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Abstract In this paper, we provide an overview and analysis of the BRAIN Initiative data- sharing 
ecosystem. First, we compare and contrast the characteristics of the seven BRAIN Initiative data 
archives germane to data sharing and reuse, namely data submission and access procedures and 
aspects of interoperability. Second, we discuss challenges, benefits, and future opportunities, 
focusing on issues largely specific to sharing human data and drawing on N = 34 interviews with 
diverse stakeholders. The BRAIN Initiative- funded archive ecosystem faces interoperability and data 
stewardship challenges, such as achieving and maintaining interoperability of data and archives 
and harmonizing research participants’ informed consents for tiers of access for human data across 
multiple archives. Yet, a benefit of this distributed archive ecosystem is the ability of more special-
ized archives to adapt to the needs of particular research communities. Finally, the multiple archives 
offer ample raw material for network evolution in response to the needs of neuroscientists over time. 
Our first objective in this paper is to provide a guide to the BRAIN Initiative data- sharing ecosystem 
for readers interested in sharing and reusing neuroscience data. Second, our analysis supports the 
development of empirically informed policy and practice aimed at making neuroscience data more 
findable, accessible, interoperable, and reusable.

Introduction
The BRAIN Initiative, led by the US National Institutes of Health (NIH), launched in 2013 (https:// 
braininitiative.nih.gov/). The program involves 10 NIH institutes and numerous additional federal and 
non- federal affiliates. The BRAIN Initiative’s core strategy is to build and sustain research partnerships 
between academics and industry, geared toward an overall objective of ‘neurotechnology’ develop-
ment for scientific discovery, medical diagnosis, and therapy (BRAIN 2025: A Scientific Vision, 2014).

Data sharing—sharing scientific data with other researchers before or as soon as possible after 
publication of related findings—has been an integral component of the BRAIN Initiative from its 
inception. Since 2017, the BRAIN Initiative has supported the development and maintenance of a 
distributed network of ‘data archives’, what we call a data- sharing ‘ecosystem’, which at present is 
composed of seven archives (Table 1). These differ in the data they host as well as in various other 
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characteristics, such as upload and download procedures, data access levels and rules (tiers), and 
associated tools. The BRAIN Initiative’s 2019 Data Sharing Policy (NOT- MH- 19- 010) directs researchers 
receiving BRAIN Initiative funding to submit the data generated by their projects, once it has been 
de- identified to industry standards, to one of these archives every 6 months, at which point it will 
remain private until the first associated paper is published or the end of the award period, which-
ever comes first. This timeline is consistent with that in the current NIH- wide Data Management and 
Sharing (DMS) policy (NOT- OD- 21- 013), which came into effect in January of 2023 and presumably 
will drive further data flow into BRAIN Initiative- supported archives. The NIH, and some BRAIN Initia-
tive archives, encourage investigators to seek as broad consent as possible for sharing data derived 
from humans, in accordance with IRB approval and barring any concerns regarding the possibility of 
data re- identification (Bannier et al., 2021; Markiewicz et al., 2021).

In this paper, we provide an overview and analysis of the BRAIN Initiative data- sharing ecosystem, 
focusing on aspects germane to how data are shared and reused. We then discuss challenges, bene-
fits, and future opportunities arising from this distributed data- sharing ecosystem, focusing on issues 
largely specific to sharing human data. Except where closely related to interoperability or functions 
that sharply distinguish the archives from one another, we do not discuss built- in analytical tools and 
instead direct readers to the cited literature.

For the technical details, we reviewed publicly available documents, websites, and articles (i.e., 
Delorme et al., 2022; Duncan et al., 2023; Hider et al., 2022; Markiewicz et al., 2021; Rübel et al., 
2022; Subash et al., 2023). From June 2021 through June 2023, we also downloaded and uploaded 
test datasets, where possible. Finally, for challenges, benefits, and future opportunities, we conducted 
semi- structured interviews (N = 34) with diverse stakeholders including BRAIN Initiative and non- 
BRAIN Initiative- funded scientists, data stewards, law and ethics scholars and policymakers, patient 
advocates, and industry representatives (see Materials and methods). Our first objective is to provide 
a guide to the BRAIN Initiative data- sharing ecosystem for readers interested in sharing and reusing 
neuroscience, and especially human neuroscience, data. Second, we hope to support the develop-
ment of empirically informed policy and practice options aimed at making neuroscience data more 
findable, accessible, interoperable, and reusable (FAIR) (Hendriks et al., 2022; Jwa and Poldrack, 
2022; Poline et al., 2022; Sandström et al., 2022; Wilkinson et al., 2016).

Results
Overview
The seven archives of the BRAIN Initiative data- sharing ecosystem are currently the Brain Image 
Library (BIL), Brain Observatory Storage Service and Database (BossDB), Data Archive for the BRAIN 
Initiative (DABI), Distributed Archives for Neurophysiology Data Integration (DANDI), NeuroElectro-
Magnetic data Archive and tools Resource (NEMAR), Neuroscience Multi- Omic Data Archive (NeMO), 
and OpenNeuro. Table  1 summarizes some key statistics and related information, including each 
archive’s NIH funding to date, the data types and formats supported, and the current number of 
datasets hosted.

In the first seven sections below, we compare and contrast the BRAIN Initiative archives’ data 
submission and access processes, including citation rules and tiers of user access. In addition, we 
report on the archives’ connections, including where they do and do not work together and exchange 
information effectively (interoperability). In- principle data interoperability is achieved via standard 
data formats, for example, Neurodata Without Borders (NWB) (Rübel et al., 2022; Teeters et al., 
2015) and the Brain Imaging Data Structure (BIDS) (Gorgolewski et al., 2016; Holdgraf et al., 2019; 
Milham et al., 2018; Niso et al., 2018; Pernet et al., 2019). The use of such standards facilitates 
pooling, re- analysis, and experimental replication. At the archive level, in- principle interoperability 
also includes the ability to find (i.e., by way of indexing and/or hyperlinking), access (i.e., download), 
and/or analyze data from one archive while working in another.

To emphasize the current paths of interoperability, Figure  1 summarizes the main connections 
enabling data submission and access procedures and mirroring (identical copies of data across 
archives) in the BRAIN Initiative data- sharing ecosystem. The figure also indicates prominent connec-
tions to external data management, indexing, and analysis tools, including the BRAIN Initiative Cell 
Census Network (BICCN) (https://biccn.org/). While not an official BRAIN Initiative data archive, the 

https://doi.org/10.7554/eLife.94000
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Figure 1. BRAIN Initiative data archive ecosystem connections. Summary of the main BRAIN Initiative data archive ecosystem connections currently 
enabling data upload, access (ability to download), analysis (which includes short- term data storage), and mirroring (identical copies of data across 
archives) among entities. Potential paths of data flow are represented by arrows, with the directions of flow (upload, download, or both) indicated by 
the directions of the arrows. All seven archives (light blue circles) are intended for long- term data storage. For the archives marked with an asterisk (*), 
data generated by the BRAIN Initiative Cell Census Network (BICCN) also are indexed by the Brain Cell Data Center (BCDC) at the Allen Institute in 
Seattle, WA. Clockwise from top: (i) Brain Image Library (BIL): From the data producer’s Home institution (hereafter, ‘Home’) (dark blue rectangle), data 
can be uploaded to or downloaded from BIL. BIL data can be uploaded to, analyzed, and downloaded from the Bridges- 2 supercomputer (orange 
circle). (ii) Data Archive for the BRAIN Initiative (DABI): From Home, data can be uploaded to or downloaded from DABI. (iii) NeuroElectroMagnetic data 
Archive and tools Resource (NEMAR): From Home, data can be downloaded from NEMAR. From NEMAR or Home, data also may be uploaded to the 
Neuroscience Gateway (NSG), although analyzed data may only be downloaded back to Home (and not back to NEMAR). All NEMAR data are mirrored 
(double solid line with no arrows) in OpenNeuro, and data also can only be uploaded to NEMAR through OpenNeuro. (iv) OpenNeuro: Data can be 
uploaded to or downloaded from OpenNeuro from Home. From OpenNeuro or Home, users also may upload and download data to BrainLife, a cloud- 
computing analysis environment. Through the data mirror, all OpenNeuro datasets are accessible on NEMAR. (v) Brain Observatory Storage Service and 
Database (BossDB): From Home, data can be uploaded to or downloaded from BossDB. (vi) Distributed Archives for Neurophysiology Data Integration 
(DANDI): From Home, data can be uploaded to and downloaded from DANDI. From Home, data analyzed in DANDI Hub also may be downloaded 
directly, but uploads to this analysis environment must always take place through DANDI. (vii) Neuroscience Multi- Omic Data Archive (NeMO): This 

Figure 1 continued on next page
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BICCN’s Brain Cell Data Center (BCDC), run by the Allen Institute for Brain Science in Seattle, WA, 
provides “public access to and organization of the complex data, tools, and knowledge derived by 
the BICCN.” Data appearing in four of the seven BRAIN Initiative archives (NeMO, BossDB, BIL, 
and DANDI) are indexed and findable on the ‘Brain Knowledge Platform’ provided by BCDC. In the 
following sections, we provide details on each of the BRAIN Initiative archives in terms of submission, 
access, interoperability, and associated tools.

BRAIN Initiative data archives
Brain Image Library
The BIL (brainimagelibrary.org) is a data archive for confocal microscopy. It operates as a partnership 
between the Biomedical Applications Group at the Pittsburgh Supercomputing Center (PSC), the 
Center for Biological Imaging at the University of Pittsburgh, and the Molecular Biosensor and Imaging 
Center at Carnegie Mellon University in Pittsburgh, PA. BIL incorporates Bridges- 2 (https://www.psc. 
edu/resources/bridges-2/), a supercomputer, for conducting analyses. Data uploaded to the BIL is 
managed under a tiered- access system, with the ability for data uploaders to designate secondary 
data access as public, restricted, embargoed, or ‘pre- release’, with the latter three options falling 
under ‘controlled access’ (https://www.brainimagelibrary.org/restrictedaccess.html; for tiered- access 
models more generally, see Broes et al., 2018). ‘Pre- release’ datasets have not yet gone through the 
full BIL data submission process. Data uploaded to BIL must include descriptive metadata. BIL encour-
ages data users to contact producers for potential collaborations, and it lists multiple ways in which 
BIL and data producers can be cited in publications. BIL’s connection to the Bridges- 2 supercomputer 
sets it apart from other BRAIN Initiative archives. BIL data generated by the BICCN also are indexed 
and findable through the BCDC.

Brain Observatory Storage Service and Database
Established and managed by Johns Hopkins University in Baltimore, MD, the BossDB (bossdb.org) is 
an archive for 3D and 4D electron microscopy (EM) and x- ray microtomography data (Hider et al., 
2022). Data uploaded to BossDB is managed under a tiered- access system, with classification of data-
sets as either public or controlled. As of this writing, there are no specific requirements for citing data 
hosted on BossDB.

In 2016, the US National Science Foundation (NSF) funded a series of strategy meetings to discuss 
how to use emerging cloud resources for analyses of large- scale brain data, such as that generated 
by EM and x- ray microtomography (Vogelstein et al., 2016; Wiener et al., 2016). BossDB emerged 
in part from these discussions. In addition, BossDB receives support from the Intelligence Advanced 
Research Projects Agency’s (IARPA) Machine Intelligence from Cortical Networks (MICrONS) program, 
a federal research initiative investigating how brain biology can inform artificial intelligence (https://
www.iarpa.gov/research-programs/microns). The Amazon Web Services (AWS) Public Datasets 
project, which covers the cloud storage costs for public datasets (https://registry.opendata.aws/), also 
supports BossDB.

Today, BossDB’s ability to support storage and analyses of especially large datasets—up to multiple 
petabytes at once—continues to set it apart from the other BRAIN Initiative archives. Additionally, 
because BossDB was designed for the cloud, the archive can manage cost and performance without 
sacrificing storage and analysis; as is true more generally for cloud- based archives, cloud operation 
ensures that the archive pays only for storage that is utilized, as opposed to paying for space that may 
not be fully used (Vogelstein et al., 2016). BossDB data generated by members of the BICCN are 
indexed and findable through the BCDC.

archive is the primary repository for genomic, transcriptomic, and epigenetic data generated by the BICCN. From Home, data can be uploaded to or 
downloaded from NeMO. NeMO also streamlines user access to Terra and gEAR. By way of the BCDC, users also may link directly to Terra workspaces 
associated with NeMO projects. All descriptions current as of June 5, 2024.

Figure 1 continued
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Data Archive for the BRAIN Initiative
The DABI, residing at the Laboratory of Neuro Imaging (LONI) at the University of Southern Cali-
fornia (USC), holds invasive human electrophysiological (i.e., iEEG) and associated clinical, imaging, 
pathology, behavioral, and demographic metadata (https://dabi.loni.usc.edu/about/overview; 
Duncan et al., 2023). Currently, DABI offers a collaborative annotation tool that allows users to anno-
tate their brain signal (multi- neuron electrical) data in real time (https://dabi.loni.usc.edu/analysis/ 
example-sync), with future plans to implement signal and imaging analysis tools.

DABI focuses on invasive neuro- electrophysiology but houses all imaging and signal data. The 
archive works with providers to offer extensive personalized support at the time of upload, tailored 
to the data type. Backup mechanisms preserving raw and processed data ensure data integrity 
throughout. DABI also uses a tiered- access system where datasets can be classified as public or 
private. All data requests require a DABI account, and some public and private datasets require a 
data use agreement. Private datasets can only be accessed following a formal request and approval 
from a dataset’s owner. According to DABI’s Publication Policy (https://dabi.loni.usc.edu/about/publi-
cations), data users must agree not to reference any of the preliminary analyses provided in DABI in 
their publications. Moreover, this policy states that:

“If DABI users are granted access to data and wish to publish results of analysis performed on the 
data, they must cite the Data Provider (per the agreed upon conditions) and include the following 
in their acknowledgements: ‘Data used to perform this analysis was accessed from the Data Archive 
for the BRAIN Initiative with support from the National Institutes of Health under Award Number 
R24MH114796.’”

DABI also tracks publications that make use of its data, which range from more granular research 
reports to studies of how data infrastructures, such as the existence of archives, influence the devel-
opment of therapies (Chen et al., 2021; Magnotti et al., 2020; Mujica- Parodi et al., 2020; Sendi 
et al., 2021).

The front- end user support that DABI offers is one of the archive’s distinctive features. Another is 
the choice that it affords data generators between centralized and federated storage. At present, no 
streams of interoperability, such as reciprocal data access, exist between DABI and the other BRAIN 
Initiative archives.

Distributed Archives for Neurophysiology Data Integration
The DANDI is a multi- institutional effort, supported by the BRAIN Initiative and the AWS public 
dataset programs, to house versioned data and collaborate across research sites (https://www.dandi-
archive.org/). This archive was built around NWB and a commitment to the FAIR Principles. It stores 
electrophysiology, optophysiology, behavioral time series, and immunostaining data. Cellular neuro-
physiology data must be in NWB, and neuroimaging data must be BIDS compliant (or use the BIDS 
extension for microscopy for immunostaining) (https://www.dandiarchive.org/handbook/30_data_ 
standards/).

DANDI is managed under a tiered- access system, where datasets are classified up front as either 
fully public or embargoed. The embargo option allows data producers to easily adhere to the BRAIN 
Initiative’s Data Sharing Policy, which permits an embargo of up to 6 months before data are released 
for public access. Additionally, data producers have the option of controlling who has access while 
the data are still embargoed and when the data are released. Publicly available code can be used 
to access public data and upload to DANDI, while requests for access to embargoed data must go 
through the DANDI web interface. When citing data, users should cite the unique DANDI identifier 
associated with the dataset, assigned at the time of successful data upload.

Data files uploaded to DANDI and analyzed in DANDI Hub, the DANDI- associated analysis work-
space, must be formatted as a ‘dandiset’, “a collection of assets (files and their metadata) and meta-
data about the collection” (https://www.dandiarchive.org/handbook/10_using_dandi/). Users may 
work with any NWB- or BIDS- compliant data in DANDI Hub. Data from multiple archives in NWB or 
BIDS formats can be uploaded as dandisets. However, there is currently no way to access data from 
other archives within DANDI itself. DANDI data generated by the members of the BICCN are indexed 
and findable through the BCDC.
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NeuroElectroMagnetic data Archive and tools Resource
The NEMAR operates as a partnership between OpenNeuro’s Stanford- based (Palo Alto, CA) team 
and the University of California, San Diego (UCSD) (https://nemar.org/). It is an archive for magne-
toencephalography (MEG), electroencephalography (EEG), and intracranial electroencephalography 
(iEEG) (collectively, neuroelectromagnetic, or NEM) data, supporting “the creation, maintenance, 
analysis, and cross- study mining” of such data and the “seeding and growing [of] ‘minable’ archives of 
NEM data in the OpenNeuro resource” (Delorme et al., 2022). The great expense of collecting NEM 
data strengthens the argument for maximizing access to it (Feinsinger et al., 2022; Mercier et al., 
2022). NEMAR facilitates analyses of its data with supercomputing resources available through a part-
nership with the NSF- funded Neuroscience Gateway (NSG) (https://nemar.org/nsg_for_nemar), which 
provides users free supercomputing time as well as streamlined access (through an integrated portal) 
to publicly available and some commercial software tools (https://www.nsgportal.org/; Martínez- 
Cancino et al., 2021; Sivagnanam et al., 2020).

NEMAR is unique among the BRAIN Initiative archives in its approach to data upload (https:// 
nemar.org/openneuro_and_nemar_relationship). Datasets cannot be uploaded directly, but rather 
only through OpenNeuro, at which point data appears in NEMAR within 24 hr. Identical copies of 
data (data mirrors) thus exist across the archives. Data may be designated as public or private, and 
private data are accessible only to designated users. OpenNeuro checks all datasets for BIDS compli-
ance, enabling data interoperability between archives employing BIDS. NWB datasets will pass Open-
Neuro’s validation, and NWB- BIDS interoperability is improving (https://neurodatawithoutborders. 
github.io/nwb_hackathons/HCK10_2021_Remote/projects/BIDS/). Requirements for citing datasets 
in NEMAR mirror those in OpenNeuro (see below).

To date, NEMAR is the only BRAIN Initiative archive to have been founded with the express purpose 
of interoperability with another BRAIN Initiative archive. NEMAR was always imagined as a “gateway 
to OpenNeuro for human electrophysiology” (Delorme et  al., 2022), filling an important gap by 
providing a centralized archive of NEM data allowing direct comparison of NEM brain dynamics and 
modalities (e.g., MEG and EEG) (Delorme et al., 2022). NEMAR remains the largest archive of its 
kind. Other, smaller NEM archives exist, though they do not share a data standard.

Neuroscience Multi-Omic Data Archive
Based at the Institute for Genome Sciences at the University of Maryland School of Medicine in Balti-
more, the NeMO is the primary repository for genomic, transcriptomic, and epigenetic data, for 
humans and model organisms, generated by the BICCN (https://nemoarchive.org/). NeMO’s web- 
based platform offers access to Terra (https://terra.bio/), an open- source, cloud- based repository of 
tools (O’Connor et al., 2017; Yuen et al., 2021). Through NeMO Analytics (https://nemoanalytics. 
org/), NeMO users also may analyze datasets in the archive in the gEAR portal (https://umgear.org/), 
“a single platform for data deposition, display, analysis, and interrogation” (Orvis et al., 2021) that 
can link out to species- specific gene annotations available on a diversity of online platforms.

Data submitted to NeMO is hosted at the NeMO website and can be categorized as public, embar-
goed, or restricted. The archive defines restricted data as: “to be distributed only to an approved 
group of users due to consent restrictions, e.g. human data” (https://nemoarchive.org/resources/ 
data-download). At present, there are no requirements for citing NeMO datasets, although each 
NeMO dataset has a unique identifier that can be cited, and some public datasets already are associ-
ated with publications (https://data.nemoarchive.org/publication_release/).

To enable the integration with Terra, NeMO relies on support from the Broad Institute in Cambridge, 
MA and the Google Cloud Platform (GCP), the latter of which keeps a copy of all NeMO data to facil-
itate the creation of NeMO projects in Terra.

OpenNeuro
Managed by the Stanford Center for Reproducible Neuroscience, OpenNeuro is a data archive that 
stores MRI and other neuroimaging data using BIDS (openneuro.org, Markiewicz et al., 2021). Devel-
oped initially out of the OpenfMRI archive, OpenNeuro is part of a long line of efforts—which reach 
back at least to the establishment of the fMRI Data Center in 1999—to support data sharing in neuro-
imaging communities (Poldrack et  al., 2013; Van Horn and Gazzaniga, 2002). Like DANDI and 
NeMO, OpenNeuro is explicitly committed to the FAIR Principles, and all its public data are released 
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under a CC0 license that places no restrictions on how the data can be reused (https://creative-
commons.org/share-your-work/public-domain/cc0/). In turn, as so many of its datasets are openly 
available, OpenNeuro participates in the AWS Public Datasets project (https://registry.opendata.aws/ 
openneuro/).

Data uploaded to OpenNeuro are managed under a tiered- access system, with the ability to classify 
data as either public or controlled. OpenNeuro account holders may analyze data via OpenNeuro’s 
partnership with the cloud- based environment,  Brainlife. io (Hayashi et al., 2024). As noted above, 
data intended for NEMAR also must be funneled through OpenNeuro. Moreover, while OpenNeuro’s 
standard policy is to make data publicly available “after a grace period of 36 months counted from the 
first successful version of the dataset” (https://openneuro.org/faq), allowing for analyses and associ-
ated publications, authors can apply for up to 12 additional months (and thus a 4- year total embargo).

OpenNeuro only accepts BIDS- compliant data free, in the case of human data, of the 18 HIPAA 
identifiers (https://www.hhs.gov/hipaa/for-professionals/special-topics/research/index.html). All data 
uploaded must pass OpenNeuro’s BIDS validator. As some MRI data contain structural information 
that could be a basis for identifying an individual, authors must use suitable programs to remove any 
defining facial features before upload. Finally, data generators must obtain the ethics permissions and 
informed consent necessary for sharing human data under their chosen tier of access, with Open-
Neuro encouraging all data generators to use the language available in the Open Brain Consent 
(Bannier et al., 2021). Examples of how to cite datasets are provided, and users are encouraged to 
reference the dataset numbers provided by the archive in any follow- on publications (https://open-
neuro.org/cite).

OpenNeuro stands out from the other BRAIN Initiative archives in its deliberate interoperability 
with NEMAR. Additionally, the size and multi- dimensionality of many of its datasets set it apart, as 
does the degree to which the archive has tracked the reuse of its own data. Many datasets in Open-
Neuro fall into the category of ‘big’ data along three axes: ‘width’ (the number of data subjects), 
‘breadth’ (the number of phenotypes measured), and ‘depth’ (the number of measurements per 
individual) (Markiewicz et al., 2021, p. 7). OpenNeuro’s leaders have reported actual reuse of the 
archive’s data in 165 publications through 2021, resulting in savings of thousands of hours of patient 
visits and research costs in the millions (Markiewicz et al., 2021).

Challenges, benefits, and future opportunities
Our first purpose in this paper has been to provide a guide for readers interested in sharing and using 
BRAIN Initiative- generated and other neuroscience data. In Figure 1, we summarize paths of data 
upload, download, mirroring, and relationships with tools germane to sharing and reusing data within 
the seven BRAIN Initiative- funded data archives. For this discussion, we have drawn on published 
reports (i.e., Delorme et  al., 2022; Duncan et  al., 2023; Hider et  al., 2022; Markiewicz et  al., 
2021; Rübel et al., 2022; Subash et al., 2023), the archives’ websites, and our own experiences (SI) 
downloading and uploading test datasets where possible. Relatedly, our second purpose is to identify 
and discuss policy- relevant challenges, benefits, and future opportunities emerging from the distrib-
uted BRAIN Initiative archive ecosystem, adding to ongoing efforts promoting empirically informed 
policy and practices aimed at making neuroscience data more FAIR (Hendriks et  al., 2022; Jwa 
and Poldrack, 2022; Poline et al., 2022; Sandström et al., 2022; Wilkinson et al., 2016). Below, 
we highlight some of these aspects, incorporating data from semi- structured interviews with diverse 
stakeholders (N = 34) and focusing on challenges largely specific to sharing human data. These chal-
lenges relate to archive interoperability and data stewardship.

Interoperability challenges
Several challenges related to data and archive interoperability are apparent in the BRAIN Initiative’s 
distributed archive ecosystem. Perhaps the most pressing is that training in adhering to existing data 
standards, such as NWB and BIDS, and processes for data submission in these formats are not built 
into most laboratory workflows, a challenge that only multiplies when research groups want (or are 
required) to submit data to multiple archives that employ different data standards and/or upload 
procedures. As one data steward we interviewed noted: “[F]rankly, there’s a lot of idiosyncrasies to 
different archiving systems.” (Interview 303). This individual also suggested that “[I]nfrastructurally… 
[in your lab] you need someone who can help others [share data in one of the BRAIN archives], instead 
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of making everyone learn how to do it for every different type of archive system.” (Interview 303). Yet, 
whether for all laboratory members or just designated personnel, the time and resources required to 
acquire the expertise needed for sharing, and to overhaul existing data generation and annotation 
procedures, must be built into the data- sharing costs for any research group (Bush et al., 2022). This 
point was corroborated in a 2022 survey of 1190 BRAIN Principal Investigators, which identified the 
limited standardization and norms for data acquisition, formatting, and description,” “heterogeneity 
of data types,” and the costs and time involved in data sharing” as the three predominant barriers to 
data sharing within the BRAIN Initiative (Hendriks et al., 2022). Again, it is worth emphasizing that 
these barriers are higher with submission to multiple archives.

Moreover, some uncertainties associated with the enforcement of data- sharing policies, which 
promote compliance with data standards, add a layer of complexity. For instance, the BRAIN Initia-
tive Data Sharing Policy requires that researchers funded through the BRAIN Initiative use the BRAIN 
informatics infrastructure, including the BRAIN Initiative- funded archives and associated standards. 
Nevertheless, the policy does not describe sanctions for non- compliance. The 2023 NIH DMS policy 
and related guidance establish that compliance will be reviewed during regular reporting intervals for 
a grant, along with annual Research Performance Progress Reports (RPPRs). Furthermore, the 2023 
NIH DMS Policy states that non- compliance with an approved DMS plan may result in enforcement 
actions, including addition of special terms and conditions to or termination of the award, and may 
impact future funding decisions for the recipient institution. It is unknown, however, how fully NIH 
officials will embrace these enforcement powers. The effects that any such actions would have on 
adherence to data standards also are unclear.

The experiences within the US National Institute of Mental Health (NIMH) in the evaluation of 
DMS plans might offer some insights into how data- sharing policies could affect compliance with 
data standards in the BRAIN Initiative moving forward. For example, the NIMH has centralized the 
evaluation of all DMS plans, although the assigned program officer still makes the final determination 
of acceptability (as laid out in the NIH’s DMS policy). Greg Farber, Director of the NIMH’s Division of 
Data Science and Technology, noted in a Town Hall focused on DMS in December 2023 that in the 
NIMH’s October 2023 Council Round, 14% of the 157 DMS plans submitted to the NIMH involving 
human subjects got a C and 22% got a D (https://sharing.nih.gov/data-management-and-sharing- 
policy/resources/learning?policy=DMS). Plans assigned a score of ‘C’ or ‘D’ will typically have to be 
revised or completely redone, respectively. Yet, these outcomes were better than for research with 
non- human subjects, and, as also noted in the above Town Hall, NIMH staff believe this contrast is tied 
to the influence of archives:

“If you’re going to deposit data to a well- established archive that has longstanding clear rules 
about how to deposit data and timelines and things like this, that...DMS plan is pretty easy to write 
because you just have to say, ‘Well, I’m going to do what the archive requires, I’m going to use these 
data dictionaries, you know, I’m going to do this, that, and the other thing.’”

Thus, while a distributed archive ecosystem has created some interoperability challenges, including 
for groups looking to submit data to multiple archives, the archives themselves have proven integral 
in enforcing the use of relevant data standards at the time of data sharing.

Additionally, the NIMH Data Sharing Policy (NOT- MH- 23- 100) requires that researchers funded by 
the NIMH use the NIMH’s own informatics infrastructure, which includes submitting all data to the 
NIMH Data Archive (NDA) unless NIMH stipulates otherwise during negotiation of the award terms 
and conditions. The fact that a substantial fraction of BRAIN Initiative awards are administered by the 
NIMH has created friction for data generators, some of whom expressed concern about compounded 
sharing efforts and the chances of errors being introduced in different copies of the same data. As one 
investigator noted: “[The NIMH] won’t accept sharing the data through DABI. …[T]hey have a whole 
other pipeline at NIMH….” (Interview 305). A closely related policy issue, although not technically one 
of interoperability, is the potential confusion that multiple archives can cause for investigators in terms 
of the ‘right’ or ‘best’ places to upload data. One policymaker noted: “It’s not clear which single data-
base [BRAIN Initiative investigators] are then beholden to.” (Interviewee 318). “[Y]ou have somebody 
who’s got data that falls into three or four of these buckets, which one [archive] are they imposing [the 
policies upon], all of them?” (Interviewee 318).

To summarize, likely the most pressing interoperability challenge associated with the BRAIN 
Initiative’s distributed archive ecosystem relates to standards, including the labor of adhering to and 
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enforcing them and the layers of complexity that individual agency standards add to the data- sharing 
process.

Additionally, those paths of in- principle interoperability that do exist in the BRAIN Initiative data- 
sharing ecosystem, whether among data or archives, could fail in practice, and in ways that may not 
even be predictable until the archives and their connections are more heavily trafficked. “That’s the 
next big question. Everyone’s trying to put data in. But how many people are using it?” one policy-
maker noted (Interview 125). Consequently, constant checking, use, and maintenance are required to 
ensure smooth operation: “[T]he biggest issue is that things break all the time and web infrastructure 
changes all the time” a data steward noted (Interview 320). The problem is in part traceable to the 
history of how the data- sharing ecosystem developed and evolved, given that the BRAIN Initiative 
archives arose for the most part in response to the needs of individual research communities (i.e., 
neuroimaging). One policymaker recalled that, as early as the 1990s, some neuroscientists already 
were discussing ways in which the Internet, then new, could be employed to share data: “Do we have 
one gigantic database? And does that database cover brain connectivity? Or do we, you know, build 
a bunch of databases for different data types?” (Interview 116). The distributed network ultimately 
adopted within the BRAIN Initiative meant that interoperability between the archives became a chal-
lenge to solve after the launch of each archive, rather than one built into the system up front. “[T]
he time was right under the BRAIN Initiative to build archives,” one data steward noted (Interview 
319). Yet, at first, “…there were no  identifiers... there was no metadata. …[W]e had to really work on 
bringing those things together” (Interview 116).

To complicate matters, since 2017, the BRAIN Initiative archives, and their paths of interoperability, 
have evolved alongside processes of data standards development and implementation. Thus, data 
curation (i.e., is all data claiming to be NWB- or BIDS- compliant actually so?) persistently has been 
tangled with the work of building lines of communication between archives (i.e., are data that are 
supposedly accessible from an archive actually accessible?). In addition, if more archives were to be 
added to the ecosystem, more standards could emerge. The more data, archives, and standards that 
exist, the more maintenance that is required for reliable, functional interactions. In turn, as noted, 
there is always the concern that paths of in- principle interoperability can fail in practice.

Finally, we have identified at least one node in the distributed BRAIN Initiative data- sharing 
ecosystem that, were it to fail, could lead to significant disruptions of research. Aside from the paths 
of interoperability that have been built deliberately into OpenNeuro and NEMAR, the BCDC indexes, 
and thus makes findable by hyperlink, the data generated by the BICCN that also is available within 
four of the BRAIN Initiative archives (NeMO, DANDI, BIL, and BossDB) (Figure 1). Should this func-
tionality be interrupted, secondary users could have trouble finding the large volume of data gener-
ated by the BICCN member institutions.

At least some of these interoperability issues are likely to be solved in the not- too- distant future. For 
example, while not entirely stemming from the existence of multiple BRAIN Initiative archives (as even a 
central database can support multiple standards), the challenge of making separate data standards them-
selves interoperable is receiving considerable attention from data stewards and neuroscientists (Mark-
iewicz et al., 2021; Poldrack et al., 2024; Rübel et al., 2022). In addition, the efforts of data stewards 
and standards developers in launching and improving data standards, providing training for users, and 
beginning to forge paths of interoperability so far have been facilitated by a number of data resource 
selection, evaluation, and self- study tools keyed not just to the FAIR Principles, but also to similar criteria, 
such as the TRUST (Transparency, Responsibility, User focus, Sustainability, and Technology) Principles 
(Donaldson and Koepke, 2022; FAIR Data Maturity Model Working Group, 2020; Lin et al., 2020; 
Murphy et al., 2021; Poline et al., 2022; Sandström et al., 2022; Wilkinson et al., 2016).

As another illustration, participants in the NIH Cloud- Based Platform Interoperability Community/
Governance Working Group recently published the Secure and Authorized FAIR Environment (SAFE) 
framework specifically to facilitate interoperability between cloud platforms (Grossman et al., 2024). 
Features include a system of authorized platform identifiers and authorized platform networks with 
their own identifiers; an API that exposes metadata relevant to the scope of appropriate sharing; 
and a platform governance process along the lines of the database of Genotypes and Phenotypes 
(dbGaP) (https://www.ncbi.nlm.nih.gov/gap/) or the National Institute of Standards and Technology 
(NIST) 800- 53 Security and Privacy Controls for Information Systems and Organizations framework at 
the Moderate Level (Dempsey et al., 2014).
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The International Neuroinformatics Coordinating Facility (INCF) also has emerged as a leader in 
facilitating interoperability among standards and archives and providing training, resources, and vali-
dation of standards in terms of (for example) metadata adaptability and the potential for widespread 
adoption (https://www.incf.org/). As a final example, the International Brain Initiative (IBI), a collective 
dedicated to international governance for neuroscience data, is developing resources to help inves-
tigators and other stakeholders navigate the myriad ethical, legal, regulatory, and policy frameworks 
affecting the work of large neuroscience projects (Eke et al., 2022). These include the US BRAIN 
Initiative but also other large- scale projects around the globe, such as the EU Human Brain Project 
(HBP) (Amunts et al., 2019) and similar efforts in Canada, China, Japan, Korea, and Australia.

These resources will continue to assist data stewards and generators. Yet, scientists and policy-
makers also will need to continue to foster the benefits of having multiple, linked archives, to balance 
out the interoperability- related challenges this network architecture imposes.

Data stewardship challenges
In addition to interoperability challenges, the distributed network of BRAIN Initiative archives raises 
certain ‘stewardship’ issues (Lin et al., 2020; Wilkinson et al., 2016). In ethics, ‘stewardship’ refers 
to the responsible management and supervision of resources of value to communities. Thus, ‘data 
stewardship’ refers to the responsible management of valuable data. Alongside the challenges of 
generating, using, and sharing FAIR data detailed above, two further stewardship challenges have 
emerged within the BRAIN Initiative data- sharing ecosystem: securing stable, long- term funding (i.e., 
sustainability) and grappling with the limits of informed consent for sharing of human data.

Since 2017, the NIH has made a significant investment in the BRAIN Initiative archives (Table 1). 
Funding for some has decreased over time, while others have seen their funding fluctuate, remain 
relatively stable, or increase. As is clear above, while some costs are specific to the planning and 
launch of an archive, continuing costs include more than just payment for storage. They also incorpo-
rate the labor required for responding to security threats; data curation; the development and main-
tenance of tools and resources (such as the NSG); and customer service. “It’s like rebuilding a raft as 
you’re floating on it,” one data steward noted, referring specifically to the evolving, expensive, and 
multi- faceted process of archive maintenance (Interview 320). Archive personnel must at a minimum 
adapt to this changing environment. Most data stewards, however, aspire to improve their user inter-
faces and available tools over time.

In turn, while the BRAIN Initiative’s commitment to infrastructure has quelled some fears, data 
stewards especially still worry about the prospects of obtaining long- term, sustainable funding for 
their archives. The NIH’s 2018 Strategic Plan for Data Science noted problems created by supporting 
“data resources using funding approaches designed for research projects” (https://datascience.nih. 
gov/nih-strategic-plan-data-science). The BRAIN R24 Funding Opportunity Announcements provided 
support for the existing archives (https://grants.nih.gov/grants/guide/rfa-files/RFA-MH-17-255.html; 
https://grants.nih.gov/grants/guide/rfa-files/RFA-MH-19-145.html). Yet, there remains the ques-
tion of sustainability once the BRAIN Initiative transitions to a new phase: The original conception 
was focused on a 10- year time frame ending in 2025 (BRAIN 2025: A Scientific Vision, 2014), and 
special funding was allocated to the Initiative in 2016 under the 21st Century Cures Act through 2026 
(https://www.nih.gov/research-training/medical-research-initiatives/cures). In 2024, BRAIN Initiative 
funding through the 21st Century Cures Act was significantly reduced, creating resource challenges 
for existing and new initiatives.

Stable funding helps archives with recruitment and retention of qualified staff. Relatedly, it helps 
incentivize data sharing, as submitters know that their investment in preparing data for upload will not 
be wasted by that archive ceasing to exist. While the latter point could apply both to distributed and 
centralized systems, avoiding disruption of a distributed ecosystem requires continued support for 
multiple archives. A business model that relies on user fees paid by data depositors and/or secondary 
users is conceivable, yet it inherently disadvantages potential users from lower- resourced institutions 
and countries. In the words of a 2017 OECD report, “willingness to pay is constrained by capacity 
to pay” (OECD Global Science Forum, 2017). Also, even those with the capacity to pay may be 
disinclined to do so if they can find similar data for free, as evidenced by the failure of efforts like 
BRCA Share (Bollinger et al., 2019). Thus, it is likely that the leaders of the BRAIN Initiative archives 
will continue to look to the NIH for funding to support their existence, although data stewards, such 
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as those leading OpenNeuro and DABI, do engage in continuity planning (Duncan et  al., 2023; 
Markiewicz et al., 2021). Ideally, such contingency plans will obviate the need to consider charging 
for access to data if sustainable NIH funding dries up. However, they are unlikely to maintain current 
levels of service and innovation.

Second, there is the stewardship challenge of the limits of informed consent for sharing human 
data in a distributed archive ecosystem. The ethical issues embedded in informed consent for neuro-
science research is an active area of study in neuroethics (i.e., Cabrera, 2021; Feinsinger et al., 2022). 
Existing studies in relation to data sharing emphasize the impossibility of ‘future- proofing’ consent 
due to uncertainties in articulating the risks that could be involved (Bannier et al., 2021; Hendriks 
et al., 2022; Lee and Majumder, 2022). In part because one of the goals of sharing in a public archive 
is to facilitate data pooling, for example, it is likely impossible to predict all the ways in which shared 
data might be used, not to mention the inferences that could be made because of those uses. “[I]f you 
have different types of data that you’re combining, and then layering on top of that new approaches 
for analyzing those data with AI... I’m not confident that our informed consent can really capture 
what might be possible,” one policymaker noted (Interview 318). Moreover, the more interoperable 
and annotated neuroscience data become—a scientifically desirable outcome—the higher the risk for 
misuse, such as through re- identification: “[W]e want to get to a place where the data is incredibly 
interoperable and can be aggregated…” one legal and ethics scholar noted (Interview 324), yet, “…
when we do that, we have a prime target for misuse.”

These more general challenges are compounded given the multiple BRAIN Initiative- supported 
archives. This is because consent provided by participants for certain tiers of secondary access to their 
data in one archive may not be enforceable across all the archives in the network. As interoperability 
between data and archives improves, this challenge will only grow more acute. “I don’t think we really 
talk about linking data and what it actually means,” one policymaker noted (Interview 316); “…if you 
wanted to link databases, you need to get informed consent for it. Because it actually makes people 
aware of what you're actually doing with the data.”

Harmonizing informed consents for the various tiers and rules of access across the BRAIN Initiative 
also likely will present a persistent and evolving challenge, both logistically and ethically. Currently, 
BRAIN Initiative- funded investigators are encouraged by the NIH (NOT- MH- 19- 010), and by some 
BRAIN archives, to seek as broad consent as possible for sharing their de- identified human data in 
public archives, if in accordance with IRB approval, and barring any concerns regarding the possibility 
of re- identification (Bannier et al., 2021; Markiewicz et al., 2021). A representative of the National 
Institute for Child Health and Development (NICHD), another BRAIN Initiative institution, noted in the 
December 2023 DMS Town Hall that a specific justification would be expected for any limits on the 
sharing of de- identified data as stipulated in DMS plans submitted to the Institute. For example, if 
an investigator were to reference a small sample size in such a justification, NICHD would expect an 
explanation of the IRB’s role in that determination.

Especially as the NIH’s new DMS policy promotes increased sharing across all fields, and as is the 
case in other fields (i.e., Garrison et al., 2016; Office of Science Policy, 2015), this area will remain 
a topic of policy concern.

Benefits and future opportunities
Despite these interoperability and stewardship challenges, there are benefits to the BRAIN Initiative’s 
distributed data- sharing ecosystem, and the model offers distinct opportunities for improvement as 
time goes on. Perhaps the most obvious benefit, and the one most frequently noted in our interviews, 
is the ability of individual archives to adapt smoothly to the needs of specific research communities. “I 
like the... model that the BRAIN Initiative has taken, in part because the archives that they are funding 
are all investigator- driven. They’re being developed by people in the field” one data steward noted 
(Interview 320). As mentioned above, a distributed infrastructure can avoid some of the technical and 
logistical challenges often associated with central servers, such as storage limitations and coarseness 
in responding to data- specific upload, download, and analysis issues (Rootes- Murdy et al., 2022; 
The Global Alliance for Genomics and Health, 2016; White et al., 2022). Moreover, responses to 
changes in the overall landscape—due to the possible addition of archives and standards, emerging 
security threats, experimental or technological innovations leading to unprecedented volumes or 
types of data, or changes in user preferences, for example—emanate from the bottom up rather than 
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the top down. In other words, distributed archives can respond nimbly to user needs, presumably 
better than some more centralized systems, largely because the arrows of responsiveness flow from 
field experts directly to archives tailored to and run by them.

Relatedly, there are benefits to enforcing data standardization in a distributed network. Some 
aspects of data sharing, such as post- submission curation, may in principle be easier to enforce 
uniformly in a centralized archive. “[I]f you look at a lot of the standards, where they get implemented 
are at the repository levels, right?” a policymaker we interviewed noted (Interview 116). “[I]t’s the 
repositories that say: ‘Well, you need to have this metadata.’ So, once you have a mandate, like 
BRAIN does, that says, ‘you will put them into this repository,’ and the repository says, ‘and you’re 
not going to be able to put them in there until such a time as you have this information,’ you start to 
have something that can gain some traction” (Interview 116). On the other hand, archives emerging 
from specific research communities, such as OpenNeuro, are built with tailored purposes and users in 
mind, and are thus perhaps more willingly utilized, alongside their associated standards. That is, both 
the archives and their associated standards may be more likely to achieve greater ‘buy- in’ from their 
respective research communities than would be the case with a more centralized structure (Poldrack 
et al., 2024). Also, a diversity of archives can reach a diversity of users, propagating standards among 
various fields and institutions with varying levels of resources.

Building on these advantages, the BRAIN Initiative’s distributed archive ecosystem also offers 
distinct future opportunities, as more data are generated, analytical tools are refined, and data- 
sharing and reuse grow more commonplace. One advantage is the possibility for decoupling neuro-
science research grants from infrastructure building. “[I]n some ways, almost every R01 ends up having 
a little aim with the resource that they — incredible resource — but they’re hosting it and they bear 
the brunt of supporting that, which shouldn’t be the case. We want to reduce that burden to the R01 
researchers…” one policymaker remarked (Interview 114). As the NIH’s 2023 DMS policy accelerates 
the rate of sharing, the BRAIN archives are likely to provide viable options for data that might other-
wise have nowhere else to go, other than into small, individual investigator- hosted archives posing 
their own interoperability and stewardship challenges.

Additionally, the BRAIN Initiative archives offer raw material for network evolution, and thus for 
responding to the needs of a large and growing community. “Database development is like spinal 
cord development, right?” one policymaker noted (Interview 116).

“You overproduce neurons, here you’ve got a bunch of muscles and things that are ready to do 
work, but they’re sort of poorly coordinated. And at some point, they come out and they meet; the 
use cases start to meet, and most of the neurons die, right? Because most of them turned out not to 
be useful, or they were overengineered. But then, once the use cases come, you start to fine- tune the 
system for the things that people actually want to do. And need to do. As opposed to every possible 
thing that could be done. So, I think that’s a really good metaphor. …I think we're in an exciting time 
now where the connections have finally been made, right?...There’s going to be a lot of pruning, 
there’s going to be a lot of refinement. But that could not happen until people actually were moti-
vated to try to use these things.” (Interview 116)

The optimal ‘solution architecture’, as another policymaker put it, can emerge as the BRAIN Initia-
tive and brain science evolve, from the possibilities offered by the current network (Interview 114).

There also is ample room for building further paths of interoperability, whether between stan-
dards or archives. “[T]hat may not mean shutting down other databases…” one neuroscientist noted 
(Interview 308). Indeed, rather than stabilizing at a middle ground with fewer archives, in the future 
the BRAIN Initiative data- sharing infrastructure might expand (https://braininitiative.nih.gov/funding- 
opportunies/notice-special-interest-nosi-brain-initiative-developing-data-archive). Thus: “[Improving 
interoperability] may just be creating conduits between [the archives], so it’s a one- stop shopping 
where you get data from all of them concurrently” (Interview 308). As the leaders of NWB emphasized 
in 2022: “Creating a coherent model of how the brain works will require synthesizing data generated 
by these heterogeneous experiments” (Rübel et al., 2022), whether within or across archives.

Discussion
The BRAIN Initiative’s data- sharing ecosystem illustrates a range of possible responses to recurrent 
issues in database design and organization (Jwa and Poldrack, 2022; Lin et al., 2020; Institute of 
Medicine (US), 2013; Subash et al., 2023). The distributed BRAIN ecosystem might on the surface 
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seem to be a natural reflection of the diversity of neuroscience data. Yet, as noted above, the NIMH 
follows a centralized approach (https://nda.nih.gov/) (Lee and Majumder, 2022). The HBP also has 
a centralized repository, EBRAINS (https://ebrains.eu/) (Amunts et al., 2019). Moreover, there has 
been a tendency to centralize data in other fields, such as in genomics (Cook- Deegan et al., 2017; 
Cook- Deegan and McGuire, 2017). At least since the conclusion of the Human Genome Project, 
when DNA sequences were funneled into separate regional archives (Maxson Jones et al., 2018; 
Stevens, 2018), most complex human genomic data in the US has been channeled into dbGaP or 
(more recently for large datasets) the Genomic Analysis, Visualization, and Informatics Lab- space 
(AnVIL) (https://www.genome.gov/Funded-Programs-Projects/Computational-Genomics-and-Data- 
Science-Program/Genomic-Analysis-Visualization-Informatics-Lab-space-AnVIL). Thus, the degree of 
database centralization for any project is a policy choice, not an inevitability, and one that must rely 
on a balance of competing interests, goals, and continual reassessment of challenges, benefits, and 
opportunities.

Accordingly, the neuroscience data- sharing ecosystem should be viewed as malleable, both inside 
and outside the BRAIN Initiative. The meetings that led to BossDB were part of broader, ongoing 
conversations about how data sharing could be promoted and realized in the digital age (Choud-
hury et al., 2014; Insel et al., 2003; Poldrack and Poline, 2015; Poline et al., 2012; Sejnowski 
et al., 2014; Van Horn and Gazzaniga, 2002; Van Horn and Toga, 2009; Teeters et al., 2008). 
Data sharing also has long been a priority among a subset of the neuroimaging (MRI) community, 
including within initiatives focused on disease research (Borghi and Van Gulick, 2018; Mennes 
et al., 2013; Poline et al., 2012). A few more specific examples include the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) (Jones‐Davis and Buckholtz, 2015), SchizConnect for schizophrenia 
(Ambite et al., 2015), and the Image and Data Archive (IDA) within the LONI at USC, which “started 
managing neuroimaging data for multi- centered research studies in the late 1990’s” (https://ida.loni. 
usc.edu/login.jsp). For over two decades, these leaders within neuroimaging have promoted data 
sharing for similar reasons to the BRAIN Initiative, emphasizing the goals of improving data quality 
and promoting reproducibility.

Additionally, existing literature has examined some of the challenges, alongside the benefits, of 
data sharing in neuroscience generally (i.e., Milham et al., 2018; Poline et al., 2012; Wiener et al., 
2016; Rahimzadeh et al., 2023). This work has emphasized that major barriers to sharing include 
establishing and maintaining paths of data and archive interoperability and stewardship, such as 
sustainability and informed consent. Several data- sharing projects and supporting institutions, some 
founded before the start of the BRAIN Initiative, also interact closely with the BRAIN Initiative. These 
include the Neurosciences Information Framework (NIF) (https://neuinfo.org/) and the INCF, founded 
in 2006 and 2005, respectively (Poline et al., 2022; Poline et al., 2012; Sandström et al., 2022). 
Following meetings involving academia, industry, government, and the non- profit sector, the IBI was 
formed in 2018 (https://www.internationalbraininitiative.org/about). Such collective efforts are making 
neuroscience data FAIRer, for instance by streamlining collaborations and promoting adherence to 
data- sharing guidelines.

In turn, and in time, the relative benefits and drawbacks of centralized versus federated models in 
neuroscience data sharing also will become clearer. For example, there is the question of the value of 
any one archive. How can archives demonstrate and enhance their contributions, helping funders to 
determine how best to use their resources?

Perhaps some archives should indeed cease to exist, if they are not utilized or are inefficient (OECD 
Global Science Forum, 2017). The NIH Strategic Plan for Data Science states the intention to support 
the development of “standard use, utility, and efficiency metrics [for archives] and review expectations 
for data resources and tools” (https://datascience.nih.gov/nih-strategic-plan-data-science). Relatedly, 
a 2021 analysis employing interviews with representatives of 13 NIH repositories identified three cate-
gories of metrics for evaluation of an archive’s value: user behavior, scientific contribution/impact, 
and repository operations (NIH Metrics & LifeCycle Working Group and Metrics for Repositories 
(MetRe) Working Group, 2021). The NIH’s 2020 guidance, for data producers looking to select a 
repository, also lists among desirable characteristics for an archive “the ability to measure attribution, 
citation, and reuse of data (i.e., through assignment of adequate metadata and unique PIDs)” (https:// 
grants.nih.gov/grants/guide/notice-files/NOT-OD-21-016.html). This feature also could benefit data 
contributors, helping to establish the value of an individual’s data- sharing efforts within the field.
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The leaders of a few archives and datasets, such as at OpenNeuro, have managed to track infor-
mation about reuse and resulting publications over time, and have estimated the savings realized 
through data sharing in terms of numbers of clinic hours and research costs (Markiewicz et al., 2021; 
Milham et al., 2018). Markiewicz et al. found that from 2018 to 2021, data reused from OpenNeuro 
resulted in 165 publications, with the volume increasing sharply over that period. Areas of contribution 
ranged from basic neuroscience (i.e., anatomical changes in the brain distinctive to pain syndromes) 
to the development and refinement of software tools (i.e., improvement of fMRIPrep preprocessing 
workflow). Collectively, as of 2021, these publications had generated over 1329 citations. In terms 
of research savings—that is, the cost were the reused data to have been generated de novo—Mark-
iewicz et al. estimated nearly $21 million, using conservative assumptions (Markiewicz et al., 2021).

Recent announcements also have explicitly signaled the NIH’s interest in funding evaluation 
metrics. Examples include: “Notice of Special Interest (NOSI): Support for existing data repositories 
to align with FAIR and TRUST principles and evaluate usage, utility, and impact” (NOT- OD- 23- 044); 
“Enhancement and Management of Established Biomedical Data Repositories and Knowledgebases 
(PAR- 23- 237)”; and “Early- stage Biomedical Data Repositories and Knowledgebases (PAR- 23- 236)”.

However, such data remain difficult to obtain and are few and far between. As uses and citation 
practices vary, rigorous bibliometric analyses have necessitated full- text searches in Google Scholar 
followed by manual review (as with the OpenNeuro example above). Publication counts also tend 
to be lagging indicators of the scientific utility of a dataset. Furthermore, consensus standards for 
measuring the impact of a given dataset, such as counting the publications resulting from reuse, do 
not yet exist, even as various groups, including within the NIH, are studying the problem. Proposals 
for new author- level metrics of scientific achievement that integrate data sharing (i.e., the ‘S- index’ 
or ‘SCIENCE- index Augmented’) also have not yet been widely adopted (Emanuele and Minoretti, 
2023), and the development and adoption of standard archive- level metrics to evaluate usage, utility, 
and impact remain a work in progress.

In sum, at present, the value of any one archive within a distributed ecosystem is challenging to 
measure quantitatively. Furthermore, without adequate redundancy, the disappearance of any single 
archive could cause instabilities in the entire system. Some redundancy is built into the BRAIN Initiative 
data- sharing ecosystem, for instance in the ability to store electrophysiology data in DABI, DANDI, or 
OpenNeuro and the extensions of the BIDS standards to EEG, iEEG, and MEG (Holdgraf et al., 2019; 
Niso et al., 2018; Pernet et al., 2019) in 2018 and 2019. But the ecosystem will continue to evolve, 
and it will require a sustainability plan. As scientists, policymakers, data stewards, and other interested 
parties consider the future of this data- sharing infrastructure, some of the primary considerations will 
need to include balancing needs and priorities in the areas of flexibility, sensitivity to innovation, diver-
sity of reach, and coordinated management and sustainability.

Materials and methods
Data for this manuscript were generated using mixed methods, including interviews with stakeholders 
and a landscape analysis of relevant policies, guidance documents, and data repositories.

To understand how and when researchers are required to share data, relevant policies and guide-
lines developed by the NIH were reviewed, including the BRAIN Initiative’s Data Sharing Policy (NOT- 
MH- 19- 010) and the new NIH- wide DMS policy (NOT- OD- 21- 013).

We also explored how each of the seven BRAIN Initiative data archives is structured and how it 
functions. One team member (SI) created accounts for each of the archives to ascertain data upload 
procedures (including formatting), what data were available for download, and available tiers of 
access to datasets (i.e., open or controlled access). Additional information was generated by a review 
of the literature including technical articles describing the archives (i.e., Delorme et al., 2022; Duncan 
et al., 2023; Hider et al., 2022; Markiewicz et al., 2021; Rübel et al., 2022; Subash et al., 2023).

Once user accounts were established at each archive, SI used an Excel spreadsheet to system-
atically capture defining characteristics of each archive, including similarities and areas of variation 
among them, as well as connections between them. Variables of interest included: privacy (defined 
as pathways of access to data, including whether accounts were required to upload, download, view, 
and/or analyze, and open/public and/or controlled access options); approaches for data backup and 
maintenance; data upload and download processes; accepted data types and files; analysis tools; 
and any external repository or resource interactions (i.e., links to access archive datasets from outside 
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resources). In some cases, outreach was made to archive contacts through the websites’ Help or 
Contact Us functions. Communications with these members of the archives’ staff helped confirm 
understandings of how the archives worked, usually clarifying or corroborating information available 
from archive websites and publications.

Finally, we include data from semi- structured interviews (n = 34) with individuals who were recruited 
based on their work and expertise as BRAIN and non- BRAIN scientists (n = 9), data stewards (n = 4), 
law and ethics scholars and policymakers working in government and not- for- profit institutions (n = 
10), patient advocates (n = 5), and industry representatives (n = 6). Interviews were conducted virtually 
as part of the BRAINshare project to explore perspectives on data sharing from human neuroscience 
studies, including barriers and facilitators of data sharing. Interviews were conducted in English and 
audio- recorded. Participants were offered a $50 electronic gift card upon completion of the interview. 
De- identified transcripts were analyzed using thematic analysis (Creswell and Poth, 2018). A code-
book was developed deductively from the interview guide, which was revised with codes generated 
inductively. All transcripts were coded by a primary coder (KMJ, MAM, or AD), and a secondary 
coder (JOR, MAM, or AD) reviewed each transcript. Any discrepancies were discussed and resolved 
by consensus. For this manuscript, we reviewed data that were coded as related to credits, rewards, 
and incentives for sharing human neuroscience data, as well as technical aspects of sharing. Selected 
quotations represent salient issues identified. Dedoose, a web application for managing qualitative 
research, was used for the coding process (version 9.0.82, 2022, Los Angeles, CA: SocioCultural 
Research Consultants, LLC). This study was approved by the Baylor College of Medicine Institutional 
Review Board (protocol H- 49969).
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