10 ligand-specific MLPs are adopted to learn the binding patterns of particular 
molecules in a multi-task manner.

The geometric featurizer
GPSite represents the protein as a radius graph derived from the Cα coordinates of the residues, 
where the radius is equal to 15 Å. An end-to-end featurizer is utilized to act directly on the atomic 
coordinate matrix ‍X ‍ for geometric feature extraction similar to Gao et al., 2022, except that we addi-
tionally encode the sidechain conformations of the residues. In this representation, a local coordinate 
system is first defined at each residue based on the relative position of the Cα atom to other backbone 
atoms. Then, several geometric node and edge features are derived to capture the arrangements of 
backbone and sidechain atoms in or between residues.

(i) Local coordinate system. We define a local coordinate system ‍Qi =
[
bi, ni, bi × ni

]
‍ for residue ‍i‍, 

where ‍bi‍ is the negative bisector of the angle formed by the N, Cα, and C atoms, and ‍ni‍ is a unit vector 
normal to this plane. Formally, we have:

	﻿‍
ui = Cαi − Ni, vi = Ci − Cαi , bi = ui − vi

∥ui − vi∥
, ni = ui × vi

∥ui × vi∥‍�
(2)

Based on the local coordinate systems, we could construct geometric features that are invariant to 
rotation and translation for single or pair of residues.

(ii) Geometric node features. GPSite constructs distance, direction and angle features for 
each residue. Given the coordinates of two atoms ‍A‍ and ‍B‍, the distance feature is computed via 

‍RBF
(
∥A − B∥

)
‍ , where ‍RBF

(
·
)
‍ is a radial basis function. For the intra-residue distance features of 

node ‍i‍, ‍A, B ∈
{

Ni, Cαi , Ci, Oi, Ri
}
‍ and ‍A ̸= B‍. Here, ‍R‍ denotes the centroid of the heavy sidechain 

atoms. The direction features encoding relative directions of other inner atoms to Cα in residue ‍i‍ are 
computed via 

‍
QT

i
A−Cαi

∥A−Cαi∥‍
 , where ‍A ∈

{
Ni, Ci, Oi, Ri

}
‍ . As shown in Figure 1, we also incorporate the 

sine and cosine values of the bond angles ‍
(
αi, βi, γi

)
‍ and torsion angles ‍

(
ϕi, ψi, ωi

)
‍ to consider the 

backbone geometry.
(iii) Geometric edge features. Similarly, we construct geometric features between neighboring resi-

dues including distance, direction and orientation. The inter-residue distance features ‍RBF
(
∥A − B∥

)
‍ 

between nodes ‍i‍ and ‍j‍ are computed with atoms ‍A ∈
{

Ni, Cαi , Ci, Oi, Ri
}
‍ and ‍B ∈

{
Nj, Cαj , Cj, Oj, Rj

}
‍ 

. The edge direction features 
‍
QT

i
A−Cαi

∥A−Cαi∥‍
 consider relative directions of all atoms in residue ‍j‍ to ‍Cαi‍ 

, namely ‍A ∈
{

Nj, Cαj , Cj, Oj, Rj
}
‍ . To reflect the relative spatial rotation between the two reference 

frames of residues ‍i‍ and ‍j‍, the orientation feature 
‍
q
(

QT
i Qj

)
‍
 is employed, where ‍q

(
·
)
‍ is the quaternion 

encoding function representing 3D rotation matrices as four-element vectors (Huynh, 2009).

The edge-enhanced graph neural network
The above-mentioned attributed graph with features from ProtTrans, DSSP and the geometric featur-
izer is input to several GNN layers with message passing, edge update and global node update 
modules, to learn the residue representations by considering multi-scale interactions in node, edge, 
and global context levels.

(i) Message passing with graph transformer. Since transformer is well-acknowledged as the most 
powerful network in modeling sequence and graph data (Yuan et al., 2022c; Ingraham et al., 2019; 
Zheng et al., 2020), we adopt its multi-head attention mechanism while taking the edge features into 
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account for message passing in graphs. Formally, we denote the hidden feature vectors of node ‍i‍ and 
edge ‍j → i‍ in layer ‍l‍ as ‍h

l
i‍ and ‍e

l
ji‍ , respectively. Before the first GNN layer, we apply an MLP to project 

the initial node and edge features to the ‍d‍-dimensional space. To update node ‍i‍, the message passing 
in layer ‍l‍ is performed as follows:

	﻿‍

ĥl+1
i = hl

i +
∑

j∈N
(

i
)
∪i

αl
ji

(
Wl

Vhl
j + Wl

Eel
ji

)

‍�
(3)

where the attention coefficient ‍α
l
ji‍ from node ‍j‍ to ‍i‍ is calculated by:

	﻿‍




wl
ji =

(
Wl

Qhl
i

)T (
Wl

Khl
j + Wl

Eel
ji

)
√

d

αl
ji =

exp wl
ji∑

k∈N
(

i
)
∪i exp wl

ki ‍�

(4)

The learnable weight matrices ‍W
l
Q‍ , ‍W

l
K ‍ and ‍W

l
V ‍ are used to project the node feature vectors into 

the corresponding query, key and value representations. ‍W
l
E‍ is used to transform the edge features 

which will be subsequently added to the key and value representations. ‍N
(
i
)
‍ denotes the neighbors 

of node ‍i‍. In practice, we use multi-head attention to linearly project the queries, keys and values 
multiple times, perform the attention function in parallel and finally concatenate them together.

(ii) Edge update. To improve the model’s capability, we update the features of an edge using its 
connecting nodes:

	﻿‍
el+1

ji = el
ji + EdgeMLP

(
ĥl+1

j ∥ el
ji ∥ ĥl+1

i

)
‍� (5)

where || denotes the vector concatenation and EdgeMLP is an MLP for edge update.
(iii) Node update with global context attention. While the local node and edge interactions play 

crucial roles in learning residue representations, the global information is also valuable for improving 
accuracy. However, global self-attention across the whole protein is computationally intensive. Alter-
natively, here we learn a global context vector for each protein and use it to apply gated attention for 
the node representations similar to Gao et al., 2022:

	﻿‍
cl =

n−1∑
k=0

ĥl+1
k

n ‍�
(6)

	﻿‍
hl+1

i = ĥl+1
i

⊙
σ
(

GateMLP
(

cl
))

‍� (7)

where ‍n‍ is the number of residues in a protein, GateMLP is an MLP for gated attention, ‍σ
(
·
)
‍ is the 

sigmoid function, and ‍
⊙

‍ denotes the element-wise product operation.

Multi-task learning
To better capture the intrinsic similarities of binding patterns among different ligands and enable effi-
cient predictions in a concurrent fashion, GPSite employs a multi-task framework, where the shared 
edge-enhanced GNN is used to model the common binding-relevant characteristics, followed by 
10 ligand-specific MLPs to mine the binding patterns of particular molecules. In the training steps, 
different types of ligand-binding proteins are input to the same network, and predictions for the 10 
types of ligands are yielded. Nonetheless, only predictions with the corresponding known ligand-
binding sites are used to calculate loss and perform backpropagation, while the predictions of other 
ligands without ground truth data are masked. That is, each protein is used to train the shared GNN 
and the corresponding ligand-specific MLP(s) of its known binding partner(s) without affecting other 
irrelevant MLP(s).

Implementation and evaluation
We performed five-fold cross-validation on the training data, where the 10 training sets were mixed 
and split into five folds randomly, and then each time a model was trained on four folds and evaluated 
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on the remaining fold. This process was repeated for five times and the average validation perfor-
mance was used to optimize the hyperparameters of the network. In the test phase, all five trained 
models from cross-validation were used to make predictions, which were averaged as the final predic-
tion of GPSite. Specifically, we adopted Pytorch 1.13.1 (Paszke et al., 2019) to implement GPSite, 
which contains a four-layer shared GNN with 128 hidden units and four attention heads. The Adam 
optimizer (Kingma and Ba, 2014) with the one-cycle learning rate policy (Smith and Topin, 2019) 
was used for model optimization on the binary cross entropy loss. Within each epoch, we randomly 
drew 25,000 samples from the training data with replacement to train our model using a batch size 
of 16. The training process lasted at most 25 epochs and we performed early stopping based on the 
validation performance, which took ~1.5 hr on an NVIDIA A100 GPU.

Similar to the previous works, we use recall, precision, accuracy, F1-score, Matthews correlation 
coefficient (MCC), AUC, and AUPR to evaluate the prediction performance, whose detailed definitions 
are given in Evaluation metrics. AUC and AUPR are independent of thresholds, thus reflecting the 
overall performance of a model. The other metrics are calculated by converting the predicted binding 
probabilities to binary predictions with a threshold for each ligand, which is determined by maximizing 
MCC on the validation sets. We adopted AUPR for hyperparameter selections as it is more sensitive 
and informative than AUC in imbalanced two-class classification tasks (Saito and Rehmsmeier, 2015).

High-throughput annotation and analysis on Swiss-Prot
We downloaded all the available 569,516 sequences in Swiss-Prot (release: 2023-05-03) and then 
removed sequences longer than 2700 residues (0.21%) due to the memory limit of GPUs, resulting 
in a total of 568,326 sequences. Non-standard amino acids in these sequences were also removed. 
ESMFold was applied to predict the structures from sequences on 16 NVIDIA A100 (80 GB) GPUs, 
which cost ~8.5 days. The structure preprocessing and feature extraction (by ProtTrans and DSSP) 
procedures overall cost ~4 hr on the same GPU cluster, and the inference of binding sites using GPSite 
took ~1 hr.

For the downstream analyses of protein function and variant, we only considered the predicted 
protein structures with length ≥50 and pTM >0.7 evaluated by ESMFold, consisting of 370,140 struc-
tures eventually. Interface residues are defined as residues with predicted binding probabilities higher 
than the pre-defined thresholds described in implementation and evaluation. Surface residues on 
the predicted structures are defined as the residues with RSA  >5% (Jones and Thornton, 1997) 
computed by DSSP. The annotated GO terms of molecular function and biological process for all 
sequences were downloaded from UniProt (UniProt Consortium, 2023), and we up-propagated the 
annotations using all types of relationships defined in the hierarchical structure of GO (release: 2023-
05-10). The binding proteins of a specific ligand were determined as those annotated with the corre-
sponding ligand-binding molecular function, and the non-binding proteins were randomly sampled to 
the same number as binding proteins. Concretely, we collected 21680, 42074, 1240, 24108, 74428, 
4960, 15030, 2088, 24161, and 4093 binding proteins from Swiss-Prot for DNA, RNA, peptide, protein, 
ATP, HEM, Zn2+, Ca2+, Mg2+, and Mn2+ respectively. The pathogenicity annotations of human protein 
altering variants were downloaded from UniProt (release: 2023_02), which contain UniProt manually 
reviewed natural variants, as well as variants imported from other public resources such as Ensembl 
Variation (Martin et al., 2023) and ClinVar (Landrum et al., 2018), and the conflicting annotations 
were removed.
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Appendix 1

Brief introductions to the competitive methods
DRNApred (Yan and Kurgan, 2017)
DRNApred is a sequence-based DNA- and RNA-binding site predictor, which is based on a logistic 
regression input with sequence features including evolutionary information, that is hidden Markov 
models (HMM) profile and predicted structural properties including secondary structure (SS), relative 
solvent accessibility (RSA), and disorder. We used its webserver (http://biomine.cs.vcu.edu/servers/​
DRNApred/) for performance evaluation.

NCBRPred (Zhang et al., 2021)
NCBRPred is a sequence-based DNA- and RNA-binding site predictor, which is based on a 
bidirectional Gated Recurrent Units (BiGRUs) input with sequence features including the evolutionary 
information PSSM (position-specific scoring matrix) and HMM, as well as the predicted RSA and SS. 
We used its webserver (http://bliulab.net/NCBRPred/server) for performance evaluation.

NucBind, SVMnuc, and COACH-D
NucBind (Su et  al., 2019) is a structure-based DNA- and RNA-binding site predictor, which 
combines the predictions from a support vector machine (SVM) based ab-initio method SVMnuc 
and a template-based method COACH-D (Wu et al., 2018). SVMnuc was trained with sequence 
features from PSSM, HMM and predicted SS. We used its webserver (http://yanglab.nankai.edu.cn/​
NucBind/) for evaluation.

GraphBind (Xia et al., 2021)
GraphBind is a structure-based nucleic-acid- and ligand-binding site predictor, which adopts a 
hierarchical graph neural network (GNN) for massage passing on protein residue graphs. Its input 
features mainly contain PSSM, HMM, SS, and atomic features. We used its standalone program with 
pre-trained model weights from http://www.csbio.sjtu.edu.cn/bioinf/GraphBind/sourcecode.html 
for inference and evaluation.

GeoBind (Li and Liu, 2023)
GeoBind is a structure-based nucleic-acid- and ligand-binding site predictor, which employs 
geodesic convolution to point cloud on the protein surface. Its input features contain HMM, atom 
type, and local curvature of the surface. We used its webserver (http://www.zpliulab.cn/GeoBind/) 
for evaluation.

GraphSite (Yuan et al., 2022b)
GraphSite is a sequence-based DNA-binding site predictor, which adopts a graph transformer for 
massage passing on protein residue graphs constructed from AlphaFold2-predicted structures. 
Its input features contain sequence representations from AlphaFold2, PSSM, HMM, and structural 
properties (RSA, SS and torsion angles) from DSSP. We used its standalone program with pre-trained 
model weights from https://github.com/biomed-AI/GraphSite (Yuan, 2023a), for inference and 
evaluation.

aaRNA (Li et al., 2014)
aaRNA is a structure-based RNA-binding site predictor, which employs a fully connected neural 
network input with sequence features based on PSSM and HMM, as well as structural features like 
RSA, SS, and curvature of the protein surface. We used its webserver (https://sysimm.ifrec.osaka-u.​
ac.jp/aarna/) for evaluation.

PepBind (Zhao et al., 2018)
PepBind is a sequence-based peptide-binding site predictor, which combines the predictions from a 
SVM-based ab-initio method SVMpep and two template-based methods S-SITE and TM-SITE (Yang 
et  al., 2013). SVMnuc was trained with sequence features from PSSM, HMM, predicted SS and 
predicted intrinsic disorder. The structures required by TM-SITE are predicted by the I-TASSER Suite 
(Yang et al., 2015). We used its webserver (http://yanglab.nankai.edu.cn/PepBind/) for evaluation.
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PepNN-Struct and PepNN-Seq (Abdin et al., 2022)
PepNN-Struct is a structure-based peptide-binding site predictor which employs a graph transformer 
network to encode the protein representations and applies reciprocal multi-head attention to 
model the interaction between the protein structure and peptide sequence. A one-hot encoding 
is used to represent the protein and peptide sequence information. The pre-trained contextualized 
language model ProtBert (Elnaggar et al., 2022) is also used to embed the protein sequences. To 
perform the peptide-agnostic binding site prediction, the model is input with random length poly-
glycine peptides. PepNN-Seq is similar to PepNN-Struct, except that the graph transformer model 
is substituted with an MLP. We used its standalone program with pre-trained model weights from 
https://gitlab.com/oabdin/pepnn for inference and evaluation.

PepBCL (Wang et al., 2022)
PepBCL is a sequence-based peptide-binding site predictor, which fine-tuned the pre-trained protein 
language model from Elnaggar et al., 2022 to predict peptide-binding sites. It also used contrastive 
learning to address the data imbalance problem. We adopted its standalone code with pre-trained 
model weights for inference and evaluation (https://github.com/Ruheng-W/PepBCL, Wang, 2023). 
There are two PepBCL models trained on two different datasets (1154 vs 640 training proteins), and 
here we report the results of the model trained on the larger dataset, since it performs slightly better.

DeepPPISP (Zeng et al., 2020)
DeepPPISP is a structure-based protein-protein binding site predictor, which utilizes one-hot protein 
sequence, PSSM, and SS as input. The model adopts a convolutional neural network (CNN) to capture 
local and global protein features. The predictions of DeepPPISP for the test proteins are directly 
obtained from our previous work (Yuan et al., 2021), which were originally produced by re-training 
DeepPPISP on our training set using its standalone code in https://github.com/CSUBioGroup/​
DeepPPISP (CSUBioGroup, 2019).

SPPIDER (Porollo and Meller, 2007)
SPPIDER is a structure-based protein-protein binding site predictor, which is based on a fully 
connected neural network input with sequence features including PSSM and structure features like 
RSA. The model measures the impacts from spatially neighboring residues by adopting weighted 
averages over features of spatially nearest neighbors. The predictions of SPPIDER for the test 
proteins are directly obtained from our previous work (Yuan et  al., 2021), which were originally 
generated by the SPPIDER webserver (https://sppider.cchmc.org/).

MaSIF-site (Gainza et al., 2020)
MaSIF-site is a structure-based protein-protein binding site predictor, which maps the geometric 
and chemical features on the protein surface to patches and uses the geodesic convolutional layers 
to capture the surface fingerprints. MaSIF-site does not rely on any features from multiple sequence 
alignments (MSA). The predictions of MaSIF-site for the test proteins are directly obtained from 
our previous work (Yuan et al., 2021), which were originally generated by the standalone program 
with pre-trained model weights through a docker container from https://github.com/lpdi-epfl/masif 
(Gainza, 2021).

GraphPPIS (Yuan et al., 2021)
GraphPPIS is a structure-based protein-protein binding site predictor, which exploits a deep graph 
convolutional neural network (GCN) with initial residual and identity mapping to refine information 
in the protein residue graphs. The input features of GraphPPIS consist of PSSM, HMM, and structural 
properties (RSA, SS and torsion angles) from DSSP. The prediction results for the test proteins can 
be obtained from our webserver (http://bio-web1.nscc-gz.cn/app/graphppis-v2) or the standalone 
program (https://github.com/biomed-AI/GraphPPIS, Yuan, 2023b).

ScanNet (Tubiana et al., 2022)
ScanNet is a structure-based protein-protein binding site predictor, which adopts geometric deep 
learning for massage passing on protein atom graphs. Its input features mainly contain atomic 
features and PSSM. We used its standalone program with pre-trained model weights from https://​
github.com/jertubiana/ScanNet, Tubiana, 2023 for inference and evaluation.
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PeSTo (Krapp et al., 2023b)
PeSTo is a structure-based protein-protein binding site predictor, which adopts a geometric 
transformer for massage passing on protein atom graphs. Its input feature only contains the atomic 
type. We used its standalone program with pre-trained model weights from https://github.com/​
LBM-EPFL/PeSTo (Krapp, 2023a) for inference and evaluation.

TargetS (Yu et al., 2013)
TargetS is a sequence-based ligand-binding site predictor, which extracts evolutionary information 
(PSSM), predicted SS and ligand-specific binding propensity from sequence context using a sliding-
window strategy. It then employs several SVMs to learn the local binding patterns, which are 
assembled by the modified AdaBoost algorithm. We used its webserver (http://www.csbio.sjtu.edu.​
cn/TargetS/) for evaluation.

DELIA (Xia et al., 2020)
DELIA is a structure-based ligand-binding site predictor, which uses the bidirectional long short-term 
memory (BiLSTM) networks to refine sequence features including binding propensity from S-SITE, 
PSSM, HMM, predicted SS and predicted RSA, as well as a CNN to extract characteristics from 
the protein distance matrices. We used its webserver (http://www.csbio.sjtu.edu.cn/bioinf/delia/) for 
evaluation.

MIB (Lin et al., 2016)
MIB is a template-based metal ion-binding site predictor, where the fragment transformation 
method is used for structural comparison between query proteins and templates without any data 
training. The predictions of MIB for the test proteins are directly obtained from our previous work 
(Yuan et al., 2022c), which were originally generated from the MIB webserver (http://bioinfo.cmu.​
edu.tw/MIB/).

IonCom (Hu et al., 2016)
IonCom is a structure-based metal and acid radical ion-binding site predictor, which combines 
the predictions from an SVM-based ab-initio method IonSeq and four template-based methods 
including COFACTOR (Roy et al., 2012), TM-SITE, S-SITE, and COACH (Yang et al., 2013). IonSeq 
was trained with sequence features from PSSM, ligand-specific binding propensity, predicted 
SS, predicted RSA, etc. We used its standalone program with pre-trained weights from https://​
zhanggroup.org/IonCom/ for inference and evaluation.

LMetalSite (Yuan et al., 2022c)
LMetalSite is a sequence-based alignment-free metal ion-binding site predictor where the pre-trained 
protein language model ProtTrans is used to extract sequence embeddings and a transformer with 
multi-task learning is applied to capture the intrinsic similarities between different metal ions. The 
prediction results of the test proteins can be obtained from our webserver (http://bio-web1.nscc-​
gz.cn/app/lmetalsite) or the standalone program (https://github.com/biomed-AI/LMetalSite, Yuan, 
2022a).

Performance comparison between GPSite and PeSTo
Since 340 out of 375 proteins in our protein-protein binding site test set share  >30% identity 
with the training sequences of PeSTo, we performed a separate comparison between GPSite 
and PeSTo using the training and test datasets from PeSTo. By re-training with simply the same 
hyperparameters, GPSite achieves better performance than PeSTo (AUPR of 0.824 against 0.797) as 
shown in Appendix 2—table 4. Furthermore, when using ESMFold-predicted structures as input, 
the performance of PeSTo decreases substantially (AUPR of 0.691), and the superiority of our method 
will be further reflected. As in Krapp et al., 2023b, the performance of ScanNet is also included 
(AUPR of 0.720), which is also largely outperformed by GPSite.

Case study for the ribosome biogenesis protein ERB1
Here we present an example of an RNA-binding protein, i.e., the ribosome biogenesis protein 
ERB1 (PDB: 7R6Q, chain m), to illustrate the impact of predicted structure’s quality. As shown in 
Appendix 3—figure 5, ERB1 is an integral component of a large multimer structure comprising 
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protein and RNA chains (i.e. the state E2 nucleolar 60S ribosome biogenesis intermediate). Likely 
due to the neglect of interactions from other protein chains, ESMFold fails to predict the correct 
conformation of the ERB1 chain (TM-score=0.24). Using this incorrect predicted structure, GPSite 
achieves an AUPR of 0.580, lower than GraphBind input with the native structure (AUPR=0.636). 
However, the performance of GraphBind substantially declines to an AUPR of 0.468 when employing 
the predicted structure as input. Moreover, if GPSite adopts the native structure for prediction, a 
notable performance boost can be obtained (AUPR=0.681).

Generation of the evolutionary features from MSA
Evolutionarily conserved residues may contain motifs related to important protein properties. Here, 
we also evaluated the widely used evolutionary features from MSA in our ablation studies, including 
position-specific scoring matrix (PSSM) and hidden Markov models (HMM) profile. PSSM is produced 
by running PSI-BLAST (Altschul et al., 1997) to search the query sequence against UniRef90 (Suzek 
et al., 2007) with three iterations and an E-value of 0.001. HMM profile is generated by running 
HHblits (Remmert et al., 2011) against UniClust30 (Mirdita et al., 2017) with default parameters. 
Each residue is encoded into a 20-dimensional vector in PSSM or HMM. The feature values in the 
sequence representations from PSSM and HMM are further normalized to scores between 0 and 1 
as follows:

	﻿‍
vnorm = v − vmin

vmax − vmin ‍� (A1)

where ‍v‍ is the original feature value, and ‍vmin‍ and ‍vmax‍ are the minimum and maximum values of this 
feature type observed in the training set, respectively.

The effect of training with predicted structures
We examined the performance under different training and evaluation settings as shown in 
Appendix  2—table 9. As expected, the model yields exceptional performance (average AUPR 
of 0.656) when trained and evaluated using native structures. However, if this model is fed with 
predicted structures of the test proteins, the performance substantially declines to an average AUPR 
of 0.573. This trend aligns with the observations for other structure-based methods as illustrated in 
Figure 2. More importantly, in the practical scenario where only predicted structures are available 
for the target proteins, training the model with predicted structures (i.e. GPSite) results in superior 
performance than training the model with native structures (average AUPR of 0.594 against 0.573), 
probably owing to the consistency between the training and testing data. For completeness, the 
results in Appendix 3—figure 2 are also included where GPSite is tested with native structures 
(average AUPR of 0.637).

The cross-type performance of the multi-task network in GPSite
We conducted cross-type evaluations by applying different ligand-specific MLPs in GPSite for the 
test sets of different ligands. As shown in Appendix 2—table 10, for each ligand-binding site test 
set, the corresponding ligand-specific network consistently achieves the best performance. This 
indicates that the ligand-specific MLPs have specifically learned the binding patterns of particular 
molecules. We also noticed that the cross-type performance is reasonable for the ligands sharing 
similar properties. For instance, the DNA-specific MLP exhibits a reasonable AUPR when predicting 
RNA-binding sites, and vice versa. Similar trends are also observed between peptide and protein, as 
well as among metal ions as expected. Interestingly, the cross-type performance between ATP and 
HEM is also acceptable, potentially attributed to their comparable molecular weights (507.2 and 
616.5, respectively).

GPSite is effective for completing the function annotations in Swiss-
Prot
As depicted in Figure 5A, GPSite assigns relatively high prediction scores to the proteins without 
‘protein binding’ function in the Swiss-Prot annotations, leading to a modest AUC value of 0.608 
(Figure 5B). This may be ascribed to the fact that protein-protein interactions are ubiquitous in living 
organisms while the Swiss-Prot function annotations are incomplete. To support this hypothesis, 
we present two proteins as case studies, both sharing <20% sequence identity with the protein-
binding training set of GPSite. The first case is Aminodeoxychorismate synthase component 2 from 
Escherichia coli (UniProt ID: P00903). GPSite confidently predicted this protein as a protein-binding 
protein with a high prediction score of 0.936. Notably, this protein was not annotated with the 

https://doi.org/10.7554/eLife.93695
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‘protein binding’ function (GO:0005515) or any of its GO child terms in the Swiss-Prot database at 
the time of manuscript preparation (https://rest.uniprot.org/unisave/P00903?format=txt&versions=​
171, release: 2023-05-03). However, in the latest release of Swiss-Prot (https://rest.uniprot.org/​
unisave/P00903?format=txt&versions=174, release: 2023-11-08) during manuscript revision, this 
protein is annotated with the ‘protein heterodimerization activity’ function (GO:0046982), which 
is a child term of ‘protein binding’. In fact, the heterodimerization activity of this protein has been 
validated through experiments in the year of 1996 (PMID: 8679677), indicating the potential 
incompleteness of the Swiss-Prot annotations. The other case is Hydrogenase-2 operon protein 
HybE from Escherichia coli (UniProt ID: P0AAN1), which was also predicted as a protein-binding 
protein by GPSite (score=0.909). Similarly, this protein was not annotated with the ‘protein binding’ 
function in the Swiss-Prot database at the time of manuscript preparation (https://rest.uniprot.org/​
unisave/P0AAN1?format=txt&versions=108). However, in the latest release of Swiss-Prot (https://​
rest.uniprot.org/unisave/P0AAN1?format=txt&versions=111), this protein is annotated with the 
‘preprotein binding’ function (GO:0070678), which is a child term of ‘protein binding’. In fact, the 
preprotein binding function of this protein has been validated through experiments in the year of 
2003 (PMID: 12914940). These cases demonstrate the effectiveness of GPSite for completing the 
missing function annotations in Swiss-Prot.

Evaluation metrics
Following the previous studies, we use recall (Rec), precision (Pre), accuracy (Acc), F1-score (F1), 
Matthews correlation coefficient (MCC), area under the receiver operating characteristic curve 
(AUC), and area under the precision-recall curve (AUPR) to evaluate the prediction performance:

	﻿‍
Rec = TP

TP + FN ‍�
(A2)

	﻿‍
Pre = TP

TP + FP‍�
(A3)

	﻿‍
Acc = TP + TN

TP + TN + FP + FN ‍�
(A4)

	﻿‍
F1 = 2 × Pre × Rec

Pre + Rec ‍�
(A5)

	﻿‍

MCC = TP × TN − FN × FP√(
TP + FP

)
×

(
TP + FN

)
×

(
TN + FP

)
×

(
TN + FN

)
‍�

(A6)

where true positives (TP) and true negatives (TN) denote the numbers of correctly predicted binding 
and non-binding residues, and false positives (FP) and false negatives (FN) denote the numbers 
of incorrectly predicted binding and non-binding residues, respectively. AUC and AUPR are 
independent of thresholds, thus reflecting the overall performance of a model. The other metrics 
are calculated using a threshold to convert the predicted binding probabilities to binary predictions. 
We go through 101 thresholds from 0 to 1 with an interval of 0.01, and select the best threshold 
that maximizes MCC on the validation sets. We adopt AUPR for hyperparameter selections as it 
is more sensitive and informative than AUC in imbalanced two-class classification tasks (Saito and 
Rehmsmeier, 2015; Davis and Goadrich, 2006).
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Appendix 2

Appendix 2—table 1. Statistics of the 10 binding site benchmark datasets used in this study.

Molecule type

Training set Test set

Sequences Residues % of binding residues Sequences Residues % of binding residues

DNA 661 185,796 8.06 146 57,914 5.75

RNA 689 205,648 10.55 346 105,230 9.78

Peptide 1251 348,370 5.39 235 74,788 4.50

Protein 335 66,366 15.63 375 78,475 14.57

ATP 347 130,655 3.91 79 39,459 3.12

HEM 176 47,063 8.55 48 15,618 6.21

Zn2+ 1646 474,855 1.63 211 56,020 1.85

Ca2+ 1554 504,146 1.67 183 66,854 1.55

Mg2+ 1729 575,732 1.10 235 88,806 1.01

Mn2+ 547 181,699 1.41 57 20,419 1.10

Note: We combined the two test sets (Test_60 and Test_315) from Yuan et al., 2021 to establish our final protein-
protein binding site test set.

Appendix 2—table 2. The performance of GPSite on the five-fold cross-validation and independent 
test sets.

Molecule 
type

Five-fold cross-
validation Test set

AUC AUPR AUC AUPR

DNA 0.933 0.620 0.921 0.516

RNA 0.910 0.615 0.899 0.573

Peptide 0.858 0.406 0.836 0.345

Protein 0.819 0.491 0.836 0.484

ATP 0.960 0.688 0.975 0.714

HEM 0.963 0.778 0.971 0.802

Zn2+ 0.984 0.808 0.981 0.859

Ca2+ 0.901 0.515 0.921 0.565

Mg2+ 0.889 0.379 0.892 0.370

Mn2+ 0.964 0.734 0.974 0.709

Average 0.918 0.603 0.921 0.594

https://doi.org/10.7554/eLife.93695
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Appendix 2—table 3. Performance comparison of GPSite with state-of-the-art methods on the 10 
binding site test sets.

Test set Method Rec Pre Acc F1 MCC AUC AUPR

DNA

DRNApred 0.258 0.159 0.879 0.197 0.140 0.698 0.129

COACH-D 0.247 0.315 0.926 0.277 0.241 0.674 0.197

NCBRPred 0.225 0.316 0.927 0.263 0.230 0.763 0.229

SVMnuc 0.319 0.319 0.922 0.319 0.277 0.806 0.259

NucBind 0.333 0.329 0.923 0.331 0.290 0.806 0.264

GraphBind 0.607 0.355 0.914 0.448 0.422 0.884 0.424

GeoBind* 0.481 0.427 0.933 0.452 0.417 0.891 0.416

GeoBind 0.520 0.442 0.935 0.478 0.445 0.896 0.443

GraphSite 0.493 0.450 0.936 0.470 0.437 0.910 0.455

GPSite 0.463 0.525 0.945 0.492 0.464 0.921 0.516

RNA

COACH-D 0.073 0.210 0.882 0.108 0.071 0.463 0.111

DRNApred 0.092 0.236 0.882 0.133 0.093 0.530 0.142

NucBind 0.185 0.344 0.886 0.241 0.195 0.649 0.226

SVMnuc 0.227 0.371 0.887 0.282 0.232 0.742 0.275

NCBRPred 0.234 0.471 0.899 0.312 0.284 0.660 0.302

aaRNA 0.422 0.360 0.870 0.389 0.318 0.803 0.359

GeoBind 0.562 0.455 0.891 0.503 0.446 0.804 0.459

GraphBind* 0.576 0.342 0.850 0.429 0.365 0.828 0.433

GraphBind 0.633 0.400 0.871 0.491 0.436 0.861 0.506

GPSite 0.557 0.541 0.910 0.549 0.499 0.899 0.573

Peptide

PepNN-Seq 0.289 0.153 0.896 0.200 0.158 0.729 0.128

PepBind 0.062 0.576 0.956 0.112 0.178 0.655 0.148

PepNN-Struct* 0.351 0.180 0.899 0.238 0.202 0.765 0.163

PepNN-Struct 0.337 0.210 0.913 0.259 0.222 0.783 0.187

PepBCL 0.168 0.389 0.951 0.234 0.233 0.758 0.222

GPSite 0.257 0.481 0.954 0.335 0.330 0.836 0.345

Protein

DeepPPISP 0.607 0.211 0.612 0.314 0.157 0.657 0.258

SPPIDER 0.603 0.309 0.746 0.409 0.292 0.778 0.375

MaSIF-site 0.584 0.330 0.767 0.421 0.308 0.777 0.384

GraphPPIS 0.670 0.320 0.745 0.434 0.328 0.794 0.422

ScanNet* 0.551 0.361 0.792 0.436 0.326 0.788 0.399

ScanNet 0.568 0.442 0.832 0.497 0.403 0.832 0.476

GPSite 0.490 0.473 0.846 0.481 0.391 0.836 0.484

Appendix 2—table 3 Continued on next page
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Test set Method Rec Pre Acc F1 MCC AUC AUPR

ATP

TargetS 0.451 0.549 0.971 0.495 0.483 0.855 0.447

GraphBind 0.529 0.473 0.967 0.499 0.483 0.901 0.503

GeoBind 0.614 0.479 0.967 0.538 0.526 0.927 0.534

DELIA* 0.452 0.669 0.976 0.539 0.538 0.914 0.545

DELIA 0.453 0.689 0.977 0.547 0.548 0.918 0.559

GPSite 0.618 0.742 0.981 0.675 0.668 0.975 0.714

HEM

TargetS 0.504 0.756 0.959 0.605 0.598 0.892 0.581

GraphBind 0.733 0.505 0.939 0.598 0.578 0.926 0.638

DELIA 0.604 0.670 0.957 0.636 0.614 0.928 0.664

GeoBind* 0.646 0.625 0.954 0.635 0.611 0.920 0.659

GeoBind 0.707 0.710 0.964 0.709 0.689 0.932 0.724

GPSite 0.715 0.762 0.968 0.738 0.722 0.971 0.802

Zn2+

MIB 0.744 0.219 0.946 0.339 0.385 0.935 0.394

TargetS 0.454 0.749 0.987 0.566 0.578 0.874 0.593

IonCom* 0.849 0.145 0.904 0.248 0.327 0.939 0.676

IonCom 0.852 0.137 0.898 0.236 0.317 0.937 0.671

LMetalSite 0.681 0.859 0.992 0.760 0.761 0.976 0.803

GPSite 0.700 0.914 0.993 0.793 0.797 0.981 0.859

Ca2+

MIB 0.338 0.078 0.928 0.126 0.135 0.775 0.103

TargetS 0.121 0.490 0.984 0.194 0.238 0.776 0.163

IonCom 0.297 0.247 0.975 0.269 0.258 0.698 0.166

DELIA 0.172 0.633 0.986 0.271 0.325 0.785 0.248

GeoBind 0.279 0.515 0.985 0.362 0.372 0.895 0.348

GraphBind* 0.290 0.537 0.985 0.377 0.388 0.836 0.335

GraphBind 0.371 0.623 0.987 0.465 0.475 0.888 0.430

LMetalSite 0.413 0.724 0.988 0.526 0.542 0.905 0.492

GPSite 0.435 0.820 0.990 0.569 0.593 0.921 0.565

Mg2+

MIB 0.246 0.043 0.938 0.074 0.082 0.675 0.053

TargetS 0.118 0.491 0.990 0.190 0.237 0.724 0.148

IonCom 0.240 0.250 0.985 0.245 0.237 0.688 0.184

DELIA 0.129 0.650 0.991 0.215 0.287 0.744 0.198

GeoBind 0.181 0.475 0.990 0.263 0.289 0.840 0.227

GraphBind* 0.246 0.205 0.983 0.224 0.216 0.750 0.136

GraphBind 0.273 0.414 0.989 0.329 0.331 0.776 0.231

LMetalSite 0.245 0.728 0.991 0.367 0.419 0.865 0.316

GPSite 0.303 0.644 0.991 0.412 0.438 0.892 0.370

Appendix 2—table 3 Continued
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Test set Method Rec Pre Acc F1 MCC AUC AUPR

Mn2+

MIB 0.462 0.096 0.946 0.159 0.193 0.856 0.168

IonCom 0.511 0.245 0.977 0.331 0.344 0.833 0.304

TargetS 0.271 0.496 0.989 0.351 0.362 0.864 0.322

GeoBind 0.569 0.479 0.988 0.520 0.516 0.938 0.454

DELIA 0.502 0.665 0.992 0.572 0.574 0.902 0.489

GraphBind* 0.378 0.644 0.991 0.476 0.489 0.928 0.473

GraphBind 0.427 0.706 0.992 0.532 0.545 0.930 0.555

LMetalSite 0.613 0.719 0.993 0.662 0.661 0.966 0.625

GPSite 0.613 0.807 0.994 0.697 0.701 0.974 0.709

Note: The best/second-best AUC and AUPR values are indicated by bold/underlined fonts. For the best 
experimental structure-based method (measured by AUPR) in each test set, its corresponding result when using 
ESMFold-predicted structures as input is denoted with *.

Appendix 2—table 4. Performance comparison of GPSite with ScanNet and PeSTo on the protein-
protein binding site test set from PeSTo (Krapp et al., 2023b).

Method AUPR AUC MCC

ScanNet 0.720 0.897 0.510

PeSTo* 0.691 0.886 0.451

PeSTo 0.797 0.929 0.636

GPSite 0.824 0.942 0.637

Note: The performance of ScanNet and PeSTo are 
directly obtained from Krapp et al., 2023b. PeSTo* 
denotes evaluation using the ESMFold-predicted 
structures as input. The metrics provided are the 
median AUPR, median AUC and median MCC. The 
best/second-best results are indicated by bold/
underlined fonts.

Appendix 2—table 5. The numbers of proteins with TM-score >0.7 or ≤0.7 between native and 
ESMFold-predicted structures in the 10 binding site datasets.

Molecule type

Training set Test set

>0.7 ≤0.7 >0.7 ≤0.7

DNA 520 141 104 42

RNA 428 261 175 171

Peptide 1074 177 175 60

Protein 293 42 321 54

ATP 314 33 62 17

HEM 159 17 43 5

Zn2+ 1428 218 160 51

Ca2+ 1377 177 150 33

Mg2+ 1565 164 195 40

Mn2+ 512 35 52 5

Appendix 2—table 3 Continued

https://doi.org/10.7554/eLife.93695


 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Yuan et al. eLife 2024;13:RP93695. DOI: https://doi.org/10.7554/eLife.93695 � 30 of 39

Appendix 2—table 6. The prediction quality of ESMFold measured by TM-score between native 
and predicted structures in the 10 binding site datasets.

Molecule type

Training set Test set Total

Median Mean Median Mean Median Mean

DNA 0.90 0.82 0.88 0.79 0.89 0.82

RNA 0.79 0.73 0.70 0.65 0.76 0.70

Peptide 0.93 0.86 0.88 0.78 0.93 0.85

Protein 0.94 0.87 0.93 0.85 0.93 0.86

ATP 0.95 0.89 0.90 0.83 0.94 0.88

HEM 0.95 0.89 0.94 0.87 0.94 0.88

Zn2+ 0.94 0.87 0.91 0.82 0.93 0.86

Ca2+ 0.95 0.88 0.93 0.85 0.94 0.88

Mg2+ 0.95 0.90 0.93 0.86 0.95 0.89

Mn2+ 0.96 0.92 0.95 0.91 0.96 0.91

Appendix 2—table 7. The ablation studies on protein features and model designs in the 10 binding 
site test sets.

Method DNA RNA Pep Pro ATP HEM Zn2+ Ca2+ Mg2+ Mn2+ Avg

w/o sequence 0.389 0.473 0.251 0.396 0.646 0.726 0.791 0.503 0.338 0.646 0.516

One-hot 0.429 0.506 0.254 0.427 0.645 0.755 0.840 0.564 0.359 0.673 0.545

MSA profile 0.507 0.557 0.281 0.463 0.671 0.791 0.814 0.540 0.369 0.683 0.568

w/o structure 0.437 0.503 0.242 0.394 0.544 0.565 0.793 0.468 0.288 0.607 0.484

w/o geometry 0.484 0.539 0.318 0.439 0.631 0.670 0.813 0.489 0.313 0.638 0.533

Single-task 0.506 0.549 0.338 0.455 0.669 0.716 0.843 0.557 0.326 0.632 0.559

GPSite 0.516 0.573 0.345 0.484 0.714 0.802 0.859 0.565 0.370 0.709 0.594

Note: The numbers in this table are AUPR values. Bold fonts indicate the best results. ‘Pep’ and ‘Pro’ denote 
peptide and protein, respectively. ‘Avg’ means the average AUPR values among the 10 test sets. ‘One-hot’ 
denotes replacing the ProtTrans embedding with one-hot sequence encoding. The generation of the MSA 
profile (PSSM and HMM) is detailed in Generation of the evolutionary features from MSA. ‘w/o structure’ means 
using a transformer model only input with the ProtTrans sequence features. ‘w/o geometry’ means removing the 
geometric featurizer in GPSite.

Appendix 2—table 8. Performance comparison between GPSite and the baseline model using MSA 
profile for proteins with different Neff values in the combined test set of the 10 ligands.

Neff Sequences Residues MSA AUC GPSite AUC p-value

[1, 2) 67 18,236 0.818 0.850 4.3×10–8

[2, 3) 32 9395 0.856 0.854 0.72

[3, 4) 71 18,328 0.895 0.894 0.13

[4, 5) 133 30,392 0.901 0.896 4.0×10–4

[5, 6) 182 39,858 0.909 0.916 9.8×10–4

[6, 7) 226 60,128 0.915 0.913 0.10

[7, 8) 257 92,791 0.920 0.931 1.1×10–9

[8, +∞) 947 334,455 0.919 0.935 7.0×10–10

Note: Significance tests are performed following the procedure in Yan and Kurgan, 2017; Xia et al., 2021. If 
p-value <0.05, the difference between the performance is considered statistically significant.

https://doi.org/10.7554/eLife.93695
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Appendix 2—table 9. Performance comparison on the 10 binding site test sets under different 
training and evaluation settings.

Setting DNA RNA Pep Pro ATP HEM Zn2+ Ca2+ Mg2+ Mn2+ Avg

Train: native
Test: native

0.587 0.634 0.368 0.552 0.746 0.846 0.905 0.705 0.428 0.786 0.656

Train: native
Test: predicted

0.497 0.554 0.311 0.459 0.704 0.784 0.826 0.546 0.352 0.694 0.573

Train: predicted
Test: native

0.554 0.610 0.371 0.529 0.733 0.844 0.890 0.660 0.415 0.761 0.637

Train: predicted
Test: predicted
(GPSite)

0.516 0.573 0.345 0.484 0.714 0.802 0.859 0.565 0.370 0.709 0.594

Note: The numbers in this table are AUPR values. ‘Pep’ and ‘Pro’ denote peptide and protein, respectively. ‘Avg’ 
means the average AUPR values among the 10 test sets. ‘native’ and ‘predicted’ denote applying native and 
predicted structures as input, respectively.

Appendix 2—table 10. Cross-type performance by applying different ligand-specific MLPs in 
GPSite for the test sets of different ligands.

Ligand-specific MLP

Ligand-binding site test set

DNA RNA Pep Pro ATP HEM Zn2+ Ca2+ Mg2+ Mn2+

DNA 0.516 0.461 0.158 0.327 0.123 0.425 0.032 0.033 0.028 0.072

RNA 0.381 0.573 0.170 0.332 0.189 0.549 0.038 0.049 0.037 0.093

Pep 0.170 0.199 0.345 0.410 0.089 0.479 0.046 0.027 0.028 0.080

Pro 0.187 0.214 0.201 0.484 0.031 0.117 0.030 0.026 0.015 0.025

ATP 0.193 0.319 0.165 0.296 0.714 0.762 0.036 0.076 0.062 0.138

HEM 0.231 0.316 0.236 0.321 0.544 0.802 0.073 0.026 0.040 0.086

Zn2+ 0.076 0.164 0.069 0.197 0.077 0.115 0.859 0.136 0.111 0.622

Ca2+ 0.091 0.197 0.079 0.234 0.151 0.074 0.114 0.565 0.317 0.460

Mg2+ 0.117 0.206 0.091 0.232 0.265 0.208 0.192 0.468 0.370 0.597

Mn2+ 0.108 0.196 0.095 0.226 0.245 0.237 0.627 0.390 0.321 0.709

Note: ‘Pep’ and ‘Pro’ denote peptide and protein, respectively. The numbers in this table are AUPR values. The 
best/second-best result in each test set is indicated by bold/underlined font.

https://doi.org/10.7554/eLife.93695
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Appendix 3
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Appendix 3—figure 1. Runtime comparison of the GPSite webserver with other top-performing servers. Five 
protein chains (i.e. 8HN4_B, 8USJ_A, 8C1U_A, 8K3V_A, and 8EXO_A) comprising 100, 300, 500, 700, and 900 
residues, respectively, were selected for testing, and the average runtime is reported for each method. Note 
that a significant portion of GPSite’s runtime (75 s, indicated in orange) is allocated to structure prediction using 
ESMFold.

https://doi.org/10.7554/eLife.93695
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Appendix 3—figure 2. The performance of GPSite when using native or predicted structures as input during the 
test phase.
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Appendix 3—figure 3. Distributions of the TM-scores between native and predicted structures in the protein, 
ATP, HEM, Zn2+, Ca2+, Mg2+, and Mn2+ datasets.
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Appendix 3—figure 4. The performance of GPSite on structures of different qualities, and the comparisons with 
the best experimental structure-based methods in the test sets of protein, ATP, HEM, Zn2+, Ca2+, Mg2+, and Mn2+. 
The experimental structure-based methods input with ESMFold-predicted structures are marked with *. Since 
there are only 5 proteins with TM-score ≤0.7 in the HEM and Mn2+ test sets (details shown in Appendix 2—table 
5), the corresponding results may not be statistically significant.

https://doi.org/10.7554/eLife.93695
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Appendix 3—figure 5. The prediction results of GPSite and GraphBind for the ribosome biogenesis protein 
ERB1. (A) The state E2 nucleolar 60S ribosome biogenesis intermediate (PDB: 7R6Q). The ribosome biogenesis 
protein ERB1 (chain m) is highlighted in blue, while other protein chains are colored in gray. The RNA chains are 
shown in orange. (B) The RNA-binding sites on ERB1 (colored in red). (C) The ESMFold-predicted structure of ERB1 
(TM-score=0.24). The RNA-binding sites are also mapped onto this predicted structure (colored in red). (D–G) The 
prediction results of GPSite and GraphBind for the predicted and native ERB1 structures. The confidence of the 
predictions is represented with a gradient of color from blue for non-binding to red for binding.

https://doi.org/10.7554/eLife.93695
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Appendix 3—figure 6. The run time of ESMFold with respect to the sequence length in Swiss-Prot evaluated on 
an NVIDIA A100 GPU. The run time is presented as mean ± standard deviation per range of number of residues 
(range size equals 100).

https://doi.org/10.7554/eLife.93695
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Appendix 3—figure 7. The univariate and bivariate distributions of the protein length and the pTM estimated by 
ESMFold of the Swiss-Prot sequences. The probability density curves are fit using kernel density estimation. The 
darker region in the bivariate heatmap corresponds to a higher number of samples.

https://doi.org/10.7554/eLife.93695
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Appendix 3—figure 8. The percentage of proteins predicted as binding to peptide, protein, ATP, HEM, Zn2+, 
Ca2+, Mg2+ and Mn2+ by GPSite to be annotated with certain biological process in Swiss-Prot. Only the specific 
biological process terms with depth ≥8 in the GO directed acyclic graph are considered, among which the 15 
terms with the highest percentage are displayed.

https://doi.org/10.7554/eLife.93695
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Appendix 3—figure 9. The percentage of pathogenic or benign natural variant sites within GPSite-predicted 
interfaces. The baseline is the probability of a random residue being annotated as an interface residue.

https://doi.org/10.7554/eLife.93695
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