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eLife assessment
This work provides a valuable analysis of the effect of two commonly used hyperparameters, noise 
amplitude and firing rate regularization, on the representations of relevant and irrelevant stimuli 
in trained recurrent neural networks (RNNs). The results suggest an interesting interpretation of 
prefrontal cortex (PFC) dynamics, based on comparisons to previously published data from the same 
lab, in terms of decreasing metabolic cost during learning. The evidence indicating that the mech-
anisms identified in the RNNs are the same ones operating in PFC was considered incomplete, but 
could potentially be bolstered by additional analyses and appropriate revisions.

Abstract Cognitive flexibility requires both the encoding of task-relevant and the ignoring of 
task-irrelevant stimuli. While the neural coding of task-relevant stimuli is increasingly well under-
stood, the mechanisms for ignoring task-irrelevant stimuli remain poorly understood. Here, we 
study how task performance and biological constraints jointly determine the coding of relevant and 
irrelevant stimuli in neural circuits. Using mathematical analyses and task-optimized recurrent neural 
networks, we show that neural circuits can exhibit a range of representational geometries depending 
on the strength of neural noise and metabolic cost. By comparing these results with recordings from 
primate prefrontal cortex (PFC) over the course of learning, we show that neural activity in PFC 
changes in line with a minimal representational strategy. Specifically, our analyses reveal that the 
suppression of dynamically irrelevant stimuli is achieved by activity-silent, sub-threshold dynamics. 
Our results provide a normative explanation as to why PFC implements an adaptive, minimal repre-
sentational strategy.

Introduction
How systems solve complex cognitive tasks is a fundamental question in neuroscience and artificial 
intelligence (Rigotti et al., 2013; Yang et al., 2019; Wang et al., 2018; Silver et al., 2016; Jensen 
et al., 2023). A key aspect of complex tasks is that they often involve multiple types of stimuli, some 
of which can even be irrelevant for performing the correct behavioral response (Freedman et al., 
2001; Mante et al., 2013; Parthasarathy et al., 2017) or predicting reward (Bernardi et al., 2020; 
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Chadwick et  al., 2023). Over the course of task exposure, subjects must typically identify which 
stimuli are relevant and which are irrelevant. Examples of irrelevant stimuli include those that are 
irrelevant at all times in a task (Freedman et al., 2001; Chadwick et al., 2023; Duncan, 2001; Rainer 
et al., 1998; Stokes et al., 2013) – which we refer to as static irrelevance – and stimuli that are rele-
vant at some time points but are irrelevant at other times in a trial – which we refer to as dynamic 
irrelevance (e.g. as is often the case for context-dependent decision-making tasks Mante et al., 2013; 
Flesch et al., 2022; Monsell, 2003; Braver, 2012). Although tasks involving irrelevant stimuli have 
been widely used, it remains an open question as to how different types of irrelevant stimuli should be 
represented, in combination with relevant stimuli, to enable optimal task performance.

One may naively think that statically irrelevant stimuli should always be suppressed. However, 
stimuli that are currently irrelevant may be relevant in a future task. Furthermore, it is unclear whether 
dynamically irrelevant stimuli should be suppressed at all since the information is ultimately needed by 
the circuit. It may therefore be beneficial for a neural circuit to represent irrelevant information as long 
as no unnecessary costs are incurred and task performance remains high. Several factors could have 
a strong impact on whether irrelevant stimuli affect task performance. For example, levels of neural 
noise in the circuit as well as energy constraints and the metabolic costs of overall neural activity 
(Flesch et al., 2022; Whittington et al., 2022; Sussillo et al., 2015; Orhan and Ma, 2019; Löwe, 
2023; Cueva and Wei, 2018; Luo et al., 2023; Kao et al., 2021; Deneve et al., 2001; Barak et al., 
2013) can affect how stimuli are represented in a neural circuit. Indeed, both noise and metabolic 
costs are factors that biological circuits must contend with (Tomko and Crapper, 1974; Laughlin, 
2001; Churchland et  al., 2006; Hasenstaub et  al., 2010). Despite these considerations, models 
of neural population codes, including hand-crafted models and optimized artificial neural networks, 
typically use only a very limited range of the values of such factors (Wang et al., 2018; Mante et al., 
2013; Sussillo et al., 2015; Barak et al., 2013; Cueva et al., 2020; Driscoll et al., 2022; Song et al., 
2016; Echeveste et al., 2020; Stroud et al., 2021) (but also see Yang et al., 2019; Orhan and Ma, 
2019). Therefore, despite the success of recent comparisons between neural network models and 
experimental recordings (Wang et al., 2018; Mante et al., 2013; Sussillo et al., 2015; Cueva and 
Wei, 2018; Barak et al., 2013; Cueva et al., 2020; Echeveste et al., 2020; Stroud et al., 2021; 
Lindsay, 2021), we may only be recovering very few out of a potentially large range of different repre-
sentational strategies that neural networks could exhibit (Schaeffer et al., 2022).

One challenge for distinguishing between different representational strategies, particularly when 
analyzing experimental recordings, is that some stimuli may simply be represented more strongly 
than others. In particular, we might expect stimuli to be strongly represented in cortex a priori if they 
have previously been important to the animal. Indeed, being able to represent a given stimulus when 
learning a new task is likely a prerequisite for learning whether it is relevant or irrelevant in that partic-
ular context (Rigotti et al., 2013; Bernardi et al., 2020). Previously, it has been difficult to distinguish 
between whether a given representation existed a priori or emerged as a consequence of learning 
because neural activity is typically only recorded after a task has already been learned. A more rele-
vant question is how the representation changes over learning (Chadwick et al., 2023; Reinert et al., 
2021; Durstewitz et al., 2010; Schuessler et al., 2020; Costa et al., 2017), which provides insights 
into how the specific task of interest affects the representational strategy used by an animal or artificial 
network (Richards et al., 2019).

To resolve these questions, we optimized recurrent neural networks on a task that involved two 
types of irrelevant stimuli. One feature of the stimulus was statically irrelevant, and another feature of 
the stimulus was dynamically irrelevant. We found that, depending on the neural noise level and meta-
bolic cost that was imposed on the networks during training, a range of representational strategies 
emerged in the optimized networks, from maximal (representing all stimuli) to minimal (representing 
only relevant stimuli). We then compared the strategies of our optimized networks with learning-
resolved recordings from the prefrontal cortex (PFC) of monkeys exposed to the same task. We found 
that the representational geometry of the neural recordings changed in line with the minimal strategy. 
Using a simplified model, we derived mathematically how the strength of relevant and irrelevant 
coding depends on the noise level and metabolic cost. We then confirmed our theoretical predictions 
in both our task-optimized networks and neural recordings. By reverse-engineering our task-optimized 
networks, we also found that activity-silent, sub-threshold dynamics led to the suppression of dynami-
cally irrelevant stimuli, and we confirmed predictions of this mechanism in our neural recordings.

https://doi.org/10.7554/eLife.94961
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In summary, we provide a mechanistic under-
standing of how different representational 
strategies can emerge in both biological and arti-
ficial neural circuits over the course of learning 
in response to salient biological factors such as 
noise and metabolic costs. These results in turn 
explain why PFC appears to employ a minimal 
representational strategy by filtering out task-
irrelevant information.

Results
A task involving relevant and 
irrelevant stimuli
We study a task used in previous experimental 
work that uses a combination of multiple, relevant 
and irrelevant stimuli (Wójcik, 2023; Figure 1a). 
The task consists of an initial ‘fixation’ period, 
followed by a ‘color’ period, in which one of two 
colors are presented. After this, in the ‘shape’ 
period, either a square or diamond shape is 
presented (while the color stimulus stays on), 
such that the width of the shape can be either 
thick or thin. After this, the stimuli disappear and 
reward is delivered according to an XOR struc-
ture between color and shape (Figure 1b). Note 
that the width of the shape is not predictive of 
reward, and it is therefore an irrelevant stimulus 
dimension (Figure  1b). As width information is 
always irrelevant when it is shown, its irrelevance 
is static. In contrast, color is relevant during the 
shape period but could be ignored during the 
color period without loss of performance. Hence 
its irrelevance is dynamic.

Due to the existence of multiple different 
forms of irrelevant stimuli, there exist multiple 
different representational strategies for a neural 
circuit solving the task in Figure 1a. These repre-
sentational strategies can be characterized by 
assessing the extent to which different stimuli 
are linearly decodable from neural population 
activity (Bernardi et  al., 2020; Stokes et  al., 
2013; Meyers et al., 2008; King and Dehaene, 
2014). We use linear decodability because it only 
requires the computation of simple weighted 

sums of neural responses, and as such, it is a widely accepted criterion for the usefulness of a neural 
representation (DiCarlo and Cox, 2007). Moreover, while representational strategies can differ along 
several dimensions in this task (e.g. the decodability of color or shape during the shape period – both 
of which are task-relevant Wójcik, 2023), our main focus here is on the two dimensions that specif-
ically control the representation of irrelevant stimuli. Therefore, depending on whether each of the 
irrelevant stimuli are linearly decodable during their respective period of irrelevance, we distinguish 
four different (extreme) strategies, ranging from a ‘minimal strategy’, in which the irrelevant stimuli are 
only weakly represented (Figure 1c, bottom left; pink shading), to a ‘maximal strategy’, in which both 
irrelevant stimuli are strongly represented (Figure 1c, top right; blue shading).
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Figure 1. Task design and irrelevant stimulus 
representations. (a) Illustration of the timeline of task 
events in a trial with the corresponding displays and 
names of task periods. Red dot shows fixation ring, blue 
(or green) circles appear during the color and shape 
periods, gray squares (or diamonds) appear during the 
shape period, and a juice reward is given during the 
reward period for rewarded combinations of color and 
shape stimuli (see panel b). No behavioral response 
was required for the monkeys as it was a passive 
object–association task (Wójcik, 2023). (b) Schematic 
showing that rewarded conditions of color and shape 
stimuli follows an XOR structure. In addition, the width 
of the shape was not predictive of reward and was 
thus an irrelevant stimulus dimension. (c) Schematic of 
four possible representational strategies, as indicated 
by linear decoding of population activity, for the task 
shown in panels a and b. Turquoise lines with shading 
show early color decoding and black lines with shading 
show width decoding. Strategies are split according 
to whether early color decoding is low (left column) or 
high (right column), and whether width decoding is low 
(bottom row) or high (top row).

https://doi.org/10.7554/eLife.94961
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Stimulus representations in task-optimized recurrent neural networks
To understand the factors determining which representational strategy neural circuits employ to solve 
this task, we optimized recurrent neural networks to perform the task (Figure 2a; see also Neural 
network models). The neural activities in these stochastic recurrent networks evolved according to
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Figure 2. Stronger levels of noise and firing rate regularization lead to suppression of task-irrelevant stimuli in optimized recurrent networks. (a) Top: 
illustration of a recurrent neural network model where each neuron receives independent white noise input with strength σ (middle). Color, shape, and 
width inputs are delivered to the network via three input channels (left). Firing rate activity is read out into two readout channels (either rewarded or 
not rewarded; right). All recurrent weights in the network, as well as weights associated with the input and readout channels, were optimized (Neural 
network models). Bottom: cost function used for training the recurrent neural networks (Equation 4) and timeline of task events within a trial for the 
recurrent neural networks (Figure 1a). Yellow shading on time axis shows the time period in which the task performance term enters the cost function 
(Equation 4). (b) Top: neural firing rate trajectories in the top two PCs for an example network over the course of a trial (from color stimulus onset) for 
a particular noise (σ) and regularization (λ) regime. Open gray circles indicate color onset, filled gray squares indicate shape onset, filled gray circles 
indicate offset of both stimuli, and colored thick and thin squares and diamonds indicate the end of the trial at 1.5 s for all stimulus conditions. Pale and 
brightly colored trajectories indicate the two width conditions. We show results for networks exposed to low noise and low regularization (‍σl,λl‍; left, 
pale blue shading), high noise and low regularization (‍σh,λl‍; middle, purple shading), and medium noise and medium regularization (‍σm,λm‍; right, pink 
shading). Bottom: performance of a linear decoder (mean over 10 networks) trained at each time point within the trial to decode color (turquoise) or 
width (black) from neural firing rate activity for each noise and regularization regime. Dotted gray lines and shading show mean ± 2 s.d. of chance level 
decoding based on shuffling trial labels 100 times. (c) Left: performance of optimized networks determined as the mean performance over all trained 
networks during the reward period (a, bottom; yellow shading) for all noise (σ, horizontal axis) and regularization levels (λ, vertical axis) used during 
training. Pale blue, pink, and purple dots indicate parameter values that correspond to the dynamical regimes shown in panel b and Figure 1c with the 
same background coloring. For parameter values above the white line, networks achieved a mean performance of less than 0.95. Middle: early color 
decoding determined as mean color decoding over all trained networks at the end of the color period (b, bottom left, turquoise arrow) using the same 
plotting scheme as the left panel. Right: width decoding determined as mean width decoding over all trained networks at the end of the shape period 
(b, bottom left, black arrow) using the same plotting scheme as the left panel. (d) Width decoding plotted against early color decoding for all noise and 
regularization levels and colored according to performance. Pale blue, pink, and purple highlights indicate the parameter values shown with the same 
colors in panel c.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Temporal decoding for networks with different noise and regularization levels.

https://doi.org/10.7554/eLife.94961
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the network encoding the three stimulus features as they become available over the course of the trial 
(Figure 2a, bottom). The optimized parameters of the network were ‍W‍, the recurrent weight matrix 
describing connection strengths between neurons in the network (Figure 2a, top; middle), ‍Win‍, the 
feedforward weight matrix describing connections from the stimulus inputs to the network (Figure 2a, 
top; left; see also Neural network models), and ‍b‍, a stimulus-independent bias. Importantly, σ is the 
standard deviation of the neural noise process (Figure 2a, top; pale gray arrows; with ‍η

(
t
)
‍ being a 

sample from a Gaussian white noise process with mean 0 and variance 1), and as such represents a 
fundamental constraint on the operation of the network. The output of the network was given by
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with optimized parameters ‍Wout‍, the readout weights (Figure 2a, top; right), and ‍bout‍, a readout bias.
We optimized networks for a canonical cost function (Orhan and Ma, 2019; Driscoll et al., 2022; 

Song et al., 2016; Stroud et al., 2021; Masse et al., 2019; Figure 2a, bottom; Network optimization):
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The first term in Equation 4 is a task performance term measuring the cross-entropy loss ‍H(c, z(t))‍ 
between the one-hot encoded target choice, ‍c‍, and the network’s output probabilities, ‍z

(
t
)
‍, during 

the reward period, ‍Tr‍ (Figure 2a, bottom; yellow shading). The second term in Equation 4 is a firing 
rate regularization term. This regularization term can be interpreted as a form of energy or metabolic 
cost (Whittington et al., 2022; Kao et al., 2021; Cueva et al., 2020; Masse et al., 2019; Schimel 
et al., 2023) measured across the whole trial, T, because it penalizes large overall firing rates. There-
fore, optimizing this cost function encourages networks to not only solve the task, but to do so using 
low overall firing rates. How important it is for the network to keep firing rates low is controlled by the 
‘regularization’ parameter λ. Critically, we used different noise levels σ and regularization strengths λ 
(Figure 2a, highlighted in red) to examine how these two constraints affected the dynamical strategies 
employed by the optimized networks to solve the task and compared them to our four hypothesized 
representational strategies (Figure 1c). We focused on these two parameters because they are both 
critical factors for real neural circuits and a priori can be expected to have important effects on the 
resulting circuit dynamics. For example, metabolic costs will constrain the overall level of firing rates 
that can be used to solve the task while noise levels directly affect how reliably stimuli can be encoded 
in the network dynamics. For the remainder of this section, we analyze representational strategies 
utilized by networks after training. In subsequent sections, we analyze learning-related changes in 
both our optimized networks and neural recordings.

We found that networks trained in a low noise–low firing rate regularization setting (which we 
denote by ‍σl,λl‍) employed a maximal representational strategy (Figure 2b, left column; pale blue 
shading). Trajectories in neural firing rate space diverged for the two different colors as soon as the 
color stimulus was presented (Figure 2b, top left; blue and green trajectories from open gray circle 
to gray squares), which resulted in high color decoding during the color period (Figure 2b, bottom 
left; turquoise line; Linear decoding). During the shape period, the trajectories corresponding to each 
color diverged again (Figure 2b, top left; trajectories from gray squares to filled gray circles), such that 
all stimuli were highly decodable, including width (Figure 2b, bottom left; black line, Figure 2—figure 
supplement 1a). After removal of the stimuli during the reward period, trajectories converged to one 
of two parts of state space according to the XOR task rule – which is required for high performance 
(Figure 2b, top left; trajectories from filled gray circles to colored squares and diamonds). Because 
early color and width were highly decodable in these networks trained with a low noise and low firing 
rate regularization, the dynamical strategy they employed corresponds to the maximal representa-
tional regime (Figure 1c, blue shading).

We next considered the setting of networks that solve this task while being exposed to a high level 
of neural noise (which we denote by ‍σh,λl‍; Figure 2b, middle column; purple shading). In this setting, 
we also observed neural trajectories that diverged during the color period (Figure 2b, top middle; 

https://doi.org/10.7554/eLife.94961
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gray squares are separated), which yielded high color decoding during the color period (Figure 2b, 
bottom middle; turquoise line). However, in contrast to networks with a low level of neural noise 
(Figure 2b, left), width was poorly decodable during the shape period (Figure 2b, bottom middle; 
black line). Therefore, for networks challenged with higher levels of neural noise, the irrelevant stim-
ulus dimension of width is represented more weakly (Figure 1c, purple shading). A similar represen-
tational strategy was also observed in networks that were exposed to a low level of noise but a high 
level of firing rate regularization (Figure 2—figure supplement 1c, black lines).

Finally, we considered the setting of networks that solve this task while being exposed to medium 
levels of both neural noise and firing rate regularization (which we denote by ‍σm,λm‍; Figure  2b, 
right column; pink shading). In this setting, neural trajectories diverged only weakly during the color 
period (Figure 2b, top middle; gray squares on-top of one another), which yielded relatively poor 
(non-ceiling) color decoding during the color period (Figure 2b, bottom right; turquoise line). Never-
theless, color decoding was still above chance despite the neural trajectories strongly overlapping 
in the two-dimensional state space plot in Figure 2b, top right, because these trajectories became 
separable in the full-dimensional state space of these networks. Additionally, width decoding was 
also poor during the shape period (Figure 2b, bottom right; black line). Therefore, networks that 
were challenged with increased levels of both neural noise and firing rate regularization employed 
dynamics in line with a minimal representational strategy by only weakly representing irrelevant stimuli 
(Figure 1c, pink shading).

To gain a more comprehensive picture of the full range of dynamical solutions that networks can 
exhibit, we performed a grid search over multiple different levels of noise and firing rate regulariza-
tion. Nearly all parameter values allowed networks to achieve high performance (Figure  2c, left), 
except when both the noise and regularization levels were high (Figure 2c, left; parameter values 
above white line). Importantly, all of the dynamical regimes that we showed in Figure 2b achieved 
similarly high performances (Figure 2c, left; pale blue, purple, and pink dots).

When looking at early color decoding (defined as color decoding at the end of the color period; 
Figure 2b, bottom left, turquoise arrow) and width decoding (defined as width decoding at the end 
of the shape period; Figure 2b, bottom left, black arrow), we saw a consistent pattern of results. 
Early color decoding was high only when either the lowest noise level was used (Figure 2c, middle; 
‍σ = 0.01‍ column) or when the lowest regularization level was used (Figure  2c, middle; ‍λ = 0.0005‍ 
row). In contrast, width decoding was high only when both the level of noise and regularization were 
small (Figure 2c, right; bottom left corner). Otherwise, width decoding became progressively worse 
as either the noise or regularization level was increased and achieved values that were typically lower 
than the corresponding early color decoding (Figure 2c, compare right with middle). This pattern 
becomes clearer when we plot width decoding against early color decoding (Figure 2d). No set of 
parameters yielded higher width decodability compared to early color decodability (Figure 2d, no 
data point above the identity line). This means that we never observed the fourth dynamical regime 
we hypothesized a priori, in which width decoding would be high and early color decoding would 
be low (Figure 1c, top left). Therefore, information with static irrelevance (width) was more strongly 
suppressed compared to information whose irrelevance was dynamic (color). We also note that we 
never observed pure chance levels of decoding of color or width during stimulus presentation. This 
is likely because it is challenging for recurrent neural networks to strongly suppress their inputs and it 
may also be the case that other hyperparameter regimes more naturally lead to stronger suppression 
of inputs (we discuss this second possibility later; e.g. Figure 5).

Comparing learning-related changes in stimulus representations in 
neural networks and primate lateral PFC
To understand the dynamical regime employed by PFC, we analyzed a dataset (Wójcik, 2023) of 
multi-channel recordings from lateral prefrontal cortex (lPFC) in two monkeys exposed to the task 
shown in Figure 1a. These recordings yielded 376 neurons in total across all recording sessions and 
both animals (Experimental materials and methods). Importantly, for understanding the direction in 
which neural geometries changed over learning, recordings commenced in the first session in which 
the animals were exposed to the task – i.e., the recordings spanned the entirety of the learning 
process. For our analyses, we distinguished between the first half of recording sessions (Figure 3a, 
gray; ‘early learning’) and the second half of recording sessions (Figure 3a, black; ‘late learning’). A 

https://doi.org/10.7554/eLife.94961
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previous analysis of this dataset showed that, over the course of learning, the XOR representation of 
the task comes to dominate the dynamics during the late shape period of the task (Wójcik, 2023). 
Here, however, we focus on relevant and irrelevant task variable coding during the stimulus periods 
and compare the recordings to the dynamics of task-optimized recurrent neural networks. Also, in line 
with the previous study (Wójcik, 2023), we do not examine the reward period of the task because the 
one-to-one relationship between XOR and reward in the data (which is not present in the models) will 
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Figure 3. Stimulus representations in primate lateral prefrontal cortex (lPFC) correspond to a minimal 
representational strategy. (a) Performance of a linear decoder trained at each time point to predict either XOR 
(far left), shape (middle left), color (middle right), or width (far right) from neural population activity in lPFC 
(Experimental materials and methods and Linear decoding). We show decoding results separately from the first 
half of sessions (gray, ‘early learning’) and the second half of sessions (black, ‘late learning’). Dotted gray lines and 
shading show mean ± 2 s.d. of chance level decoding based on shuffling trial labels 100 times. Horizontal black 
bars show significant differences between early and late decoding using a two-sided cluster-based permutation 
test and a significance threshold of 0.05 (Statistics). Open gray circles, filled gray squares, and filled gray circles on 
the horizontal indicate color onset, shape onset, and offset of both stimuli, respectively. (b) Same as panel a but for 
decoders trained on neural activity from optimized recurrent neural networks in the ‍σm,λm‍ regime (Figure 2b–d, 
pink). (c) Black horizontal lines show the mean change between early and late decoding during time periods when 
there were significant differences between early and late decoding in the data (horizontal black bars in panel a) 
for XOR (top row), color (middle row), and width (bottom row). (No significant differences in shape decoding were 
observed in the data; cf. panel a.) Violin plots show chance differences between early and late decoding based on 
shuffling trial labels 100 times. We show results for the data (far left column), ‍σl,λl‍ networks (middle left column, 
pale blue shading), ‍σh,λl‍ networks (middle right column, purple shading), and ‍σm,λm‍ networks (far right column, 
pink shading). (d) Same as panel c but we show results using cross-generalized decoding (Bernardi et al., 2020) 
during the same time periods as those used in panel c (Linear decoding).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Cross-generalized temporal decoding for lateral prefrontal cortex (lPFC) recordings and 
networks with different noise and regularization levels.

Figure supplement 2. Temporal decoding for networks with input weights initialized to 0 prior to optimization.

Figure supplement 3. Temporal decoding for networks with input weights initialized to large random values prior 
to optimization.

https://doi.org/10.7554/eLife.94961
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likely lead to trivial differences in XOR representations in the reward period between the data and 
models.

Similar to our analyses of our recurrent network models (Figure  2b, bottom), we performed 
population decoding of the key task variables in the experimental data (Figure 3a, see also Linear 
decoding). We found that the decodability of the XOR relationship between task-relevant stimuli 
that determined task performance (Figure 1b) significantly increased during the shape period over 
the course of learning, consistent with the animals becoming more familiar with the task structure 
(Figure 3a, far left; compare gray and black lines). We also found that shape decodability during the 
shape period decreased slightly, but not significantly, over learning (Figure 3a, middle left; compare 
gray and black lines from gray square to gray circle), while color decodability during the shape period 
increased slightly (Figure 3a, middle right; compare gray and black lines from gray square to gray 
circle). Importantly, however, color decodability significantly decreased during the color period (when 
it is ‘irrelevant’; Figure 3a, middle right; compare gray and black lines), and width decodability signifi-
cantly decreased during the shape period (Figure 3a, far right; compare gray and black lines). Neural 
activities in lPFC thus appear to change in line with the minimal representational strategy over the 
course of learning, consistent with recurrent networks trained in the ‍σm,λm‍ regime (Figure 1c, pink 
and Figure 2b, bottom, pink).

We then directly compared these learning-related changes in stimulus decodability from lPFC with 
those that we observed in our task-optimized recurrent neural networks (Figure 2). We found that the 
temporal decoding dynamics of networks trained with medium noise and firing rate regularization 
(‍σm,λm‍; Figure 2b–d, pink shading and pink dots) exhibited decoding dynamics most similar to those 
that we observed in lPFC. Specifically, XOR decodability significantly increased after shape onset, 
consistent with the networks learning the task (Figure 3b, far left; compare gray and black lines). We 
also found that shape and color decodability did not significantly change during the shape period 
(Figure 3b, middle left and middle right; compare gray and black lines from gray square to gray 
circle). Importantly, however, color decodability significantly decreased during the color period (when 
it is ‘irrelevant’; Figure 3b, middle right; compare gray and black lines from open gray circle to gray 
square), and width decodability significantly decreased during the shape period (Figure 3a, far right; 
compare gray and black lines). Other noise and regularization settings yielded temporal decoding 
that displayed a poorer resemblance to the data (Figure 2—figure supplement 1). For example, 

‍σl,λl‍, and ‍σl,λh‍ networks exhibited almost no changes in decodability during the color and shape 
periods (Figure 2—figure supplement 1a and c) and ‍σh,λl‍ networks exhibited increased XOR, shape, 
and color decodability at all times after stimulus onset while width decodability decreased during the 
shape period (Figure 2—figure supplement 1b). We also found that if regularization is driven to very 
high levels, color and shape decoding becomes weak during the shape period while XOR decoding 
remains high (Figure 2—figure supplement 1d). Therefore, such networks effectively perform a pure 
XOR computation during the shape period.

We also note that the ‍σm,λm‍ model does not perfectly match the decoding dynamics seen in 
the data. For example, although not significant, we observed a decrease in shape decoding and an 
increase in color decoding in the data during the shape period whereas the model only displayed a 
slight (non-significant) increase in decodability of both shape and color during the same time period. 
These differences may be due to fundamentally different ways that brains encode sensory informa-
tion upstream of PFC, compared to the more simplistic abstract sensory inputs used in models (see 
Discussion).

To systematically compare learning-related changes in the data and models, we analyzed time 
periods when there were significant changes in decoding in the data over the course of learning 
(Figure 3a, horizontal black bars). This yielded a substantial increase in XOR decoding during the 
shape period, and substantial decreases in color and width decoding during the color and shape 
periods, respectively, in the data (Figure 3c, far left column). During the same time periods in the 
models, networks in the ‍σl,λl‍ regime exhibited no changes in decoding (Figure 3c, middle left column; 
blue shading). In contrast, networks in the ‍σh,λl‍ regime exhibited substantial increases in XOR and 
color decoding, and a substantial decrease in width decoding (Figure 3c, middle right column; purple 
shading). Finally, in line with the data, networks in the ‍σm,λm‍ regime exhibited a substantial increase in 
XOR decoding, and substantial decreases in both color and width decoding (Figure 3c, middle right 
column; pink shading).

https://doi.org/10.7554/eLife.94961
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In addition to studying changes in traditional decoding, we also studied learning-related changes 
in ‘cross-generalized decoding’ which provides a measure of how factorized the representational 
geometry is across stimulus conditions (Bernardi et al., 2020; Figure 3—figure supplement 1). (For 
example, for evaluating cross-generalized decoding for color, a color decoder trained on square trials 
would be tested on diamond trials, and vice versa Bernardi et al., 2020; see also Linear decoding.) 
Using this measure, we found that changes in decoding were generally more extreme over learning 
and that models and data bore a stronger resemblance to one another compared with traditional 
decoding. Specifically, all models and the data showed a strong increase in XOR decoding (Figure 3d, 
top row, ‘XOR’) and a strong decrease in width decoding (Figure 3d, bottom row, ‘width’). However, 
only the data and ‍σm,λm‍ networks showed a decrease in color decoding (Figure 3d, compare middle 
far left and middle far right), whereas ‍σl,λl‍ networks showed no change in color decoding (Figure 3d, 
middle left; blue shading) and ‍σh,λl‍ networks showed an increase in color decoding (Figure  3d, 
middle right; purple shading).

Beside studying the effects of input noise and firing rate regularization, we also examined the 
effects of different strengths of the initial stimulus input connections prior to training (Flesch et al., 
2022). In line with previous studies (Yang et al., 2019; Orhan and Ma, 2019; Stroud et al., 2021; 
Masse et al., 2019; Dubreuil et al., 2022), for all of our previous results, the initial input weights 
were set to small random values prior to training (Network optimization). We found that changing 
these weights had similar effects to changing neural noise (with the opposite sign). Specifically, when 
input weights were set to 0 before training, initial decoding was at chance levels and only increased 
with learning for XOR, shape, and color (whereas width decoding hardly changed with learning and 
remained close to chance levels; Figure 3—figure supplement 2) – analogously to the ‍σh,λl‍ regime 
(Figure 2—figure supplement 1b). In contrast, when input weights were set to large random values 
prior to training, initial decoding was at ceiling levels and did not significantly change over learning 
during the color and shape periods for any of the task variables (Figure 3—figure supplement 3) 
– similar to what we found in the ‍σl,λl‍ regime (Figure  2—figure supplement 1a). Thus, neither 
extremely small nor extremely large initial input weights were consistent with the data that exhibited 
both increases and decreases in decodability of task variables over learning (Figure 3a).

Theoretical predictions for strength of relevant and irrelevant stimulus 
coding
To gain a theoretical understanding of how irrelevant stimuli should be processed in a neural circuit, 
we performed a mathematical analysis of a minimal linear model that only included a single relevant 
stimulus and a single statically irrelevant stimulus (see also Appendix 1, Mathematical analysis of 
relevant and irrelevant stimulus coding in a linear network). Although this analysis applies to a simpler 
task compared with that faced by our neural networks and animals, crucially it still allows us to under-
stand how relevant and irrelevant coding depend on noise and metabolic constraints. Our mathe-
matical analysis suggested that the effects of noise and firing rate regularization on the performance 
and metabolic cost of a network can be understood via three key aspects of its representation: the 
strength of neural responses to the relevant stimulus (‘relevant coding’), the strength of responses to 
the irrelevant stimulus (‘irrelevant coding’), and the overlap between the population responses to rele-
vant and irrelevant stimuli (‘overlap’; Figure 4a). In particular, maximizing task performance (i.e. the 
decodability of the relevant stimulus) required relevant coding to be strong, irrelevant coding to be 
weak, and the overlap between the two to be small (Figure 4b, top; see also Appendix 1, The perfor-
mance of the optimal linear decoder). This ensures that the irrelevant stimulus interferes minimally 
with the relevant stimulus. In contrast, to reduce a metabolic cost (such as we considered previously in 
our optimized recurrent networks, see Equation 4 and Figure 2), both relevant and irrelevant coding 
should be weak (Figure 4b, bottom; see also Appendix 1, Metabolic cost).

In combination, when decoding performance and metabolic cost are jointly optimized, as in our 
task-optimized recurrent networks (Figure 2), our theoretical analyses suggested that performance 
should decrease with both the noise level σ and the strength of firing rate regularization λ in an 
approximately interchangeable way, and metabolic cost should increase with σ but decrease with 
λ (Appendix 1, Qualitative predictions about optimal parameters). We also found that the strength 
of relevant coding should decrease with λ, but its dependence on σ was more nuanced. For small σ, 
the performance term effectively dominates the metabolic cost (Figure 4b, top) and the strength 

https://doi.org/10.7554/eLife.94961
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Figure 4. Theoretical predictions for strength of relevant and irrelevant stimulus coding and comparison to 
lateral prefrontal cortex (lPFC) recordings. (a) Schematic of activity in neural state space for two neurons for a task 
involving two relevant (black drops vs. red crosses) and two irrelevant stimuli (thick vs. thin squares). Strengths of 
relevant and irrelevant stimulus coding are shown with red and black arrows, respectively, and the overlap between 
relevant and irrelevant coding is also shown (‘overlap’). (b) Schematic of our theoretical predictions for the optimal 
setting of relevant (red arrows) and irrelevant (black arrows) coding strengths when either maximizing performance 
(top) or minimizing a metabolic cost with strength λ (bottom; see Equation 4). (c) Schematic of our theoretical 
predictions for the strength of relevant (‍∆rrel‍; black drops vs. red crosses; red arrows) and irrelevant (‍∆rirrel‍; thick 
vs. thin squares; black arrows) coding when jointly optimizing for both performance and a metabolic cost (cf. 
panel b). In the low noise regime (left), relevant conditions are highly distinguishable and irrelevant conditions 
are poorly distinguishable as well as strongly orthogonal to the relevant conditions. In the high noise regime 
(right), all conditions are poorly distinguishable. (d) Our theoretical predictions (Equation S34) for the strength of 
relevant coding (

‍
||∆rrel ||2√

N ‍
, see panel c) as a function of the noise level σ (horizontal axis) and firing rate regularization 

strength λ (colorbar). (e) Same as panel d but for our optimized recurrent neural networks (Figure 2) where we 
show the strength of relevant (XOR) coding (Measuring stimulus coding strength). Pale blue, purple, and pink 
highlights correspond to the noise and regularization strengths shown in Figure 2c and d. Gray dotted line and 
shading shows mean ±2 s.d. (over 250 networks; 10 networks for each of the 25 different noise and regularization 
levels) of 

‍
||∆rrel ||2√

N ‍
 prior to training. (f) Same as panel e but for the strength of irrelevant (width) coding (

‍
||∆rirrel ||2√

N ‍
). The 

black arrow indicates the theoretical prediction of 0 irrelevant coding. (g) The absolute value of the normalized 

dot product (overlap) between relevant and irrelevant representations (‍
|∆r⊤rel∆rirrel |

||∆rrel ||2 ||∆rirrel ||2 ‍, i.e. 0 implies perfect 
orthogonality and 1 implies perfect overlap) for our optimized recurrent neural networks. The black arrow indicates 
the theoretical prediction of 0 overlap. (h) Left: coding strength (length of arrows in panel a; Measuring stimulus 
coding strength) for relevant (XOR; red) and irrelevant (width; black) stimuli during early and late learning for our 
lPFC recordings. Right: the absolute value of the overlap between relevant and irrelevant representations for our 
lPFC recordings (0 implies perfect orthogonality and 1 implies perfect overlap). Error bars show the mean ± 2 s.d. 

Figure 4 continued on next page
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of relevant coding should increase with σ. However, if σ is too high, the strength of relevant coding 
starts decreasing otherwise a disproportionately high metabolic cost must be incurred to achieve 
high performance (Figure  4c,d). Our mathematical analysis also suggested that irrelevant coding 
and relevant–irrelevant overlap could in principle depend on the noise and metabolic cost strength – 
particularly if performing noisy optimization where the curvature of the cost function can be relatively 
shallow around the minimum (Appendix 1, Qualitative predictions about optimal parameters). There-
fore, practically, we also expect that irrelevant coding should be mostly dependent (inversely) on λ, 
but relevant–irrelevant overlap should mostly depend on σ (Appendix 1, Curvature of the loss function 
around the optimum). These theoretical predictions were confirmed by our recurrent neural network 
simulations (Figure 4e–g).

We next measured, in both recorded and simulated population responses, the three aspects of 
population responses that our theory identified as being key in determining the performance and 
metabolic cost of a network (Figure  4a; Measuring stimulus coding strength). We found a close 
correspondence in the learning-related changes of these measures between our lPFC recordings 
(Figure 4h) and optimized recurrent networks (Figure 4i). In particular, we found that the strength 
of relevant (XOR) coding increased significantly over the course of learning (Figure 4h and i, left; 
red). The strength of irrelevant (width) coding decreased significantly over the course of learning 
(Figure 4h and i, left; black), such that it became significantly smaller than the strength of relevant 
coding (Figure 4h and i, left; compare red and black at ‘late learning’). Finally, relevant and irrelevant 
directions were always strongly orthogonal in neural state space, and the level of orthogonality did 
not significantly change with learning (Figure 4h and i, right). Although we observed no learning-
related changes in overlap, it may be that for stimuli that are more similar than the relevant and irrel-
evant features we studied here (XOR and width), the overlap between these features may decrease 
over learning rather than simply remaining small.

Activity-silent, sub-threshold dynamics lead to the suppression of 
dynamically irrelevant stimuli
While the representation of statically irrelevant stimuli can be suppressed by simply weakening the 
input connections conveying information about it to the network, the suppression of dynamically 
irrelevant stimuli requires a mechanism that alters the dynamics of the network (since this information 
ultimately needs to be used by the network to achieve high performance). To gain some intuition 
about this mechanism, we first analyzed two-neuron networks trained on the task. To demonstrate 
the basic mechanism of suppression of dynamically irrelevant stimuli (i.e., weak early color coding), 
we compared the ‍σl,λl‍ (Figure  5a) and ‍σm,λm‍ (Figure  5b) regimes for these networks, as these 
corresponded to the minimal and maximal amount of suppression of dynamically irrelevant stimuli 
(Figure 2c).

We examined trajectories of sub-threshold neural activity ‍x
(
t
)
‍ (Equation 1) in the full two-neuron 

state space (Figure 5a and b, blue and green curves). We distinguished between the negative quad-
rant of state space, which corresponds to the rectified part of the firing rate nonlinearity (Figure 5a and 
b, bottom left gray quadrant; Equation 2), and the rest of state space. Importantly, if sub-threshold 
activity lies within the negative quadrant at some time point, both neurons in the network have zero 
firing rate and consequently a decoder cannot decode any information from the firing rate activity 
and the network exhibits no metabolic cost (Equation 4). Therefore, we reasoned that color inputs 
may drive sub-threshold activity so that it lies purely in the negative quadrant of state space so that no 
metabolic cost is incurred during the color period (akin to nonlinear gating Flesch et al., 2022; Miller 
and Cohen, 2001). Later in the trial, when these color inputs are combined with the shape inputs, 
activity may then leave the negative quadrant of state space so that the network can perform the task.

We found that for the ‍σl,λl‍ regime, there was typically at least one set of stimulus conditions for 
which sub-threshold neural activity evolved outside the negative quadrant of state space during any 
task period (Figure 5a). Consequently, color was decodable to a relatively high level during the color 

over 10 non-overlapping splits of the data. (i) Same as panel h but for the optimized recurrent neural networks in 
the ‍σm,λm‍ regime (see pink dots in Figure 2). Error bars show the mean ± 2 s.d. over 10 different networks. p-
Values resulted from a two-sided Mann–Whitney U test (*, p<0.05; **, p<0.01; n.s., not significant; see Statistics).

Figure 4 continued

https://doi.org/10.7554/eLife.94961


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Stroud et al. eLife 2024;13:RP94961. DOI: https://doi.org/10.7554/eLife.94961 � 12 of 33

period (Figure 5—figure supplement 1a, middle 
right) and this network produced a relatively high 
metabolic cost throughout the task (Figure  5c, 
blue line). In contrast, for networks in the ‍σm,λm‍ 
regime, the two color inputs typically drove neural 
activity into the negative quadrant of state space 
during the color period (Figure 5b, left). Therefore, 
during the color period, the network produced 
zero firing rate activity (Figure 5c, pink line from 
open gray circle to gray square). Consequently, 
color was poorly decodable (Figure  5—figure 
supplement 1b, middle right; black line) and the 
network incurred no metabolic cost during the 
color period. Thus, color information was repre-
sented in a sub-threshold, ‘activity-silent’ (Epsz-
tein et al., 2011) state during the color period. 
However, during the shape and reward periods 
later in the trial, the color inputs, now in combina-
tion with the shape inputs, affected the firing rate 
dynamics and the neural trajectories explored the 
full state space in a similar manner to the ‍σl,λl‍ 
network (Figure  5b, middle and right panels). 
Indeed, we also found that color decodability 
increased substantially during the shape period 
in the ‍σm,λm‍ network (Figure 5—figure supple-
ment 1b, middle right; black line). This demon-
strates how color inputs can cause no change in 
firing rates during the color period when they 
are irrelevant, and yet these same inputs can be 
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Figure 5. Activity-silent, sub-threshold dynamics lead 
to the suppression of dynamically irrelevant stimuli. (a) 
Sub-threshold neural activity (‍x

(
t
)
‍ in Equation 1) in 

the full state space of an example two-neuron network 
over the course of a trial (from color onset) trained 
in the ‍σl,λl‍ regime. Pale blue arrows show flow field 
dynamics (direction and magnitude of movement in 
the state space as a function of the momentary state). 
Open gray circles indicate color onset, gray squares 
indicate shape onset, filled gray circles indicate offset 
of both stimuli, and colored squares and diamonds 
indicate the end of the trial at 1.5 s. We plot activity 
separately for the three periods of the task (color 
period, left; shape period, middle; reward period, 
right). We plot dynamics without noise for visual clarity. 
(b) Same as panel a but for a network trained in the 

‍σm,λm‍ regime. (c) Momentary magnitude of firing rates 

(
‍
||r
(

t
)

||2√
N ‍

; i.e. momentary metabolic cost, see Equation 
4) for the two-neuron networks from panels a (blue 
line) and b (pink line). (d) Mean ± 2 s.d. (over 10 two-
neuron networks) proportion of color inputs that have 
a negative sign for the two noise and regularization 
regimes shown in panels a–c. Gray dotted line shows 
chance level proportion of negative color input. 
(e) Mean (over 10 fifty-neuron networks) proportion 
of color inputs that have a negative sign for all noise 
(horizontal axis) and regularization (colorbar) strengths 
shown in Figure 2c and d. Pale blue, purple, and pink 
highlights correspond to the noise and regularization 
strengths shown in Figure 2c and d. Gray dotted line 

Figure 5 continued on next page

and shading shows mean ± 2 s.d. (over 250 networks; 
10 networks for each of the 25 different noise and 
regularization levels) of the proportion of negative color 
input prior to training (i.e. the proportion of negative 
color input expected when inputs are drawn randomly 
from a Gaussian distribution; Network optimization). 

(f) Momentary magnitude of firing rates (
‍
||r
(

t
)

||2√
N ‍

) for 
our lateral prefrontal cortex (lPFC) recordings (far left) 
and 50-neuron networks in the ‍σl,λl‍ regime (middle 
left, blue shading), ‍σh,λl‍ regime (middle right, purple 
shading), and ‍σm,λm‍ regime (far right, pink shading). 
Error bars show the mean ± 2 s.d. over either 10 non-
overlapping data splits for the data or over 10 different 
networks for the models. p-Values resulted from a two-
sided Mann–Whitney U test (*, p<0.05; **, p<0.01; ***, 
p<0.001; n.s., not significant; see Statistics).

The online version of this article includes the following 
figure supplement(s) for figure 5:

Figure supplement 1. Temporal decoding for 
two-neuron networks and supplemental analysis of 
suppression of dynamically irrelevant stimuli.

Figure supplement 2. Activity-silent, sub-threshold 
dynamics lead to the suppression of dynamically 
irrelevant stimuli in networks with a sigmoid 
nonlinearity.

Figure 5 continued
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utilized later in the trial to enable high task performance (Figure 5—figure supplement 1a and b, far 
left). While we considered individual example networks in Figure 5a–c, color inputs consistently drove 
neural activity into the negative quadrant of state space across repeated training of ‍σm,λm‍ networks 
but not for ‍σl,λl‍ networks (Figure 5d).

Next, we performed the same analysis as Figure 5d on the large (50-neuron) networks that we 
studied previously (Figures 2–4). Similar to the two-neuron networks, we found that large networks 
in the ‍σl,λl‍ regime did not exhibit more negative color inputs than would be expected by chance 
(Figure 5e, pale blue highlighted point) – consistent with the high early color decoding we found 
previously in these networks (Figure  2c, middle, pale blue highlighted point). However, when 
increasing either the noise or regularization level, the proportion of negative color inputs increased 
above chance such that for the highest noise and regularization level, nearly all color inputs were 
negative (Figure 5e). We also found a strong negative correlation between the proportion of negative 
color input and the level of early color decoding that we found previously in Figure 2c (Figure 5—
figure supplement 1c, ‍r = −0.9, p < 10−9

‍). This suggests that color inputs that drive neural activity 
into the rectified part of the firing rate nonlinearity, and thus generate purely sub-threshold activity-
silent dynamics, is the mechanism that generates weak early color coding during the color period in 
these networks. We also examined whether these results generalized to networks that use a sigmoid 
(as opposed to a ReLU) nonlinearity. To do this, we trained networks with a ‍tanh‍ nonlinearity (shifted 
for a meaningful comparison with ReLU, so that the lower bound on firing rates was 0, rather than –1) 
and found qualitatively similar results to the ReLU networks. In particular, color inputs drove neural 
activity toward 0 firing rate during the color period in ‍σm,λm‍ networks but not in ‍σl,λl‍ networks 
(Figure 5—figure supplement 2, compare a and b), which resulted in a lower metabolic cost during 
the color period for ‍σm,λm‍ networks compared to ‍σl,λl‍ networks (Figure 5—figure supplement 2c). 
This was reflected in color inputs being more strongly negative in ‍σm,λm‍ networks compared to ‍σl,λl‍ 
networks which only showed chance levels of negative color inputs (Figure 5—figure supplement 
2d).

We next sought to test whether this mechanism could also explain the decrease in color decod-
ability over learning that we observed in the lPFC data. To do this, we measured the magnitude of firing 
rates in the fixation, color, and shape periods for both early and late learning (note that the magni-
tude of firing rates coincides with our definition of the metabolic cost; Equation 4 and Figure 5c). To 
decrease metabolic cost over learning, we would expect two changes: firing rates should decrease 
with learning and firing rates should not significantly increase from the fixation to the color period 
after learning (Figure 5c, pink line). Indeed, we found that firing rates decreased significantly over 
the course of learning in all task periods (Figure 5f, far left; compare gray and black lines), and this 
decrease was most substantial during the fixation and color periods (Figure 5f, far left). We also found 
that after learning, firing rates during the color period were not significantly higher than during the 
fixation period (Figure 5f, far left; compare black error bars during fixation and color periods). During 
the shape period however, firing rates increased significantly compared to those during the fixation 
period (Figure 5f, far left; compare black error bars during fixation and shape periods). Therefore, the 
late learning dynamics of the data are in line with what we saw for the optimized two-neuron ‍σm,λm‍ 
network (Figure 5c, pink line).

We then compared these results from our neural recordings with the results from our large 
networks trained in different noise and regularization regimes. We found that for ‍σl,λl‍ networks, over 
the course of learning, firing rates decreased slightly during the fixation and color periods but actu-
ally increased during the shape period (Figure 5f, middle left pale blue shading; compare gray and 
black lines). Additionally, after learning, firing rates increased between fixation and color periods and 
between color and shape periods (Figure 5f, middle left pale blue shading; compare black error bars). 
For ‍σh,λl‍ networks, over the course of learning, we found that firing rates did not significantly change 
during the fixation and color periods but increased significantly during the shape period (Figure 5f, 
middle right purple shading; compare gray and black lines). Furthermore, after learning, firing rates 
did not change significantly between fixation and color periods but did increase significantly between 
color and shape periods (Figure 5f, middle right purple shading; compare black error bars). Finally, for 
the ‍σm,λm‍ networks, we found a pattern of results that was most consistent with the data. Firing rates 
decreased over the course of learning in all task periods (Figure 5f, far right pink shading; compare 
gray and black lines) and the decrease in firing rates was most substantial during the fixation and color 
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periods. After learning, firing rates did not change significantly from fixation to color periods but did 
increase significantly during the shape period (Figure 5f, far right; compare black error bars).

To investigate whether these findings depended on our random network initialization prior to 
training, we also compared late learning firing rates to firing rates that resulted from randomly shuf-
fling the color, shape, and width inputs (which emulates alternative tasks where different combinations 
of color, shape, and width are relevant). For example, the relative strengths of the three inputs to the 
network prior to training on this task may affect how the firing rates change over learning. Under this 
control, we also found that ‍σm,λm‍ networks bore a close resemblance to the data (Figure 5—figure 
supplement 1d, compare black lines to blue lines).

Discussion
Comparing the neural representations of task-optimized networks with those observed in experi-
mental data has been particularly fruitful in recent years (Wang et al., 2018; Mante et al., 2013; 
Sussillo et al., 2015; Barak et al., 2013; Cueva et al., 2020; Echeveste et al., 2020; Stroud et al., 
2021; Lindsay, 2021). However, networks are typically optimized using only a very limited range of 
hyperparameter values (Wang et al., 2018; Mante et al., 2013; Sussillo et al., 2015; Barak et al., 
2013; Cueva et al., 2020; Driscoll et al., 2022; Song et al., 2016; Echeveste et al., 2020; Stroud 
et al., 2021). Instead, here we showed that different settings of key, biologically relevant hyperparam-
eters such as noise and metabolic costs, can yield a variety of qualitatively different dynamical regimes 
that bear varying degrees of similarity with experimental data. In general, we found that increasing 
levels of noise and firing rate regularization led to increasing amounts of irrelevant information being 
filtered out in the networks. Indeed, filtering out of task-irrelevant information is a well-known prop-
erty of the PFC and has been observed in a variety of tasks (Freedman et al., 2001; Duncan, 2001; 
Cueva et al., 2020; Reinert et al., 2021; Miller and Cohen, 2001; Rainer and Miller, 2002; Asaad 
et al., 2000; Everling et al., 2002). We provide a mechanistic understanding of the specific conditions 
that lead to stronger filtering of task-irrelevant information. We predict that these results should also 
generalize to richer, more complex cognitive tasks that may, for example, require context switching 
(Flesch et al., 2022; Reinert et al., 2021; Asaad et al., 2000) or invoke working memory (Freedman 
et al., 2001; Rainer et al., 1998; Asaad et al., 2000). Indeed, filtering out of task-irrelevant informa-
tion in the PFC has been observed in such tasks (Freedman et al., 2001; Rainer et al., 1998; Flesch 
et al., 2022; Reinert et al., 2021; Asaad et al., 2000; Mack et al., 2020).

Our results are also likely a more general finding of neural circuits that extend beyond the PFC. In 
line with this, it has previously been shown that strongly regularized neural network models trained to 
reproduce monkey muscle activities during reaching bore a stronger resemblance to neural record-
ings from primary motor cortex compared to unregularized models (Sussillo et al., 2015). In related 
work on motor control, recurrent networks controlled by an optimal feedback controller recapitulated 
key aspects of experimental recordings from primary motor cortex (such as orthogonality between 
preparatory and movement neural activities) when the control input was regularized (Kao et  al., 
2021). Additionally, regularization of neural firing rates, and its natural biological interpretation as 
a metabolic cost, has recently been shown to be a key ingredient for the formation of grid cell-like 
response profiles in artificial networks (Whittington et al., 2022; Cueva and Wei, 2018).

By showing that PFC representations changed in line with a minimal representational strategy, 
our results are in line with various studies showing low-dimensional representations under a variety 
of tasks in the PFC and other brain regions (Rainer et al., 1998; Flesch et al., 2022; Cueva et al., 
2020; Ganguli et al., 2008; Sohn et al., 2019). This is in contrast to several previous observations of 
high-dimensional neural activity in PFC (Rigotti et al., 2013; Bernardi et al., 2020). Both high- and 
low-dimensional regimes confer distinct yet useful benefits: high-dimensional representations allow 
many behavioral readouts to be generated, thereby enabling highly flexible behavior (Rigotti et al., 
2013; Flesch et al., 2022; Barak et al., 2013; Enel et al., 2016; Maass et al., 2002; Fusi et al., 
2016), whereas low-dimensional representations are more robust to noise and allow for generaliza-
tion across different stimuli (Flesch et al., 2022; Barak et al., 2013; Fusi et al., 2016). These two 
different representational strategies have previously been studied in models by setting the initial 
network weights to either small values (to generate low-dimensional ‘rich’ representations) or large 
values (Flesch et al., 2022) (to generate high-dimensional ‘lazy’ representations). However, in contrast 
to previous approaches, we studied the more biologically plausible effects of firing rate regularization 
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(i.e. a metabolic cost; see also the supplement of Flesch et al., 2022) on the network activities over 
the course of learning and compared them to learning-related changes in PFC neural activities. Firing 
rate regularization will cause neural activities to wax and wane as networks are exposed to new tasks 
depending upon the stimuli that are currently relevant. In line with this, it is conceivable that prolonged 
exposure to a task that has a limited number of stimulus conditions, some of which can even be gener-
alized over (as was the case for our task), encourages more low-dimensional dynamics to form (Wójcik, 
2023; Flesch et al., 2022; Dubreuil et al., 2022; Fusi et al., 2016; Musslick, 2017; Mastrogiuseppe 
and Ostojic, 2018). In contrast, tasks that use a rich variety of stimuli (that may even dynamically 
change over the task Wang et al., 2018; Jensen et al., 2023; Heald et al., 2021), and which do 
not involve generalization across stimulus conditions, may more naturally lead to high-dimensional 
representations (Rigotti et al., 2013; Barak et al., 2013; Dubreuil et al., 2022; Fusi et al., 2016; 
Mastrogiuseppe and Ostojic, 2018; Bartolo et al., 2020). It would therefore be an important future 
question to understand how our results also depend on the task being studied as some tasks may 
more naturally lead to the ‘maximal’ representational regime (Barak et al., 2013; Dubreuil et al., 
2022; Mastrogiuseppe and Ostojic, 2018; Figures 1–3 and 5, blue shading).

A previous analysis of the same dataset that we studied here focused on the late parts of the 
trial (Wójcik, 2023). In particular, they found that the final result of the computation needed for the 
task, the XOR operation between color and shape, emerges and eventually comes to dominate lPFC 
representations over the course of learning in the late shape period (Wójcik, 2023). Our analysis 
goes beyond this by studying mechanisms of suppression of both static and dynamically irrelevant 
stimuli across all task periods and how different levels of neural noise and metabolic cost can lead to 
qualitatively different representations of irrelevant stimuli in task-optimized recurrent networks. Other 
previous studies focused on characterizing the representation of several task-relevant (Rigotti et al., 
2013; Bernardi et al., 2020; Stokes et al., 2013) – and, in some cases, -irrelevant (Flesch et al., 
2022) – variables over the course of individual trials. Characterizing how key aspects of neural repre-
sentations change over the course of learning, as we did here, offers unique opportunities for studying 
the functional objectives shaping neural representations (Richards et al., 2019).

There were several aspects of the data that were not well captured by our models. For example, 
during the shape period, decodability of shape decreased while decodability of color increased 
(although not significantly) in our neural recordings (Figure  3a). These differences in changes 
in decoding may be due to fundamentally different ways that brains encode sensory information 
upstream of PFC, compared to our models. For example, shape and width are both geometric features 
of the stimulus, whose encoding is differentiated from that of color already at early stages of visual 
processing (Kandel, 2000). Such a hierarchical representation of inputs may automatically lead to the 
(un)learning about the relevance of width (which the ‍σm,λm‍ model reproduced) generalizing to shape, 
but not to color. In contrast, inputs in our model used a non-hierarchical one-hot encoding (Figure 2), 
which did not allow for such generalization. Moreover, in the data, we may expect width to be a priori 
more strongly represented than color or shape because it is a much more potent sensory feature. In 
line with this, in our neural recordings, we found that width was very strongly represented in early 
learning compared to the other stimulus features (Figure 3a, far right) and width always yielded high 
cross-generalized decoding – even after learning (Figure 3—figure supplement 1a, far right). Never-
theless, studying changes in decoding over learning, rather than absolute decoding levels, allowed 
us to focus on features of learning that do not depend on the details of upstream sensory representa-
tions of stimuli. Future studies could incorporate aspects of sensory representations that we ignored 
here by using stimulus inputs with which the model more faithfully reproduces the experimentally 
observed initial decodability of stimulus features.

In line with previous studies (Yang et al., 2019; Whittington et al., 2022; Sussillo et al., 2015; 
Orhan and Ma, 2019; Kao et al., 2021; Cueva et al., 2020; Driscoll et al., 2022; Song et al., 2016; 
Stroud et al., 2021; Masse et al., 2019; Schimel et al., 2023), we operationalized metabolic cost in 
our models through L2 firing rate regularization. This cost penalizes high overall firing rates. There are 
however alternative conceivable ways to operationalize a metabolic cost; e.g., L1 firing rate regular-
ization has been used previously when optimizing neural networks and promotes more sparse neural 
firing (Yang et al., 2019). Interestingly, although our L2 is generally conceived to be weaker than L1 
regularization, we still found that it encouraged the network to use purely sub-threshold activity in 
our task. The regularization of synaptic weights may also be biologically relevant (Yang et al., 2019) 
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because synaptic transmission uses the most energy in the brain compared to other processes (Faria-
Pereira and Morais, 2022; Harris et al., 2012). Additionally, even sub-threshold activity could be 
regularized as it also consumes energy (although orders of magnitude less than spiking Zhu et al., 
2019). Therefore, future work will be needed to examine how different metabolic costs affect the 
dynamics of task-optimized networks.

We build on several previous studies that have also analyzed learning-related changes in PFC 
activity (Wójcik, 2023; Reinert et al., 2021; Durstewitz et al., 2010; Bartolo et al., 2020) – although 
these studies typically used reversal-learning paradigms in which animals are already highly task profi-
cient and the effects of learning and task switching are inseparable. For example, in a rule-based cate-
gorization task in which the categorization rule changed after learning an initial rule, neurons in mouse 
PFC adjusted their selectivity depending on the rule such that currently irrelevant information was not 
represented (Reinert et al., 2021). Similarly, neurons in rat PFC transition rapidly from representing 
a familiar rule to representing a completely novel rule through trial-and-error learning (Durstewitz 
et al., 2010). Additionally, the dimensionality of PFC representations was found to increase as monkeys 
learned the value of novel stimuli (Bartolo et al., 2020). Importantly, however, PFC representations 
did not distinguish between novel stimuli when they were first chosen. It was only once the value of 
the stimuli were learned that their representations in PFC were distinguishable (Bartolo et al., 2020). 
These results are consistent with our results where we found poor XOR decoding during the early 
stages of learning which then increased over learning as the monkeys learned the rewarded condi-
tions (Figure 3a, far left). However, we also observed high decoding of width during early learning 
which was not predictive of reward (Figure 3a, far right). One key distinction between our study and 
that of Bartolo et al., 2020, is that our recordings commenced from the first trial the monkeys were 
exposed to the task. In contrast, in Bartolo et al., 2020, the monkeys were already highly proficient at 
the task and so the neural representation of their task was already likely strongly task specific by the 
time recordings were taken.

In line with our approach here, several recent studies have also examined the effects of different 
hyperparameter settings on the solution that optimized networks exhibit. One study found that 
decreasing regularization on network weights led to more sequential dynamics in networks optimized 
to perform working memory tasks (Orhan and Ma, 2019). Another study found that the number 
of functional clusters that a network exhibits does not depend strongly on the strength of (L1 rate 
or weight) regularization, but did depend upon whether the single neuron nonlinearity saturates at 
high firing rates (Yang et al., 2019). It has also been shown that networks optimized to perform path 
integration can exhibit a range of different properties, from grid cell-like receptive fields to distinctly 
non grid cell-like receptive fields, depending upon biologically relevant hyperparameters – including 
noise and regularization (Whittington et al., 2022; Cueva and Wei, 2018; Schaeffer et al., 2022). 
Indeed, in addition to noise and regularization, various other hyperparameters have also been shown 
to affect the representational strategy used by a circuit, such as the firing rate nonlinearity (Yang et al., 
2019; Whittington et al., 2022; Schaeffer et al., 2022) and network weight initialization (Flesch 
et al., 2022; Schaeffer et al., 2022). It is therefore becoming increasingly clear that analyzing the 
interplay between learning and biological constraints will be key for understanding the computations 
that various brain regions perform.

Methods
Experimental materials and methods
Experimental methods have been described previously (Wójcik, 2023). The experiments were 
conducted in line with the Animals (Scientific Procedures) Act 1986 of the UK and licensed by a Home 
Office Project License obtained after review by Oxford University’s Animal Care and Ethical Review 
committee. The procedures followed the standards set out in the European Community for the care 
and use of laboratory animals (EUVD, European Union directive 86/609/EEC). Briefly, two adult male 
rhesus macaques (monkey 1 and monkey 2) performed a passive object–association task (Figure 1a 
and b; see the main text ‘A task involving relevant and irrelevant stimuli’ for a description of the 
task). Neural recordings commenced from the first session the animals were exposed to the task. All 
trials with fixation errors were excluded. The dataset contained on average 237.9 (s.d. = 23.9) and 
104.8 (s.d. = 2.3) trials for each of the eight conditions for monkeys 1 and 2, respectively. Data were 
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recorded from the ventral and dorsal lPFC over a total of 27 daily sessions across both monkeys which 
yielded 146 and 230 neurons for monkey 1 and monkey 2, respectively. To compute neural firing rates, 
we convolved binary spike trains with a Gaussian kernel with a standard deviation of 50 ms. In order 
to characterize changes in neural dynamics over learning, analyses were performed separately on the 
first half of sessions (‘early learning’; 9 and 5 sessions from monkey 1 and monkey 2, respectively) and 
the second half of sessions (‘late learning’; 8 and 5 sessions from monkey 1 and monkey 2, respec-
tively; Figures 3–5 and Figure 3—figure supplement 1a). This experiment was only performed once 
in these two animals.

Neural network models
The dynamics of our simulated networks evolved according to Equations 1 and 2 and are repeated 
here:
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(ReLU) of their sub-threshold activities (Equation 6; except for the networks of Figure  5—figure 
supplement 2 in which we used a ‍tanh‍ nonlinearity to examine the generalizability of our results), τ=50 
ms is the effective time constant, ‍W‍ is the recurrent weight matrix, ‍h
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of color, shape, and width inputs, respectively.
All simulations started at ‍t0 = −0.5‍ s and lasted until ‍tmax = 1.5‍ s, and consisted of a fixation (–0.5 

to 0 s), color (0–0.5 s), shape (0.5–1 s), and reward (1–1.5 s) period (Figures 1a and 2a). The initial 
condition of neural activity was set to ‍x

(
t0
)

= 0‍. In line with the task, elements of ‍h
c (t

)
‍ were set to 

0 outside the color and shape periods, and elements of both ‍h
s (t

)
‍ and ‍h

w (
t
)
‍ were set to 0 outside 

the shape period. All networks used N=50 neurons (except for Figure 5a–d and Figure 5—figure 
supplement 1a and b which used N=2 neurons). We solved the dynamics of Equations 5–7 using a 
first-order Euler–Maruyama approximation with a discretization time step of 1 ms.

Network optimization
Choice probabilities were computed through a linear readout of network activities:
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where ‍Wout‍ are the readout weights and ‍bout‍ is a readout bias. To measure network performance, we 
used a canonical cost function (Yang et al., 2019; Orhan and Ma, 2019; Driscoll et al., 2022; Song 
et al., 2016; Stroud et al., 2021; Masse et al., 2019; Equations 3 and 4). We repeat the cost function 
from the main text here:
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where the first term is a task performance term which consists of the cross-entropy loss 
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‍ between the one-hot encoded target choice, ‍c‍ (based on the stimuli of 

the given trial, as defined by the task rules, Figure 1b), and the network’s readout probabilities, ‍z
(
t
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‍ 

(Equation 8). Note that we measure total classification performance (cross-entropy loss) during the 
reward period (integral in the first term runs from t=1.0 to t=1.5; Figure 2a, bottom; yellow shading), 
as appropriate for the task. The second term in Equation 9 is a widely used (Yang et al., 2019; Whit-
tington et al., 2022; Sussillo et al., 2015; Orhan and Ma, 2019; Kao et al., 2021; Driscoll et al., 
2022; Song et al., 2016; Stroud et al., 2021; Masse et al., 2019) L2 regularization term (with strength 
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λ) applied to the neural firing rates throughout the trial (integral in the second term runs from ‍t = −0.5‍ 
to t=1.5).

We initialized the free parameters of the network (the elements of ‍W
c
in, Ws

in, Ww
in, W, b, Wout‍, and 

‍bout‍) by sampling (independently) from a normal distribution of mean 0 and standard deviation ‍1/
√

N ‍. 
There were two exceptions to this: we also investigated the effects of initializing the elements of the 
input weights (‍W

c
in, Ws

in, Ww
in‍) to either 0 (Figure 3—figure supplement 2) or sampling their elements 

from a normal distribution of mean 0 and standard deviation ‍10/
√

N ‍ (Figure 3—figure supplement 3). 
After initialization, we optimized these parameters using gradient descent with Adam (Kingma and 
Ba, 2014), where gradients were obtained from backpropagation through time. We used a learning 
rate of 0.001 and trained networks for 1000 iterations using a batch size of 10. For each noise σ and 
regularization level λ (see Table 1), we optimized 10 networks with different random initializations of 
the network parameters.

Analysis methods
Here, we describe methods that we used to analyze neural activities. No data were excluded from our 
analyses. Whenever applicable, the same processing and analysis steps were applied to both experi-
mentally recorded and model simulated data. All neural firing rates were sub-sampled at a 10 ms reso-
lution and, unless stated otherwise, we did not trial-average firing rates before performing analyses. 
Analyses were either performed at every time point in the trial (Figures 2b and 3a, b, Figure 5a–c, 
Figure 2—figure supplement 1, Figure 3—figure supplements 1–3, and Figure 5—figure supple-
ment 1a and b), at the end of either the color (Figure 2c and d, and Figure 5—figure supplement 

Table 1. Parameters used in the simulations of our models.

Symbol

Figures 2 and 3b-d
Figure 4e-g,i, Figure 5e,f Figure 2—
figure supplement 1a-c, Figure 3—
figure supplements 2 and 3, 
Figure 3—figure supplement 1b,c, and 
Figure 5—figure supplement 1c,d

Figure 5a-d and 
Figure 5—figure 
supplement 1a,b

Figure 5—figure 
supplement 2

Figure 2—figure 
supplement 1d Units Description

N 50 2 2 50 - number of neurons

t0 –0.5 –0.5 –0.5 –0.5 s
simulation start 
time

‍tmax‍ 1.5 1.5 1.5 1.5 s simulation end time

τ 0.05 0.05 0.05 0.05 s
effective time 
constant

‍r
(
x
(
t
))

‍ ReLU ReLU ‍tanh
(
x
(
t
))

+ 1‍ ReLU Hz nonlinearity

σ variable* [0.01, 0.255] [0.01, 0.255] 0.01 -
noise standard 
deviation

λ variable† [0.0005, 0.02525] [0.0005, 0.02525] 0.5 s
regularization 
strength

‍W‍ optimized ‡ optimized ‡ optimized ‡ optimized ‡ s weight matrix

‍W
c
in‍ optimized ‡ optimized ‡ optimized ‡ optimized ‡ - color input weights

‍W
s
in‍ optimized ‡ optimized ‡ optimized ‡ optimized ‡ - shape input weights

‍W
w
in‍ optimized ‡ optimized ‡ optimized ‡ optimized ‡ - width input weights

‍b‍ optimized ‡ optimized ‡ optimized ‡ optimized ‡ - bias

‍Wout‍ optimized ‡ optimized ‡ optimized ‡ optimized ‡ s readout weights

‍bout‍ optimized ‡ optimized ‡ optimized ‡ optimized ‡ - readout bias

* The noise standard deviation σ took one of 5 evenly spaced values between 0.01 and 0.5 (see Figure 2c).
†The firing rate regularization strength λ took one of 5 evenly spaced values between 0.0005 and 0.05 (see Figure 2c).
‡ See Neural network models section for details.
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1c; ‘early color decoding’) or shape periods (Figure 2c and d, ‘width decoding’), during time periods 
of significant changes in decoding over learning in the data (Figure 3c and d), during the final 100 ms 
of the shape period (Figure 4e–i), or during the final 100 ms of the fixation, color, and shape periods 
(Figure 5f and Figure 5—figure supplement 1d).

Linear decoding
For decoding analyses (Figures  2b–d and 3, Figure  2—figure supplement 1, Figure  3—figure 
supplements 1–3, and Figure 5—figure supplement 1a–c), we fitted decoders using linear support 
vector machines to decode the main task variables: color, shape, width, and the XOR between color 
and shape. We measured decoding performance in a cross-validated way, using separate sets of trials 
to train and test the decoders, and we show results averaged over 10 random 1:1 train:test splits. 
For firing rates resulting from simulated neural networks, we used 10 trials for both the train and test 
splits. Chance level decoding was always 0.5 as all stimuli were binary.

For showing changes in decoding over learning (Figure 3c and d), we identified time periods of 
significant changes in decoding during the color and shape periods in the data (Figure 3a, horizontal 
black bars; see Statistics), and show the mean change in decoding during these time periods for both 
the data and models (Figure 3c, horizontal black lines). We used the same time periods when showing 
changes in cross-generalized decoding over learning (Figure 3d, see below).

For cross-generalized decoding (Bernardi et al., 2020; Figure 3d and Figure 3—figure supple-
ment 1), we used the same decoding approach as described above, except that cross-validation 
was performed across trials corresponding to different stimulus conditions. Specifically, following the 
approach outlined in Bernardi et al., 2020, because there were three binary stimuli in our task (color, 
shape, and width), there were eight different trial conditions (Figure 1b). Therefore, for each task 
variable (we focused on color, shape, width, and the XOR between color and shape), there were six 
different ways of choosing two of the four conditions corresponding to each of the two possible stimuli 
for that task variable (e.g. color 1 vs. color 2). For example, when training a decoder to decode color, 
there were six different ways of choosing two conditions corresponding to color 1, and six different 
ways of choosing two conditions corresponding to color 2 (the remaining four conditions were then 
used for testing the decoder). Therefore, for each task variable, there were 6×6 = 36 different ways of 
creating training and testing sets that corresponded to different stimulus conditions. We then took the 
mean decoding accuracy we obtained across all 36 different training and testing sets.

Measuring stimulus coding strength
In line with our mathematical analysis (Mathematical analysis of relevant and irrelevant stimulus coding 
in a linear network, and in particular Equation S1) and in line with previous studies (Mante et al., 
2013; Dubreuil et al., 2022), to measure the strength of stimulus coding for relevant and irrelevant 
stimuli, we fitted the following linear regression model

	﻿‍ r = Xβ + ϵ‍� (10)

where ‍r‍ is size K×N (where K is the number of trials) and corresponds to the neural firing rates, ‍X‍ is 
size ‍K × 3‍ where the first column is all 1 (thus encoding the mean firing rate of each neuron across all 
conditions) and elements of the final two columns are either –0.5 or 0.5 depending upon whether trials 
correspond to XOR 1 or XOR 2 (relevant) conditions (column 2) or whether trials correspond to width 1 
or width 2 (irrelevant) conditions (column 3). The coefficients to be fitted (‍β‍) is size ‍3 × N ‍ and has the 
following structure ‍β =

[
µ,∆rrel,∆rirrel

]⊤
‍, where µ is the mean across all conditions for each neuron, 

‍∆rrel‍ are the coefficients corresponding to relevant (XOR) conditions, and ‍∆rirrel‍ are the coefficients 
corresponding to irrelevant (width) conditions. Finally, ‍ϵ‍ is size K×N and contains the residuals. Note 
that calculating the mean difference in firing rate between the two relevant conditions and between 
the two irrelevant conditions would yield identical estimations of ‍∆rrel‍ and ‍∆rirrel‍ because our stimuli 
are binary. (We also fitted decoders to decode either relevant or irrelevant conditions and extracted 
their coefficients to instead obtain ‍∆rrel‍ and ‍∆rirrel‍ and obtained near-identical results.)

We then calculated the Euclidean norm of both ‍∆rrel‍ and ‍∆rirrel‍ normalized by the number of 
neurons (

‍
||∆rrel ||2√

N ‍
 and 

‍
||∆rirrel ||2√

N ‍
) and the absolute value of the normalized dot product (overlap) between 

them (‍
|∆r⊤rel∆rirrel |

||∆rrel ||2||∆rirrel ||2 ‍; Figure 4e–i). For our neural recordings (Figure 4h), we calculated these quantities 
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separately for 10 non-overlapping splits of the data. For our neural networks (Figure 4e–g, i), we 
calculated these quantities separately for 10 different networks.

Measuring the magnitude of neural firing rates
We first calculated the firing rate for each condition and time point and then calculated the mean 
(across conditions and time points) Euclidean norm of firing rates appropriately normalized by the 

number of neurons: 
‍
||r
(

t
)

||2√
N ‍

 (Figure 5f and Figure 5—figure supplement 1d). For our neural recordings 

(Figure 5f, far left), we calculated this separately for 10 non-overlapping splits of the data. For our 
neural networks (Figure 5f, middle left, middle right, and far right, and Figure 5—figure supplement 
1d), we calculated this separately for 10 different networks. For our optimized neural networks, to 
emulate alternative tasks where different combinations of color, shape, and width are relevant, we also 
performed the same analysis when shuffling all 6 input weights (after learning) in all 14 possible ways 
(Figure 5—figure supplement 1d, blue lines, ‘shuffle inputs’). These 14 possible shuffles excluded 
the original setup of input weights, any re-ordering of inputs within a single input channel (since any 
re-ordering within a single input channel would be identical up to a re-labeling), and any re-ordering 
between the shape and width input channels (since any re-ordering within the shape and width input 
channels would also be identical up to a re-labeling).

Statistics
For decoding analyses, we used non-parametric permutation tests to calculate statistical significance. 
We used 100 different random shuffles of condition labels across trials to generate a null distribu-
tion for decoding accuracy. We plotted chance level decoding (Figure 3a and b, Figure 2—figure 
supplement 1, Figure 3—figure supplements 1–3, and Figure 5—figure supplement 1a and b) by 
combining both early and late learning null distributions.

To calculate significant differences in decoding accuracy over learning (Figure 3a and b, Figure 2—
figure supplement 1, Figure 3—figure supplements 1–3, and Figure 5—figure supplement 1a and 
b), our test statistic was the difference in decoding accuracy between early and late learning, and our 
null distribution was the difference in decoding accuracy between early and late learning for the 100 
different shuffles of condition labels (see above). We calculated two-tailed p-values for all tests. Addi-
tionally, to control for time-related cluster-based errors, we also added a cluster-based permutation 
correction (Maris and Oostenveld, 2007).

For all other tests, we used a two-sided Mann–Whitney U test (Figures 4h, i and 5f, and Figure 5—
figure supplement 1d).

Randomization
No new experimental data was gathered for this paper. Previously collected experimental data 
contained no groups. Trial types were randomly determined by a computer program.

Blinding
As data collection had been performed well before the development of our models and our corre-
sponding analyses were performed, it was effectively blind to the purposes of our study. Data analysis 
was not performed blind to the conditions of the experiments. For previously collected experimental 
data, there was no blinding as there was no group allocation.
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Appendix 1
In this supplementary appendix, we derive the optimal linear decoder for a linear network that 
receives both relevant and irrelevant inputs (Problem definition and The optimal linear decoder). 
We derive how both the performance of the optimal decoder (The performance of the optimal 
linear decoder) and the metabolic cost of the network (Metabolic cost) depend on noise and the 
strength of relevant and irrelevant inputs. We also derive how the optimal setting of the relevant and 
irrelevant inputs, when jointly optimizing for both performance and a metabolic cost, depend on 
noise and the strength of metabolic cost (Qualitative predictions about optimal parameters). Finally, 
we also study how noise and the strength of metabolic cost affect the curvature of the loss function 
around the optimum (Curvature of the loss function around the optimum).

Mathematical analysis of relevant and irrelevant stimulus coding in a 
linear network
Even though in the main text we simulate and numerically analyze neural networks with nonlinear 
temporal dynamics that solve an XOR task, for analytical tractability, our mathematical analyses 
below are for a model in which responses to different inputs combine linearly. Our analysis is 
agnostic as to whether responses come about by simple, instantaneous feedforward or temporally 
extended recurrent interactions, and is only concerned with the phenomenological mapping 
between stimuli and the resulting response distributions. As such, we cannot distinguish between 
dynamically and statically irrelevant stimuli, and so we only include a single relevant and single 
(statically) irrelevant stimulus in our analysis. Nevertheless, as we show in the main text (Figure 4), 
some of the key insights from our analysis of such simplified systems generalize to the original 
setting.

Problem definition
We consider the responses, ‍r‍, of a neural population of ‍N ‍ neurons to a stimulus that has a ‘relevant’ 
feature, c, which we assume to be binary with values c1 and c2 (occurring with uniform frequency), 
and to a (scalar) irrelevant feature, ‍ϵ‍ that is continuous (for convenience). We further assume that 
the responses are determined by a linear interaction of the relevant and irrelevant features and also 
subject to unspecific neural noise:

	﻿‍
r = µ + δc,c1

∆rrel
2

− δc,c2
∆rrel

2
+ ϵ

∆rirrel
2

+ η
‍�

(S1)

where µ is the grand average response, averaging across both the relevant and the irrelevant 
feature, ‍∆rrel‍ is the relevant tuning of the population, ‍∆rirrel‍ is the irrelevant tuning, ‍ϵ‍ is (without loss 

of generality) zero mean and unit variance variability in the irrelevant feature, and 
‍
η ∼ N

(
0,σ2I

)
‍
 is 

other neural noise.
In this note, we study how this neural population can optimize the decodability of c while also 

balancing metabolic cost (defined below). Specifically, we will regard µ and ‍σ2‍ as givens (constraints; 
one could also consider µ as an optimizable parameter, and its optimal value would simply be 0) 
and ask how the population should ‘choose’ ‍∆rrel‍ and ‍∆rirrel‍ for this trade-off (or some summary 
statistics thereof, see below).

The optimal linear decoder
We first study in general how information can be decoded from the population. The statistically 
optimal decoder, decoding c from ‍r‍, is the maximum likelihood decoder (note that we have assumed 
c1 and c2 to occur with equal probabilities, see above). To make the derivations tractable, from here 
on we assume that ‍ϵ‍ is specifically Gaussian distributed, i.e., ‍ϵ ∼ N

(
0, 1

)
‍, unless otherwise noted. 

In this case, the distribution of responses conditioned on the relevant stimulus feature becomes 
(equivariate) Gaussian, with some effective noise covariance ‍Σ‍ (to be determined later, Equation 
S13):

	﻿‍
r|c1 ∼ N

(
µ + ∆rrel

2
,Σ

)

‍�
(S2)
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	﻿‍
r|c2 ∼ N

(
µ− ∆rrel

2
,Σ

)

‍�
(S3)

Thus, the log odds ratio is

	﻿‍
z = ln

P
(
r|c1

)

P
(
r|c2

) = ∆r⊤relΣ
−1r −∆r⊤relΣ

−1µ
‍�

(S4)

and the optimal decoder responds ‘1’ if

	﻿‍ z > 0‍� (S5)

Thus, in this case, the optimal decoder is linear in ‍r‍, or conversely, a linear decoder (with the 
correct coefficients) is optimal.

The performance of the optimal linear decoder
We now turn to the question of how the parameters of the neural population affect its decodability, 
i.e., the performance of the optimal linear decoder. (We still assume that ‍ϵ‍, and thus ‍r|c1/2‍, is Gaussian 
distributed.)

As we saw, the optimal decoder can be described by a simple thresholding of the log odds 
(Equation S5). The log odds, z, itself is also Gaussian distributed conditioned on the relevant feature, 
because ‍r‍ is Gaussian distributed (Equations S2 and S3) and z is a linear function of it (Equation S4):

	﻿‍
z|c1 ∼ N

(
µz,σ2

z

)
‍� (S6)

and, due to symmetry,

	﻿‍
z|c2 ∼ N

(
−µz,σ2

z

)
‍� (S7)

with

	﻿‍
µz = E

[
z|c1

]
= −E

[
z|c2

]
= 1

2
∆r⊤relΣ

−1∆rrel‍�
(S8)

and

	﻿‍ σ2
z = V

[
z|c1

]
= V

[
z|c2

]
= ∆r⊤relΣ

−1∆rrel = 2µz‍� (S9)

The probability of correct decoding for c1 (and by symmetry, also for c2, and thus also after 
averaging over c) is given by

	﻿‍ Π = P
(
respond 1|c1

)
= P

(
respond 2|c2

)
‍� (S10)

	﻿‍
=
ˆ ∞

0
N

(
z;µz,σ2

z

)
dz = Ψ

(
µz
σz

)
= Ψ

(√
µz
2

)

‍�
(S11)

Therefore, the performance of the optimal linear decoder scales monotonically with μz. To gain 
further insight into what this means in our particular setting, let us now express the effective noise 
covariance matrix ‍Σ‍ with the parameters of the problem definition:

	﻿‍ Σ = C
[
r|c1

]
= C

[
r|c2

]
‍� (S12)

	﻿‍
= σ2I +

∆rirrel∆r⊤irrel
4 ‍� (S13)

and its inverse (expressed using the Sherman–Morrison formula):

	﻿‍
Σ−1 = 1

σ2

[
I − ∆rirrel∆r⊤irrel

4σ2 + ∆r⊤irrel∆rirrel

]

‍� (S14)
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Substituting Equation S14 into the formula for μz (Equation S8), we obtain:

	﻿‍
µz = 1

2σ2 ∆r⊤rel∆rrel −
1

2σ2

(
∆r⊤rel∆rirrel

)(
∆r⊤irrel∆rrel

)

4σ2 + ∆r⊤irrel∆rirrel ‍�
(S15)

	﻿‍

= 1
2σ2 ∥∆rrel∥2


1 − ∥∆rirrel∥2

4σ2 + ∥∆rirrel∥2

(
∆r⊤rel∆rirrel

∥∆rrel∥ ∥∆rirrel∥

)2


‍�

(S16)

Thus, μz can be simply expressed as

	﻿‍
µz = 1

2σ2 γ
2
(

1 − α2

4σ2 + α2 β
2
)

‍�
(S17)

where

	﻿‍ γ = ∥∆rrel∥ is the magnitude of tuning to the relevant feature‍� (S18)

	﻿‍ α = ∥∆rirrel∥ is the magnitude of tuning to the irrelevant feature‍� (S19)

	﻿‍
and β =

∆r⊤rel∆rirrel
γα

is the overlap of irrelevant with relevant tuning
‍�

(S20)

which reveals that the effects of noise, relevant tuning, and irrelevant tuning factorize (corresponding 
to the first, second, and third terms, respectively), and that – intuitively – μz and thus performance 
increases with γ and decreases with α, ‍β‍, and ‍σ2‍ (where we always consider the latter a constraint 
and thus fixed, see the problem definition).

Note that in the small noise limit, ‍σ2 ≪ α2‍:

	﻿‍
µz = 1

2σ2 γ
2
(

1 − β2
)
‍�

(S21)

showing that performance in this case can only be increased by decreasing ‍β‍ (or, trivially, by 
increasing γ), but not by decreasing α. In contrast, when the small noise limit does not hold, the 
original Equation S17 applies, and so performance can be increased by decreasing either α or ‍β‍ (or, 
again, by increasing γ).

Metabolic cost
Following previous work (Wójcik, 2023; Rigotti et al., 2013; Yang et al., 2019; Wang et al., 2018; 
Silver et al., 2016; Jensen et al., 2023), we define the metabolic cost to be the average sum of 
squared neural responses (where the averaging is over realizations of the relevant and irrelevant 
features as well as neural noise):

	﻿‍
ω2 = E

[
∥r∥2

]
‍� (S22)

which, by making the averaging over relevant features explicit, can be rewritten as

	﻿‍
ω2 =

E
[
∥r∥2 |c1

]
+ E

[
∥r∥2 |c2

]

2 ‍�
(S23)

where the metabolic cost for c1 is

	﻿‍
E
[
∥r∥2 |c1

]
= E

[
r|c1

]⊤
E
[
r|c1

]
+ Tr

(
C
[
r|c1

])
‍� (S24)

	﻿‍
=
(
µ + ∆rrel

2

)⊤ (
µ + ∆rrel

2

)
+ Tr

(
Σ
)
‍� (S25)
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	﻿‍
= ∥µ∥2 + γ2

4
+ µ⊤∆rrel + α2

4
+ Nσ2

‍�
(S26)

and, again by symmetry,

	﻿‍
E
[
∥r∥2 |c2

]
= ∥µ∥2 + γ2

4
− µ⊤∆rrel + α2

4
+ Nσ2

‍�
(S27)

and so, by substituting Equations S26 and S27 into Equation S23, we get:

	﻿‍
ω2 = ∥µ∥2 + Nσ2 + γ2

4
+ α2

4 ‍�
(S28)

This result is also interesting, because it shows that the metabolic cost factorizes into four additive 
terms, each of which scales monotonically with a separate parameter: the average magnitude of 
responses, neural noise, the magnitude of relevant tuning, and the magnitude of irrelevant coding. 
It is also interesting to note what the metabolic cost does not depend on: the overlap between 
relevant and irrelevant tuning, ‍β‍.

The first two terms in Equation S28 are assumed to be fixed (see problem definition, Problem 
definition), so we will not consider them further. The last two terms in Equation S28 increase with γ 
and α, respectively. As we want the metabolic cost to be small, this prefers small γ and α.

Note that, unlike for deriving the optimal linear decoder (The optimal linear decoder) and its 
performance (The performance of the optimal linear decoder), for which we needed to assume 
that ‍ϵ‍ is normally distributed, no such assumption needed to be made for computing the metabolic 
cost (Equation S28). Thus, for the metabolic cost, the same result is obtained for example when 
the irrelevant feature is binary, such that ‍ϵ = ±1‍ with equal probability (without loss of generality; 
note that, in this case, it is still true that ‍E

[
ϵ
]

= 0‍ and ‍V
[
ϵ
]

= 1‍, which is all that we assumed in the 
derivation above (see Equation S13)), i.e., when variability in the irrelevant feature simply changes 
the responses by ‍±∆rirrel‍.

Qualitative predictions about optimal parameters
In general, the optimal setting of optimizable parameters, ‍∆rrel‍ and ‍∆rirrel‍ (Problem definition), 
depends on the overall objective function, which will usually be a sum of performance (which we want 
to be high) and (negative) metabolic cost (which we want to be low), with some suitable Lagrange 
multiplier, λ, controlling the trade-off between the two terms:

	﻿‍

L
(
γ,α,β

)
= Π����

Eqs. S11 and S17

−λ ω2
����

Eq. S28‍�
(S29)

We note that the objective function also depends on the constraint parameters, µ and σ (Problem 
definition). The effect of µ is trivial: it only affects the metabolic cost, not performance, and it does 
so as a simple additive term (Equation S28), so it does not affect the optimal values of the other 
parameters. (This remains true even if µ is optimizable, in which case it is also obvious from Equation 
S28 that its optimal value is 0.) The effect of the other constraint, σ, is more nuanced, so we will 
separately consider two different regimes for it: small noise (‍0 ≤ σ ≤ σcrit‍) and large noise (‍σcrit < σ‍) 
with the constant ‍σcrit‍ defined later.

We also note that both performance (Equation S17) and metabolic cost (Equation S28) only 
depend on the optimizable parameters, ‍∆rrel‍ and ‍∆rirrel‍, through their summary statistics, γ, α, and 
(for performance) ‍β‍ (Equations S18–S20). In general, the dependence on the latter two parameters 
is straightforward: performance decreases in both α and ‍β‍ (so that the last term in Equation S17 
achieves its maximal possible value 1 when either parameter is 0), while the metabolic cost increases 
with α. This means that their optimal values will be at 0. However, we recall that in the small noise 
limit, only decreasing ‍β‍ can improve performance (Equation S21), while otherwise, decreasing α 
can also make a contribution to it. At the same time, the metabolic cost only depends on α but not 
on ‍β‍. Thus to summarize, in the small noise limit, there is ‘pressure’ on both ‍β‍ (from performance) 
and α (from the metabolic cost) to be small. In other cases, the pressure on α comes from both 
performance and metabolic cost, while ‍β‍ only matters for performance, so we expect α to be more 
aggressively minimized by optimization, and perhaps ‍β‍ not so much (which we find to be the case 

https://doi.org/10.7554/eLife.94961
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for our optimized recurrent neural networks; Figure 4f and g; see also Curvature of the loss function 
around the optimum).

The overall effect of γ is slightly less trivial. Equation S28 shows that the metabolic cost depends 
on it quadratically, i.e., it should be small. However, as we saw earlier (Equation S17), decoding 
performance monotonically grows with it. Nevertheless, this dependence of decoding performance 
on γ is nonlinear (through the standard normal c.d.f., Equation S11), such that it is effectively linear 
in γ for small values, but saturates for large values of γ. (This is because ‍Ψ

(
x
)
‍ is linear in the x→0 limit, 

and the argument of ‍Ψ
(
·
)
‍ for computing the performance is linear in the square root of μz (Equation 

S11), which in turn is quadratic in γ (Equation S17), so the argument of ‍Ψ
(
·
)
‍ is linear in γ.) This 

means that for small values of γ the linear performance will dominate over the quadratic metabolic 
cost, but eventually, for large values, the quadratic metabolic term is guaranteed to dominate over 
the saturating performance, thus effectively limiting the magnitude of relevant tuning to some finite 
value. Note, however, that this argument does not yet reveal what happens to γ depending on the 
noise regime, and where the transition between these two regimes happens.

Fortunately, it is possible to analytically derive ‍γ∗‍, the optimal value of γ, as a function of σ. For 
this, we assume that α and ‍β‍ already take their optimal values (without loss of generality, as we are 
interested in jointly optimizing all relevant parameters), such that the last term in Equation S17 is 
simply 1 (see above). In this case, the terms in the overall objective function (Equation S29) that 
depend on the two remaining parameters of interest (γ and σ) are simply:

	﻿‍
L = Ψ

( γ

2σ

)
− λ

4
γ2 − λNσ2 + . . .

‍�
(S30)

The optimal γ can be simply defined implicitly as a function of σ as the solution to the following 
equation:

	﻿‍
0 = ∂L

∂γ

(
γ∗,σ

)
‍�

(S31)

We now substitute (the partial derivative of) Equation S30 into Equation S31 to obtain:

	﻿‍
0 = 1

2σ
N

( γ∗
2σ

)
− λ

2
γ∗‍�

(S32)

Note that this yields a solution for any ‍σ,λ > 0‍ since the line ‍
λ
2 γ∗‍ intersects the pdf of the Normal 

distribution for some ‍γ∗ ≥ 0‍. Re-arranging Equation S32 gives us:

	﻿‍
γ∗e

γ2
∗

8σ2 = 1√
2πσλ‍�

(S33)

This equation has a solution in terms of the Lambert W function (defined by its inverse as 

‍W
−1 (x

)
= xex

‍)

	﻿‍
γ∗ = 2σ

√
W

(
1

8πλ2σ4

)

‍�
(S34)

where we only take the positive solution since γ can only be positive.
We can find the maximum of this function by taking the derivative of Equation S34 and setting 

it equal to 0. This gives:

	﻿‍
W

(
1

8πλ2σ4
crit

)
= 1

‍�
(S35)

Using the fact that ‍W
(
e
)

= 1‍, we obtain:

	﻿‍
σcrit = 1(

8πλ2e
)1/4

‍� (S36)

https://doi.org/10.7554/eLife.94961
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Substituting this into Equation S34 gives:

	﻿‍ γcrit = 2σcrit‍� (S37)

These results are shown in Appendix 1—figure 1, together with a numerical confirmation (see 
also Figure 4d).
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Appendix 1—figure 1. Plot of ‍γ∗‍ as a function of σ obtained by numerically optimizing Equation S30 (black), or 
using the analytical expression in Equation S34 (red). Blue dot shows (analytically computed) critical values where 

‍γ∗‍ has a maximum (Equations S36 and S37). We used λ=1 for these results.

The qualitative dependence of ‍γ∗‍ on σ is straightforward to interpret and intuitive. In the small 
noise regime, ‍0 ≤ σ ≤ σcrit‍, γ needs to grow with σ so that the separation of the response distributions 
conditioned on c1 and c2 remains large enough to guarantee high performance. This growth starts at 
zero because for zero noise any infinitesimal separation between the mean responses for c = c1 and 
c2 makes for perfect performance. Thus, γ remains small, and so – as we saw above – the performance 
term in the objective function dominates over the metabolic cost term. This means that the value 
of γ that optimizes the full objective function can be understood from just this performance-based 
perspective. However, in the large noise regime, ‍σcrit < σ‍, γ would need to be so large to guarantee 
high performance that it would reach a regime in which – as we saw above – the metabolic cost 
dominates. Thus the optimal γ is increasingly influenced by the metabolic cost, and thus decreases 
with σ.

Finally, we derive classification performance with optimized parameters as a function of σ by 
substituting Equation S34 into Equations S11 and S17 and obtain:

	﻿‍
Π = Ψ

(√
W

(
1

8πλ2σ4

))

‍�
(S38)

which shows the intuitive result that performance monotonically decreases with σ and drops to chance 
level for ‍σ → ∞‍ (Appendix 1—figure 2, red). This is because the argument of W monotonically 
decreases with σ from infinity to zero, while both ‍W

(
x
)
‍ and ‍

√
x‍ monotonically increase (without 

bounds) with x from zero at x=0, and finally ‍Ψ
(
x
)
‍ also monotonically increases with x but from ‍

1
2‍ at 

x=0 and to an asymptotic bound of 1.

https://doi.org/10.7554/eLife.94961
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Appendix 1—figure 2. Plot of ‍P
(
correct

)
‍ as a function of σ when using ‍γ = γ∗‍ that is optimized as in 

Appendix 1—figure 1 (Equation S38). We used λ=1 for these results. All other parameters were optimized in all 
cases.

Curvature of the loss function around the optimum
The curvature of the loss landscape around the optimum is important for determining how tightly 
constrained the parameters will be in the presence of noisy gradient updates due to the finite 
batch sizes used for stochastic gradient descent. Before we proceed, we first repeat here the main 
equations regarding the loss ‍L‍:

	﻿‍ L = Π− λω2‍� (S39)

	﻿‍
Π = Ψ

(√
µz
2

)

‍�
(S40)

	﻿‍
µz = 1

2σ2 γ
2
(

1 − α2

4σ2 + α2 β
2
)

‍�
(S41)

	﻿‍
ω2 = ∥µ∥2 + Nσ2 + γ2

4
+ α2

4 ‍�
(S42)

Curvature of the loss function with respect to α
In this section, we are interested in the first non-zero term of the Taylor expansion of the loss function 
‍L‍ with respect to α – the magnitude of the irrelevant input – around the optimum at ‍α = β = 0‍. It 
turns out that the first non-zero term results from the second derivative of the metabolic cost term in 
the loss function since the other terms always contain at least an α or ‍β‍ (which are 0 at the optimum). 
We therefore find that:

	﻿‍
∂2L
∂α2 |α=0,β=0 = ∂2Π

∂α2 |α=0,β=0 − λ
∂2ω2

∂α2 |α=0,β=0‍�
(S43)

	﻿‍
= 0 − λ

∂2

∂α2

[
∥µ∥2 + Nσ2 + γ2

4
+ α2

4

]

‍�
(S44)

	﻿‍
= −1

2
λ.

‍�
(S45)

From this result, we see that the magnitude of the curvature of the loss decreases as a function 
of λ. In other words, the loss landscape as a function of the irrelevant input α becomes steeper with 
increasing regularization. This is why we observed larger values of ‍α = ∥∆rirrel∥‍ (Equation S18) in 
Figure 4f with decreasing λ.

https://doi.org/10.7554/eLife.94961
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Curvature of the loss function with respect to β
We now turn our attention to the first non-zero term of the Taylor expansion of the loss function ‍L‍ 
with respect to ‍β‍ – the overlap of irrelevant with relevant tuning – around the optimum at ‍α = β = 0‍. 
It turns out that the first non-zero term results from a fourth derivative of the performance term Π 
with respect to both α and ‍β‍:

	﻿‍

∂4L
∂α2β2 |α=0,β=0 = ∂4Π

∂α2β2 |α=0,β=0 − λ
∂4ω2

∂α2β2 |α=0,β=0
‍�

(S46)

	﻿‍
= ∂4Π

∂α2β2 |α=0,β=0 − λ
∂4

∂α2β2

[
∥µ∥2 + Nσ2 + γ2

4
+ α2

4

]
|α=0,β=0

‍�
(S47)

	﻿‍
= ∂4Π

∂α2β2 |α=0,β=0 − 0.
‍�

(S48)

	﻿‍
= ∂4Π

∂α2β2 |α=0,β=0
‍�

(S49)

To evaluate this term we note that:

	﻿‍

∂2Π

∂β2 = ∂2Π

∂µ2z

∂µz
∂β

+ ∂Π

∂µz

∂2µz
∂β2 ‍�

(S50)

	﻿‍
= ∂2Π

∂µ2z

(
− γ2

2σ2
2α2β

4σ2 + α2

)
+ ∂Π

∂µz

(
− γ2

2σ2
2α2

4σ2 + α2

)

‍�
(S51)

Therefore,

	﻿‍

∂4Π

∂α2β2 |α=0,β=0 = γ2

2σ2
∂2

∂α2

(
∂2Π

∂µ2z

(
− 2α2β

4σ2 + α2

)
+ ∂Π

∂µz

(
− 2α2

4σ2 + α2

))
|α=0,β=0

‍�
(S52)

	﻿‍
= βγ2

2σ2
∂2

∂α2

(
∂2Π

∂µ2z

(
− 2α2

4σ2 + α2

))
+ γ2

2σ2
∂2

∂α2

(
∂Π

∂µz

(
− 2α2

4σ2 + α2

))
|α=0,β=0

‍�
(S53)

	﻿‍
= γ2

2σ2
∂2

∂α2

(
∂Π

∂µz

(
− 2α2

4σ2 + α2

))
|α=0,β=0

‍�
(S54)

Now, noting that ‍
∂
∂α = ∂

∂µz

∂µz
∂α ‍, we obtain:

	﻿‍

∂2

∂α2

(
∂Π

∂µz

(
− 2α2

4σ2 + α2

))
|α=0,β=0 = − 2α2

4σ2 + α2


∂2Π

∂µ2z

∂2µz
∂α2 + ∂3Π

∂µ3
z

(
∂2µz
∂α

)2



+ ∂Π

∂µz

∂2

∂α2

(
− 2α2

4σ2 + α2

)
|α=0,β=0

‍�

(S55)

	﻿‍
= ∂Π

∂µz

∂2

∂α2

(
− 2α2

4σ2 + α2

)
|α=0,β=0

‍� (S56)

	﻿‍
= ∂Π

∂µz

∂

∂α

(
− 4α

4σ2 + α2 + 4α3
(
4σ2 + α2

)2

)
|α=0,β=0

‍� (S57)
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	﻿‍
= ∂Π

∂µz

(
− 4

4σ2 + α2 + 8α(
4σ2 + α2

)2 + 12α2
(
4σ2 + α2

)2 − 16α4
(
4σ2 + α2

)3

)
|α=0,β=0

‍�
(S58)

	﻿‍
= − 4

4σ2
∂Π

∂µz
|α=0,β=0

‍�
(S59)

	﻿‍
= − 4

4σ2
1
4

√
2
µz

N
(√

µz
2

)
|α=0,β=0

‍�
(S60)

	﻿‍
= − 1

4σ2
2σ
γ
N

( γ

2σ

)
‍�

(S61)

	﻿‍
= − 1

2σγ
N

( γ

2σ

)
‍�

(S62)

Therefore, from Equation S54 we obtain:

	﻿‍

∂4L
∂α2β2 |α=0,β=0 = − γ

4σ3 N
( γ

2σ

)
‍�

(S63)

We therefore find that the magnitude of this term becomes smaller with increasing noise. This 

is why we observed larger values of ‍β = ∆r⊤rel∆rirrel
||∆rrel ||||∆rirrel ||‍ (Equation S20) in Figure 4g with increasing σ.

https://doi.org/10.7554/eLife.94961
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