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eLife assessment
By developing a framework to integrate metagenomic and metabolomic data with genome-scale 
metabolic models, this study establishes a toolkit to investigate trophic interactions between micro-
biota members in situ. The authors apply this method to the native rhizosphere bacterial communi-
ties of apple rootstocks, producing solid evidence and numerous detailed hypotheses on specific 
trophic exchanges and resource dependencies. The framework represents a valuable method to 
disentangle features of microbial interaction networks and will be of interest to microbiome scien-
tists as well as plant and computational biologists.

Abstract The exchange of metabolites (i.e., metabolic interactions) between bacteria in the 
rhizosphere determines various plant-associated functions. Systematically understanding the meta-
bolic interactions in the rhizosphere, as well as in other types of microbial communities, would 
open the door to the optimization of specific predefined functions of interest, and therefore to the 
harnessing of the functionality of various types of microbiomes. However, mechanistic knowledge 
regarding the gathering and interpretation of these interactions is limited. Here, we present a frame-
work utilizing genomics and constraint-based modeling approaches, aiming to interpret the hierar-
chical trophic interactions in the soil environment. 243 genome scale metabolic models of bacteria 
associated with a specific disease-suppressive vs disease-conducive apple rhizospheres were drafted 
based on genome-resolved metagenomes, comprising an in silico native microbial community. 
Iteratively simulating microbial community members’ growth in a metabolomics-based apple root-
like environment produced novel data on potential trophic successions, used to form a network of 
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communal trophic dependencies. Network-based analyses have characterized interactions associ-
ated with beneficial vs non-beneficial microbiome functioning, pinpointing specific compounds and 
microbial species as potential disease supporting and suppressing agents. This framework provides 
a means for capturing trophic interactions and formulating a range of testable hypotheses regarding 
the metabolic capabilities of microbial communities within their natural environment. Essentially, 
it can be applied to different environments and biological landscapes, elucidating the conditions 
for the targeted manipulation of various microbiomes, and the execution of countless predefined 
functions.

Introduction
The rhizosphere serves as a hotspot for a diversity of interactions spanning from the secretion of 
organic compounds by plant roots to their uptake by the adjacent soil microbial community (Zhalnina 
et  al., 2018; Gomariz et  al., 2015). These interactions form a complex network of metabolic 
exchanges whose structure and function has a considerable impact on plant health (Singh et  al., 
2004). Targeted secretion of exudates from plant roots’ into the environment is fundamental to the 
recruitment of specific microbes and the assembly of a plant-selected community (i.e., the rhizobiome) 
(Korenblum et  al., 2020; Sasse et  al., 2018; Venturi and Keel, 2016). Each plant has a unique 
profile of exudates guiding the formation of a specialized rhizobiome that is adapted to support its 
mineral absorption (Olanrewaju et al., 2017; Rawat et al., 2021; Compant et al., 2010), secrete 
plant growth supporting compounds (Finkel et al., 2020; Ghosh et al., 2020; Kudoyarova et al., 
2019), and provide protection against soil-borne microorganisms that are detrimental to its health 
(Berendsen et  al., 2012; Ngalimat et  al., 2021; Mazzola and Freilich, 2017). A comprehensive 
understanding of the dynamics within the rhizosphere, considering both plant–microbe (PM) and 
microbe–microbe interactions, can guide the targeted assembly and maintenance of plant-beneficial 
soil microbial systems (Freilich et al., 2011; Embree et al., 2015; Tsoi et al., 2018; Zengler and 
Zaramela, 2018). The development of such microbiome-based, plant-beneficial strategies presents 
ecologically sound alternatives to conventional, chemical-based solutions in supporting plant health 
and productivity (Vessey, 2003; Toju et al., 2018).

`Omics data in general and specifically metagenomics data analyses can potentially provide keys 
for unraveling the black box of PM and microbe–microbe interactions in complex ecosystems such 
as the soil (Faust and Raes, 2012; Widder et al., 2016; Magnúsdóttir et al., 2017; San León and 
Nogales, 2022). Sequence-based analyses are, however, typically limited in terms of functional 
interpretation of community dynamics (Basile et al., 2020). Constraint-based modeling (CBM) is an 
approach that allows for the simulation of bacterial-metabolic activity in a given environment based 
on the constraints imposed by the annotated microbial genomes (Faust and Raes, 2012; Orth et al., 
2010). This approach has long been used for studying the physiology and growth of single cells, 
represented as genome scale metabolic models (GSMMs), under varying conditions (Cuevas et al., 
2016; Price et al., 2004). Applying CBM over a GSMM can be used to assess the uptake and secre-
tion of metabolites in the environment under study (Orth et al., 2010). Accordingly, when CBM is 
applied over multiple GSMMs, metabolite exchange profiles (secretion into and consumption from 
the environment) become interconnected. This sheds light on conditions supporting the growth of 
different bacterial groups within the community as well as their functional potential in the trophic 
network formed (Freilich et al., 2011; Stolyar et al., 2007).

Advancement of sequencing technologies alongside the development of automatic pipelines for 
GSMM construction (Machado et al., 2018; Henry et al., 2010) has promoted an increased use of 
CBM for the modeling of communities with growing complexity (Faust and Raes, 2012; Widder 
et al., 2016; Magnúsdóttir et al., 2017; Basile et al., 2020; Zampieri et al., 2023; Heinken et al., 
2023). The relevance of CBM to the study of microbiomes has been demonstrated in a variety of 
ecosystems and recent works have shown that CBM-based predictions can guide the development 
of strategies for microbiome management (Heinken et al., 2023; Faust, 2019; Xu et al., 2019; Ruan 
et al., 2022). An accurate representation of microbial metabolic networks depends on the origin 
of the genomes analyzed. To date, most studies attempting to model the microbiome of specific 
ecosystems by GSMM represent native species using corresponding genome sequences from public 
depositories, a process which is usually referred to as 16S-based genome imputation (Basile et al., 
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2020; Xu et al., 2019; Dhakar et al., 2022). Genome recovery, or genome-resolved metagenomes, 
often referred to as metagenome assembled genomes (MAGs) allows one to obtain full genomes 
directly from metagenomes (Taş et al., 2021; Uritskiy et al., 2018). Constructing GSMMs based 
on MAGs derived from a specific biological sample or directly from a native community enables a 
genuine view of the metabolic activities carried out in situ, hence bypasses the need in 16S-based 
genome imputation. Such an in silico representation of a native community (with respect to its envi-
ronment) can be used to decrypt the myriad interconnected uptake and secretion exchange fluxes 
transpiring within the root-associated microbiome, spanning from root exudates to altered organic 
forms.

The current study describes the recovery of 395 unique MAGs from metagenomes constructed 
for the native rhizosphere community of apple rootstocks cultivated in orchard soil affected by apple 
replant disease (ARD) (Somera et al., 2021; Berihu et al., 2023). Soils were amended with Brassica-
ceae seed meal, or were not amended, supporting the development of either disease-suppressive or 
disease-conducive root microbiomes, respectively (Somera et al., 2021; Berihu et al., 2023). MAGs 
were recovered from metagenomics data collected from these apple rhizosphere microbiomes. 
GSMMs constructed for the MAGs provide an in silico representation of highly abundant species in the 
native rhizosphere community. CBM simulations were then conducted in a rhizosphere-like environ-
ment, where microbial uptake-secretion fluxes were connected to form a directional trophic network. 
The aims of this study were twofold: first, to provide a general framework for delineating inter-species 
interactions occurring in the rhizosphere environment (Figure  1) and second, to characterize the 
metabolic roles specific groups of bacteria fulfill in seed meal-amended (disease-suppressive) vs non-
amended (disease-conducive) apple rhizobiome communities.
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Figure 1. A framework for interpreting and characterizing the network of metabolic interactions of root-associated bacteria. Going from obscure 
rhizosphere (upper circle) to the elucidated rhizosphere (lower circle): Microbial genomic DNA extracted from rhizosphere soil serves the construction of 
a rhizosphere-derived metagenome and the recovery of rhizosphere community metagenome assembled genomes (MAGs). For each MAG, a genome 
scale metabolic model (GSMM) is built, representing a specific species in the microbial community. Apple-root exudate profiles based on metabolomics 
data are used for the construction of a simulation environment. Via constraint-based modeling (CBM), applied on GSMMs, interactions are characterized 
in the simulated root environment, yielding predictive information regarding potential trophic exchanges within the native rhizosphere microbial 
community.
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Results and discussion
Assembly of a collection of MAGs representing a native microbial 
community from a soil agroecosystem
Metagenomic sequencing obtained from the rhizosphere of apple rootstocks grown in orchard soil 
with a documented history of replant disease resulted in a total of approximately 2 billion quality 
reads (after filtration) at a length of 150 bp, as described in Berihu et al., 2023. Independent metag-
enomics assemblies of six different treatments yielded 1.4–2 million contigs longer than 2 kbp (Berihu 
et al., 2023). Here, assemblies were binned using MetaWRAP (Uritskiy et al., 2018) into 296–433 
high-quality MAGs for each of the six treatments (Figure 2—source data 1); completion and contam-
ination thresholds were set to 90/5, respectively (Bowers et al., 2017). De-replication (the process 
of combining highly similar genomes into a single representative genome) requiring 99% average 
nucleotide identity of the overall 2233 MAGs yielded a collection of 395 unique MAGs (Figure 2). 
Across samples, 30–36% of the raw reads were mapped to the MAG collection (Figure 2—source 
data 2), in comparison to 61–71% mapped to the non-binned contigs (Berihu et al., 2023). Using 
GTDB-Tk (Chaumeil et al., 2019), taxonomic annotations were assigned at the phylum, order, genus, 
and species level for 395, 394, 237, and three of the de-replicated MAGs, respectively, reflecting the 
genuine diversity of the rhizosphere community, which include many uncharacterized species (Buée 
et al., 2009). Estimates of completion and contamination, total bin length and taxonomic affiliation 
for the MAG collections derived from each of the six assemblies, as well as the de-replicated MAGs, 
are provided in Figure 2—source data 1.

As in previous reports (Zhalnina et  al., 2018; Xu et  al., 2018), Proteobacteria, Acidobacteria, 
Actinobacteria, and Bacteroidetes were identified as the dominant phyla in the apple rhizosphere 
(Figure 2A). Overall, the taxonomic distribution of the MAG collection corresponded with the profile 
reported for the same samples using alternative taxonomic classification approaches such as 16S 
rRNA amplicon sequencing and gene-based taxonomic annotations of the non-binned shotgun 
contigs (Figure  2B). At the genus level, MAGs were classified into 143 genera in comparison to 
approximately 3000 genera that were identified for the same data based on gene-centric approaches 
(Berihu et al., 2023) and approximately 1000 genera based on amplicon sequencing (Somera et al., 
2021) of the same data.

The functional capabilities of the bacterial genomes in the apple rhizosphere were initially assessed 
based on KEGG functional annotations of their gene catalogue (Figure 2—source data 3). The 10 
most frequent functional categories across the MAG collection were involved in primary metabo-
lism, for example, carbohydrate metabolism, and the biosynthesis of essential cellular building blocks 
such as amino acids and vitamins. Specialized functional categories included those associated with 
autotrophic nutrition such as carbon fixation and metabolism of nitrogen, sulfur, and methane. Func-
tional diversity was found to exist also when considering ubiquitous functions. For instance, though 
all bacteria are in need of the full set of amino acids, most genomes lack the full set of relevant 
biosynthesis pathways. The prevalence of biosynthetic pathways across MAGs (requiring at least 
a single relevant enzyme) ranges from 99.5% (e.g., glycine; missing in only two genomes) to 21% 
(e.g., tyrosine; detected in only 83 MAGs). Notably, the diversity of metabolic pathway completeness 
regarding amino acids and other essential cellular components suggests that the majority of bacterial 
soil species rely on an external supply of at least some of their obligatory nutritional demands.

Construction of a simulation system for exploring environment-
dependent metabolic performances and growth of rhizosphere 
bacteria
Categorical classifications of discrete gene entities, such as pathway completeness analyses, have 
several inherent limitations as an approach for the contextualization and functional interpretation of 
genomic information. First, categorical classifications may underestimate the completeness of robust 
pathways with multiple redundant routes resulting in low pathway completeness. Second, pathway 
completeness analyses do not take into consideration the directionality and continuity of a biosyn-
thetic process whose full conductance requires the availability of a specific environmental resource 
together with the required successive series of genes/reactions. Although functional potential can 
be inferred based on the static set of genes and enzymes present, actual metabolic performances of 
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Figure 2. Phylogenomic surveys of the genomic collection assembled from sequence data derived from apple rhizosphere samples. (A) A 
phylogenomic tree constructed from 395 de-replicated metagenome assembled genomes (MAGs) extracted from the metagenomes. The tree is 
based on concatenated marker proteins according to GTDB-Tk (Chaumeil et al., 2019). (B) Relative abundance of bacterial taxa at the phylum level as 
inferred from different phylogenomic classification approaches applied for the same samples: Binned-SG (MAGs derived from shotgun metagenomics); 

Figure 2 continued on next page
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bacterial species in soil are dynamic and reflect multiple factors, including the availability of different 
nutritional sources. Such sources can be environmental inputs like root exudates or downstream 
exchange metabolites secreted by cohabiting bacteria.

To better understand environment-dependent metabolic activity occurring in a native rhizosphere, 
a set of 395 GSMMs was constructed for the entire collection of the rhizosphere-bacterial community 
MAGs. All models were systematically subjected to validity and quality tests using MEMOTE (Lieven 
et al., 2020), leaving a total of 243 GSMMs whose stoichiometric consistency was confirmed (Figure 
2—source data 4). On average, GSMMs included 1924 reactions, from which 203 were exchange 
reactions (specific reactions carrying out extracellular import and secretion of metabolites) and 1312 
metabolites (Figure 2—source data 5). Altogether, the GSMM set held 5152 unique metabolic reac-
tions, 597 exchange reactions, and 2671 different compounds. The distribution of key model attri-
butes (reactions, metabolites, and exchanges) across phyla is shown in Figure 2—figure supplement 
2. Model features were scalable with those reported by Basile et al., 2020 and Heinken et al., 2023. 
Additionally, comparison of GSMM scales indicated that the metabolic coverage (i.e., the number of 
reactions, which denote the potential of executing a metabolic function) of our data is within the same 
order of magnitude as described in recent large-scale automatic reconstructions (Basile et al., 2020; 
Heinken et al., 2023).

Next, species-specific rich (optimal) and poor (suboptimal) media were defined for each model 
in order to broadly assess GSMM growth capacity. A rich environment was defined as a medium 
containing all metabolites for which the model encodes an exchange reaction. A poor environment 
was defined as the minimal set of compounds enabling growth (see Methods). Essentially, poor envi-
ronments contained species-specific carbon, nitrogen and phosphorous sources together with other 
trace elements. In addition to the two automatic media, we aimed to design a realistic simulating 

non-binned SG (contigs derived from shotgun metagenomics); 16S rRNA amplicon derived from the same samples. Taxonomic classifications of rRNA 
amplicon data and non-binned-SG sequences are taken from Somera et al., 2021 and Berihu et al., 2023, respectively. Shotgun metagenomics 
data from Berihu et. al was used here for construction of MAGs catalogue. ‘Treatments 1–6’ relate to six specific combinations of rootstock and soil 
amendment as detailed in Figure 2—source data 2. Relative abundance was calculated as the average value in five replicates conducted for each 
treatment.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Genomic characteristics of metagenome assembled genomes (MAGs).

Source data 2. Summary table of the mapping of reads to metagenome assembled genomes (MAGs) across treatments.

Source data 3. Pathway completion analysis (Kyoto Encyclopedia of Genes and Genomes [KEGG] pathway decoder) of metagenome assembled 
genomes (MAGs).

Source data 4. Genome scale metabolic model (GSMM) MEMOTE tests results.

Source data 5. Genome scale metabolic model (GSMM) attributes.

Figure supplement 1. Metabolic pathway completion analysis of community de-replicated metagenome assembled genomes (MAGs).

Figure supplement 2. Distribution of genome scale metabolic model (GSMM) attributes at the phylum level.

Figure 2 continued

Table 1. Apple-root exudates adopted from the works of Leisso et al., 2017; Leisso et al., 2018, included in the rhizosphere 
environment.

Category Compounds

Amino acids L-Asparagine, L-aspartate, L-cysteine, L-valine, beta-alanine

Monosaccharides Rhamnose, glycerate, ribose, galactose, xylose, erythrose

Sugar-alcohols Sorbitol, galactitol, glycerol

Other carbohydrates
3,4-Dihydroxybenzoate, 3,4-dihydroxy-trans-cinnamate, 4-hydroxybenzoate, benzoate, esculin, ferulate, gallic acid, quinate, salicin, trans-
cinnamate

Organic acids D-Galacturonate, D-lactate, D-malate, malonate, oxalate, pyruvate, succinate

Carbamides Urea

Fatty acyls Octadecanoic acid

https://doi.org/10.7554/eLife.94558
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environment to explore the impact of the root exudates on the native community. To this end, metab-
olomics data from a set of studies which characterized the root exudates of Geneva 935 (G935) or 
Malling 26 (M26) rootstock cultivars (Leisso et al., 2017; Leisso et al., 2018) – related to the G210 
and M26 rootstocks whose rhizobiome was characterized here, were used to specify an array of apple 
root-derived compounds (Table 1). The list of secreted compounds was consistent with other reported 
profiles of plant root exudates (Zhalnina et al., 2018; Naveed et al., 2017).

The growth of each of the 243 GSMMs was simulated in each of the three species-specific envi-
ronments (rich, poor, poor + exudates; exudates were added to corresponding poor media to ensure 
the exudates have a feasible effect). As expected, growth performances were higher on the poor 
medium supplemented with exudates in comparison to growth on the poor medium alone but lower 
than the growth in rich medium (Figure 3). Notably, GSMM growth patterns were not phylogenetically 
conserved and were inconsistent between related taxa. Moreover, ranking of models’ growth rate was 
inconsistent in the three different media (i.e., some models’ growth rates were markedly affected by 
the simulated media whereas others did not; Figure 3). This inconsistency indicates that the effect of 
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Figure 3. Bacterial growth rates in different environments. Each row represents the growth rate (biomass increase * hour−1) of species in a specialized 
medium; from top to bottom: poor medium, poor medium supplemented with root exudates, root environment medium, and rich medium. Each 
column represents a genome scale metabolic model (GSMM). Models are sorted by their growth score in the root environment medium. Poor, rich, 
and roor + exudates media are model specific, thus sustain growth of all models. The horizontal color bar on top of the plot represents the phyla of the 
corresponding GSMM. Actual growth values are provided in Figure 3—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Genome scale metabolic model (GSMM) growths in different environments.

Figure supplement 1. Flux Variability Analysis (FVA) performances of genome scale metabolic models (GSMMs) in different environments (Figure 3—
source data 1).

https://doi.org/10.7554/eLife.94558
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exudates on community members is selective and differs between species (i.e., exudates increase the 
growth rates of some species more than others), as was previously reported (Zhalnina et al., 2018; 
Sasse et al., 2018; Stringlis et al., 2018). The number of active exchange fluxes in each medium 
corresponds with the respective growth performances displaying noticably higher number of poten-
tially active fluxes in the rich enviroenment (also when applying loopless Flux Variability Analysis [FVA]) 
(Figure 3—figure supplement 1). Overall, simulations confirmed the existence of a feasible solution 
space for all the 243 models as well as their capacity to predict growth in the respective environemnt 
(Figure 3—source data 1).

As a next step toward conducting simulations in a genuine natural-like environment, we aimed to 
define a single ‘rhizosphere environment’ in which growth simulations for all models would take place. 
Unlike the species-specific root media (poor medium + exudates) which support growth of all models 
by artificially including multiple carbon sources that are derived from the automatic specifications of 
the poor medium, including such that are not provided by the root, this simulation environment was 
based on the root exudates (Table 1) as the sole carbon sources. By avoiding the inclusion of non-
exudate organic metabolites, the true-to-source rhizosphere environment was designed to reveal the 
hierarchical directionality of the trophic exchanges in soil, as rich media often mask various trophic 
interactions taking place in native communities (Opatovsky et al., 2018). Additionally, the rhizosphere 
environment also included an array of inorganic compounds used by the 243 GSMMs, which includes 
trace metals, ferric, phosphoric, and sulfuric compounds. Overall, the rhizosphere environment was 
composed of 60 inorganic compounds together with the 33 root exudates (Figure 4—source data 1). 
The rhizosphere environment supported the growth of only a subset of the GSMMs that were capable 
of using plant exudates (Figure 3).

Simulating growth succession and hierarchical trophic exchanges in the 
rhizosphere community
To reflect the indirect effect of the root on the native community (i.e., to capture the effect of root-
supported bacteria on the growth of further community members), we constructed the microbial 
community succession module (MCSM), a CBM-based algorithm aimed at predicting community-level 
trophic successions. MCSM utilizes FVA to simulate and enumerate the exchange fluxes of individual 
models, extending their secretion profiles beyond the standard FBA-based solutions commonly used 
in other CBM tools designed for modeling microbial interactions (Basile et al., 2020; Pacheco et al., 
2019; San Roman and Wagner, 2018; Diener et al., 2020; Dukovski, 2021). Unlike certain CBM 
tools designed for modeling microbial community interactions (Diener et al., 2020), MCSM bypasses 
the need to define a community objective function, as the growth of each species is simulated indi-
vidually. Trophic interactions are inferred by the extent to which exchange compounds secreted by 
bacteria could support the growth of other community members. MCSM iteratively grows the GSMMs 
in a defined environment, sums up their individual secretion profiles, and updates the initial simulation 
environment with those secreted compounds (Figure 4A). Applying this algorithm to a microbiome 
in its native environment allows delineating the potential metabolic dependencies and interactions 
between bacterial species in a native community.

Application of MCSM over the ‘rhizosphere environment’ (i.e., first iteration, root exudates, and 
‘inorganic compounds’, Figure 4—source data 1) supported the growth of 27 GSMMs (Figures 3 
and 4B). Then, the initial environment was updated with 145 additional compounds predicted to be 
secreted by the growing community members. The second iteration supported the growth of 33 addi-
tional species whose growth was supported by compounds predicted to be secreted by bacteria that 
grew in the first iteration. Following the second iteration, 25 new secreted compounds were added 
to the rhizosphere environment. The third iteration supported the growth of 11 additional GSMMs, 
with one additional compound secreted. After the third iteration, the updated environment did not 
support the growth of any new species. Overall, iterative growth simulations resulted in the successive 
growth of 71 species (Figure 4B; iterations 1–3).

To enlarge the array of growing species, we tested the effect of the addition of organic phospho-
rous sources. Organic phosphorous is typically a limiting factor in soil (Huang et al., 2017) and its 
utilization varies greatly between microbial species [i.e., different P sources were shown to have a 
selective effect on different microbial groups (Zheng et al., 2019)]. The initial rhizosphere environ-
ment contained only inorganic phosphorous. During first to third MCSM simulations, nine organic P 

https://doi.org/10.7554/eLife.94558
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Figure 4. Microbial community succession module (MCSM), and characterization of trophic dynamics in the community along iterations. (A) An 
illustration of the iterative microbial community growth module, representing the growth of community members along iterations starting in the 
‘Rhizosphere environment’ and updated with microbial secretion outputs. (B) Growth rate characterization of genome scale metabolic models (GSMMs) 
in the community along iterations. Each column in the heat-map represents a different GSMM (only models which have grown in the rhizosphere 

Figure 4 continued on next page
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compounds were secreted to the simulation medium, which was updated accordingly. At the beginning 
of the fourth iteration, 31 additional organic P compounds were identified by screening the species-
specific poor medium and were added to the medium (Figure 4—source data 1; organic phosphorous 
compounds). The additional organic P compounds supported the growth of nine additional GSMMs 
(Figure 4B) and led to the secretion of 13 new compounds, which were added to the environment. 
The fifth iteration supported the growth of four additional GSMMs and two new compounds were 
secreted. Final simulations in the cumulative rhizosphere environment were composed of all secreted 
compounds and led to the same secretion and growth profile as the previous iteration. Therefore, no 
further growth iterations were conducted.

Overall, the successive iterations connected 84 out of 243 native members of the apple rhizo-
sphere GSMM community via trophic exchanges. The inability of the remaining bacteria to grow, 
despite being part of the native root microbiome, possibly reflects the selectiveness of the root 
environment, which fully supports the nutritional demands of only part of the soil species, whereas 
specific compounds that might be essential to other species are less abundant (Buée et al., 2009). 
It is important to note that the specific exudate profile used here represents a snapshot of the root 
metabolome as root secretion profiles are highly dynamic, reflecting both environmental and plant 
developmental conditions. A possible complementary explanation to the observed selective growth 
might be the partiality of our simulation platform, which examined only plant–bacteria and bacteria–
bacteria interactions while ignoring other critical components of the rhizosphere system such as fungi, 
archaea, protists, and mesofauna, as well as less abundant bacterial species, components all known 
to metabolically interact (Bardgett and Putten, 2014). Finally, the MAG collection, while relatively 
substantial, represents only part of the microbial community. Accordingly, the iterative growth simula-
tions represent a subset of the overall hierarchical trophic exchanges in the root environment, neces-
sarily reflecting the partiality of the dataset.

In terms of the phylogenetic distribution of the models, 27 bacterial species grew on the first 
iteration (in which root exudates served as the sole organic sources). These bacteria represented 14 
of the 17 phyla included in the initial model collection (consisting of 243 GSMMs) and maintained a 
distribution frequency similar to the original community. As in the full GSMM dataset (Community 
bar, Figure 4C), most of the species which grew in the first iteration belonged to the phyla Acido-
bacteriota, Proteobacteria, and Bacteroidota. This result concurred with findings from the work of 
Zhalnina et al., which reported that bacteria assigned to these phyla are the primary beneficiaries of 
root exudates (Zhalnina et al., 2018). Species from 3 out of the 17 phyla that did not grow in the 
first iteration – Elusimicrobiota, Chlamydiota, and Fibrobacterota, did grow on the second iteration 
(Figure 4C). Members of these phyla are known for their specialized metabolic dependencies. Such is 
the case for example with members of the Elusimicrobiota phylum, which include mostly uncultured 
species whose nutritional preferences are likely to be selective (Uzun et al., 2023).

At the order level, bacteria classified as Sphingomonadales (class Alphaproteobacteria), a group 
known to include typical inhabitants of the root environment (Lei et al., 2019), grew in the initial 
root environment. In comparison, other root-inhabiting groups including the orders Rhizobiales and 

environment are presented); growth rate is indicated by the color bar. Iterations are represented by rows. Blank spaces indicate models not growing at 
that specific iteration. N is the total number of species that grew after each iteration. (C) Distribution of GSMMs growing along iterations at the phylum 
level. (D) Distribution of organic compounds secreted along iterations, classified into biochemical groups. Root exudates bar (far left) represents the 
classification of organic compounds in the initial ‘Rhizosphere environment’. Numbers on top of bars in both C and D (designated by N) denote the 
number of new entries in a specific iteration, with respect to the previous iteration.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Table of compounds used throughout iterations in the microbial community succession module (MCSM).

Source data 2. Genome scale metabolic model (GSMM) secretion data derived from microbial community succession module (MCSM).

Source data 3. Initial medium compounds used in microbial community succession module (MCSM) cellulose degradation process.

Figure supplement 1. Phylogenetic distribution of models growing along iterations at the order level.

Figure supplement 2. Uptake and secretion degrees of biochemically classified metabolite nodes, as inferred from the communal interaction network.

Figure supplement 3. Application of microbial community succession module (MCSM) over the process of cellulose decomposition as described by 
Kato et al., 2005.

Figure 4 continued

https://doi.org/10.7554/eLife.94558
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Burkholderiales (Lei et al., 2019), did not grow in the first iteration. Rhizobiales and Burkholderiales 
did, however, grow in the second and third iterations, respectively, indicating that in the simulations, 
the growth of these groups was dependent on exchange metabolites secreted by other community 
members (Figure 4—figure supplement 1).

Overall, 158 organic compounds were secreted throughout the MCSM simulation (from which 12 
compounds overlapped with the original exudate medium). These compounds varied in their distri-
bution and were mapped into 12 biochemical categories (Figure 4D). Whereas plant secretions are a 
source of various organic compounds, microbial secretions provide a source of multiple vitamins and 
co-factors not secreted by the plant. Microbial-secreted compounds included siderophores (staphylo-
ferrin, salmochelin, pyoverdine, and enterochelin), vitamins (pyridoxine, pantothenate, and thiamin), 
and coenzymes (coenzyme A, flavin adenine dinucleotide, and flavin mononucleotide) – all known to 
be exchange compounds in microbial communities (Ghosh et al., 2017; Lu et al., 2020). In addition, 
microbial secretions included 11 amino acids (arginine, lysine, threonine, alanine, serine, phenylala-
nine, tyrosine, leucine, glutamate, isoleucine, and methionine), also known as a common exchange 
currency in microbial communities (Mee et  al., 2014). Some microbial-secreted compounds, such 
as phenols and alkaloids, were reported to be produced by plants as secondary metabolites (Justin 
et al., 2014; Yang et al., 2022). Additional information regarding mean uptake and secretion degrees 
of compounds classified to biochemical groups is found in Figure 4—figure supplement 2.

Conceptually, the rhizosphere microbiota can be classified into two trophic groups: primary 
exudate consumers, comprising microbial species that are direct beneficiaries from the root exudates, 
and secondary consumers, comprising microbial species whose growth may be provided directly via 
the uptake of metabolites secreted by other members of the soil microbial community. In the iterative 
MCSM simulations, compounds secreted by some of the primary consumers largely sustained the 
growth of secondary consumers, which were not able to grow otherwise. The full information on the 
secretion profiles and models’ growths is provided in Figure 4—source data 2.

To validate the ability of MCSM to capture trophic dependencies and succession, we further tested 
whether it can track the well-documented example of cellulose degradation – a multi-step process 
conducted by several bacterial strains that go through the conversion of cellulose and its oligosac-
charide derivatives into ethanol, acetate, and glucose, which are all eventually oxidized to CO2 (Kato 
et al., 2005). Here, the simulation followed the trophic interactions in an environment provided with 
cellulose oligosaccharides (4 and 6 glucose units) on the first iteration (Figure 4—source data 3). 
The formed trophic successions detected along iterations captured the reported multi-step process 
(Figure 4—figure supplement 3).

Associating trophic exchanges with soil health
The MAG collection analyzed in this study was constructed from shotgun libraries associated with 
apple rootstocks cultivated in orchard soil with a documented history of ARD and healthy/recovered 
(seed meal-amended) soils, providing a model system for disease-conducive vs disease-suppressive 
rhizosphere communities (Somera et al., 2021). Briefly, rhizobiome communities obtained from apple 
rootstocks grown in replant orchard soil leading to symptomatic growth (non-amended samples) were 
termed ‘sick’, whereas samples in which disease symptoms were ameliorated following an established 
soil amendment treatment (Mazzola et al., 2015), were termed ‘healthy’. Both sick and healthy plants 
were characterized by distinct differences in the structure and function of their rhizosphere microbial 
communities in the respective soil samples (Mazzola and Freilich, 2017; Somera et al., 2021; Berihu 
et al., 2023; Mazzola et al., 2015). In order to correlate microbial metabolic interactions with soil 
performance, GSMMs were classified into one of three functional categories based on differential 
abundance (DA) patterns of their respective MAGs: predominantly associated with ‘healthy’ soil (H), 
predominantly associated with ‘sick’ soil (S), and none-associated (NA) (Figure 5—source data 1).

The functionally classified GSMMs (H, S, and NA) were consolidated into a community network of 
metabolic interactions by linking their potential uptake and secretion exchange profiles (as predicted 
along growth iterations in Figure 4). The network was built as a directed bipartite graph, in which the 
84 feasible GSMM nodes and the 203 metabolite nodes (27 root exudates, 146 microbial-secreted 
compounds, and 30 additional organic-P compounds) were connected by 9773 directed edges, repre-
senting the metabolic exchanges of organic compounds in the native apple rhizosphere community 
(Figure 5A). Further information regarding node degrees is found in Figure 5—source data 2.

https://doi.org/10.7554/eLife.94558
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Figure 5. Trophic interactions based on community exchange fluxes predicted along iterations in the simulated rhizosphere environment. (A) Network 
representation of potential metabolite exchanges between rhizosphere community members. Edges in the network are directional; arrowhead from 
a gray node (metabolite) pointing toward a colorful node (genome scale metabolic model, GSMM) indicates uptake; arrowhead from a colorful node 
(GSMM) pointing toward a gray node (metabolite) indicates secretion. Node colors correspond to differential abundance classification of GSMMs in the 
different plots: healthy, sick, and not-associated. Metabolites found in the center of the network are of a higher connectivity degree (i.e., are involved 
in more exchanges). Only organic compounds are included in the network. Gray rectangles illustrate a zoom-in to specific five- and three-partite sub-
networks (C, D). (B) Pie chart distribution of GSMMs classified according to differential abundance of reads mapped to the respective metagenome 
assembled genomes (MAGs); N is the total number of GSMMs in the network. (C, D) Examples of specific sub-network motifs derived from the 
community network; plant–microbe (PM; a three component sub-network motif, upper); plant–microbe–microbe (PMM; a five component sub-network 
motif, lower), respectively. The full list of PM and PMM sub-network motifs is found in Figure 6—source data 1.

The online version of this article includes the following source data for figure 5:

Source data 1. Differential abundance scores of genome scale metabolic models (GSMMs) (metagenome assembled genomes, MAGs).

Source data 2. Trophic network information, nodes degree.

https://doi.org/10.7554/eLife.94558
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The directionality of the network enabled its untangling into sub-network motifs stemming from a 
root exudate to exchange interactions, and ending with an unconsumed end-metabolite. Two types 
of sub-networks were detected (Figure 5C, D): 3-component (PM) plant exudate–microbe–microbial-
secreted metabolite; and 5-component (PMM; plant–microbe–microbe) plant exudate–microbe–inter-
mediate microbial-secreted metabolite–microbe–microbial-secreted metabolite. Overall, the network 
included 45,972 unique PM paths and 571,605 unique PMM paths. Participation of GSMMs in PM 
paths ranged from 272 to 896 occurrences (Figure 6—figure supplement 1A). GSSM participation 
in PMM paths ranged from 398 to 50,628 in the first microbe position (primary exudate consumer) 
and 1388–19,738 occurrences in the second microbe position (secondary consumer) (Figure  6—
figure supplement 1B, C). Frequency of GSMMs in the first position in PMM sub-network motifs was 
negatively correlated with the frequency of presence in second positions, possibly indicating species-
specific preferences for a specific position/trophic level in the defined environment (Pearson = −0.279; 
p-value = 0.009, Figure 6—figure supplement 1B–D).

In order to explore the trophic preferences of bacteria associated with the different rhizosphere 
soil systems, the frequency of healthy (H), sick (S), or non-associated (NA) GSMMs in the PM and 
PMM sub-networks was compared (Figure 6—source data 1). GSMMs classified as S initiated a 
significantly higher number of PMM sub-networks (located in the first position) than GSMMs classi-
fied as NA and H (Figure 6A). H-classified PMM paths (first position) initiated a significantly higher 
number of sub-networks with GSMMs classified as NA compared to S-classified GSMMs, but no more 
than H-classified GSMMs (second position). Other PMM types did not show a significant effect at 
the second position. The higher number of trophic interactions formed by the S-classified primary 
exudate consumers in the PMM sub-network motifs suggests that non-beneficial bacteria may have a 
broader spectrum in terms of their utilization potential of root-secreted carbon sources compared to 
plant-beneficial bacteria. This might shed light on the dynamics of ARD, in which S-classified bacteria 
become increasingly dominant following long-term utilization of apple-root exudates, resulting in 
diminished capacity of the rhizosphere microbiome to suppress soil-borne pathogens (Mazzola et al., 
2015; Mazzola, 1999).

In order to predict exchanges with potential to support/suppress dysbiosis, the frequency of DA 
GSMM types (i.e., H or S) associated with metabolites (either consumed or secreted) in the PM paths 
was assessed (Figure 6—source data 2). Considering consumed metabolites (root exudates), three 
and six compounds were found to be significantly more prevalent in H- and S-classified PM paths, 
respectively (Figure 6B). Notably, the S-classified root exudates included compounds reported to 
support dysbiosis and ARD progression. For example, the S-classified compounds gallic acid and 
caffeic acid (3,4-dihidroxy-trans-cinnamate) are phenylpropanoids – phenylalanine intermediate 
phenolic compounds secreted from plant roots following exposure to replant pathogens (Balbín-
Suárez et al., 2021). Though secretion of these compounds is considered a defense response, it is 
hypothesized that high levels of phenolic compounds can have autotoxic effects, potentially exacer-
bating ARD. Additionally, it was shown that genes associated with the production of caffeic acid were 
upregulated in ARD-infected apple roots, relative to those grown in γ-irradiated ARD soil (Weiß et al., 
2017b; Weiß et al., 2017a), and that root and soil extracts from replant-diseased trees inhibited apple 
seedling growth and resulted in increased seedling root production of caffeic acid (Sun et al., 2022).

As to the microbial-secreted compounds, a total of 79 unique compounds were found to be 
significantly overrepresented in either S (42 compounds) or H (41 compounds) classified PM paths 
(Figure 6C, D). Several secreted compounds classified as healthy exchanges (H) were reported to be 
potentially associated with beneficial functions. For instance, the compounds L-sorbose (EX_srb__L_e) 
and phenylacetaladehyde (EX_pacald_e), both over-represented in H paths (Figure 6C), have been 
shown to inhibit the growth of fungal pathogens associated with replant disease (Howell, 1978; Zou 
et  al., 2007). Phenylacetaladehyde has also been reported to have nematicidal qualities (Gomes 
et al., 2020).

Combining both exudate uptake data and metabolite secretion data, the full H-classified PM path 
4-hydroxybenzoate; GSMM_091; catechol (Figure 5C; the consumed exudate, the GSMM, and the 
secreted compound, respectively) provides an exemplary model for how the proposed framework 
can be used to guide the design of strategies which support specific, advantageous exchanges within 
the rhizobiome. The root exudate 4-hydroxybenzoate is metabolized by GSMM_091 (class Verrucomi-
crobiae, order Pedosphaerales) to catechol. Catechol is a precursor of a number of catecholamines, 

https://doi.org/10.7554/eLife.94558
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Figure 6. Characterization of plant–microbe (PM) and plant–microbe–microbe (PMM) sub-network motifs’ features associated with differentially 
abundant (DA) genome scale metabolic models (GSMMs). (A) Count distribution of PMM sub-networks determined by GSMMs in the first microbial 
position classified as either healthy, sick, or not-associated, corresponding to the mean values H, S, and NA, respectively. Boxes extend from first 
quantile to the third quantile, middle line represents the median; dots outside whiskers indicate outliers. Distinction of groups was determined 

Figure 6 continued on next page
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a group of compounds which was recently shown to increase apple tolerance to ARD symptoms 
when added to orchard (Berihu et al., 2023; Gao et al., 2021). This analysis (PM; Figure 5C) leads 
to formulating the testable prediction that 4-hydroxybenzoate can serve as a selective enhancer of 
catecholamine synthesizing bacteria associated with reduced ARD symptoms, and therefore serve as 
a potential source for indigenously produced beneficial compounds.

Conclusions
In this study, we present a framework combining metagenomics analyses with CBM, which can be 
used to gain a deeper understanding of the functionality, dynamics, and division of labor among rhizo-
sphere bacteria, and link their environment-dependent metabolism to biological significance. This 
exploratory framework aims to illuminate the black box of interactions occurring in the rhizospheres 
of crop plants and is based on the work of Berihu et al., 2023, in which a gene-centric analysis of 
metagenomics data from apple rhizospheres was conducted (Berihu et al., 2023).

We recovered high-quality sets of environment-specific MAGs, constructed the corresponding 
GSMMs, and simulated community-level metabolic interactions. By including authentic apple-root 
exudates in the models, we were able to begin untangling the highly complex plant–bacterial and 
bacterial–bacterial interactions occurring in the rhizosphere environment. More specifically, we used 
the framework to investigate a microbial community via examining its hierarchical secretion-uptake 
exchanges along multiple iterations (Figure 4). These analyses, which linked community-derived secre-
tion profiles with the growth of other community members, demonstrated the successive, trophic-
dependent nature of microbial communities. These interactions were elucidated via construction of a 
community-exchange network (Figure 5). Possible connections between root exudates, differentially 
abundant (DA) bacteria, their secreted end-products, and soil health were explored using the data 
derived from this network. From these analyses, we were able to associate different metabolic func-
tionalities with diseased or healthy systems, and formulate new hypotheses regarding the general 
function of DA bacteria in the community.

The framework we present is currently conceptual. Dealing with a highly complex system such as 
the rhizobiome inevitably comes with limitations. These limitations include the usage of automatic 
GSMM reconstruction, inherent caveats of CBM and the use of single-species GSMMs, the lack of 
transcriptomic and spatial-chemo-physical data, and the exclusion of competition over all its forms. 
Furthermore, a portion of the metabolomics data used in this framework was taken from a different 
source (different rootstock genotype), possibly introducing further bias to the analyses. This potential 
factor is due to the inherent discrepancy between the conditions from which genomics and metab-
olomics data were collected (Zhalnina et al., 2018; Korenblum et al., 2020). Also not considered 
in this framework is the role of eukaryotes in the microbial-metabolic interplay. Moreover, the use 
of an automatic GSMM reconstruction tool (CarveMe; Machado et al., 2018), though increasingly 
used for depicting phenotypic landscapes, is generally less accurate than manual curation of meta-
bolic models (Henry et al., 2010). This approach typically neglects specialized functions involving 
secondary metabolism (Freilich et al., 2011) and introduces additional biases such as the overestima-
tion of auxotrophies (Price, 2023; Machado and Patil, 2023). Nevertheless, manual curation is practi-
cally non-realistic for hundreds of MAGs, an expected outcome considering the volume of sequencing 
projects nowadays. As the primary motivation of this framework is the development of a tool capable 

using ANOVA followed by the Tukey post hoc test. Asterisks indicate significance of test (***≤0.005) (B) Bar plot indicating the number of exudates 
significantly associated with H- or S-classified PM sub-networks (hypergeometric test; False Discovery Rate (FDR) ≤0.05; green: healthy – H, red: sick – S). 
(C) Bar plots indicate the number of secreted compounds in PM sub-networks, which are significantly associated with H-classified (upper, colored green) 
or S-classified (lower, colored red) (hypergeometric test; FDR ≤0.05). (D) Venn diagram represents the intersection of secreted compounds derived from 
both Sick and Healthy classified PM sub-networks.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Sub-networks motifs data.

Source data 2. Plant–microbe (PM) sub-networks functional characterization and statistical tests results.

Figure supplement 1. Community genome scale metabolic model (GSMM)-centric characterization of plant–microbe (PM) and plant–microbe–microbe 
(PMM) motifs.

Figure 6 continued
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of transforming high-throughput, low-cost genomic information into testable predictions, the use of 
automatic metabolic network reconstruction tools was favored, despite their inherent limitations, in 
pursuit of addressing the necessity of pipelines systematically analyzing metagenomics data.

For these reasons, among others, the framework presented here is not intended to be used as a 
stand-alone tool for determining microbial function. The framework presented is designed to be used 
as a platform to generate educated hypotheses regarding bacterial function in a specific environ-
ment in conjunction with actual carbon substrates available in the particular ecosystem under study. 
The hypotheses generated provide a starting point for experimental testing required to gain actual, 
targeted, and feasible applicable insights (Dhakar et al., 2022; Berihu et al., 2023). While recog-
nizing its limitations, this framework is in fact highly versatile and can be used for the characterization 
of a variety of microbial communities and environments. Given a set of MAGs derived from a specific 
environment and environmental metabolomics data, this computational framework provides a generic 
simulation platform for a wide and diverse range of future applications.

In the current study, the root environment was represented by a single pool of resources (metab-
olites). As genuine root environments are highly dynamic and responsive to stimuli, a single environ-
ment can represent at best a temporary snapshot of the conditions. Conductance of simulations with 
several sets of resource pools (e.g., representing temporal variations in exudation profile) can add 
insights on their effect on trophic interactions and community dynamics. In parallel, confirming predic-
tions made in various environments will support an iterative process that will strengthen the predic-
tive power of the framework and improve its accuracy as a tool for generating testable hypotheses. 
Similarly, complementing the genomics-based approaches done here with additional layers of 'omics 
information (mainly transcriptomics and metabolomics) can further constrain the solution space, 
deflate the number of potential metabolic routes and yield more accurate predictions of GSMMs’ 
performances (Zampieri et al., 2023).

To summarize, we have constructed a framework enabling the analysis of metabolic interactions 
among microbes, as well as between microbes and their hosts, in their natural environment. Where 
recent studies begin to apply GSMM reconstruction and analysis starting from MAGs (Zampieri et al., 
2023; Zorrilla et al., 2021), this work applies the MAGs to GSMMs approach to conduct large-scale 
CBM analysis over high-quality MAGs derived from a native rhizosphere and explore the complex 
network of interactions in light of the functioning of the respective agroecosystem. The application of 
this framework to the apple rhizobiome yielded a wealth of preliminary knowledge about the meta-
bolic interactions occurring within it, including novel information on putative functions performed by 
bacteria in healthy vs replant-diseased soil systems, and potential metabolic routes to control these 
functions. Overall, this framework aims to advance efforts seeking to unravel the intricate world of 
microbial interactions in complex environments including the plant rhizosphere. The framework is 
provided as a three stage-detailed pipeline in GitHub, copy archived at FreilichLab, 2023a.

Methods
Recovery of MAGs from metagenomics data constructed for apple 
rhizosphere microbiomes
High coverage shotgun metagenomics sequence data were obtained from microbial DNA extracted 
from the rhizosphere of apple rootstocks cultivated in soil from a replant-diseased orchard (Berihu 
et al., 2023). The experimental design included sampling of six different soil/apple rootstock treat-
ments with five biological replicates each, as described in Somera et al., 2021. Two different apple 
rootstocks (M26, ARD susceptible; G210, ARD tolerant) were grown in three different treatments: 
(1) orchard soil amended with Brassica napus seed meal, (2) orchard soil amended with Brassica 
juncea/Sinapis alba seed meal (BjSa), and (3) no-treatment control soil (NTC) (see Figure 2—source 
data 2). Microbial DNA was extracted from rhizosphere soil and metagenomics data were assembled 
as described in Berihu et al., 2023. In each assembly contigs were binned to recover MAGs using 
MetaWRAP pipeline (v1.3.1), which utilizes several independent binners (Uritskiy et al., 2018). The 
MAGs recovered by the different binners were collectively processed with the Bin_refinement module 
of metaWRAP, producing an output of a refined bin collection. A count table was constructed by 
mapping raw reads data of each assembly (e.g., BjSa; G210) to the bins, using BWA-MEM (Burrows-
Wheeler Aligner - Maximum Exact Match) mapping software (version 0.7.17) with default parameters. 

https://doi.org/10.7554/eLife.94558
https://github.com/FreilichLab/Trophic_interactions_predicting_framework
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DA of the reads associated with the respective bins in each assembly across the respective replicates 
was determined using the edgeR function implemented in R, requiring FDR adapted p-value <0.05. 
Read mapping information is shown in Figure 2—source data 2. Based on DA, MAGs were classified 
either as associated with healthy soil (H; BjSa DA), sick soil (S; NTC DA), or not-associated with either 
soil type (NA; not DA at any treatment site).

Gene calling and annotation were performed with the Annotate_bins module of MetaWRAP. 
Pathway completeness was determined with KEGG Decoder v 1.0.8.2 (Graham et al., 2018) based 
on the KO annotations extracted from Annotate_bins assignments. The quality of the genomes was 
determined with CheckM (Parks et al., 2015). For phylogenomic analyses and taxonomic classifica-
tion of each bacterial and archaeal genome, we searched for and aligned 120 bacterial marker genes 
of the MAGs using the identity and align commands of GTDB-Tk v1.5.0 (Chaumeil et  al., 2019). 
MAGs were de-replicated using dRep v2.3.2 (Olm et al., 2017) using the default settings and MAGs 
from the six assemblies were clustered into a single non-redundant set. Phylogenomic trees were 
rooted by randomly selecting a genome from the sister lineage to the genus as determined from the 
topology of the bacterial and archaeal GTDB R06-RS202 reference trees. Closely related GTDB taxa 
identified with the ‘classify_wf’ workflow were filtered using the taxa-filter option during the alignment 
step. Overall, a set of 395 high-quality genomes (≥90% completeness,<5% contamination) was used 
for downstream analyses.

GSMM reconstruction, analysis, and characterization of the MAG 
collection
GSMMs were constructed for each of the 395 MAGs using CarveMe v 1.5.1 (Machado et al., 2018,) 
a python-based tool for GSMM reconstruction. Installation and usage of CarveMe were done as 
suggested in the original CarveMe webpage (https://carveme.readthedocs.io/en/latest/). The solver 
used for GSMM reconstruction is Cplex (v. 12.8.0.0). All GSMMs were drafted without gap filling as 
it might mask metabolic co-dependencies (Opatovsky et al., 2018). Stoichiometric consistency of 
all GSMMs was systematically assessed via the standardized MEMOTE test suite, a tool for GSMM 
quality and completion assessment (Lieven et  al., 2020). GSMMs not stoichiometrically balanced 
were filtered out, as they might produce infeasible simulation results.

Analyses and simulations of GSMMs, as well as retrieval of model attributes (reactions, metabo-
lites, exchanges, etc.), were conducted via the vast array of methods found in COBRApy (Ebrahim 
et al., 2013), a python coding language package for analyzing constraint-based reconstructions. For 
each GSMM, initial growth simulations took place in three different model-specific environments: rich 
medium, poor medium, and poor medium + exudates. The rich medium was composed of all the 
exchange reactions (i.e., exchange reaction for specific compounds) a model holds, gathered by the 
‘exchanges’ attribute found in each model. The poor medium was composed of the minimal set of 
compounds required for a specific GSMM/species to grow at a fixed rate. This set of compounds was 
identified using the minimal_medium module from COBRApy (minimize components = True, growth 
rate of 0.1 biomass increase hour−1). Poor medium + exudates was defined as the poor medium with 
the addition of an array of apple-root exudates. These compounds were retrieved from two metabo-
lomics studies characterizing the exudates of apple rootstocks grown in Lane Mountain Sand (Valley, 
WA) (Leisso et al., 2017; Leisso et al., 2018). Exudate compounds were aligned with the BIGG data-
base (King et al., 2016) in order to format them for use in COBRApy. For each media type, GSMM 
growth rates were calculated by solving each model using the summary method in COBRApy, which 
utilizes Flux Balance Analysis (FBA) for maximizing biomass.

Construction of a common root environment medium and application 
of the MCSM
In order to simulate the dynamics of the rhizosphere community in the root environment, a fourth 
growth medium representing a natural-like environment was defined and termed the ‘rhizosphere 
environment’. The rhizosphere environment was composed of two arrays of compounds: (1) the 
exudates (as described above) and (2) inorganic compounds essential for sustaining bacterial growth. 
This array was determined according to the minimal set of compounds identified for each GSMM 
(also described above). Rhizosphere environment components are provided in Figure 4—source data 
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1. Both sets of compounds were then consolidated into one array in which further simulations were 
conducted.

The MCSM (which is the first module out of three comprising this computational framework) simu-
lates the growth of a microbial community by iteratively growing the GSMMs in the community and 
adding compounds ‘secreted’ by the growing species to the simulation environment (i.e., the medium), 
thus enriching the medium/environment and supporting further growth. Unlike FBA, which is used for 
gathering an arbitrary solution regarding non-optimized fluxes, the MCSM uses FVA to determine 
exchange fluxes (Mahadevan and Schilling, 2003). FVA gathers the full range of exchange fluxes 
(both secretion and uptake) that satisfy the objective function of a GSMM (i.e., biomass increase). The 
FVA fraction of optimum was set to 0.9 (sustaining the objective function at 90% optimality, allowing 
a less restricted secretion profile). Secretion compounds added to the updated medium in each iter-
ation were set to be given in optimal fluxes in next iteration, to ensure a metabolic effect based on 
the presence of specific metabolites in the environment, rather than their quantity. Flux boundaries of 
updated medium components were set to 1000 mmol/gDW hour (for a specific exchange compound; 
gDW, gram Dry Weight).

MCSM was initially simulated in the rhizosphere environment medium. After each growth iteration, 
GSMM growth values and the compounds secreted by the species growing were collected, where 
the latter were added to the medium for the next iteration as described above. Growth iterations 
continued until no new compounds were secreted and no additional GSMMs had grown. After the 
third iteration, a set of organic phosphorous compounds (containing both carbon and phosphorous) 
was added to the environment. These compounds were gathered from the pool of model-specific 
minimal compounds selected for use in the poor medium. Information regarding the chemical formula 
of these compounds was gathered with the formula attribute of each compound object in COBRApy. 
Along MCSM iterations, secreted metabolites were classified into biochemical categories based on 
BRITE annotations (Aoki-Kinoshita and Kanehisa, 2007) or, in the absence of classification, manually. 
MCSM was further applied to inspect the framework’s ability to tracing cellulose degradation using 
cellulose medium (Figure 4—source data 3). The tutorial for the MCSM stage of the framework 
workflow is found in GitHub, along with the GSMMs and media files. Instructions for conducting the 
analysis are in the ​README.​md file.

Construction of the exchange network and its untangling for screening 
sub-network motifs
For each GSMM, a directed bipartite network representing all potential metabolic exchanges occur-
ring within the rhizosphere community was constructed based on uptake and secretion data derived 
from MCSM iterations. Edges in the network were connected between GSMM nodes and metabolite 
nodes, with edge directionality indicating either secretion or uptake of a metabolite by a specific 
GSMM. The network was constructed with the networkx package, a python language package for 
the exploration and analysis of networks and network algorithms. Network-specific topography was 
obtained using the Kamada-kawai layout (Hagberg et al., 2008). Information regarding the degree 
and connectivity of the different node types was acquired from the graph object (G). Code for the 
network construction module in the framework is found at the project’s GitHub page under the name ​
NETWORK.​py.

Untangling the exchange network into individual paths (i.e., sub-network motifs) was done using 
the all_shortest_paths function in networkx (Hagberg et  al., 2008), applied over the exchanges 
network. Briefly, the algorithm screens for all possible shortest paths within the network, specifically 
screening for paths starting with an exudate node and ending secreted metabolite nodes (secreted 
by bacterial species but not consumed). This algorithm yielded two types of paths: (1) PM paths in 
which node positions one, two, and three represented exudate, microbe, and secreted metabolite, 
respectively, and (2) PMM paths. PMM paths (length of five nodes) were constructed based on PM 
paths (length of three nodes), in which positions four and five displayed unique (i.e., not found in PM 
paths) microbe and metabolite nodes, respectively. Code for the network untangling module in the 
framework is found at the project’s GitHub page under the name ​PATHS.​py.

Associating PM and PMM sub-network motifs features with soil health
Sub-network motifs (PM and PMM) were functionally classified as associated with healthy soil (H), 
sick soil (S), or not-associated with either soil type (NA) based on differential abundance of the 
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corresponding MAGs (PM) or MAGs combination (PMM) in the sub-network. Next, the GSMMs in 
both PM and PMM sub-networks were characterized according functional classification. For PMMs, 
the distribution of counts of classified sub-networks, at the different positions, was compared using 
the ANOVA test, followed by a Tukey test to significantly distinguish the groups. GSMM classifications 
were further projected on uptake and secreted metabolites in the pathway motifs. For simplification, 
the analysis focused only on PM paths because PMM paths incorporate PM paths, and exchanges 
within a PMM path do not directly reflect the effect of an exudate on the secreted end-product (but 
over the intermediate compound). On that account, start/end metabolites in PM paths were associ-
ated with H/S/NA paths based on one-sided hypergeometric test, comparing the frequency of each 
compound in a functionally characterized path type (either H or S) vs its frequency in NA classified 
paths and the reciprocal dataset.
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