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This paper provides an important method that uses a computational model to predict photo-
receptor currents in mammalian photoreceptors. By inverting the model, visual stimuli can be 
constructed to produce desired photoreceptor current responses. The authors provide compelling 
evidence that this approach can disentangle the effects of photoreceptor nonlinearities including 
light adaptation from downstream nonlinear processing, thus facilitating future studies of the higher 
visual system.

Abstract Computation in neural circuits relies on the judicious use of nonlinear circuit compo-
nents. In many cases, multiple nonlinear components work collectively to control circuit outputs. 
Separating the contributions of these different components is difficult, and this limits our under-
standing of the mechanistic basis of many important computations. Here, we introduce a tool that 
permits the design of light stimuli that predictably alter rod and cone phototransduction currents – 
including stimuli that compensate for nonlinear properties such as light adaptation. This tool, based 
on well-established models for the rod and cone phototransduction cascade, permits the separation 
of nonlinearities in phototransduction from those in downstream circuits. This will allow, for example, 
direct tests of how adaptation in rod and cone phototransduction affects downstream visual signals 
and perception.

Introduction
A central goal in neuroscience is to understand how behaviorally significant computations are imple-
mented by cellular and synaptic mechanisms (see Churchland and Abbott, 2016). Such computations 
typically rely on a diverse collection of interacting circuit mechanisms, many of which are nonlinear 
(Gollisch and Meister, 2010; Isaacson and Scanziani, 2011; Jadzinsky and Baccus, 2013; Zador, 
2000). Circuit outputs – which are often most amenable to experimental measurement – typically do 
not uniquely identify the role of specific circuit mechanisms. Hence progress toward understanding 
the mechanistic basis of circuit function requires better tools to manipulate specific mechanisms and 
identify their contribution to circuit output.

Sensory systems provide a clear example of these issues. Sensory processing is strongly shaped 
by the properties of the sensory receptors themselves and by post-receptor circuit mechanisms. Yet 
separating the contributions of receptor and post-receptor mechanisms to circuit outputs can be 
difficult, and computational models often make untested assumptions about their relative importance. 
For example, models for retinal processing generally assume that photoreceptor responses are linear 
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or near linear, despite decades of direct evidence that this is not the case (reviewed by Burns and 
Baylor, 2001; Schwartz, 2021). Adaptation to changes in mean light intensity provides a specific and 
important example. Both photoreceptors and post-photoreceptor circuits adjust response properties 
such as gain and kinetics to match the prevailing light inputs (reviewed by Demb, 2008; Dunn and 
Rieke, 2006), yet models for retinal outputs typically start by passing light inputs through a linear 
spatio-temporal filter; this architecture includes linear–nonlinear (Chichilnisky, 2001), generalized-
linear (Pillow et al., 2008), and computational neural network (CNN) (McIntosh et al., 2016; Turner 
et al., 2019) models. Models with an initial linear filtering stage cannot capture the spatially local 
adaptation produced by photoreceptors. Tools that separate receptor and post-receptor contribu-
tions to adaptation are needed to better understand how this salient aspect of retinal processing 
works.

Here, we show how we can predictably manipulate the responses of rod and cone photoreceptors 
to causally probe their role in shaping responses of downstream visual neurons. We build on decades 
of work identifying and testing biophysical models for rod and cone phototransduction (Nikonov 
et al., 2000; Pugh and Lamb, 1993; Rieke and Baylor, 1998a; Younger et al., 1996). We show that 
existing phototransduction models, with appropriate parameters, can account for responses of rod 
and cone photoreceptors from both primate and mouse to a broad range of inputs. The resulting 
forward models can be used as a front end for encoding models for responses of downstream visual 
neurons, resulting in a better accounting for early time-dependent nonlinearities. We then show that 
these models can be mathematically inverted – enabling the design of stimuli that will elicit photore-
ceptor responses with specific desired properties such as a linear dependence on light input. Direct 
recordings of responses to these stimuli show that they work as designed. This approach provides a 
tool that can be used to predictably shape the photoreceptor responses and hence to casually dissect 
the impact of specific properties of the phototransduction currents on downstream visual signaling 
and perception.

Results
Biochemical model
We chose a model architecture based on the biochemical interactions that comprise the phototrans-
duction cascade. We chose this model rather than empirical models (e.g. Clark et al., 2013) because 
it was more clearly connected to the mechanistic operation of the phototransduction cascade and 
because it was exactly invertible (see Angueyra et al., 2022 for comparison of the biochemical model 
with empirical models).

Combined work in biochemistry, molecular biology, and physiology has produced a clear under-
standing of the operation of the phototransduction cascade (Figure  1A; reviewed by Burns and 
Baylor, 2001; Rieke and Baylor, 1998b; Schwartz, 2021). In brief, the phototransduction current 
flows through cGMP-gated channels in the photoreceptor outer segment. Levels of cGMP, and hence 
the phototransduction current, are maximal in darkness. Light activates G-protein-coupled recep-
tors, which activate G-proteins and a cGMP-phosphodiesterase (PDE). The resulting decrease in 
cGMP concentration allows some cGMP-gated channels to close and decreases the current. Levels of 
cGMP are restored by synthesis of cGMP by a guanylate cyclase; cyclase activity is sped by a calcium-
feedback pathway that strongly shapes light responses (Burns et al., 2002).

The biochemical understanding summarized in Figure 1A has led to several quantitative models 
for phototransduction (Nikonov et  al., 2000; Pugh and Lamb, 1993; Rieke and Baylor, 1998a; 
Younger et al., 1996). We focus on a set of differential equations that form the core of these models. 
Our goal was to develop a model that generalized across stimuli rather than one in which the param-
eters provide accurate estimates of how specific components of the cascade work. Below we show 
that the model illustrated in Figure 1A, with appropriate parameters, captures the responses of rod 
and cone photoreceptors to a variety of stimuli. Most importantly for our purposes here, the models 
are sufficiently accurate to enable us to accurately predict stimuli that elicit desired photoreceptor 
responses, as tested in Figures 6–9.

Our phototransduction model has a total of 11 parameters (Figure 1A). Two of these (q and Smax) 
can be expressed in terms of others using steady state conditions – for example the constraint that 
dC(t)/dt = 0 in steady state. Several others were fixed based on previous measurements and their 
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relatively minor impact on model predictions; this included k, n, and m for both rods and cones 
(Koutalos et al., 1995b; Rieke and Baylor, 1996) and β for rods (Field and Rieke, 2002). The dark 
cGMP concentration was estimated from the measured dark current for each recorded cell. The 
receptor and PDE decay rates (σ and Φ) had near identical effects on predictions (see Pugh and Lamb, 
1993) and were constrained to be equal. These considerations allowed us to reduce the number of 
free model parameters to 4 for rods and 5 for cones. This choice reflects a balance of minimizing the 

Figure 1. Model and fitting procedure. (A) Phototransduction cascade and differential equations that describe the operation of key components. 
Abbreviations are as follows: Stim: stimulus; R: receptor (photopigment) activity; P: phosphodiesterase activity; G: cGMP concentration; S: rate of cGMP 
synthesis; I: membrane current; C: calcium concentration. (B) Fits (red) of a model with four free parameters (γ, σ, η, KGC) to the responses of a mouse 
rod (see Table 1). All measured responses are from the same rod, and all model responses use the same values for the free parameters. Responses 
to different flash strengths or flash timing have been displaced vertically in the left two panels. The weakest flash in the far left panel produced on 
average ~3 activated rhodopsin molecules, and each successive flash was twice as bright. The bottom trace in the middle panel was to a light step 
alone, while the other traces in this panel each had five superimposed flashes. The horizontal scale bar for the inset in B is 1 s.

https://doi.org/10.7554/eLife.93795
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number of free model parameters while providing sufficient flexibility to capture key aspects of the 
light response.

The free parameters consisted of the gain γ with which photons are converted to photopigment 
activity, the photopigment decay rate σ, the spontaneous PDE activation rate η, the constant KGC spec-
ifying the calcium sensitivity of the cGMP synthesis rate, and (for cones) the rate β of Ca2+ extrusion. 
This choice of free parameters is not unique given the similar impact of some parameters on model 
output (such as σ and Φ). But, as indicated below, it provided sufficient flexibility to capture measured 
responses to a variety of stimuli. We numerically identified optimal values for these parameters sepa-
rately for each photoreceptor type (see Methods).

We were able to collect responses to a larger set of stimuli from individual rods than cones due to 
differences in recording techniques. We recorded from rod photoreceptors using suction electrodes, 
which allow for stable, long-lasting recordings. This allowed us to measure responses to a comprehen-
sive set of stimuli from each individual rod. We recorded from cone photoreceptors using whole-cell 
patch clamp recordings. Light responses are stable in these recordings for a much shorter time (due 
to internal dialysis), and consequently we recorded responses to a single stimulus type from each 
individual cone. Despite these differences in data collection, we identified values for the free param-
eters in both rod and cone models by numerically minimizing the mean-squared error (MSE) between 
model predictions and measured responses (see Methods for more details).

Fitting rod phototransduction models
We measured responses of mouse and macaque rod photoreceptors to a set of stimuli consisting of a 
family of brief flashes of different strengths, flashes delivered at several times relative to the onset and 
offset of a light step, and a ‘variable mean noise stimulus’ consisting of Gaussian noise with periodic 
changes in mean intensity (Figure 1B; see Methods for experimental details). The variable mean noise 
stimulus approximates the large and frequent changes in input that are characteristic of natural vision 
(Frazor and Geisler, 2006). These large (up to 30-fold) changes in mean intensity strongly engage 
photoreceptor adaptation, and the superimposed Gaussian noise probes sensitivity to rapidly varying 
inputs.

We recorded responses to this collection of stimuli for each rod in our dataset. We fit mouse and 
macaque rods separately, in each case seeking a common model (i.e. with the same parameters) 

Table 1. Parameters and best fit consensus values for biophysical phototransduction models for each cell type (see Methods for 
fitting details).

Parameter Symbol Units Type

Photoreceptor type

Primate
cone

Mouse
cone

Primate
rod

Mouse
rod

Opsin decay rate const. ‍σ‍ ‍s−1‍ Free 22 9.74 7.07 7.66

PDE decay rate const. ‍ϕ‍ ‍s−1‍ Constrained (φ = σ) 22 9.74 7.07 7.66

PDE dark activation rate η ‍s−1‍ Free 2000 761 2.53 1.62

Dark current ‍ID‍ pA Measured −240 to −428 −41 to −80 −19 to −37 −16 to −24

cGMP concentration in dark ‍GD‍ ‍µM‍ Derived 28.7 to 35 15.9 to 20 12.1 to 15.0 11.4 to 13.1

cGMP-to-current constant k ‍pAµM−3‍ Fixed 0.01 0.01 0.01 0.01

cGMP channel cooperativity n Unitless Fixed 3 3 3 3

Ca2+ concentration in dark ‍CD‍ ‍µM‍ Fixed 1 1 1 1

Ca2+ extrusion rate constant ‍β‍ ‍s−1‍
Fixed (rods)
Free (cones) 9 2.64 25 25

Cooperativity of GC Ca2+ dependence m Unitless Fixed 4 4 4 4

Affinity of GC Ca2+ dependence ‍KGC‍ ‍µM‍ Free 0.5 0.4 0.5 0.4

Opsin gain ‍γ ‍ Unitless Free 10 10 4.2 8

https://doi.org/10.7554/eLife.93795
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that fit responses across stimuli. We identified model parameters by numerically minimizing the MSE 
between the model predictions and measured responses across stimuli (see Methods).

Figure  1B compares the predicted and measured responses of a mouse rod photoreceptor. 
Predicted and measured responses are not identical – for example the model predicts a faster initial 
rising phase of the flash response than that measured and underestimates the amplitude of flashes 
delivered shortly after a light step. Nonetheless, a common model specified by four free parameters 
(γ, σ, η, and KGC) accounts for many aspects of the responses to this set of stimuli. These parameters 
were well constrained by fitting the measured responses: best-fit parameters varied by ~10% across 
different photoreceptors, and the MSE increased significantly for 10–20% changes in parameters (see 
Methods for a more detailed analysis).

To arrive at consensus models for rod transduction currents, we fit measured responses from 
multiple rods from either primate or mouse simultaneously. We first used the measured dark current 
and the previously measured relation between current and cGMP (Equation 4 in Figure 1; Rieke 
and Baylor, 1996) to specify the cGMP concentration in darkness for each cell. We then allowed γ to 
vary between cells to account for differences in sensitivity. The remaining parameters (σ, η, and KGC) 
were constrained to have the same value across cells. We then numerically identified best values for 
these parameters by minimizing the MSE between model predictions and the set of recorded rod 
responses. These consensus models provide our best estimate of how an unrecorded cell of a given 
type will respond; these models provide the foundation for the manipulations of the photoreceptor 
responses in Figures 6–10. Consensus parameters for mouse and primate rods were very similar (see 
Table 1).

Fitting cone phototransduction models
Due to the limited duration of the cone recordings, we focused on the variable mean noise stimulus. 
This stimulus was the most effective in constraining cone model parameters, likely because it strongly 
engages adaptation and thoroughly probes response dynamics.

We identified consensus cone models by fitting measured responses to the variable mean noise 
stimulus from multiple cones simultaneously, as described above for the rods. Four parameters (σ, 
η, KGC, and β) were constrained to have the same value across cones, while γ was allowed to vary 
across cells. Consensus parameters for mouse and primate cones differed substantially, reflecting 
the ~twofold faster kinetics of primate cone responses (flash response time-to-peak is  ~35 ms in 
primate cones, and ~70 ms in mouse cones; see Table 1). For primate cones, performance using 
these consensus parameters was very similar to that from the parameters in Angueyra et al., 2022; 
for consistency we used these published parameters for our consensus model.

Model performance
Figure 2 tests the performance of the consensus models for both rod and cone photoreceptors. We 
focused on the variable mean noise stimulus since it probes responses to rapid stimulus variations 
and large changes in mean intensity that strongly engage photoreceptor nonlinearities. For each 
individual cell, we specified the dark cGMP concentration (GD) using the measured dark current and 
allowed the overall gain γ to vary; the remaining parameters were set to the consensus model values 
in Table 1. The resulting models (red) captured the measured responses (black) well.

For each recorded cell, the consensus models captured more than 80% of the variance of the 
responses (Figure 2B); on average these models captured ~90% of the variance. We compared the 
performance of the consensus models with that of models fit to each cell individually. Consensus 
models and models fit to individual cells performed similarly (Figure 2B). Models also generalized well 
across stimuli and to cells that did not contribute to the fits (Figure 2—figure supplement 1). This 
suggests that the consensus models can be used to predict responses of unrecorded cells.

Figure 2 also shows predictions of a linear phototransduction model (blue) (see Methods). Rod and 
cone phototransduction currents depend linearly on light intensity for low-contrast inputs (e.g. Baylor 
et al., 1984; Hass et al., 2015; Schnapf et al., 1990). Hence, the linear model was fit to responses 
of the full model to low-contrast inputs at the mean intensity of the variable mean noise stimulus 
(25 R*/rod/s for rods and 22,000 R*/cone/s for cones; see Methods for model construction details); 
this means that the differences between the linear and full model responses can be directly attributed 
to nonlinearities in phototransduction. Linear predictions deviated from the measured responses 
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considerably more than did predictions of our biochemical model (Figure  2—figure supplement 
2). Specifically, linear models overpredicted responses at high mean light levels, and underpredicted 
responses at low mean light levels. Some of these issues could be resolved by adding a free scale 
factor (e.g. in Figure 2—figure supplement 2) or a time-independent nonlinearity to the linear model 
(i.e. a linear–nonlinear model); however, responses to many stimuli show clear time-dependent nonlin-
earities that are not captured by linear–nonlinear models (e.g. Figure 6; see also Angueyra et al., 
2022). The biochemical model, though not perfect, tracked the measured responses quite well.

Figures  1 and 2 indicate that the known components of the phototransduction cascade, with 
appropriate parameters, can account for the full time course of the rod and cone photocurrents, 
including the nonlinearities in the photoreceptor responses. These models will not capture slow forms 
of adaptation that might become important, for example, at high light levels; for the range of stimuli 
used here, such slow adaptation contributes little to the photoreceptor currents (e.g. Angueyra et al., 
2022). Our central goal was to use these models to design stimuli that permit predictable manip-
ulations of the photoreceptor responses. Hence, more important than the accuracy of the forward 
model is the ability to predict stimuli the elicit desired responses. We directly evaluate these stimulus 
predictions below.

Model inversion
In this section, we show that the model illustrated in Figure 1A can be exactly inverted to identify 
the stimulus that corresponds to a specific desired photoreceptor response. The resulting unique 
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Figure 2. Photoreceptor model and fits. (A) Comparison of measured responses (black) with predictions of full (red) and linear model (blue) to variable 
mean noise stimulus (gray). Full model responses used consensus parameters from fitting responses of multiple cells of each type simultaneously, with 
the dark current and sensitivity allowed to vary between cells (see Methods and Table 1). The linear model was generated from fitting the low-contrast 
responses of the full model (see Methods). Insets expand regions in gray boxes. Linear model parameters (see Equation 7) were α = 0.31, τR = 10.6 
ms, and τD = 23.6 ms for the primate cone, α = 0.031, τR = 31.6 ms, and τD = 56.7 ms for the mouse cone, α = 5.3, τR = 141 ms, and τD = 208 ms for the 
primate rod, and α = 4.7, τR = 115 ms, and τD = 185 ms for the mouse rod, (B) Fraction of variance explained for the full model fit to each cell individually 
(y-axis) plotted against that for the consensus model that has fixed parameters across cells except for the dark current and sensitivity. Means ± SDs were 
0.90 ± 0.04 (specific model) and 0.87 ± 0.05 (consensus model) for six primate cones, 0.92 ± 0.02 and 0.94 ± 0.02 for six mouse cones, 0.94 ± 0.02, 
0.94 ± 0.02 and 0.94 ± 0.02 for six primate rods and 0.93 ± 0.03 and 0.93 ± 0.03 for eight mouse rods. Data for Figures 1-5 is available at https://doi.
org/10.5061/dryad.q2bvq83vg.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Tests of the ability of the model to generalize across stimuli and across cells.

Figure supplement 2. Full models systematically outperform linear models.

https://doi.org/10.7554/eLife.93795
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correspondence between photocurrent and stimulus applies to the entire stimulus waveform, 
including the mean intensity and modulations about the mean. In other words, the result of model 
inversion is an estimate of the full stimulus in real units (isomerizations per second) corresponding to 
the desired response.

Model inversion requires a one-to-one relationship between inputs and outputs – that is for every 
input there must be a unique output and vice versa. Mathematically, this holds for the phototransduc-
tion model summarized in Figure 1A: the model consists of linear elements (Equations 1, 2, and 5), 
static nonlinear elements (Equations 4 and 6), and a time-dependent nonlinear element (Equation 
3). The linear elements can be described as linear filters and inverted by deconvolution. The static 
nonlinear elements consist of one-to-one mappings of inputs to outputs and can be inverted corre-
spondingly. The time-dependent nonlinear component can be rearranged and solved analytically (see 
Methods). The result is an analytical relationship between the phototransduction current and the 
stimulus – in other words an inverse model that takes the photocurrent as input and identifies the 
corresponding stimulus.

Figure  3 illustrates the steps in this procedure, using the current response generated by the 
forward model to the variable mean noise stimulus as an example ‘target’ (far right). The first step is 
to convert this target current response to corresponding time-varying concentrations of cGMP and 
calcium using Equations 4 and 5 (step 1). In step 2, the time courses of cGMP and calcium are used 
to determine the time-varying PDE activity using Equations 3 and 6. In the final step (step 3), the PDE 
activity is used to determine the stimulus through Equations 1 and 2. In this case, as expected, we 
recover exactly the stimulus that we started with, confirming that mathematically the phototransduc-
tion model can be inverted.

The procedure illustrated in Figure 3 is exact in the context of the phototransduction model – that 
is, given the architecture of the model, there is a one-to-one mapping of inputs to outputs. In practice, 
we would like to use this procedure to predict stimuli that will elicit specific photoreceptor responses. 
These model-based predictions could fail if the forward model does not accurately capture aspects 
of the real photoreceptor responses that are important for inversion. The model, for example, may 
capture some temporal frequencies of the response better than others, and this could limit the accu-
racy of the model inversion at those frequencies that are not captured well.

full forward model

linear forward model

0.8

0.6[C
a2+

] (
M

)

0.5 s

35

30

25[c
G

M
P]

 (
M

)

-200

-150

-100

-50

pA

0.5 s

1000

500

0PD
E 

ac
tiv

ity
 (1

/s
)

0.5 s

R
*/s

0

40k

80k

0.5 s

step 2: estimate PDE 
from cGMP and calcium

step 3: estimate 
stimulus from PDE

generate test current
from model

R
*/s

0

40k

80k

0.5 s

step 1: estimate cGMP 
and calcium from current

input: transduction current
output: light stimulus

Opsin*

Gt*

Gt

PDE*

PDE

cGMP

5'GMP

GTP

GC

Light

Ca2+

cGMP-gated
channel

Ca2+

Ca2+

Na+/K+/Ca2+

exchanger

Na+

Opsin

stimulus current

stimulus current

inverse model
stimuluscurrent

Figure 3. Steps in model inversion. A test current was generated from a variable mean noise stimulus using the full model (far right). Step 1 (right) 
converts this current into changes in cGMP and calcium using Equations 4 and 5 (see Figure 1). Step 2 converts the time course of the cGMP and 
calcium into that of the phosphodiesterase (PDE) activity using Equations 3 and 6. Finally, step 3 converts the PDE to the stimulus using Equations 1 
and 2. The estimated stimulus is identical to the initial stimulus because there is no added noise and the inversion process is exact. Icons at the far right 
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To test how well the model inversion process works on real responses, we applied it to measured 
photoreceptor responses to the variable mean noise stimulus. Noise in the measured responses could 
cause the estimate to be better at some temporal frequencies than others; this is particularly true 
at high temporal frequencies that are poorly encoded by the photoreceptors. The limited ability to 
recover spatial information in deconvolution microscopy provides an example of how noise can limit 
model inversion even with a good forward model. Noise in deconvolution microscopy is controlled 
by choosing not to try to recover spatial frequencies at which the noise is too high. We took a similar 
approach: we limited the frequency content of the stimulus to temporal frequencies that we could 
reasonably expect to recover (0–60 Hz for primate cones, 0–30 Hz for mouse cones, 0–15 Hz for both 
primate and mouse rods) and required that the power spectrum of our estimate matched that of the 
true stimulus (see Methods). These constraints reduced high-frequency noise in the estimated stimuli. 
Figure 4 shows stimulus estimates based on measured responses for each photoreceptor type. The 
estimates closely approximate the actual stimulus, including recovering rapid stimulus fluctuations 
(insets). For each photoreceptor type, stimulus estimates based on model inversion captured the 
majority of the stimulus variance (Figure 4B).

Variance explained, as in Figure 4B, mixes low temporal frequencies for which we might expect 
inversion to work well with high temporal frequencies for which it is expected to do less well. To 
explore the accuracy of the inversion across temporal frequencies, we compared the power spectrum 
of the stimulus with that of the residuals given by the difference between the stimulus and estimate 
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Figure 4. Test of model inversion based on measured responses. (A) Stimulus (gray in top panel), measured response (black in lower panels), and 
estimated stimulus (blue in top panels) calculated by using the measured response as input to the inverse model as in Figure 3. Estimates are able to 
recover both the periodic changes in mean intensity and the more rapid superimposed stimulus modulations (insets). (B) Variance explained for stimulus 
estimates based on the average response across multiple stimulus trials compared to that based on individual responses. Since the model captures 
only the deterministic part of the response, noise in the individual responses lowers the accuracy of the estimates and causes the points to fall below 
the unity line. This effect is modest but systematic. Means ± SDs were 0.91 ± 0.02 (single epochs) and 0.92 ± 0.02 (mean) for six primate cones, 0.66 ± 
0.08 and 0.72 ± 0.06 for six mouse cones, 0.74 ± 0.03 and 0.81 ± 0.04 for six primate rods, and 0.68 ± 0.04 and 0.77 ± 0.05 for eight mouse rods.

https://doi.org/10.7554/eLife.93795
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(Figure 5). At low temporal frequencies, stimulus power was much greater than that of the resid-
uals, consistent with accurate stimulus estimation at these frequencies. This difference decreased 
with increasing frequency, and the two power spectra converged near 30 Hz for primate cones, 10 Hz 
for mouse cones, and 2–3 Hz for both primate and mouse rods. This provides an estimate of the 
frequency range over which stimulus inversion is possible for each photoreceptor type.

The ability to convert photoreceptor responses to input stimuli is useful in several ways (see Discus-
sion). Our focus in the remainder of the Results is on using this approach to design stimuli that alter 
the photoreceptor responses in specific ways, such as negating the impact of adaptation and shaping 
response kinetics.

Light-adaptation clamp examples
Figure 6 illustrates how we can use the model inversion procedure to predictably manipulate photo-
receptor responses, in this case using the cone model and (for simplicity) a sinusoidal stimulus. Unlike 
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Figure 4 where we invert measured responses, we now start with a desired or target response. For 
the specific applications described below, the aim was to remove nonlinearities in photoreceptor 
responses and hence we generate the target response from a linear phototransduction model. As in 
Figure 2, the linear model used to generate the target response was obtained by fitting responses 
of the full phototransduction model to low-contrast noise stimuli at a specified mean light level (see 
Methods). The output of this linear model provides an estimate of how the photoreceptors would 
respond if we could eliminate their nonlinear properties. The response of the linear model to a sinu-
soidal stimulus is, as expected, another sinusoid (Figure 6, second panel from left). The response of 
real cones, and of the full cone model, deviates strongly from a sinusoid (black trace in the far right 
panel; Angueyra et al., 2022).

Adaptive nonlinearities in phototransduction cause the responses to sinusoidal light inputs to 
deviate from sinusoids. These time-dependent nonlinearities operate sufficiently rapidly to shape 
each cycle of the response, causing responses to decreases in light intensity to be larger than those 
to increases and causing the responses to light-to-dark transitions to be slower than those to dark-to-
light transitions. To eliminate the impact of these nonlinear response properties, we seek a stimulus 
that will cause the response of the full model to match the target response – that is a stimulus that 
‘clamps’ the cone response to the target. The model inversion process identifies such a stimulus 
directly (red trace in second panel from right). Our primary interest is not in the shape of the stimulus 
itself but instead in the response that the stimulus produces. The right panel in Figure 6 compares 
measured cone responses to the original (black) and modified (red) stimuli; responses to the modified 
stimulus are considerably more sinusoidal than those to the original stimulus, as quantified in more 
detail below.

The approach outlined in Figure 6 is exact in principle, but could fail due either to inadequacies 
of the model or to cell-to-cell variability in the photoreceptor responses. Hence, a key step is testing 
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whether the calculated stimuli produce the expected responses. Figures 7–9 test this approach quan-
titatively for several stimulus manipulations.

Sinusoidal stimuli
We start with the sinusoidal stimuli illustrated in Figure 6. As predicted by the model, responses of 
both rod and cone photoreceptors to high-contrast sinusoidal light inputs are strongly nonsinusoidal: 
responses to decreases in light intensity are larger than those to increases, and responses to dark-
to-light transitions are faster than those to corresponding light-to-dark transitions (Figure 7A). These 
nonlinearities in the photoreceptor responses are clear from the substantial deviations between the 
measured responses and the best-fitting sinusoids (dashed lines in Figure 7A). These response asym-
metries are important in interpreting responses of downstream visual neurons to similar stimuli. For 
example, asymmetries in signaling of On and Off ganglion cells are often attributed to differences in 
On and Off retinal circuits (e.g. Stockman et al., 2014), and the possibility that they arise at least in 
part in the photoreceptors themselves is rarely considered.

Responses to the modified stimuli (red traces in Figure 7A) were much closer to sinusoidal than 
responses to the original sinusoidal stimuli (black traces). Specifically, asymmetries between increment 
and decrement responses and light-to-dark vs dark-to-light transitions were substantially reduced for 
the modified stimuli. We quantified these deviations of the measured responses from a sinusoid for 
both original and modified stimuli by computing the MSE between the recorded responses and the 
best-fit sinusoid. Sinusoidal fits to responses to the modified stimuli had considerably lower MSE than 
those to the original stimuli in each rod and cone tested (Figure 7B). Neither the sinusoidal stimuli 
nor the specific cells that contribute to Figure 7 were used in fitting the phototransduction models. 

0.5 s

20
 p

A

 modi ed
 original

1.5

1.0

0.5

0.0re
sp

on
se

 ra
tio

, m
od

i
ed

1.51.00.50.0
response ratio, original

2 s

2 
pA

1.0

0.5

0.0
1.00.50.0

response ratio, original

1.5

1.0

0.5

0.0
1.51.00.50.0

response ratio, original

2 s

5 
pA

Primate Cone Primate Rod Mouse Rod

1.0

0.5

0.0
1.00.50.0

response ratio, original

1 s
5 

pA

Mouse ConeA.

B.

Figure 8. Compensating for adaptation produced by changes in mean light level. (A) Responses to a brief light flash delivered before and during a step 
in light intensity. For the original stimuli, flashes delivered before and during the step are identical, and the resulting responses decrease in amplitude 
~twofold (summarized on x-axis of bottom panels). Red traces show responses to stimuli designed to compensate for the adaptation produced by the 
change in light intensity (following approach in Figure 6). Linear model parameters used to compute the target responses (see Equation 7) were α = 
1.65, τR = 15.2 ms, and τD = 18.1 ms for the primate cone, α = 0.13, τR = 26.7 ms, and τD = 50.3 ms for the mouse cone, α = 5.3, τR = 141 ms, and τD = 208 
ms for the primate rod, and α = 4.7, τR = 115 ms, and τD = 185 ms for the mouse rod. (B) Summary of gain changes (amplitude of response during the 
step divided by that of response prior to step) for responses to modified (y-axis) and original (x-axis) stimuli. Open circles show the mean ± SD; values 
are 1.2 ± 0.2 (modified) and 0.52 ± 0.06 (original) for 10 primate cones, 0.8 ± 0.1 and 0.32 ± 0.05 for 5 mouse cones, 1.3 ± 0.3 and 0.6 ± 0.1 for 7 primate 
rods, and 1.0 ± 0.1 and 0.47 ± 0.08 for 7 mouse rods.

https://doi.org/10.7554/eLife.93795


 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Chen et al. eLife 2024;13:RP93795. DOI: https://doi.org/10.7554/eLife.93795 � 12 of 25

Hence, Figure 7 tests the ability of the model-based inversion process to generalize across photore-
ceptors and across stimuli.

Figure 7 demonstrates that the adaptive nonlinearities in phototransduction that distort responses 
to sinusoidal stimuli can largely be compensated for, resulting in near-sinusoidal responses. These or 
similar modified stimuli could in turn be used to test the contribution of nonlinearities in phototrans-
duction to asymmetries in responses of On and Off retinal neurons to sinusoidal stimuli such as drifting 
or contrast-reversing gratings.

Steps and flashes
As a second example of the light-adaptation clamp procedure, we generated stimuli that compensate 
for the adaptive changes in gain of photoreceptor responses produced by changes in mean light 
intensity. These gain changes cause responses to a fixed strength flash to become smaller and faster 
when the mean light intensity increases.

The control stimulus consisted of identical flashes delivered at two mean light levels. As expected, 
responses to this stimulus (black traces in Figure 8A) showed clear effects of adaptation. Specifically, 
the response to the flash decreased ~twofold at the higher mean light level (summarized in Figure 8B). 
We then passed this original stimulus through a linear model to estimate the photoreceptor response 
without adaptation. This linear prediction provided the target response in the stimulus identification 
process illustrated in Figure 6; the resulting modified stimuli are shown in red at the top of Figure 8A. 
None of the cells used to test these modified stimuli contributed to the model fitting, so this again 
tests the ability of the models to generalize across photoreceptors.

The red traces in Figure 8A (bottom) show responses to the stimuli designed to compensate for 
adaptation. Responses to the test flashes had similar amplitudes at the low and high mean light level. 
This similarity is held across cells (the ratio of the response amplitudes is plotted on the y-axes in 
Figure 8B). The change in gain produced by the background was reduced in all photoreceptor types. 
Responses to the modified stimuli in some cases (e.g. the mouse cones) show a systematic depen-
dence on background, likely due to differences in sensitivity between the cells used to fit and test the 
model. Nonetheless, the modified stimuli compensated for much of the reduction in response gain 
produced by adaptation.
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Altering kinetics
As for adaptation, separating the contributions of phototransduction and post-transduction circuit 
mechanisms to the kinetics of responses of downstream cells is difficult. Hence, we sought to use the 
model inversion process to predictably alter the kinetics of the photoreceptor responses, which could 
help elucidate the impact of photoreceptor kinetics on downstream signaling. For example, compen-
sating for the speeding of photoreceptor responses that occurs with increasing light intensity would 
isolate the kinetics of the post-transduction circuitry and determine if they change independently from 
the changes in kinetics of the photoreceptor responses.

Slowing down the kinetics is conceptually straightforward – we slow down the kinetics of the stim-
ulus itself and that will also cause the response to slow down. We applied this approach to responses 
to brief flashes. To test if we could do this in a predictable manner, we slowed the linear responses to 
a brief flash by factors of 1.25–4 by scaling the time constants in Equation 7. We used the resulting 
responses as the targets for the model inversion as in Figure 6. We omitted mouse cones because 
these experiments required longer-lasting recordings with stable kinetics, which were difficult to 
achieve with these cells.

The top panels in Figure 9A show original (black) and modified (red) stimuli designed to slow down 
the photoreceptor response slightly (left) and more substantially (right). The bottom panels compare 
measured (thick traces) and predicted (thin traces) responses to the original flash and the modified 
stimuli. Changes in time-to-peak of the measured responses to the modified stimuli follow the predic-
tions well for both rod and cone photoreceptors (summarized in Figure 9C).

Speeding up the responses is similarly straightforward in principle but more difficult in practice. 
Stimuli that speed up the response consist of a brief increment followed by a decrement – which 
together cause all but the initial rising phase of the response to cancel. In practice, this approach 
is limited because the contrast of the decrement cannot exceed 100%. Nonetheless, speeding up 
responses by 20–30% is possible, and stimuli predicted to achieve this are shown in Figure  9B. 
Measured responses sped as predicted, although the falling phase of the response, particularly for 
mouse rods, was faster than the predicted response. This again likely reflects differences in the specific 
cells used to fit and test the model. As for slowing responses, the time-to-peak of the measured 
responses closely follows predictions (Figure 9C).

Impact of cone adaptation on ganglion cell responses
The overall goal of this project is to separate the contributions of phototransduction and post-
transduction circuit mechanisms to downstream visual signaling. Here, we show two examples of how 
the ability to manipulate photoreceptor responses can reveal adaptational mechanisms at different 
locations in retinal circuits.

First, we compare responses of primate cones and downstream retinal neurons to the step plus 
flash stimulus used in Figure 8. Figure 10A shows responses of a primate cone, a horizontal cell, and 
an On parasol ganglion cell to the original step plus flash stimulus (black) and the modified stimulus 
that negates cone adaptation (red). The stimuli used for the three cells illustrated were identical. As 
shown in Figure 8, the modified stimulus effectively negates adaptation in the cone transduction 
currents, and the responses to the cone responses to the two flashes are similar. Negating adaptation 
in the cones also eliminated most or all of the adaptation in downstream responses (summarized in 
Figure 10B). Ratios exceeding one are likely due to differences in sensitivity between the cells used 
to fit and test the model. Previous work reached a similar conclusion by quantitatively comparing 
adaptation measured in cones and retinal ganglion cells (Dunn et al., 2007). Negating cone adap-
tation provides an alternative approach to this issue and similar questions about the contributions of 
photoreceptor and post-photoreceptor adaptation.

Second, we recorded responses of primate horizontal cells and cone bipolar cells to sinusoidal 
stimuli and stimuli designed to produce sinusoidal cone transduction currents (as in Figures 6 and 7). 
Horizontal cell responses to both stimuli showed clear nonlinearities (Figure 10C, left); specifically, 
responses to the increment and decrement phases of the stimuli were highly asymmetric. The depo-
larizing and hyperpolarizing phases of the responses, however, appeared more symmetrical for the 
modified stimuli (red). The change in shape can be visualized by plotting the trajectories of one cycle of 
the responses vs the stimulus (Figure 10C, right). For the original sinusoid, the depolarizing (a→b→c) 
and hyperpolarizing (c-→d→a) response phases differed considerably. These differences were much 

https://doi.org/10.7554/eLife.93795
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smaller for the modified stimuli. This difference in response shape held across cells (Figure 10D). In 
this case, compensating for nonlinearities in cone phototransduction reveals an additional, largely 
time-independent, nonlinear process shaping horizontal and cone bipolar responses. Furthermore, it 
disentangles contributions of phototransduction and post-transduction processes to time-dependent 
and time-independent nonlinearities in the horizontal and bipolar responses.

Figure 10 shows two relatively simple examples of how the stimulus design approach developed 
here can be used. We return to other possible applications in the Discussion.

Discussion
Rod and cone photoreceptors play an essential role in the responses of downstream visual neurons and 
visual perception. Refining this picture to identify the specific contributions of photoreceptors and post-
photoreceptor circuitry to the computations that underlie vision has been difficult. Here, we have created 
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and tested a tool that allows predictable manipulations of the photoreceptor responses to reveal their 
role in downstream signaling. Direct tests indicate that this tool is effective, and that it generalizes well 
across photoreceptors and stimuli. We envision this being useful to causally test how responses of down-
stream cells or perception are shaped by specific aspects of the photoreceptor responses such as adapta-
tion. We have described in Methods procedures that should help translate this tool to other laboratories.

Limitations
Model validation
The procedure that we use to invert the phototransduction cascade is only as good as the model upon 
which it is based. Thus, a focus of the experiments presented here was to test a range of manipula-
tions for stimuli and photoreceptors that did not contribute to the model fits. We did this by fitting 
consensus models to recordings from one set of photoreceptors of a given type, and then testing the 
stimuli generated by these models on different photoreceptors from different retinas. Discrepancies 
between the predicted and measured responses to these new stimuli reflect both failures of the 
model inversion and cell-to-cell variability. Systematic differences between predicted and measured 
responses were relatively small, and most of the differences appear to reflect variability between cells 
(e.g. due to cell-to-cell differences in sensitivity).

Focus on phototransduction
Our model describes the relationship between light inputs and phototransduction currents. We 
restricted our consideration to photocurrents rather than photoreceptor synaptic output because 
the latter is shaped by several mechanisms (e.g. electrical coupling between photoreceptors Copen-
hagen and Owen, 1976; Detwiler and Hodgkin, 1979; Schwartz, 1976 and horizontal feedback 
Baylor et al., 1971) that are less well understood than phototransduction. A similar approach could 
be extended beyond phototransduction to include electrical properties of the photoreceptor inner 
segment and photoreceptor output synapses when additional quantitative information about these 
mechanisms is available. The models we develop here will be important in such future work, as they 
will allow isolation of mechanisms operating after phototransduction (e.g. in Figure 10C).

Photopigment bleaching
The model that we used does not consider photopigment bleaching and regeneration via the pigment 
epithelium. We omitted these aspects of photoreceptor function because the experiments to which 
we fit and test the model require that we remove the pigment epithelium. We restricted total light 
exposure in these experiments to minimize bleaching, and this limits the range of light levels over 
which the model is applicable. This is less of a concern for rods, where rod saturation occurs for light 
levels at which a small fraction of the rod pigment is bleached, and correspondingly our models cover 
most or all of the range of rod signals. For cones, the model is limited to light levels <50,000 R*/s 
(similar to or a bit brighter than typical indoor lighting conditions).

Speeding vs slowing responses
Not all manipulations of the photoreceptor responses are equally easily achieved. Speeding responses 
is particularly difficult because it requires increasing the amplitude of high temporal frequencies, and 
the ability to do that is limited by the requirement that light intensities not assume negative values. 
This means that low-contrast stimuli can be sped more than high-contrast stimuli.

Calibrations
The accuracy of the model predictions depends critically on accurate light calibrations. We have detailed 
our procedure in Methods and supplied our calibration code (https://github.com/chrischen2/photorec​
eptorLinearization, copy archived at Chen, 2024). With consistent calibrations, the approaches we use 
here should translate directly across laboratories and to in vivo physiological or perceptual studies.

Applications
‘Front end’ for encoding models for downstream responses and perception
Two broad classes of encoding models have been used to describe responses of retinal ganglion cells 
and cells in downstream visual areas. Empirical models take light stimuli as inputs and convert these, 
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through a series of linear and nonlinear elements, to predicted responses (Chichilnisky, 2001; Pillow 
et al., 2008). Time-dependent nonlinearities are particularly hard to capture in such models, and few 
existing models account for them. CNN models similarly take light input and convert it, via the learned 
CNN weights, to predicted neural responses (McIntosh et al., 2016; Turner et al., 2019). Like empir-
ical models, time-dependent nonlinearities such as adaptation are generally not well described by 
such models. As a result, these models work best when stimulus parameters such as mean light inten-
sity do not change.

The photoreceptor models described here convert light inputs to photoreceptor responses, 
capturing time-dependent nonlinearities in this process. Empirical or CNN models could then be used 
to describe the conversion of photoreceptor signals to downstream neural responses. This architec-
ture – a phototransduction model front end followed by an empirical model – should decrease the 
demand placed on the empirical model and improve the ability to capture responses to stimuli that 
strongly engage photoreceptor adaptation. Hybrid models of this type indeed show improved perfor-
mance in predicting retinal ganglion cell responses across light levels (Idrees et al., 2024). Models 
for visual perception could similarly incorporate a photoreceptor front end, and by doing so directly 
test which aspects of perception can be explained by phototransduction and which are due to down-
stream processing.

‘Back end’ to decoding models
Approaches to decode neural responses and estimate stimulus properties could also benefit from the 
photoreceptor models. Current decoding approaches either empirically fit response–stimulus rela-
tionships or invert encoding models to compute the likelihood of particular stimuli given the neural 
response (Bialek et al., 1991; Brackbill et al., 2020; Wu et al., 2024). In either case, decoding in the 
context of stimuli that strongly engage time-dependent nonlinearities has proven difficult.

Incorporating the inverse photoreceptor model into decoding approaches should improve 
decoding performance. Specifically, existing decoding approaches could be used to estimate the 
photoreceptor signal from downstream neural responses (e.g. those of retinal ganglion cells), and 
then the inverse phototransduction model would convert the estimated photoreceptor signals to esti-
mated stimuli. This again could decrease the demand placed on the decoding model. For example, 
under conditions in which much of retinal adaptation is largely accounted for by adaptation in the 
photoreceptors, the model used to estimate photoreceptor responses from retinal ganglion cell 
responses would not need to incorporate adaptive nonlinearities. Instead, this model could be fixed 
even as mean light levels change, and the inverse photoreceptor model would account for photo-
receptor adaptation. A ganglion cell→photoreceptor decoding model should be simpler to fit and 
hence perform better than a full ganglion cell→stimulus model.

Complementing genetic approaches
Genetic manipulations provide another approach to alter photoreceptor responses and characterize 
the impact on responses of downstream visual neurons or behavior. Such approaches have the advan-
tage of associating specific molecular components with alterations in vision – for example the role of 
arrestin (Burns et al., 2006; Xu et al., 1997) and rhodopsin kinase (Arshavsky, 2002; Wilden et al., 
1986; Zhao et al., 1995) in specific forms of stationary night blindness (Dryja, 2000; Zeitz et al., 
2014). But interpretation of these genetic manipulations can be limited by compensatory changes.

The approach that we introduce here complements genetic manipulations in at least two ways. 
First, it could be used in conjunction with genetic manipulations – for example to restore normal 
kinetics in photoreceptors in which the genetic alteration changes response kinetics. Second, the 
stimulus design approach provides an alternative that provides less detailed mechanistic information, 
but which allows more specific functional manipulations to be made and does not require genetic 
access.

Manipulations of phototransduction currents and identifying nonlinear 
circuit properties
The models that we introduce here provide a new tool to causally test the impact of alterations in 
photoreceptor responses on downstream responses and perception. For example, asymmetries in 
how increments and decrements in light intensity are processed have been well studied, including 

https://doi.org/10.7554/eLife.93795
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responses in retina, cortex, and perception (Bowen et al., 1989; Lu and Sperling, 2012). Parallel 
On and Off visual pathways are initiated at the cone output synapse, and asymmetries in down-
stream responses or perception are often attributed to asymmetries in the On and Off retinal circuits 
conveying photoreceptor signals to the ganglion cells (e.g. Stockman et  al., 2014). The implicit 
assumption is that photoreceptor inputs to On and Off retinal circuits are symmetrical. While this 
is likely the case for low-contrast stimuli, rapid adaptation in phototransduction means that high-
contrast stimuli will often not produce symmetric input to those circuits, and On/Off asymmetries may 
originate at least in part from asymmetric photoreceptor responses to light increments and decre-
ments (Angueyra et al., 2022; Clark et al., 2013; Endeman and Kamermans, 2010). The ability to 
invert the phototransduction model permits the design of stimuli that minimize such asymmetries 
in the photoreceptor responses to test how they contribute to On/Off differences in downstream 
responses (e.g. Yu et al., 2022).

More generally, the ability to shape photoreceptor responses in predictable ways provides a needed 
tool to isolate the effects of photoreceptor and post-photoreceptor circuits to shaping responses of 
downstream neurons and perception. Nonlinear circuit properties are a particular challenge since their 
impact depends on the input stimulus, yet they are also particularly important since they account for 
the bulk of interesting computation. Advances in modeling, particularly CNN-based approaches, can 
be used to fit circuit outputs and reveal how specific computations may be implemented. But such 
approaches rarely identify a unique explanation. Another approach is to record from each of the rele-
vant circuit elements. This is technically challenging. Manipulating photoreceptor responses provides 
another tool, as illustrated in Figure 10. A key feature of this tool is the ability of our photoreceptor 
models to generalize across stimuli, including accounting for nonlinear properties of the photore-
ceptor responses to stimuli that did not contribute to the model directly.

Methods
Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers

Additional 
information

Biological sample (Mus 
musculus) 129S1/SvlmJ The Jackson Laboratory RRID:IMSR_JAX:002448

Biological sample (Mus 
musculus) C57BL/6J The Jackson Laboratory RRID:IMSR_JAX:000664

Biological sample (Macaca 
fascicularis)

Washington Regional Primate 
Research Center N/A

Biological sample (Macaca 
nemenstrina)

Washington Regional Primate 
Research Center N/A

Chemical compound, drug Ames MilliporeSigma Cat #A1420

Software, algorithms MATLAB Mathworks
https://www.mathworks.com/​
products/matlab.html

Software, algorithms Stage Stage-VSS https://stage-vss.github.io

Software, algorithms Symphony Symphony-DS http://symphony-das.github.io

Software, algorithms Igor Pro Wavemetrics N/A

Recordings
We performed electrophysiological recordings from primate (Macaca fascicularis, nemestrina, and 
mulatta, either sex, 2–20 years) and mouse retina (C57/BL6 or sv-129, either sex, 1–12 months) in 
accordance with the University of Washington Institutional Animal Care and Use Committee. Primate 
retinas were obtained through the Tissue Distribution Program of the University of Washington 
Regional Primate Research Center. Primate recordings were all at >20o eccentricity.

Rod responses were recorded with suction electrodes (Field and Rieke, 2002). These recordings 
were sufficiently stable that we could record responses to all three test stimuli in Figure 1B. Data were 
collected from any primate rod with a dark current exceeding 18 pA and any mouse rod with a dark 
current exceeding 15 pA. Periodic standardized flashes tested for changes in kinetics or amplitude of 

https://doi.org/10.7554/eLife.93795
https://identifiers.org/RRID/RRID:IMSR_JAX:002448
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https://www.mathworks.com/products/matlab.html
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 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Chen et al. eLife 2024;13:RP93795. DOI: https://doi.org/10.7554/eLife.93795 � 18 of 25

the light response, and recordings were terminated if such changes were apparent. Most recordings 
were stable for at least 10–15 min before changes in kinetics were apparent, and all cells meeting this 
criterion are included in our analyses.

Cones were recorded with whole-cell patch clamp techniques in slice (mouse; Ingram et al., 2019) 
and whole-mount preparations (primate; Angueyra and Rieke, 2013). We focused on M and S cones 
in mouse and L and M cones in primate. Data were collected and analyzed from any primate cone 
with a dark current exceeding 200 pA and any mouse cone with a dark current exceeding 40 pA. 
Cone responses in these recordings run down quickly due to intracellular dialysis of the cell; hence, 
responses to only one of the stimuli in Figure 1B were recorded from each cone. All data reported 
here were collected within 2–3 min of patch rupture and the onset of intracellular dialysis.

Light calibrations
Optical power was measured at the preparation with a calibrated power meter (Graseby). Power 
readings were converted to isomerizations per second (R*/s) using the photoreceptor spectral sensi-
tivities, the LED spectral outputs, and collecting areas of rods and cones (1 and 0.37 μm2 for primates, 
0.5 and 0.2 μm2 for mouse). This conversion proceeded in three steps: (1) the total calibrated power 
was converted to a power density (W/μm2) using the size of the illuminated area in the microscope 
image plane; (2) LED emission spectra were scaled such that their integrals matched the calibrated 
power density; (3) the resulting calibrated LED emission spectra were converted to R*/s by taking the 
dot product with the photoreceptor spectral sensitivities (Baylor et al., 1987; Nikonov et al., 2006) 
and scaling by the collecting area (https://github.com/chrischen2/photoreceptorLinearization, copy 
archived at Chen, 2024).

Light stimuli from the LEDs were focused on the preparation via the microscope condenser or 
objective. Stimuli uniformly illuminated a 600-μm diameter spot. LED outputs were carefully checked 
for linearity. For rod recordings, we used an LED with peak output at 470 nm, near the peak of the 
rod spectral sensitivity. For cone recordings, we used an LED with peak output at 405 nm, which 
produced near-equal (within 10%) activation of L and M cones in primate and S and M cones in mouse. 
Figure 10 used an OLED computer monitor (eMagin) to deliver stimuli; the monitor outputs were 
calibrated as above for the LEDs.

Forward model
The phototransduction cascade was modeled with the set of differential equations illustrated in 
Figure 1A. This follows previous modeling work in both rods and cones (Angueyra et  al., 2022; 
Nikonov et  al., 2000; Pugh and Lamb, 1993; Rieke and Baylor, 1998a; Younger et  al., 1996). 
Our model has 11 parameters. In the first step of the model, the light stimulus (Stim) activates opsin 
molecules, converting inactive opsin (R) to active opsin (R*). Active opsin decays with a rate constant 
σ (Figure 1A).:

	﻿‍ dR
(
t
)

/dt = γStim
(
t
)
− σR

(
t
)
‍� (1)

Next, PDE molecules are activated by active opsin molecules via the G-protein transducin; the 
resulting PDE activity (P) decays with a rate constant Φ (Figure 1A):

	﻿‍ dP
(
t
)

/dt = R
(
t
)
− ΦP

(
t
)

+ η‍� (2)

We assume that the delay caused by transducin activation is negligible and hence omit this step for 
simplicity. The opsin decay rate σ and the PDE decay rate Φ were interchangeable (Pugh and Lamb, 
1993), and the model output depended only on the smaller of these (i.e. the slower process). Hence, 
σ and Φ were constrained to be equal.

The concentration of cGMP in the outer segment (G) is determined by the balance of cGMP hydro-
lysis mediated by PDE and synthesis (S) through guanylate cyclase (GC) (Figure 1A):

	﻿‍ dG
(
t
)

/dt = S
(
t
)
− P

(
t
)

G
(
t
)
‍� (3)

For physiological conditions, the outer segment current (I) through cGMP-gated channels depends 
on a power of the cGMP concentration (Figure 1A; Rieke and Baylor, 1996):

https://doi.org/10.7554/eLife.93795
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	﻿‍ I(t) = kGn(t)‍� (4)

Calcium enters the outer segment through open cGMP channels and is removed by an exchange 
protein, with a rate constant β (Figure 1A):

	﻿‍ dC
(
t
)

/dt = qI
(
t
)
− βC

(
t
)
‍� (5)

The calcium concentration (C) regulates the rate of cGMP synthesis (S); this dependence is modeled 
as a Hill curve (Figure 1A):

	﻿‍
S = Smax

1 +
(
C/KGC

)m
‍�

(6)

Two model parameters were fixed by steady-state conditions and prior measurements. First, the 
constant q that relates current and changes in calcium can be expressed in terms of the dark calcium 
concentration, dark current, and rate constant β for calcium extrusion:

	﻿‍
q = β · CD

ID ‍�

Second, the maximal cyclase rate (Smax) can be written in terms of Φ, η, KGC, m, and the dark calcium 
(CD) and cGMP concentrations (GD):

	﻿‍

Smax = GD · η
Φ ·

(
1 +

(
CD/KGC

)m
)

‍�

We fixed the constants k and n that determine the relation between cGMP and current at values 
measured for rods (e.g. Rieke and Baylor, 1996); modest changes in these parameters produced little 
or no change in model performance due to compensation by other model parameters. Using these 
constants, the cGMP concentration in darkness ‍

(
GD

)
‍ was estimated from the measured dark current 

(‍ID‍) using Equation 4 (e.g. the response to a saturating light flash) for each recorded cell. We also 
fixed m for both rods and cones and β for rods based on previous measurements (Field and Rieke, 
2002; Koutalos et al., 1995a; Rieke and Baylor, 1996). We assumed a dark calcium concentration 
(CD) of 1 μM (Gray-Keller and Detwiler, 1994; Sampath et al., 1999); the model was insensitive to 
this value, as the dependence of the synthesis rate on calcium (KGC) compensated for any change.

This left a total of four free parameters for rod models (γ, η, σ, KGC), and five for cone models (γ, η, 
β, σ, KGC). These parameters were determined by minimizing the mean-squared difference between 
the measured responses and model predictions while the remaining model parameters were held 
fixed. Some combinations of model parameters can trade for each other, resulting in similar model 
performance (e.g. CD and KGC). Our goal here was to identify a model that captures photoreceptor 
responses across a range of stimuli, rather than a model in which the fit parameters were predictions 
of the underlying biochemical parameters.

We identified optimal values for the free parameters (see Table 1) using the MATLAB fminsearch 
routine, which employs the Nelder–Mead simplex algorithm. The time step in these calculations was 
0.1 ms for cones and 1 ms for rods. The objective function minimized the MSE between the measured 
and predicted responses. The goodness of fit was assessed using the fraction of variance explained, 
calculated as 1 − (SSE/SST), where SSE is the sum of squared errors between the model and the data, 
and SST is the total sum of squares (variance) of the data. The model’s performance was validated 
using independent datasets.

Parameters of consensus models were determined by simultaneously fitting measured responses 
across all recorded cells of a given type. To evaluate the model’s ability to generalize across different 
cells and stimuli, we fixed all parameters except for GD and γ. GD was determined from the measured 
dark current (ID) for each individual photoreceptor. γ was allowed to vary between cells to account 
for differences in sensitivity, while the remaining parameters were constrained to be identical. For 
example, consensus parameters for a set of five cones would have common free parameters of η, β, 
σ, KGC and five individual γs (one for each cell). Consensus parameters are given in Table 1. Fitted γ 
values were 8 ± 3 (mean ± SD) for primate cones, 3 ± 1 for mouse cones, 5.3 ± 0.7 for primate rods, 
and 7.4 ± 2.4 for mouse rods.

https://doi.org/10.7554/eLife.93795
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We evaluated the sensitivity of the model outputs to each fit parameter by identifying parameter 
ranges that doubled the MSE of the fits. Table 2 includes these parameter ranges. We also tested 
sensitivity to combinations of parameters using sloppy modeling (see further details below and Brown 
and Sethna, 2003). This approach identifies specific combinations of parameters that have maximal 
and minimal impact on model error – in our case the MSE. For cone models, parameters controlling 
the calcium feedback (β and KGC) could compensate for each other to have relatively minor effects 
on fit quality. Fit quality was particularly sensitive to changes in the parameters controlling the PDE 
activation (σ and η). Rod models were relatively insensitive to changes in σ and η and were particularly 
sensitive to changes in KGC and γ.

Sloppy modeling
Sloppy modeling enables us to understand how a model’s cost function depends on the model param-
eters individually and in combination. We started by computing the Hessian matrix H at a location in 
parameter space given by the consensus fit parameters

	﻿‍
Hi,j = ∂C

∂θi
· ∂C
∂θj ‍�

Here, ‍θi‍ and ‍θj‍ represent different parameters and C is the cost function. The Hessian provides a 
measure of the curvature of the cost function around the best-fit model parameters. We numerically 
approximate the Hessian by taking incremental changes in pairs of parameters around the best fit and 
measuring the changes in MSE. The eigenvectors of the Hessian matrix identify directions in param-
eter space in which the cost function changes slowly or rapidly.

Linear model
The linear models used to generate the target response were obtained by fitting a parameterized 
linear filter to the response of the full model to low-contrast Gaussian noise at a specific mean light 
level. The linear filter is defined as:

	﻿‍
L
(
t
)

= α

(
t
τD

)3
· exp

(
− t
τR

)
/

(
1 +

(
t
τD

)3
)

‍�
(7)

where ‍α‍ is a scaling factor, and ‍τR‍ and ‍τD‍ are the rising and decay time constants. This model provides 
good fits to measured low-contrast responses of rods and cones (Angueyra and Rieke, 2013). Photo-
receptor responses to low-contrast stimuli depend linearly on the stimulus (Hass et al., 2015), and 
hence this approach ensured that the linear model matched the full model for such stimuli. The linear 
filter was convolved directly with the light stimulus to obtain a linear estimate of the responses.

Inverse model
The differential equations that comprise our model consist of several time-independent nonlineari-
ties (Equations 4 and 6 in Figure 1), several linear differential equations (Equations 1, 2, and 5 in 
Figure 1), and one nonlinear differential equation (Equation 3 in Figure 1). The time-independent 

Table 2. Parameter variations that double the mean-squared error of the fits.
Error was measured while a single parameter was systematically varied; other parameters were held fixed at the consensus model 
values.

Parameter Symbol Units

Values: optimal [lower, upper]

Primate
cone

Mouse
cone

Primate
rod

Mouse
rod

Opsin decay rate const. σ ‍s−1‍ 22 [14, 34] 9.74 [7.3, 13.1] 7.07 [5.8, 8.8] 7.66 [6.1, 9.3]

PDE dark activation rate η ‍s−1‍ 2000 [1300, 3300] 761 [494, 1218] 2.53 [2.1, 3.2] 1.62 [1.3, 2.1]

Ca2+ extrusion rate const. ‍β‍ ‍s−1‍ 9 [5, 40] 2.64 [1.58, 5.7] N.A. N.A.

Ca2+ GC affinity ‍KGC‍ ‍µM‍ 0.5 [0, 0.6] 0.4 [0.26 0.46] 0.5 [0.44, 0.53] 0.4 [0.32, 0.44]

https://doi.org/10.7554/eLife.93795
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nonlinearities can be inverted directly as a look-up table – for example the cGMP depends directly 
on the current as G = (I/k)1/n. The linear differential equations can be solved directly by deconvolu-
tion – for example the Fourier transform of the calcium concentration from Equation 5 in Figure 1 is 
obtained directly from the Fourier transform of the measured current (I(f)) as

	﻿‍
C
(
f
)

=
qI

(
f
)

β − 2πif ‍�
(8)

where f is the temporal frequency. The nonlinear differential equation (Equation 3 in Figure 1) can 
be reexpressed as an equation for the PDE activity P in terms of the cGMP concentration G and its 
derivative dG/dt as

	﻿‍
P
(
t
)

=
S
(
t
)
− dG

(
t
)

/dt
G
(
t
)

‍�
(9)

This equation can be solved given G (obtained from the current via Equation 4 in Figure 1), and S 
(obtained from the calcium concentration C(t) and Equation 6 in Figure 1). These steps in the inver-
sion process are illustrated in Figure 3.

This process results in an exact mapping between responses and stimuli – that is every response 
I(t) has a corresponding unique stimulus Stim(t). In practice, noise in the measured responses can 
corrupt the estimated stimuli. This is a general problem in deconvolution of noisy data – for example 
in microscopy. As indicated in the text, we controlled this noise when necessary by imposing that 
the power spectrum of our estimated stimulus be equal to the power spectrum of the true stimulus. 
This constraint was imposed by generating the estimated stimulus as described above, and then 
reweighting the power spectrum of the estimated stimulus to match the power spectrum of the true 
stimulus. This constraint was used in generating the estimated stimuli in Figure 4.

Predictably altering photoreceptor responses
Model inversion as described above allowed us to identify stimuli that would produce a desired 
phototransduction current (which we refer to as a target response). For the applications in Figures 6–10, 
we generated this response using the linear model of the transduction cascade described above 
(Equation 7). We passed an initial stimulus (e.g. a sinusoid in Figures 6 and 7) through the linear model 
to generate the target response. The model inversion process for the full (i.e. nonlinear) phototrans-
duction cascade model then determined the stimulus which, when delivered to the full model, would 
produce the linear target response. In particular, this allowed us to identify stimuli that negated the 
impact of adaptation on the photoreceptor responses.
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