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eLife Assessment
The authors analyze the relationship between human mobility and genomic data of SARS-CoV-2 
using mobile phone mobility data and sequence data and present a solid proof of concept. This 
useful work was conducted on a fine spatial scale and provides suggestions on how mobility-derived 
surveillance could be conducted, although these results are mixed. The primary significance of this 
work is the strong use of large datasets that were highly granular. The authors provide a rigorous 
study, but with less clear predictive power of mobility to inform transmission patterns.

Abstract Given the rapid cross-country spread of SARS-CoV-2 and the resulting difficulty in 
tracking lineage spread, we investigated the potential of combining mobile service data and 
fine-granular metadata (such as postal codes and genomic data) to advance integrated genomic 
surveillance of the pandemic in the federal state of Thuringia, Germany. We sequenced over 6500 
SARS-CoV-2 Alpha genomes (B.1.1.7) across 7 months within Thuringia while collecting patients’ 
isolation dates and postal codes. Our dataset is complemented by over 66,000 publicly avail-
able German Alpha genomes and mobile service data for Thuringia. We identified the existence 
and spread of nine persistent mutation variants within the Alpha lineage, seven of which formed 
separate phylogenetic clusters with different spreading patterns in Thuringia. The remaining two 
are subclusters. Mobile service data can indicate these clusters’ spread and highlight a potential 
sampling bias, especially of low-prevalence variants. Thereby, mobile service data can be used 
either retrospectively to assess surveillance coverage and efficiency from already collected data 
or to actively guide part of a surveillance sampling process to districts where these variants are 
expected to emerge. The latter concept was successfully implemented as a proof-of-concept for a 
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mobility-guided sampling strategy in response to the surveillance of Omicron sublineage BQ.1.1. 
The combination of mobile service data and SARS-CoV-2 surveillance by genome sequencing is a 
valuable tool for more targeted and responsive surveillance.

Introduction
On March 11, 2020, the World Health Organization (WHO) classified the SARS-CoV-2 virus (severe acute 
respiratory syndrome coronavirus 2) as a global pandemic due to its rapid spread and high infection 
rate (Zhu et al., 2020). The airborne virus has since caused significant morbidity and mortality world-
wide (https://covid19.who.int/). In an attempt to control its spread, many countries initiated compre-
hensive surveillance efforts with molecular techniques such as polymerase chain reaction (PCR) and 
whole genome sequencing (WGS) (COVID-19 Genomics UK, 2020; Corona-Surveillanceverordnung, 
2022). Consequently, nearly 15.8  million SARS-CoV-2 sequences have been deposited into the 
‘Global Initiative on Sharing All Influenza Data’ database (as of July 21, 2023, GISAID). Many research 
groups have undertaken studies examining the viral spread by integrating sequencing and epide-
miological data to monitor the pandemic and investigate local outbreaks (Meredith et  al., 2020; 
Page et al., 2021). Most of these local projects are part of national surveillance programs such as 
the UK’s Genomics Consortium (COG-UK) or ‘national genomic surveillance’ in the USA (COVID-19 
Genomics UK, 2020; Lambrou et al., 2021). In Germany, the ‘Coronavirus-Surveillanceverordnung’ 
(CorSurV) enacted by the State Ministry of Health on January 19, 2021, mandated that laboratories 
with sequencing capabilities process SARS-CoV-2-positive samples, offering financial compensation 
until April 2023 (Corona-Surveillanceverordnung, 2022).

Bioinformatics workflows developed in Germany, such as poreCov (for Oxford Nanopore data) 
and CoVpipe2 (for Illumina data), reconstruct SARS-CoV-2 consensus genomes from the sequencing 
data and prepare the results for upload and submission to the Robert Koch Institute (RKI) (Brandt 
et  al., 2021; Lataretu et  al., 2024). As the German government’s public health and biomedical 
research institute responsible for disease control and prevention, the RKI collected the genomes via 
the German Electronic Sequence Data Hub (DESH) and integrated them with additional epidemio-
logical information to provide an up-to-date overview of the ongoing viral spread. For keeping track 
of the rapid SARS-CoV-2 evolution, PANGO (Phylogenetic Assignment of Named Global Outbreak) 
provides a standard naming convention based on unique mutation profiles and further criteria, 
resulting in the classification of over 3660 lineages (as of August 2023) (Rambaut et  al., 2020; 
PANGO, 2023). Additionally, the WHO classified important viral lineages as ‘Variants of Concern’ 
(VOC), ‘Variants of Interest’ (VOI), or ‘Variants under Monitoring’ (VUM), using Greek designations 
in the past (e.g. ‘Alpha’ [Pango lineage main designation B.1.1.7] or ‘Omicron’ [Pango lineage main 
designation B.1.1.529]). Further, the WHO also de-escalated former VOCs to reflect the current 
SARS-CoV-2 variant landscape better. The first defined VOC (now de-escalated), the Alpha lineage, 
rapidly replaced almost all previously circulating lineages globally by the end of 2020 until the VOC 
Delta (main lineage B.1.617.2) replaced it in mid-2021 (Washington et  al., 2021; Walker et  al., 
2021; Michaelsen et al., 2022).

To predict or monitor the rapid viral spread throughout regions, various data types, like travel 
data, passenger volumes, or passive wastewater monitoring, were examined previously (Alpert et al., 
2021; O’Toole et al., 2021; Li et al., 2022). Furthermore, different studies explored mobility data 
with genomic data to retrace the origin and spatial expanse of Alpha or utilized geolocation data to 
model the spread in metropolitan areas to recreate case trajectories and the impact of mobility restric-
tions (Kraemer et al., 2021; Chang et al., 2021). Mobility data was also used in Germany during the 
pandemic, revealing that lockdowns leave distant parts of the country less connected due to the sharp 
decline in long-distance travel (Schlosser et al., 2020). These studies focused on analyzing residential 
movement and contact tracing to evaluate and inform health policies but were not applied to active 
molecular surveillance.

Here, we investigated whether mobile service data and fine-granular metadata (such as postal 
codes and genomic data) can help predict the spread of the Alpha lineage or guide the sampling for 
more targeted genomic surveillance with a focus on the German federal state of Thuringia.

https://doi.org/10.7554/eLife.94045
https://covid19.who.int/
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Results and discussion
The Alpha lineage spread rapidly through Thuringia, showing a pattern 
similar to its nationwide spread
Thuringia is a rural federal state in central Germany with a population of 2.1 million and no major 
airports (overview of Thuringia’s population density in Figure 1—figure supplement 2). We inves-
tigated if the spread of the Alpha lineage of SARS-CoV-2 behaved differently compared to the 
whole of Germany. To understand its spread, we used 289,487 public SARS-CoV-2 genomes from 
Germany (excluding Thuringia; including 137,024 Alpha genomes) and 7394 genomes from our own 
sequencing data for Thuringia (including 6307 Alpha genomes) to track Alpha’s occurrence from 
December 2020 to August 2021 (see Figure 1, Figure 1—figure supplement 1, and Figure 1—
source data 1; Figure 1—source data 2; for details, see Methods section ‘Alpha spread datasets’). 
For Thuringia, district-level data (full postal code) per genome were available, whereas, for Germany, 
only postal code data of the sending laboratories (referred to as ‘primary diagnostic laboratory’ by 
the RKI where the SARS-CoV-2-positive sample was detected) and sequencing laboratories were 
publicly available.

In late December 2020, six federal states in Germany (from here on called states) reported the 
first cases of the Alpha variant. Although sequencing was initially low, it gradually increased in the 
following month. However, the Corona-Surveillance regulation was passed at the end of January 2021, 
leading to a rapid increase in sampling and sequencing by February since sequencing costs could be 
reimbursed. Even though Thuringia sequenced a similar amount of SARS-CoV-2 samples compared to 
other German states (as shown in Figure 1), the proportion of the Alpha variant to other lineages was 
relatively low. However, the proportion of Alpha increased heavily in February.

By March, Alpha had spread to nearly all states and districts (districts are similar to counties or 
provinces) in Germany (median: 76.47% Alpha samples among a federal states total sequenced 
samples compared to 36.03% in February, excluding Thuringia) and Thuringia (median: 85.29 %, up 
from 50.00% in February). So, there was no noticeable difference in the Alpha proportions between 
Germany and Thuringia after February. During the summer of June and July 2021, sequencing declined 
in Germany (including Thuringia; Figure 1—figure supplement 1) due to the decrease in overall daily 
cases, as reported by Meintrup et al., 2022; Oh et al., 2022.

In summary, the spread of the Alpha lineage in Thuringia lagged roughly 2 weeks behind the 
general spread of other German federal states but showed similar proportions. This suggests that 
Thuringia experienced a delay in the initial arrival of Alpha. However, we did not observe any differ-
ence in the overall spread afterward. Thuringia was among the first states to adopt new containment 
measures, including contact limitations, closure of retail shops, and prohibition of tourist journeys 
(December 14, 2020). Jena, a city in Thuringia, was also the first German city to implement mandatory 
public masking in March 2020 (Pletz et al., 2023). Contacts were further restricted on January 9th, 
and people were urged to restrict their movement radius to 15 km, which might explain the delay 
besides the absence of major airports nearby.

All Thuringian genomes were evenly distributed between other German samples in the phyloge-
netic time tree (see Figure 1—figure supplement 3). However, due to its rapid spread from February 
onward, it is difficult to accurately track how the Alpha lineage specifically expanded (point of entries, 
exact origins, etc.). Consequently, we investigated whether ‘sublineages’ might be identifiable and 
trackable to address this.

Monitoring of Alpha subclusters in Thuringia reveals temporally and 
regionally restricted distribution patterns
To identify possible clusters among the Alpha lineage spreading in Thuringia, we called each Alpha 
genome’s mutations via Nextclade by analyzing them using poreCov (Brandt et  al., 2021; Aksa-
mentov et  al., 2021). We identified nine clusters out of 70,429 Alpha genomes, based on their 
mutation profile, time period, and phylogenetic distance (from here on called Alpha subclusters; for 
details, see Methods ‘Subcluster identification’). All subclusters, their time period, and sample size 
in Thuringia are summarized in Table  1. An overview of each subcluster (phylogenetic time tree, 
location, and period) is also provided here as interactive views (see Methods ‘Subcluster identifica-
tion’). Note that our subcluster definition is similar to the definition of a sublineage. However, PANGO 

https://doi.org/10.7554/eLife.94045
https://microreact.org/project/ftR2GfjF6iXtSwbmN4ARTx-thuringianalpha-linclusters#76ir-complete-overview
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Figure 1. Total number of all sequenced SARS-CoV-2 samples (purple) and the proportion of the Alpha lineage 
for all sequenced samples (yellow-red) for each state of Germany and each district of Thuringia. 289,487 publicly 
available German SARS-CoV-2 genomes and their metadata were used for the general German maps, excluding 
data from Thuringia. For Thuringia, we always used 7394 genomes and their metadata from our database for the 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.94045
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sublineages were rarely defined during the Alpha wave (PANGO designation: Q.1 to Q.8; compared 
to the Delta and Omicron waves).

Eight of these subclusters are based around a specific spike protein mutation, while the other 
contains a mutation within the ORF1b region. The subcluster 7.1 ‘S:N185D’ branched out from the 
subcluster 7 ‘ORF1b:A520V’ and subcluster 6.1 ‘S:V90F’ is a branch of subcluster 6 ‘S:S939F’ (see 
Table 1). These two branched subclusters still carry the specific mutation of their originating subcluster. 
The subclusters 3, 4, and 5 were observable between two and three months, and the other subclusters 

German and Thuringian maps. Please note that for all states except Thuringia, we used the postal code of the 
sending laboratory as a proxy for the geographical location of a sample. A gray border on the maps of Germany 
highlights Thuringia.

The online version of this article includes the following source data, source code, and figure supplement(s) for 
figure 1:

Figure supplement 1. Total number of all sequenced SARS-CoV-2 samples (purple) and the proportion of the 
Alpha lineage for all sequenced samples (yellow-red) for each state of Germany and each district of Thuringia 
throughout the whole observation period.

Figure supplement 2. Total population (a) and population density per km2 (b) for each Thuringian district as 
stated for the December 31, 2020.

Figure supplement 3. Phylogenetic time tree of the Alpha lineage.

Source code 1. R-script to generate Figure 1, Figure 1—figure supplement 1.

Source data 1. Total number of reported SARS-CoV-2 samples and number of reported Alpha lineage samples for 
each German federal state per month.

Source data 2. Total number of reported SARS-CoV-2 samples and number of reported Alpha lineage samples for 
each Thuringian district per month.

Figure 1 continued

Table 1. Overview of nine Alpha subclusters in Thuringia, their sample count, their time period, and their specific mutations that are 
shared across all members of the subcluster (excluding characteristic Alpha mutations that are shared across all subclusters).
The mutation used to define the subcluster is highlighted in bold.

Designation Mutations Number of samples Time period Remarks

1
S:H49Y,
ORF1a:I841V 44 Feb-May 2021

S:H49Y eases cell entry in S-pseudotyped lentiviral system 
(Ozono et al., 2021)

2 S:N354K 63 Feb-May 2021 S:N354K slightly impaired mAb h11B11 (Du et al., 2021)

3
S:G496S,
ORF1a:E1013K 12 Mar-May 2021

S:G496S: compromises BA.1 replication fitness and changed 
mAb sensitivities, reduces ACE2 binding affinity, and increases 
immune evasion (Liang et al., 2022; Kimura et al., 2022; Asif 
et al., 2022)

4

S:N703D,
ORF1a:D1228G,
ORF1a:A2123V 51 Mar-May 2021 –

5

S:T716V,
N:G204P,
ORF1a:D1600N 22 Apr-May 2021 –

6 S:S939F 206 Feb-May 2021 S:S939F: modulates T-cell propensity (Donzelli et al., 2022)

6.1†
S:V90F,
S:S939F 55 Feb-May 2021 –

7 ORF1b:A520V 811 Feb-Jun 2021* –

7.1 ‡

S:N185D,
ORF1b:A520V,
ORF1b:L1504F 40 Feb-May 2021 –

*Only one sample for June.
†Branch from subcluster 6.
‡Branch from subcluster 7.

https://doi.org/10.7554/eLife.94045
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over at least 4 months. To investigate these subclusters’ regional spread, each sample was mapped to 
its Thuringian district based on the resident’s postal code from which it was isolated. We then sorted 
the samples according to their subclusters and visualized them throughout the subcluster’s observed 
period. The spread of two representative subclusters is exemplary visualized in Figure 2a, and all 
the subclusters are available via Figure 2—figure supplement 1 and their data in Figure 2—source 
data 1. Additionally, all subclusters and their metadata are also available via Microreact (see Methods 
‘Subcluster identification’).

In Thuringia, the seven main mutation variant clusters were initially identified from distinct districts. 
Subclusters 6.1 and 7.1 subsequently emerged from the same districts as their parent clusters (6 
and 7) after 12 and 13 days, respectively. The subclusters mainly spread regionally confined and not 
across all of Thuringia (see Figure 2a, Figure 2—figure supplement 1) but were also identified in 
other states of Germany (see ‘https://microreact.org/’-project). For example, the ‘S:S939F’ subcluster 
spread across 15 states, with the first samples being isolated outside of Thuringia. The eight Spike-
mutation subclusters had expanded between 4 and 12 of the 23 Thuringian districts within the observ-
able time period of each subcluster. They expanded by one to six districts per month, with a greater 
expansion accompanied mainly by a larger increase in the subcluster sample number. In contrast, the 
ORF1b-variant even comprised 21 districts and expanded between 2 and 7 districts per month (see 
Figure 2a). Most of each subcluster’s samples were identified in their region of first occurrence, and 
no additional samples were found after the given periods.

Several limitations need to be considered. The identified subclusters may have multiple origins 
or may not originate from Thuringia. Due to the lack of precise zip codes (publicly available German 
genomes are limited to postal codes of sending and sequencing laboratories), monitoring the subclus-
ters in other states on a district level was impossible. Nevertheless, we could follow how the subclus-
ters developed in Thuringia, even if multiple origins may have affected the overall speed or length of 
each subcluster’s occurrence.

Our surveillance sampling heavily relies on various institutions and partners, and only a portion 
of the provided samples can be sequenced (see ‘Sampling’ in Methods). For example, the spread 
of subcluster ‘S:S939F’ revealed two districts in April where no respective samples were found 
(Figure 2a) despite being surrounded by districts with ‘S:S939F’-samples present. This could be due 
to the lack of samples sent to sequencing from those regions or the low prevalence. We, therefore, 
investigated if mobile service data of residents, in addition to molecular surveillance, might be utilized 
to counteract this issue.

Mobile service data indicates Alpha subcluster spread and sampling 
bias
With the aim to predict the subcluster spread and, thereby, reduce surveillance-based sampling bias, 
we utilized anonymized mobile service data from T-Systems International GmbH. Around 200 million 
trips were used to determine the number of daily trips between the Thuringian districts. We then 
combined this information with our fine-granular genomic data to specify each district’s monthly 
proportion of inbound mobility from subcluster-affiliated districts (see Methods ‘Mobile service data’). 
The results are visualized in Figure 2b (complete overview in Figure 2—figure supplement 2; data 
provided in Figure 2—source data 2).

The mobile service data-based assumption of a subcluster’s spread aligned well with the subse-
quent regional coverage of fast-spreading, highly prevalent subclusters, such as subcluster 7, which 
covered 811 samples (see Figure 2). In contrast, the assumed spread for the low-prevalence subclus-
ters did not correspond well with the actual occurrence. Yet, adding mobile service data resulted in 
three different ‘types’ of districts (see Figure 2b, annotated districts). Type 1 included districts with 
high inbound mobility from areas with an identified variant, where the variant was eventually found 
afterward, while Type 2 included districts with high inbound mobility from areas with an identified 
variant, where the variant was never identified. Type 3 included districts not directly connected to 
a district with an identified variant, but a variant was eventually identified while they border Type 2 
district(s).

Our previous analysis of the subclusters’ spreading pattern across the districts, based solely on 
identified variants, indicated putative missed identifications in some districts due to the seemingly 
illogical spread to districts without a connection to others (Figure  2a, subcluster ‘S:S939F’). The 

https://doi.org/10.7554/eLife.94045
https://microreact.org/
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Figure 2. Overview of the subclusters ‘S:S939F’ and ‘ORF1b:A520V’ in Thuringian districts. (a) Accumulated number of sequenced samples for each 
subcluster per district and per month. (b) Combined visualization of each district’s ‘inbound mobility’ from other districts (color intensity) and the 
occurrence of a subcluster sample (red = sample found, blue = no sample found). The inbound mobility of each district (blue color intensity) is shown 
as a proportion of incoming mobility from other districts with or without an identified sample. The darker the blue color of a district, the higher the 
proportion of inbound mobility from other districts with an identified subcluster sample (red districts). The light blue color describes that most of the 
inbound mobility of a district comes from other districts without an identified subcluster sample (blue districts). Numbers refer to district types 1, 2, and 
3, as further defined in the main text. The last month of subcluster ‘ORF1b:A520V’ is not visualized, as affected districts were unchanged.

The online version of this article includes the following source data, source code, and figure supplement(s) for figure 2:

Source code 1. R-script to generate Figure 2, Figure 2—figure supplements 1 and 2.

Figure 2 continued on next page

https://doi.org/10.7554/eLife.94045
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inclusion of mobile service data revealed some of these districts to be Type 2 districts. This suggests 
that the specific variant should be identifiable within these districts due to the observed high incoming 
mobility from districts with identified variants. Type 2 districts were mainly observed for subclusters 
with low prevalence and, consequently, low sample counts, which are usually more difficult to monitor. 
For example, we assumed missing identifications in some districts of subclusters 1, 2, and 3, which, 
through the mobile service data, are now partially identified as Type 2 districts. However, due to their 
low prevalence, it is also possible that these subclusters have not spread to the indicated districts. 
Despite analyzing the mobile service data of districts from other federal states than Thuringia, we 
could not apply them, as the lack of precise location data for samples outside of Thuringia prevented 
the correct calculation of the incoming mobility. Based on the nine observable clusters, we concluded 
that mobile service data is a good prediction marker for the spread of high-prevalence variants but, 
more importantly, a good indication of districts that should have an identified low-prevalence variant. 
Next, we investigated if mobile service data can improve active surveillance via guiding sample collec-
tion for genomic sequencing.

Proof of principle: mobile service data-guided sampling for genomic 
surveillance for Omicron BQ.1.1
Based on our previous findings, we implemented the ‘mobility-guided’ sampling approach under real 
pandemic circumstances over 1 month in addition to our active surveillance.

As the subject of investigation, we searched for a newly emerging (based on global news reports) 
and ideally low prevalent SARS-CoV-2 lineage in Thuringia.

Among the various emerging Omicron sublineages during that time, sublineage BQ.1.1 fulfilled 
the defined criteria. First isolated in a northwestern Thuringian community with around 20,000 inhab-
itants on October 5, 2022, we identified this particular sublineage on October 14, 2022, among a 
routine batch of 42 samples. BQ.1.1 was a low-prevalence sublineage that was identified worldwide 
(https://outbreak.info/situation-reports?pango=BQ.1.1).

Following its first Thuringian identification, we utilized the latest available dataset of the past 2 
years of mobile service data (October 2020 and June 2021) to investigate the residential movements 
for the community of first detection. Considering the highest incoming mobility from both datasets, 
we identified 18 communities with high (>10,000), 34 with medium (2001–10,000), and 82 with low 
(30–2000) number of incoming one-way trips from the originating community (purple triangles in 
Figure 3a). As a result, we specifically requested all the available samples from the eight communities 
with the highest incoming mobility. Still, we were restricted to the submission of third parties over 
whom we had no influence. This led to the inclusion of the following eight communities with the most 
residential movement from the originating community: four in central and three in NW of Thuringia, 
one in NW-neighboring state Saxony-Anhalt. The samples requested from central Thuringia were 
also due to their geographical arrangement as a ‘belt’ in central Thuringia, linking three major cities 
(see Figure 1—figure supplement 2). Subsequently, we collected 19 additional samples (isolated 
between October 17 and October 25, 2022; see ‘Guided Sampling’ for October 2022, Figure 3a) 
besides the randomized sampling strategy. Thus, the sampling depth was increased in communities 
with high incoming mobility from the first origin.

As part of the general Thuringian surveillance, we collected 132 samples for October (covering 
dates between the 5th and 31st) and 69  samples in November (covering dates between the 1st 
and 25th; see Figure 3b and c). Randomized sampling was not influenced or adjusted based on the 
mobility-guided sample collection. Thus, it also contains samples from communities with a mobility 
link toward the first occurrence of BQ.1.1, as they were part of the regular random collection (see gray 

Source data 1. Accumulated sample count for each Thuringian district per Alpha subcluster and month.

Source data 2. Total number of incoming trips and numbers of trips coming from all cluster-affiliated districts to each Thuringian district per Alpha 
subcluster and per month.

Figure supplement 1. Accumulated number of sequenced samples for each Alpha lineage subcluster per district and per month.

Figure supplement 2. Combined visualization of each district’s ‘inbound mobility’ from other districts (color intensity) and the occurrence of a 
subcluster sample (red = sample found, blue = no sample found) per subcluster.

Figure 2 continued

https://doi.org/10.7554/eLife.94045
https://outbreak.info/situation-reports?pango=BQ.1.1
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triangles in Figure 3b). A complete overview of all samples is provided in Figure 3—source data 1. 
The mobility datasets from October 2020 and June 2021 for all sampled communities are provided in 
Figure 3—source data 2.

Among the 19  samples specifically collected based on mobile service data, we identified one 
additional sample of the specific Omicron sublineage BQ.1.1 in a community with high incoming 
mobility (n=14, number of trips = 37,499) with a distance of approximately 16  km between both 
towns. Our randomly sampled routine surveillance strategy did not detect another sample during the 
same period. This was despite a seven times higher overall sample rate, which included 31 samples 
from communities with an identified incoming mobility from the community of the first occurrence 
(October 2022, Figure 3b). Only in the 1-month follow-up were four other samples identified across 
Thuringia through routine surveillance (November 2022, Figure 3c).

During our attempt to implement the mobility-guided sampling approach in real-time during 
the pandemic, we encountered three distinct limitations, some of which are commonly observed 
in surveillance practices. The guided sampling depended on the individual sample submitting insti-
tutions, affecting the availability of suitable samples, especially for the communities of interest. By 
choosing a newly emerging Omicron sublineage for our experiment, spread and, therefore, suitability 
were uncertain. In our case, BQ.1.1’s prevalence in Thuringia was even lower than expected, and it 
also remained rare in subsequent months, with only 42 samples found until June 2023, 8 months after 
the first occurrence in Thuringia. Due to the short preparation time, only mobile service data from 
the past 2 years and no current data were available. Nevertheless, the available datasets still reflect 
pandemic movement behavior since the pandemic has been ongoing for 2 years.

In summary, increasing the sampling depth in the suspected regions successfully identified the 
specified lineage using only a fraction of the samples from the randomized sampling. Conversely, 

Figure 3. Overview of the mobility-guided sampling of the Omicron sublineage BQ.1.1 in Thuringia (a) compared to the default randomized sampling 
(surveillance) in October (b) and November 2022 (c). The randomized surveillance results in November 2022 (c) have been added to highlight the 
spreading progress of BQ.1.1. Dots reflect the location of each sample (based on residents’ zip codes). Orange dot: first identified BQ.1.1 sample; red 
dot: additionally identified BQ.1.1 sample; blue dot: another SARS-CoV-2 lineage. Purple triangles represent the number of one-way trips a community 
received from the community of the first BQ.1.1 occurrence (orange dot) based on mobility data from October 2020 and June 2021. The same mobility 
data from mobility-guided sampling (a) were added in grayscales to the randomized surveillance (b and c) as a visual reference only. Sampling dots are 
slightly scattered to improve visibility.

The online version of this article includes the following source data for figure 3:

Source code 1. R-script to generate Figure 3.

Source data 1. Overview of all Thuringian samples collected for the mobility-guided pilot experiment between October 5 and November 25, 2022.

Source data 2. Mobility data and sampling counts of communities sampled for the mobility-guided pilot experiment between October 5 and 
November 25, 2022.

https://doi.org/10.7554/eLife.94045
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randomized surveillance, the ‘gold standard’ acting as our negative control, did not identify addi-
tional samples with similar sampling depths in regions with no or low incoming mobility or even in 
high mobility regions with less sampling depth. Implementing such an approach effectively under 
pandemic conditions poses difficult challenges due to the fluctuating sampling sizes. Although the 
finding of the sample may have been coincidental, our proof-of-concept demonstrated how we can 
leverage the potential of mobile service data for targeted surveillance sampling.

Conclusion
During the SARS-CoV-2 pandemic, diverse data sources like travel, wastewater, and mobility data 
have been employed in surveillance and transmission tracking (Alpert et al., 2021; O’Toole et al., 
2021; Li et al., 2022; Kraemer et al., 2021; Chang et al., 2021; Schlosser et al., 2020). In the 
present study, we analyzed over 296,800 German SARS-CoV-2 genomes to examine whether mobile 
service data can predict the spatial distribution of the Alpha lineage in the German state of Thuringia 
and how they potentially benefit pandemic surveillance.

A plausible explanation for the delayed spread of the Alpha lineage in Thuringia is the lack of 
major transport hubs, as Alpha first occurred in federal states with such hubs. Previous studies have 
already highlighted the impact of major transportation hubs in the spread of Sars-CoV-2 (Alpert 
et al., 2021; Tegally et al., 2023). However, its impact on the total distribution is limited, and the 
spread was ultimately comparable between Germany and Thuringia. While our findings on mobile 
service data may also apply to Germany, we could not verify this because the limited location data 
of publicly available German genomes prevented in-depth investigations outside of Thuringia. Thus, 
precise sampling location data are crucial to utilize mobile service data in genomic surveillance, 
but privacy regulations may restrict access to this data. Shortly after Alpha’s emergence, mutation 
variants formed like the known sublineages Q.1 to Q.8 and the Thuringian subclusters identified 
by us. This reflects the ongoing evolution during active circulation and indicates an even greater 
sublineage diversity, which has not been surveyed as closely as in the subsequent Delta and Omicron 
waves. By monitoring the nine Thuringian subclusters, rather than focusing solely on the parental 
lineage B.1.1.7, we were again able to effectively track transmissions and gain a comprehensive 
understanding of the regional spread. So, it underscores the importance of sequencing in pandemic 
surveillance to explore such genomic changes and, thereby, keep track of the transmission chains 
and potential outbreaks.

Mobile service data can support such surveillance in different ways. Previous studies examined 
the capabilities of mobility data in the context of, e.g., case trajectories, but retrospectively applied 
to already collected data, it can be used to examine surveillance sampling coverage and possible 
sampling bias. We exemplified this approach with the Alpha lineage, where mobile service data indi-
cated a putative sampling bias and partially predicted the spread of our Thuringian subclusters.

Another approach is actively guiding the sampling process through mobile service data, which 
we demonstrated with our proof of principle focusing on the Omicron-lineage BQ.1.1 as a real-life 
example. This approach could allow for a flexible allocation of surveillance resources, enabling adap-
tation to specific circumstances and increasing sampling depth in regions where a variant is antic-
ipated. By incorporating guided sampling, much fewer resources may be needed for unguided or 
random sampling, thereby reducing overall surveillance costs.

Additionally, while this approach is particularly useful for identifying low-prevalence variants, it 
is not limited to such variants. Still, it can provide a guided, more cost-efficient, low-sampling alter-
native to general randomized surveillance that can also be applied to other viruses or lineages. For 
this purpose, pre-generated mobility networks automatically tailored to each state’s unique infra-
structure and population dynamics could provide better-targeted sampling guidance rather than 
simple geographical proximity. However, the feasibility depends on the availability and cost of such 
mobile service data. Alternatively, financial resources could also be invested directly in increasing 
sampling capacity and coverage, which ultimately depends on individual factors of the respective 
surveillance. Mobile service data can also be used with other surveillance approaches and elements. 
For example, wastewater surveillance can give further indications to supplement guided sampling. 
At the same time, passenger data offers additional insights into traffic hubs as sources of regional 
movement.

https://doi.org/10.7554/eLife.94045
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Methods
Sampling
Starting mid-2020, we initially sequenced hospital-intern samples, transitioning by January 2021 to 
approximately 43 PCR-positive samples per week: 20 from the hospital’s microbiology department 
and 23 randomly sourced by the Thuringian State Authority for Consumer Protection (‘Thüringer 
Landesamt für Verbraucherschutz’ [TLV]).

Until June 2023, our institute sequenced 3770 SARS-CoV-2 samples, and SYNLAB Holding 
Deutschland GmbH, Bioscientia Healthcare GmbH, and DIANOVIS GmbH provided additional 7800 
Thuringian SARS-CoV-2 genomes and their metadata.

Sample preparation and sequencing
RNA isolation used the ZymoResearch ‘Quick-RNA Viral Kit’ (Zymo Research Europe GmbH, Germany, 
Product-ID: R1035), according to the manufacturer’s instructions with 100 µl patient sample input and 
a centrifuge speed of 16,000×g.

The viral RNA underwent a reverse transcriptase (RT)-PCR followed by a multiplex-PCR using the 
ARTIC V1200 primer set, according to Freed and Silander’s SARS-CoV-2 sequencing protocol (version 
4, updating to version 5 by March 2021) (Freed and Silander, 2021). Subsequent DNA quantification 
utilized the Qubit dsDNA HS assay (Invitrogen, USA).

From the amplified DNA, a sequencing library was prepared using the Nanopore SQK-LSK109 
and SQK-RBK004 kits (Oxford Nanopore Technologies, Oxford, UK), sequenced for a maximum of 
72 hr utilizing an Oxford Nanopore MinION Mk1b sequencer with R.9-flowcells and the MinKNOW 
software (versions MKE_1013_v1_revBC_11Apr2016 to MKE_1013_v1_revBR_11Apr2016 in the 
respective period), and analyzed with the software pipeline poreCov (versions 0.3.5–0.11.7; including 
basecalling, demultiplexing, adapter removal, quality filtering, and genome alignment) to reconstruct 
consensus genomes (Brandt et al., 2021).

Sequencing data and the respective metadata (e.g. isolation date, sending laboratory details) 
were submitted to the RKI through DESH. We also collected the postal code of the isolation loca-
tion or at least of the sending local health authority, storing all data additionally in a local database 
(Jundzill et al., 2023). Due to data protection, such data is limited on the RKI’s public GitHub repos-
itory (https://github.com/robert-koch-institut/SARS-CoV-2-Sequenzdaten_aus_Deutschland; Robert 
Koch-Institut, 2025), providing instead postal codes of the sequencing and sending laboratories.

Alpha spread datasets
From our local database, we extracted 8397 samples with isolation dates before October 1, 2021. 
After adding federal state and district information, 993 entries with non-Thuringian locations were 
excluded. Further, 10 entries with unspecific isolation dates were excluded, yielding 7394 samples 
(including 6307 Alpha genomes [lineages B.1.1.7 and Q.1 to Q.8]).

The publicly available RKI SARS-CoV-2 dataset was downloaded, containing 1,091,655 genomes 
with the respective metadata (October 17, 2022; Zenodo-version October 16, 2022) (Koch-Institut, 
2022). 789,405 entries, isolated after September 2021, and 59 entries without ‘sending laboratory’ 
information were removed. For the resulting 302,191 entries, location information (location, federal 
state, district, longitude, latitude) were added based on the sending laboratory postal code. Five 
entries with a non-existing postal code and all 12,704 Thuringian samples were removed from the 
dataset, resulting in 289,487 samples (including 137,024 Alpha genomes). We investigated only Alpha 
lineage samples collected from September 2020 onward, after the first official reports of the Alpha 
lineage (Washington et al., 2021).

Analyzing both datasets, we calculated the monthly proportion of Alpha lineage samples in 
Thuringia and Germany per state/district, dividing December 20 and January 2021 into first and 
second halves.

Subcluster identification
Using a total of 70,429 German and Thuringian Alpha genomes, a phylogenetic time tree was created 
(see Supplementary file 2, Supplementary file 3, Supplementary file 4, Supplementary file 5, 
Supplementary file 6, Supplementary file 7, Supplementary file 8 and Figure 1—figure supple-
ment 3). We determined the frequency of all non-Alpha-specific mutations among the 6522 Thuringian 

https://doi.org/10.7554/eLife.94045
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Alpha genomes. We then manually screened for mutations present in at least 20 genomes with a small 
phylogenetic distance and a time occurrence of at least 2 months. This led to nine mutations, each of 
them creating a defined cluster covering between 12 and 811 closely related genomes. We only kept 
mutation information of these nine subclusters in the respective metadata, which, together with the 
tree file of the phylogenetic time tree, was uploaded to a ‘https://microreact.org/’-project, provided 
as Supplementary file 1 and found under the following link: here.

Mobile service data
T-Systems International GmbH collected and aggregated mobile service data via the Cell ID method, 
dividing a geographical area into the so-called traffic cells. Each cell is assigned to exactly one trans-
mitter mast, with a spatial resolution from 500 m × 500 m up to 8 km × 8 km (depending on the 
transmitter mast network density). Cell phones always register to the closest traffic cell, which is 
recorded and stored in an origin-destination matrix (ODM). For population representation, the data 
was extrapolated with Deutsche Telekom’s market share. Due to data privacy, the registration data 
is combined into movement streams between traffic cells, the status resolution is reduced to 1 hr 
(greater time intervals = less resolution), and individual traffic cells are grouped into districts. The 
degree of anonymization (k-value=30, data privacy regulation) removed movement streams with less 
than 30 participants, resulting in approximately 200 Mio trips in the ODM. SMA Development GmbH 
analyzed all movements between the single Thuringian districts, adding each Alpha sample’s isola-
tion time and location data (per subcluster). The movements were further divided by months and 
originating district (subcluster-affiliated vs. -unaffiliated), determining each district’s monthly inbound 
mobility proportion from cluster-affiliated districts.

Research in context
Evidence before this study
We searched PubMed for studies about the use of mobile service data for surveillance written in 
English. For the broadest possible search, we included any publication covering mobile data and 
surveillance aspects, using the following search string: (‘cellular data’ OR ‘cell phone data’ OR ‘mobility 
data’ OR ‘movement data’ OR ‘migration data’ OR ‘phone data’) AND (‘Surveillance’ OR ‘Monitoring’ 
OR ‘Survey’ OR ‘Pandemic’ OR ‘Disease’ OR ‘Epidemic’ OR ‘Outbreak’). Our search yielded 1285 
publications published between 1966 and 2023. We manually screened all these publications but 
found no study that applied mobile service data for active, targeted surveillance. Across all studies, 
the general focus was on tracking contacts or analyzing movements to assess, for instance, the effi-
ciency of non-pharmaceutical interventions or generate prediction models. Some studies suggested 
targeted surveillance based on their results, but it was not yet applied. Additionally, we used ‘​suite.​
ai’ and ‘chatGPT’ (with BING-search access) to let them search for ‘studies that utilize mobile service 
data to guide the sampling process for infectious disease surveillance’. While ‘​suite.​ai’ found two 
studies and ‘chatGPT’ found another ten studies and reviews, none covered the direct application of 
the mobility data in active surveillance.

Added value of this study
This study highlights the value of combining mobile service data with fine-granular metadata for 
integrated genomic surveillance during the SARS-CoV-2 pandemic in a German federal state. We 
illustrated this strategy with the Omicron sublineage BQ.1.1 and how to guide the sampling processes 
toward areas where the new variant was expected to emerge. Additionally, we used mobile service 
data during the pandemic to assess our sampling coverage. Our study is the first to actively guide part 
of the genomic surveillance process during a pandemic.

Implications of all the available evidence
Efficient molecular surveillance setups are crucial in managing outbreaks from the local to the global 
scale. Different data sources are investigated to increase this efficiency, addressing factors like the 
more efficient usage of scarce surveillance resources and the prediction of spread. Extending molec-
ular surveillance with such data should improve the future management of pandemics and outbreaks.

https://doi.org/10.7554/eLife.94045
https://microreact.org/
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