
Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 1 of 44

The NeuroML ecosystem for standardized
multi-scale modeling in neuroscience
Ankur Sinha1†, Padraig Gleeson1*†, Bóris Marin2, Salvador Dura-Bernal3,4,
Sotirios Panagiotou5, Sharon Crook6, Matteo Cantarelli7, Robert C Cannon8,
Andrew P Davison9, Harsha Gurnani10, Robin Angus Silver1*

1Department of Neuroscience, Physiology and Pharmacology, University College
London, London, United Kingdom; 2Universidade Federal do ABC, São Bernardo
do Campo, Brazil; 3SUNY Downstate Medical Center, Brooklyn, United States; 4,
Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for
Psychiatric Research, Orangeburg, United States; 5Erasmus University Rotterdam,
Rotterdam, Netherlands; 6Arizona State University, Tempe, United States;
7MetaCell Ltd, Cambridge, United States; 8Opus2 International Ltd, London,
United Kingdom; 9CNRS, Gif-Sur-Yvette, France; 10University of Washington,
Seattle, United States

eLife Assessment
This important work presents a consolidated overview of the NeuroML2 open community standard
and provides convincing evidence for its central role within a broader software ecosystem for the
development of neuronal models that are open, shareable, reproducible, and interoperable. A major
strength of the work is the continued development over more than two decades to establish, main-
tain, and adapt this standard to meet the evolving needs of the field. This work is of broad interest
to the sub-cellular, cellular, computational, and systems neuroscience communities undertaking
studies involving theory, modeling, and simulation.

Abstract Data-driven models of neurons and circuits are important for understanding how
the properties of membrane conductances, synapses, dendrites, and the anatomical connectivity
between neurons generate the complex dynamical behaviors of brain circuits in health and disease.
However, the inherent complexity of these biological processes makes the construction and reuse
of biologically detailed models challenging. A wide range of tools have been developed to aid their
construction and simulation, but differences in design and internal representation act as technical
barriers to those who wish to use data-driven models in their research workflows. NeuroML, a model
description language for computational neuroscience, was developed to address this fragmentation
in modeling tools. Since its inception, NeuroML has evolved into a mature community standard
that encompasses a wide range of model types and approaches in computational neuroscience. It
has enabled the development of a large ecosystem of interoperable open-source software tools for
the creation, visualization, validation, and simulation of data-driven models. Here, we describe how
the NeuroML ecosystem can be incorporated into research workflows to simplify the construction,
testing, and analysis of standardized models of neural systems, and supports the FAIR (Findability,
Accessibility, Interoperability, and Reusability) principles, thus promoting open, transparent and
reproducible science.

TOOLS AND RESOURCES

*For correspondence:
p.gleeson@ucl.ac.uk (PG);
a.silver@ucl.ac.uk (RAS)
†These authors contributed
equally to this work

Competing interest: See page
38

Funding: See page 38

Preprint posted
11 December 2023
Sent for Review
31 January 2024
Reviewed preprint posted
03 May 2024
Reviewed preprint revised
30 October 2024
Version of Record published
10 January 2025

Reviewing Editor: Eilif B Muller,
University of Montreal, Canada

‍ ‍ Copyright Sinha, Gleeson
et al. This article is distributed
under the terms of the Creative
Commons Attribution License,
which permits unrestricted use
and redistribution provided that
the original author and source
are credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.95135
mailto:p.gleeson@ucl.ac.uk
mailto:a.silver@ucl.ac.uk
https://doi.org/10.1101/2023.12.07.570537
https://doi.org/10.7554/eLife.95135.1
https://doi.org/10.7554/eLife.95135.2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 2 of 44

Introduction
Development of an in-depth, mechanistic understanding of brain function in health and disease
requires different scientific approaches spanning multiple scales, from gene expression to behavior.
Although ‘wet’ experimental approaches are essential for characterizing the properties of neural
systems and testing hypotheses, theory and modeling are critical for exploring how these complex
systems behave across a wider range of conditions, and for generating new experimentally testable,
physically plausible hypotheses. Theory and modeling also provide a way to integrate a panoply of
experimentally measured parameters, functional properties, and responses to perturbations into a
physio-chemically coherent framework that reproduces the properties of the neural system of interest
(Einevoll et al., 2019; Yao et al., 2022; Poirazi and Papoutsi, 2020; Gurnani and Silver, 2021;
Gleeson et al., 2018; Cayco-Gajic et al., 2017; Billings et al., 2014; Vervaeke et al., 2010; Kriener
et al., 2022; Billeh et al., 2020; Markram et al., 2015).

Computational models in neuroscience often focus on different levels of description. For example,
a cellular physiologist may construct a complex multi-compartmental model to explain the dynam-
ical behavior of an individual neuron in terms of its morphology, biophysical properties, and ionic
conductances (Hay et al., 2011; De Schutter and Bower, 1994; Migliore et al., 2005). In contrast,
to relate neural population activity to sensory processing and behavior, a systems neurophysiologist
may build a circuit-level model consisting of thousands of much simpler integrate-and-fire neurons
(Lapicque, 1907; Potjans and Diesmann, 2014; Brunel, 2000). Domain specific tools have been
developed to aid the construction and simulation of models at varying levels of biological detail
and scales. An ecosystem of diverse tools is powerful and flexible, but it also creates serious chal-
lenges for the research community (Cannon et al., 2007). Each tool typically has its own design,
features, Application Programming Interface (API) and syntax, a custom set of utility libraries, and
finally, a distinct machine-readable representation of the model’s physiological components. This
represents a complex landscape for users to navigate. Additionally, models developed in different
simulators cannot be mixed and matched or easily compared, and the translation of a model from
one tool-specific implementation to another can be non-trivial and error-prone. This fragmentation in
modeling tools and approaches can act as a barrier to neuroscientists who wish to use models in their
research, as well as impede how Findable, Accessible, Interoperable, and Reusable (FAIR) models are
(Wilkinson et al., 2016).

To counter fragmentation and promote cooperation and interoperability within and across fields,
standardization is required. The International Neuroinformatics Co-ordinating Facility (INCF) (Abrams
et al., 2022) has highlighted the need for standards to ‘make research outputs machine-readable and
computable and are necessary for making research FAIR’ (INCF, 2023). In biology, several community
standards have been developed to describe experimental data (e.g. Brain Imaging Data Structure
[BIDS; Gorgolewski et al., 2016], Neurodata Without Borders [NWB; Teeters et al., 2015]) and
computational models (e.g. Systems Biology Markup Language [SBML; Hucka et al., 2003], CellML
[Lloyd et al., 2004], Scalable Open Network Architecture TemplAte [SONATA; Dai et al., 2020],
PyNN [Davison et al., 2008] and Neural Open Markup Language [NeuroML; Gleeson et al., 2010]).
These standards have enabled open and interoperable ecosystems of software applications, libraries,
and databases to emerge, facilitating the sharing of research outputs, an endeavor encouraged by a
growing number of funding agencies and scientific journals.

The initial version of the NeuroML standard, version 1 (NeuroMLv1), was originally conceived as a
model description format (Goddard et al., 2001) and implemented as a three-layered, declarative,
modular, simulator-independent language (Gleeson et al., 2010). NeuroMLv1 could describe detailed
neuronal morphologies and their biophysical properties as well as specific instantiations of networks.
It enabled the archiving of models in a standardized format and addressed the issue of simulator frag-
mentation by acting as the common language for model exchange between established simulation
environments—NEURON (Hines and Carnevale, 1997; Awile et al., 2022), GENESIS (Bower and
Beeman, 1998), and MOOSE (Ray and Bhalla, 2008). While solving a number of long-standing prob-
lems in computational neuroscience, NeuroMLv1 had several key limitations. The most restrictive of
these was that the dynamical behavior of model elements was not formally described in the standard
itself, making it only partially machine readable. Information on the dynamics of elements (i.e. how the
state variables should evolve in time) was only provided in the form of human-readable documenta-
tion, requiring the developers of each new simulator to re-implement the behavior of these elements

https://doi.org/10.7554/eLife.95135

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 3 of 44

in their native format. Additionally, the introduction of new model components required updates to
the standard and all supporting simulators, making extension of the language difficult. Finally, the use
of Extensible Markup Language (XML) as the primary interface language limited usability—applica-
tions would generally have to add their own code to read/write XML files.

To address these limitations, NeuroML was redesigned from the ground up in version 2 (NeuroMLv2)
using the Low Entropy Modeling Specification (LEMS) language (Cannon et al., 2014). LEMS was
designed to define a wide range of physio-chemical systems, enabling the creation of fully machine-
readable, formal definitions of the structure and dynamics of any model components. Modeling
elements in NeuroMLv2 (cells, ion channels, synapses) have their mathematical and structural defi-
nitions described in LEMS (e.g. the parameters required and how the state variables change with
time). Thus, NeuroMLv2 retains all the features of NeuroMLv1—it remains modular, declarative, and
continues to support multiple simulation engines—but unlike version 1, it is extensible, and all speci-
fications are fully machine-readable. NeuroMLv2 also moved to Python as its main interface language
and provides a comprehensive set of Python libraries to improve usability (Vella et al., 2014), with
XML retained as a machine-readable serialization format (i.e. the form in which the model files are
saved/shared).

Since its release in 2014, the NeuroMLv2 standard, the software ecosystem, and the commu-
nity have all steadily grown. An open, community-based governance structure was put in place—an
elected Editorial Board, overseen by an independent Scientific Committee, maintains the standard
and core software tools—APIs, reference simulators, and utilities. Although these tools were initially
focused on enabling the simulation of models on multiple platforms, they have been expanded to
support all stages of the model life cycle (Figure 1). Modelers can use these tools to easily create,
inspect and visualize, validate, simulate, fit and optimize, share and disseminate NeuroMLv2 models
and outputs (Billings et al., 2014; Cayco-Gajic et al., 2017; Gurnani and Silver, 2021; Kriener et al.,
2022; Gleeson et al., 2019b). To provide clear, concise, searchable information for both users and
developers, the NeuroML documentation has been significantly expanded and re-deployed using
the latest modern web technologies (https://docs.neuroml.org). Increased community-wide collabora-
tions have also extended the software ecosystem well beyond the NeuroMLv2 tools developed by the
NeuroML team: additional simulators such as Brian (Stimberg et al., 2019), NetPyNE (Dura-Bernal
et al., 2019), Arbor (Akar et al., 2019) and EDEN (Panagiotou et al., 2022) all support NeuroMLv2.
We have worked to ensure interoperability with other structured formats for model development
in neuroscience such as PyNN (Davison et al., 2008) and SONATA (Dai et al., 2020). Platforms
for collaboratively developing, visualizing, and sharing NeuroML models (Open Source Brain (OSB)
Gleeson et al., 2019b) as well as a searchable database of NeuroML model components NeuroML

Fit

Create

Visualize

Simulate

Share

Reuse

Validate

Figure 1. The NeuroML software ecosystem supports all stages of the model development life cycle.

https://doi.org/10.7554/eLife.95135
https://docs.neuroml.org

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 4 of 44

Database (NeuroML-DB) (Birgiolas et al., 2023) have been developed. These enhancements, driven
by an ever-expanding community, have helped NeuroMLv2 grow into a standard that has been offi-
cially endorsed by international organizations such as the INCF and COmputational Modeling in
Biology NEtwork (COMBINE) (Hucka et al., 2015), and that is now sufficiently mature to be incorpo-
rated into a wide range of research workflows.

In this paper, we provide an overview of the current scope of version 2 of the NeuroML standard,
describe the current software ecosystem and community, and outline the extensive resources to assist
researchers in incorporate NeuroML into their modeling work. We demonstrate, with examples, that
NeuroML supports users at all stages of the model development life cycle (Figure 1) and promotes
FAIR principles in computational neuroscience. We highlight the various NeuroML tools and libraries,
additional utilities, supported simulation engines, and the related projects that build upon NeuroML
for automated model validation, advanced analysis, visualization, and sharing/re-use of models. Finally,
we summarize the organizational aspects of NeuroML, its governance structure and its community.

Results
NeuroML provides a ready-to-use set of curated model elements
A central aim of the NeuroML initiative is to enable and encourage the use of multi-scale biophysically
detailed models of neurons and neuronal circuits in neuroscience research. The initiative takes a range
of steps to achieve this aim.

NeuroML provides users with a curated library of model elements that form the NeuroML standard
(An index of all the model elements included in version 2.3 of NeuroML, with links to further online
documentation, is provided in Tables 1 and 2; Figure 2). The standard is maintained by the NeuroML
Editorial Board that has identified a fundamental set of model types to support, to ensure that a
significant proportion of commonly used neurobiological modeling entities can be described with the
language. This includes (but is not limited to): active membrane conductances (using Hodgkin-Huxley
style [Hodgkin and Huxley, 1952] or kinetic scheme-based ionic conductances), multiple synapse and
plasticity mechanisms, detailed multi-compartmental neuron models with morphologies and biophys-
ical properties, abstract point neuron models, and networks of such cells spatially arranged in popula-
tions, connected by targeted projections, receiving spiking and currently based inputs.

The NeuroMLv2 standard consists of two levels that are designed to enable users to easily create
their models without worrying about simulator-specific details. The first level defines a formal ‘schema’
for the standard model elements, their attributes/parameters (e.g. an integrate and fire cell model
and its necessary attributes: a threshold parameter, a reset parameter, etc.), and the relationships
between them (e.g. a network contains populations; a multi-compartmental cell morphology contains
segments). This allows the validation of the completeness of the description of individual NeuroML
model elements and models, prior to simulation. The second level defines the underlying dynamical
behavior of the model elements (e.g. how the time-varying membrane potential of a cell model is to
be calculated). Most users do not need to interact with this level (which is enabled by LEMS), which,
among other features, enables the automated translation of simulator-independent NeuroML models
into simulator-specific code.

Thus, modelers can use the standard NeuroML elements to conveniently build simulator-
independent models, while also being able to examine and extend the underlying implementations
of models. As a simulator-independent language, NeuroML also promotes interoperability between
different computational modeling tools, and as a result, the standard library is complemented by a
large, well-maintained ecosystem of software tools that support all stages of the model life cycle—
from creation, analysis, simulation, and fitting, to sharing and reuse. Finally, as discussed in later
sections, for advanced use cases where the existing NeuroML model building blocks are insufficient,
NeuroML also includes a framework for creating and including new model elements.

NeuroML is a modular, structured language for defining FAIR models
NeuroMLv2 is a modular, structured, hierarchical, simulator-independent format. All NeuroML elements
are formally defined, independent, and self-contained with hierarchical relationships between them.
An ‘ionic conductance’ model element in NeuroML, for example, can contain zero, one, or more
‘gates’ and be added into a ‘cell’ model element along with a ‘morphology’ element, which can then

https://doi.org/10.7554/eLife.95135

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 5 of 44

Table 1. Index of standard NeuroMLv2 ComponentTypes.
Core components

annotation bqbiol_encodes bqbiol_hasPart

bqbiol_hasProperty bqbiol_hasTaxon bqbiol_hasVersion

bqbiol_is bqbiol_isDescribedBy bqbiol_isEncodedBy

bqbiol_isHomologTo bqbiol_isPartOf bqbiol_isPropertyOf

bqbiol_isVersionOf bqbiol_occursIn bqmodel_is

bqmodel_isDerivedFrom bqmodel_isDescribedBy rdf_Bag

rdf_Description rdf_li rdf_RDF

property point3DWithDiam notes

Core dimensions

area capacitance charge

charge_per_mole concentration conductance

conductance_per_voltage conductanceDensity current

currentDensity idealGasConstantDims length

per_time per_voltage permeability

resistance resistivity rho_factor

specificCapacitance substance temperature

time voltage volume

Abstract cell models

adExIaFCell fitzHughNagumoCell hindmarshRose1984Cell

iafCell iafRefCell iafTauCell

iafTauRefCell izhikevich2007Cell izhikevichCell

pinskyRinzelCA3Cell

ComponentTypes related to biophysically detailed cells

biophysical Properties biophysicalProperties2CaPools cell

cell2CaPools concentration Model decayingPoolConcentrationModel

distal distalProperties fixedFactorConcentrationModel

fixedFactorConcentrationModelTraub from include

inhomogeneousParameter inhomogeneousValue initMembPotential

intracellular Properties intracellularProperties2CaPools member

membraneProperties membraneProperties2CaPools morphology

parent path pointCellCondBased

pointCellCondBasedCa proximal proximalProperties

segment segment Group species

spikeThresh subTree to

variable Parameter channel Density channelDensityGHK

channelDensityGHK2 channelDensityNernst channelDensityNernstCa2

channelDensityNonUniform channelDensityNonUniformGHK channelDensityNonUniformNernst

channelDensityVShift channelPopulation channelPopulationNernst

ComponentTypes related to ion channels

fixedTimeCourse forward Transition gate

gateFractional gateHHInstantaneous gateHHrates

gateHHratesInf gateHHratesTau gateHHratesTauInf

Table 1 continued on next page

https://doi.org/10.7554/eLife.95135
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreCompTypes.html#schema-annotation
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreCompTypes.html#schema-bqbiol-encodes
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreCompTypes.html#schema-bqbiol-haspart
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreCompTypes.html#schema-bqbiol-hasproperty
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreCompTypes.html#schema-bqbiol-hastaxon
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreCompTypes.html#schema-bqbiol-hasversion
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreCompTypes.html#schema-bqbiol-is
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreCompTypes.html#schema-bqbiol-isdescribedby
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreCompTypes.html#schema-bqbiol-isencodedby
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreCompTypes.html#schema-bqbiol-ishomologto
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreCompTypes.html#schema-bqbiol-ispartof
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreCompTypes.html#schema-bqbiol-ispropertyof
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreCompTypes.html#schema-bqbiol-isversionof
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreCompTypes.html#schema-bqbiol-occursin
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreCompTypes.html#schema-bqmodel-is
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreCompTypes.html#schema-bqmodel-isderivedfrom
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreCompTypes.html#schema-bqmodel-isdescribedby
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreCompTypes.html#schema-rdf-bag
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreCompTypes.html#schema-rdf-description
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreCompTypes.html#schema-rdf-li
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreCompTypes.html#schema-rdf-rdf
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreCompTypes.html#schema-property
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreCompTypes.html#schema-point3dwithdiam
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreCompTypes.html#schema-notes
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreDimensions.html#schema-dimensions-area
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreDimensions.html#schema-dimensions-capacitance
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreDimensions.html#schema-dimensions-charge
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreDimensions.html#schema-dimensions-charge-per-mole
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreDimensions.html#schema-dimensions-concentration
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreDimensions.html#schema-dimensions-conductance
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreDimensions.html#schema-dimensions-conductance-per-voltage
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreDimensions.html#schema-dimensions-conductancedensity
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreDimensions.html#schema-dimensions-current
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreDimensions.html#schema-dimensions-currentdensity
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreDimensions.html#schema-dimensions-idealgasconstantdims
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreDimensions.html#schema-dimensions-length
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreDimensions.html#schema-dimensions-per-time
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreDimensions.html#schema-dimensions-per-voltage
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreDimensions.html#schema-dimensions-permeability
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreDimensions.html#schema-dimensions-resistance
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreDimensions.html#schema-dimensions-resistivity
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreDimensions.html#schema-dimensions-rho-factor
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreDimensions.html#schema-dimensions-specificcapacitance
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreDimensions.html#schema-dimensions-substance
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreDimensions.html#schema-dimensions-temperature
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreDimensions.html#schema-dimensions-time
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreDimensions.html#schema-dimensions-voltage
https://docs.neuroml.org/Userdocs/Schemas/NeuroMLCoreDimensions.html#schema-dimensions-volume
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-adexiafcell
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-fitzhughnagumocell
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-hindmarshrose1984cell
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-iafcell
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-iafrefcell
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-iaftaucell
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-iaftaurefcell
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-izhikevich2007cell
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-izhikevichcell
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-pinskyrinzelca3cell
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-biophysicalproperties
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-biophysicalproperties2capools
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-cell
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-cell2capools
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-concentrationmodel
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-decayingpoolconcentrationmodel
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-distal
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-distalproperties
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-fixedfactorconcentrationmodel
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-fixedfactorconcentrationmodeltraub
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-from
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-include
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-inhomogeneousparameter
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-inhomogeneousvalue
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-initmembpotential
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-intracellularproperties
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-intracellularproperties2capools
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-member
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-membraneproperties
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-membraneproperties2capools
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-morphology
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-parent
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-path
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-pointcellcondbased
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-pointcellcondbasedca
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-proximal
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-proximalproperties
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-segment
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-segmentgroup
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-species
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-spikethresh
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-subtree
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-to
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-variableparameter
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-channeldensity
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-channeldensityghk
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-channeldensityghk2
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-channeldensitynernst
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-channeldensitynernstca2
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-channeldensitynonuniform
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-channeldensitynonuniformghk
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-channeldensitynonuniformnernst
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-channeldensityvshift
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-channelpopulation
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#schema-channelpopulationnernst
https://docs.neuroml.org/Userdocs/Schemas/Channels.html#schema-fixedtimecourse
https://docs.neuroml.org/Userdocs/Schemas/Channels.html#schema-forwardtransition
https://docs.neuroml.org/Userdocs/Schemas/Channels.html#schema-gate
https://docs.neuroml.org/Userdocs/Schemas/Channels.html#schema-gatefractional
https://docs.neuroml.org/Userdocs/Schemas/Channels.html#schema-gatehhinstantaneous
https://docs.neuroml.org/Userdocs/Schemas/Channels.html#schema-gatehhrates
https://docs.neuroml.org/Userdocs/Schemas/Channels.html#schema-gatehhratesinf
https://docs.neuroml.org/Userdocs/Schemas/Channels.html#schema-gatehhratestau
https://docs.neuroml.org/Userdocs/Schemas/Channels.html#schema-gatehhratestauinf

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 6 of 44

fit into a ‘population’ of a ‘network’ (Figure 2). To support the range of electrical properties found in
biological neurons, ionic conductances with distinct ionic selectivities and dynamics can be generated
in NeuroML through the inclusion of different types of gates (e.g. activation, inactivation), their depen-
dence on variables such as voltage and [Ca2+] and their reversal potential. Cell types with different
functional and biophysical properties can then be generated by conferring combinations of ionic
conductances on their membranes. The conductance density can be adjusted to generate the elec-
trophysiological properties found in real neurons. In practice, many examples of ionic conductances
that underlie the electrical behavior of neurons are already available in NeuroMLv2 and can simply be
inserted into a cell membrane (Figure 2). Indeed, a model element, once defined in NeuroML, acts as
a building block that may be reused any number of times within or across models. Elements such as
ionic conductances, cell biophysics, cell morphologies, and cell definitions that incorporate them can
be serialized in separate files and ‘included’ in other models (e.g. morphologies https://docs.neuroml.​
org/Userdocs/ImportingMorphologyFiles.html#neuroml2). Such reuse of model components speeds
model construction and prototyping irrespective of the simulation engine used.

The defined structure of each model element and the relationships between them inform users of
exactly how model elements are to be created and combined. This encourages the construction of
well-structured models, reduces errors and redundancy, and ensures that FAIR principles are firmly
embedded in NeuroML models and the ecosystem of tools. As we will see in the following sections,
NeuroML’s formal structure also enables features such as model validation prior to simulation, trans-
lation into simulation specific formats, and the use of NeuroML as a common language of exchange
between different tools.

NeuroML supports a large ecosystem of software tools that cover all
stages of the model life cycle
Model building and the generation of scientific knowledge from simulation and analysis of models is
a multi-step, iterative process requiring an array of software tools. NeuroML supports all stages of the
model development life cycle (Figure 1), by providing a single model description format that interacts
with a myriad of tools throughout the process. Researchers typically assemble ad-hoc sets of scripts,
applications, and processes to help them in their investigations. In the absence of standardization, they
must work with the specific model formats and APIs that each tool they use requires, and somehow
convert model descriptions when using multiple applications in a toolchain. NeuroML addresses this
issue by providing a common language for the use and exchange of models and their components
between different simulation engines and modeling tools. The NeuroML ecosystem includes a large
collection of software tools, both developed and maintained by the main NeuroML contributors (the
‘core NeuroML tools and libraries:’ jNeuroML, pyNeuroML, APIs) and those external applications that
have added NeuroML support (Figures 3 and 4a, Tables 3 and 4).

The core NeuroML tools and libraries include APIs in several programming languages—Python,
Java, C++, and MATLAB. These tools provide critical functionality to allow users to interact with
NeuroML components and build models. Using these, researchers can build models from scratch,
or read, modify, analyze, visualize, and simulate existing NeuroML models on supported simulation

Core components

gateHHtauInf gateKS HHExpLinearRate

HHExpLinearVariable HHExpRate HHExpVariable

HHSigmoidRate HHSigmoidVariable ionChannel

ionChannelHH ionChannelKS ionChannelPassive

ionChannelVShift KSState KSTransition

open State q10ConductanceScaling q10ExpTemp

q10Fixed reverse Transition sub Gate

tauInfTransition vHalfTransition closedState

Table 1 continued

https://doi.org/10.7554/eLife.95135
https://docs.neuroml.org/Userdocs/ImportingMorphologyFiles.html#neuroml2
https://docs.neuroml.org/Userdocs/ImportingMorphologyFiles.html#neuroml2
https://docs.neuroml.org/Userdocs/Schemas/Channels.html#schema-gatehhtauinf
https://docs.neuroml.org/Userdocs/Schemas/Channels.html#schema-gateks
https://docs.neuroml.org/Userdocs/Schemas/Channels.html#schema-hhexplinearrate
https://docs.neuroml.org/Userdocs/Schemas/Channels.html#schema-hhexplinearvariable
https://docs.neuroml.org/Userdocs/Schemas/Channels.html#schema-hhexprate
https://docs.neuroml.org/Userdocs/Schemas/Channels.html#schema-hhexpvariable
https://docs.neuroml.org/Userdocs/Schemas/Channels.html#schema-hhsigmoidrate
https://docs.neuroml.org/Userdocs/Schemas/Channels.html#schema-hhsigmoidvariable
https://docs.neuroml.org/Userdocs/Schemas/Channels.html#schema-ionchannel
https://docs.neuroml.org/Userdocs/Schemas/Channels.html#schema-ionchannelhh
https://docs.neuroml.org/Userdocs/Schemas/Channels.html#schema-ionchannelks
https://docs.neuroml.org/Userdocs/Schemas/Channels.html#schema-ionchannelpassive
https://docs.neuroml.org/Userdocs/Schemas/Channels.html#schema-ionchannelvshift
https://docs.neuroml.org/Userdocs/Schemas/Channels.html#schema-ksstate
https://docs.neuroml.org/Userdocs/Schemas/Channels.html#schema-kstransition
https://docs.neuroml.org/Userdocs/Schemas/Channels.html#schema-openstate
https://docs.neuroml.org/Userdocs/Schemas/Channels.html#schema-q10conductancescaling
https://docs.neuroml.org/Userdocs/Schemas/Channels.html#schema-q10exptemp
https://docs.neuroml.org/Userdocs/Schemas/Channels.html#schema-q10fixed
https://docs.neuroml.org/Userdocs/Schemas/Channels.html#schema-reversetransition
https://docs.neuroml.org/Userdocs/Schemas/Channels.html#schema-subgate
https://docs.neuroml.org/Userdocs/Schemas/Channels.html#schema-tauinftransition
https://docs.neuroml.org/Userdocs/Schemas/Channels.html#schema-vhalftransition
https://docs.neuroml.org/Userdocs/Schemas/Channels.html#schema-closedstate

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 7 of 44

platforms. Furthermore, developers can also use the core tools, libraries, and APIs to support NeuroML
in their own applications.

The simulation platforms e.g. EDEN (Panagiotou et al., 2022), NEURON (Hines and Carne-
vale, 1997), along with other independently developed tools, form the next layer of the software
ecosystem—providing extra functionality such as interactive model construction (e.g. neuroConstruct
Gleeson et al., 2007), NetPyNE (Dura-Bernal et al., 2019), additional visualization (e.g. OSB Gleeson
et al., 2019b), analysis (e.g. NeuroML-DB Birgiolas et al., 2023), data-driven validation (e.g. SciUnit
Gerkin et al., 2019), and archival/sharing (e.g. OSB, NeuroML-DB). Indeed, OSB and NeuroML-DB
are prime examples of how advanced neuroinformatics resources can be built on top of standards
such as NeuroML.

Table 2. Index of standard NeuroMLv2 ComponentTypes (continued).

ComponentTypes related to synapses

alphaCurrentSynapse alphaSynapse blockingPlasticSynapse

doubleSynapse expOneSynapse expThreeSynapse

expTwoSynapse gap Junction gradedSynapse

linearGradedSynapse silentSynapse stdpSynapse

tsodyksMarkramDepFacMechanism tsodyksMarkramDepMechanism voltageConcDepBlockMechanism

ComponentTypes related to inputs

compoundInput compoundInputDL poissonFiringSynapse

pulseGenerator pulseGeneratorDL rampGenerator

rampGeneratorDL sineGenerator sineGeneratorDL

spike spikeArray spike Generator

spikeGeneratorPoisson spikeGeneratorRandom spikeGeneratorRefPoisson

timedSynapticInput transientPoissonFiringSynapse voltage Clamp

voltageClampTriple

ComponentTypes related to networks

connection connectionWD continuous Connection

continuousConnectionInstance continuousConnectionInstanceW continuous Projection

electrical Connection electricalConnectionInstance electricalConnectionInstanceW

electrical Projection explicit Connection explicitInput

input inputList inputW

instance location network

networkWithTemperature population population List

projection rectangularExtent region

synaptic Connection synapticConnectionWD

ComponentTypes related to model simulation

Display EventOutputFile EventSelection

Line OutputColumn OutputFile

Simulation

ComponentTypes related to PyNN

alphaCondSynapse alphaCurrSynapse EIF_cond_alpha_isfa_ista

EIF_cond_exp_isfa_ista expCondSynapse expCurrSynapse

HH_cond_exp IF_cond_alpha IF_cond_exp

IF_curr_alpha IF_curr_exp SpikeSourcePoisson

https://doi.org/10.7554/eLife.95135
https://docs.neuroml.org/Userdocs/Schemas/Synapses.html#schema-alphacurrentsynapse
https://docs.neuroml.org/Userdocs/Schemas/Synapses.html#schema-alphasynapse
https://docs.neuroml.org/Userdocs/Schemas/Synapses.html#schema-blockingplasticsynapse
https://docs.neuroml.org/Userdocs/Schemas/Synapses.html#schema-doublesynapse
https://docs.neuroml.org/Userdocs/Schemas/Synapses.html#schema-exponesynapse
https://docs.neuroml.org/Userdocs/Schemas/Synapses.html#schema-expthreesynapse
https://docs.neuroml.org/Userdocs/Schemas/Synapses.html#schema-exptwosynapse
https://docs.neuroml.org/Userdocs/Schemas/Synapses.html#schema-gapjunction
https://docs.neuroml.org/Userdocs/Schemas/Synapses.html#schema-gradedsynapse
https://docs.neuroml.org/Userdocs/Schemas/Synapses.html#schema-lineargradedsynapse
https://docs.neuroml.org/Userdocs/Schemas/Synapses.html#schema-silentsynapse
https://docs.neuroml.org/Userdocs/Schemas/Synapses.html#schema-stdpsynapse
https://docs.neuroml.org/Userdocs/Schemas/Synapses.html#schema-tsodyksmarkramdepfacmechanism
https://docs.neuroml.org/Userdocs/Schemas/Synapses.html#schema-tsodyksmarkramdepmechanism
https://docs.neuroml.org/Userdocs/Schemas/Synapses.html#schema-voltageconcdepblockmechanism
https://docs.neuroml.org/Userdocs/Schemas/Inputs.html#schema-compoundinput
https://docs.neuroml.org/Userdocs/Schemas/Inputs.html#schema-compoundinputdl
https://docs.neuroml.org/Userdocs/Schemas/Inputs.html#schema-poissonfiringsynapse
https://docs.neuroml.org/Userdocs/Schemas/Inputs.html#schema-pulsegenerator
https://docs.neuroml.org/Userdocs/Schemas/Inputs.html#schema-pulsegeneratordl
https://docs.neuroml.org/Userdocs/Schemas/Inputs.html#schema-rampgenerator
https://docs.neuroml.org/Userdocs/Schemas/Inputs.html#schema-rampgeneratordl
https://docs.neuroml.org/Userdocs/Schemas/Inputs.html#schema-sinegenerator
https://docs.neuroml.org/Userdocs/Schemas/Inputs.html#schema-sinegeneratordl
https://docs.neuroml.org/Userdocs/Schemas/Inputs.html#schema-spike
https://docs.neuroml.org/Userdocs/Schemas/Inputs.html#schema-spikearray
https://docs.neuroml.org/Userdocs/Schemas/Inputs.html#schema-spikegenerator
https://docs.neuroml.org/Userdocs/Schemas/Inputs.html#schema-spikegeneratorpoisson
https://docs.neuroml.org/Userdocs/Schemas/Inputs.html#schema-spikegeneratorrandom
https://docs.neuroml.org/Userdocs/Schemas/Inputs.html#schema-spikegeneratorrefpoisson
https://docs.neuroml.org/Userdocs/Schemas/Inputs.html#schema-timedsynapticinput
https://docs.neuroml.org/Userdocs/Schemas/Inputs.html#schema-transientpoissonfiringsynapse
https://docs.neuroml.org/Userdocs/Schemas/Inputs.html#schema-voltageclamp
https://docs.neuroml.org/Userdocs/Schemas/Inputs.html#schema-voltageclamptriple
https://docs.neuroml.org/Userdocs/Schemas/Networks.html#schema-connection
https://docs.neuroml.org/Userdocs/Schemas/Networks.html#schema-connectionwd
https://docs.neuroml.org/Userdocs/Schemas/Networks.html#schema-continuousconnection
https://docs.neuroml.org/Userdocs/Schemas/Networks.html#schema-continuousconnectioninstance
https://docs.neuroml.org/Userdocs/Schemas/Networks.html#schema-continuousconnectioninstancew
https://docs.neuroml.org/Userdocs/Schemas/Networks.html#schema-continuousprojection
https://docs.neuroml.org/Userdocs/Schemas/Networks.html#schema-electricalconnection
https://docs.neuroml.org/Userdocs/Schemas/Networks.html#schema-electricalconnectioninstance
https://docs.neuroml.org/Userdocs/Schemas/Networks.html#schema-electricalconnectioninstancew
https://docs.neuroml.org/Userdocs/Schemas/Networks.html#schema-electricalprojection
https://docs.neuroml.org/Userdocs/Schemas/Networks.html#schema-explicitconnection
https://docs.neuroml.org/Userdocs/Schemas/Networks.html#schema-explicitinput
https://docs.neuroml.org/Userdocs/Schemas/Networks.html#schema-input
https://docs.neuroml.org/Userdocs/Schemas/Networks.html#schema-inputlist
https://docs.neuroml.org/Userdocs/Schemas/Networks.html#schema-inputw
https://docs.neuroml.org/Userdocs/Schemas/Networks.html#schema-instance
https://docs.neuroml.org/Userdocs/Schemas/Networks.html#schema-location
https://docs.neuroml.org/Userdocs/Schemas/Networks.html#schema-network
https://docs.neuroml.org/Userdocs/Schemas/Networks.html#schema-networkwithtemperature
https://docs.neuroml.org/Userdocs/Schemas/Networks.html#schema-population
https://docs.neuroml.org/Userdocs/Schemas/Networks.html#schema-populationlist
https://docs.neuroml.org/Userdocs/Schemas/Networks.html#schema-projection
https://docs.neuroml.org/Userdocs/Schemas/Networks.html#schema-rectangularextent
https://docs.neuroml.org/Userdocs/Schemas/Networks.html#schema-region
https://docs.neuroml.org/Userdocs/Schemas/Networks.html#schema-synapticconnection
https://docs.neuroml.org/Userdocs/Schemas/Networks.html#schema-synapticconnectionwd
https://docs.neuroml.org/Userdocs/Schemas/Simulation.html#schema-display
https://docs.neuroml.org/Userdocs/Schemas/Simulation.html#schema-eventoutputfile
https://docs.neuroml.org/Userdocs/Schemas/Simulation.html#schema-eventselection
https://docs.neuroml.org/Userdocs/Schemas/Simulation.html#schema-line
https://docs.neuroml.org/Userdocs/Schemas/Simulation.html#schema-outputcolumn
https://docs.neuroml.org/Userdocs/Schemas/Simulation.html#schema-outputfile
https://docs.neuroml.org/Userdocs/Schemas/Simulation.html#id1
https://docs.neuroml.org/Userdocs/Schemas/PyNN.html#schema-alphacondsynapse
https://docs.neuroml.org/Userdocs/Schemas/PyNN.html#schema-alphacurrsynapse
https://docs.neuroml.org/Userdocs/Schemas/PyNN.html#schema-eif-cond-alpha-isfa-ista
https://docs.neuroml.org/Userdocs/Schemas/PyNN.html#schema-eif-cond-exp-isfa-ista
https://docs.neuroml.org/Userdocs/Schemas/PyNN.html#schema-expcondsynapse
https://docs.neuroml.org/Userdocs/Schemas/PyNN.htm#schema-expcurrsynapse
https://docs.neuroml.org/Userdocs/Schemas/PyNN.html#schema-hh-cond-exp
https://docs.neuroml.org/Userdocs/Schemas/PyNN.html#schema-if-cond-alpha
https://docs.neuroml.org/Userdocs/Schemas/PyNN.html#schema-if-cond-exp
https://docs.neuroml.org/Userdocs/Schemas/PyNN.html#schema-if-curr-alpha
https://docs.neuroml.org/Userdocs/Schemas/PyNN.html#schema-if-curr-exp
https://docs.neuroml.org/Userdocs/Schemas/PyNN.html#schema-spikesourcepoisson

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 8 of 44

Figure 2. NeuroML is a modular, hierarchical format that supports multi-scale modeling. Elements in NeuroML
are formally defined, independent, self-contained building blocks with hierarchical relationships between them.
(a) Models of ionic conductances can be defined as a composition of gates, each with specific voltage (and
potentially [Ca2+]) dependence that controls the conductance. (b) Morphologically detailed neuronal models
specify the 3D structure of the cells, along with passive electrical properties, and reference ion channels that
confer membrane conductances. (c) Network models contain populations of these cells connected via synaptic
projections. (d) A truncated illustration of the main categories of the NeuroMLv2 standard elements and their
hierarchies. The standard includes commonly used model elements/building blocks that have been pre-defined
for users: Cells: neuronal models ranging from simple spiking point neurons to biophysically detailed cells with
multi-compartmental morphologies and active membrane conductances; Synapses and ionic conductance
models: commonly used chemical and electrical synapse models (gap junctions), and multiple representations for

Figure 2 continued on next page

https://doi.org/10.7554/eLife.95135

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 9 of 44

Table 5 lists interactive, step-by-step guides in the NeuroML documentation, which can be followed
to learn the fundamental NeuroML concepts, as well as illustrate how NeuroML-compliant tools can
be used to achieve specific tasks across the model development life cycle. In the following sections,
we discuss the specific functionality available at each stage of model development.

Creating NeuroML models
The structured declarative elements of NeuroMLv2, when combined with a procedural scripting
language such as Python, provide a powerful and yet intuitive ‘building block’ approach to model
construction. For this reason, Python is now the recommended language for interacting with NeuroML
(Figure 4), although XML remains the primary serialization language for the format (i.e. for saving to
disk and depositing in model repositories (Figure 5)). Python has emerged as a key programming
language in science, including many areas of neuroscience (Muller et al., 2015). A Python-based
NeuroML ecosystem ensures that users can take advantage of Python’s features, and also use pack-
ages from the wider Python ecosystem in their work (e.g. Numpy (Harris et al., 2020), Matplotlib
Hunter, 2007). pyNeuroML, the Python interface for working with NeuroML, is built on top of the
Python NeuroML API, libNeuroML (Vella et al., 2014; Sinha, 2023; Figure 4).

As illustrated in Figure 5, Python can be used to combine different NeuroML components into
a model. NeuroML supports several pathways for the creation of new models. Modelers may use

Fit

Create
Validate

Visualize

Simulate

Share

Reuse

jNeuroML

pyNeuroML

neuroConstruct

pyNeuroML
libNeuroML

MATLAB/
C++ APIs

SciUnit

NeuroML-DB

 NetPyNE
neuroConstruct

pyNeuroML

OSB
pyNeuroML

pyNeuroML

jLEMS

NeuroTune
BluePyOpt

OSB

NetPyNE

jNeuroML
pyNeuroML

SciUnit

NeuroML-DB

OSB

Neuro
Morpho.Org

NeuroML-DB

NEURON

NEURON

Arbor
PyNN

PyNN

NEST
EDEN Brian2

NetPyNENetPyNE

OMV

pyNeuroML

MOOSE

N2A

Figure 3. NeuroML compliant tools and their relation to the model life cycle. The inner circle shows the core
NeuroML tools and libraries that are maintained by the NeuroML developers. These provide the functionality to
read, modify, or create new NeuroML models, as well as to validate, analyze, visualize and simulate the models.
The outermost layer shows NeuroML-compliant tools that have been developed independently to allow various
interactions with NeuroML models. These complement the core tools by facilitating model creation, validation,
visualization, simulation, fitting/optimization, sharing, and reuse. Further information on each of the tools shown
here can be found in Tables 3 and 4.

ionic conductances; Inputs: to drive cell and network activity, e.g., current or voltage clamp, spiking background
inputs; Networks: of populations (containing any of the aforementioned cell types), and projections. The full list of
standard NeuroML elements can be found in Tables 1 and 2.

Figure 2 continued

https://doi.org/10.7554/eLife.95135

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 10 of 44

Figure 4. The core NeuroML software stack, and an example NeuroML model created using the Python NeuroML
tools. (a) The core NeuroML software stack consists of Java (blue) and Python (orange) based applications/libraries,
and the LEMS model ComponentType definitions (green), wrapped up in a single package, pyNeuroML. Each of
these modules can be used independently or the whole stack can be obtained by installing pyNeuroML with the
default Python package manager, Pip: pip install pyneuroml. (b) An example of how to create a simple NeuroML
model is shown, using the NeuroMLv2 Python API (libNeuroML) to describe a model consisting of a population
of 10 integrate and fire point neurons (IafTauCell) in a network. The IafTauCell, Network, Population, and
NeuroMLDocument model ComponentTypes are provided by the NeuroMLv2 standard. The underlying dynamics
of the model are hidden from the user, being specified in the LEMS ComponentType definitions of the elements
(see Methods). The simulator-independent NeuroML model description can be simulated on any of the supported
simulation engines. (c) Extensible Markup Language (XML) serialization of the NeuroMLv2 model description
shows the correspondence between the Python object model and the XML serialization.

https://doi.org/10.7554/eLife.95135

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 11 of 44

elements included in the NeuroML standard, re-use user-defined NeuroML model elements from other
models, or define completely new model elements using LEMS (Figure 5) (see section on extending
NeuroML below). It is common for models to use a combination of these strategies, e.g., Gurnani
and Silver, 2021; Kriener et al., 2022; Cayco-Gajic et al., 2017, highlighting the flexibility provided
by the modular design of NeuroML. NeuroML APIs support all of these workflows. The Python tools
also include many additional higher-level utilities to speed up model construction, such as factory
functions, type hints, and convenience functions for building complex multi-compartmental neuron
models (Figure 6).

For the construction of complex 3D circuit models, or for users who are not experienced with
Python, a range of NeuroML-compliant online and standalone applications with graphical user inter-
faces are available. These include NetPyNE’s interactive web interface (Dura-Bernal et al., 2019)
(which is available on the latest version of OSB (https://v2.opensourcebrain.org)) and neuroConstruct
(Gleeson et al., 2007) which can export models directly into NeuroML and LEMS. These applications
can be used to build and simulate new NeuroML models without requiring programming. Thus, users
can take advantage of the individual features provided by these applications to generate NeuroML-
compliant models and model elements.

Validating NeuroML models
Ensuring a model is ‘valid’ can have different meanings at different stages of the life cycle—from
checking whether the source files are in the correct format, to ensuring the model reproduces a signif-
icant feature of its biological counterpart. NeuroML’s hierarchical, well-defined structure allows users
to check their model descriptions for correctness at multiple levels (Figure 7), in a manner similar to

Table 3. NeuroML software core tools and libraries, with a description of their scope, the main programming language they use (or
other interaction means, e.g. Command Line Interface (CLI)), and links for more information.

Tool Language/interface Description URL

pyNeuroML Python/CLI
Recommended Python library for NeuroML; provides
pynml, primary command line tool for NeuroML

https://docs.neuroml.org/
Userdocs/Software/pyNeuroML.
html

libNeuroML Python Python API for NeuroML

https://docs.neuroml.org/
Userdocs/Software/libNeuroML.
html

NeuroMLlite Python
High level library for creating NeuroML network models
(beta)

https://docs.neuroml.org/
Userdocs/Software/NeuroMLlite.
html

PyLEMS Python/CLI Python API and simulator for LEMS
https://docs.neuroml.org/
Userdocs/Software/pyLEMS.html

jLEMS Java/CLI Java API for LEMS and reference simulator
https://docs.neuroml.org/
Userdocs/Software/jLEMS.html

org.neuroml.model Java Java API for NeuroML, DOI:10.5281/zenodo.5783290
https://github.com/NeuroML/
org.neuroml.model/

org.neuroml.export Java
Java API for translating NeuroML into different formats such
as NEURON, DOI:10.5281/zenodo.1346272

https://github.com/NeuroML/
org.neuroml.export

org.neuroml.import Java
Java API for importing formats into LEMS and NeuroML,
DOI:10.5281/zenodo.5783295

https://github.com/NeuroML/
org.neuroml.import

jNeuroML Java/CLI
Wraps jLEMS and all export/import packages and provides
the jnml tool, DOI:10.5281/zenodo.593108

https://docs.neuroml.org/
Userdocs/Software/jNeuroML.
html

NeuroML-C++ C++ C++ API for NeuroML

https://docs.neuroml.org/
Userdocs/Software/NeuroML_
API.html

NeuroML Toolbox MATLAB MATLAB NeuroML Toolbox
https://docs.neuroml.org/
Userdocs/Software/MatLab.html

https://doi.org/10.7554/eLife.95135
https://v2.opensourcebrain.org
https://docs.neuroml.org/Userdocs/Software/pyNeuroML.html
https://docs.neuroml.org/Userdocs/Software/pyNeuroML.html
https://docs.neuroml.org/Userdocs/Software/pyNeuroML.html
https://docs.neuroml.org/Userdocs/Software/libNeuroML.html
https://docs.neuroml.org/Userdocs/Software/libNeuroML.html
https://docs.neuroml.org/Userdocs/Software/libNeuroML.html
https://docs.neuroml.org/Userdocs/Software/NeuroMLlite.html
https://docs.neuroml.org/Userdocs/Software/NeuroMLlite.html
https://docs.neuroml.org/Userdocs/Software/NeuroMLlite.html
https://docs.neuroml.org/Userdocs/Software/pyLEMS.html
https://docs.neuroml.org/Userdocs/Software/pyLEMS.html
https://docs.neuroml.org/Userdocs/Software/jLEMS.html
https://docs.neuroml.org/Userdocs/Software/jLEMS.html
https://doi.org/10.5281/zenodo.5783290
https://github.com/NeuroML/org.neuroml.model/
https://github.com/NeuroML/org.neuroml.model/
https://doi.org/10.5281/zenodo.1346272
https://github.com/NeuroML/org.neuroml.export
https://github.com/NeuroML/org.neuroml.export
https://doi.org/10.5281/zenodo.5783295
https://github.com/NeuroML/org.neuroml.import
https://github.com/NeuroML/org.neuroml.import
https://doi.org/10.5281/zenodo.593108
https://docs.neuroml.org/Userdocs/Software/jNeuroML.html
https://docs.neuroml.org/Userdocs/Software/jNeuroML.html
https://docs.neuroml.org/Userdocs/Software/jNeuroML.html
https://docs.neuroml.org/Userdocs/Software/NeuroML_API.html
https://docs.neuroml.org/Userdocs/Software/NeuroML_API.html
https://docs.neuroml.org/Userdocs/Software/NeuroML_API.html
https://docs.neuroml.org/Userdocs/Software/MatLab.html
https://docs.neuroml.org/Userdocs/Software/MatLab.html

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 12 of 44

Table 4. Tools in the wi main programming language they use (or other interaction means, e.g. through a web browser, Graphical
User Interface (GUI) or Command Line Interface (CLI)), and links for more information.

Tool Language/interface Description URL

Simulation engines

NEURON Python/Hoc/CLI/GUI
Empirically-based simulations of
neurons and networks of neurons

https://docs.neuroml.org/Userdocs/
Software/Tools/NEURON.html

NetPyNE Python/web

Package to facilitate the
development, parallel simulation,
analysis, and optimization of
biological neuronal networks using
the NEURON simulator. Also has a
graphical web interface, NetPyNE-UI

https://docs.neuroml.org/Userdocs/
Software/Tools/NetPyNE.html

EDEN NeuroML NeuroML-based neural simulator
https://docs.neuroml.org/Userdocs/
Software/Tools/EDEN.html

MOOSE Python

The Multiscale Object-Oriented
Simulation Environment is the
base and numerical core for large,
detailed multi-scale simulations that
span computational neuroscience
and systems biology. Based on a
reimplementation of the GENESIS
2 core.

https://docs.neuroml.org/Userdocs/
Software/Tools/MOOSE.html

PyNN Python

A simulator-independent language
for building neuronal network
models

https://docs.neuroml.org/Userdocs/
Software/Tools/PyNN.html

NEST Python/SLI

Simulator for spiking neural network
models focusing on dynamics, size,
and structure of neural systems

https://docs.neuroml.org/Userdocs/
Software/Tools/NEST.html

Brian2 Python
Easy to learn and use simulator for
spiking neural networks

https://docs.neuroml.org/Userdocs/
Software/Tools/Brian.html

Arbor Python
A multi-compartment neuron
simulation library

https://docs.neuroml.org/Userdocs/
Software/Tools/Arbor.html

N2A Java/GUI
Language and IDE for writing and
simulating models

https://docs.neuroml.org/Userdocs/
Software/Tools/N2A.html

Databases

OSB Web

Resource for sharing and
collaboratively developing
computational models of neural
systems https://www.opensourcebrain.org/

NeuroML-DB Web
NeuroML database of cell and
channel models https://neuroml-db.org/

Other tools

OMV Python
Open Source Brain Model Validation
framework

https://github.com/
OpenSourceBrain/osb-model-
validation

SciUnit Python Data driven unit testing framework https://github.com/scidash/sciunit

BluePyOpt Python
Blue Brain Python Optimization
Library https://bluepyopt.readthedocs.io/

NeuroTune Python
Package for fitting/optimization
of NeuroML models

https://github.com/NeuralEnsemble/
neurotune

PyElectro Python Electrophysiology analysis package
https://github.com/NeuralEnsemble/
pyelectro

https://doi.org/10.7554/eLife.95135
https://docs.neuroml.org/Userdocs/Software/Tools/NEURON.html
https://docs.neuroml.org/Userdocs/Software/Tools/NEURON.html
https://docs.neuroml.org/Userdocs/Software/Tools/NetPyNE.html
https://docs.neuroml.org/Userdocs/Software/Tools/NetPyNE.html
https://docs.neuroml.org/Userdocs/Software/Tools/EDEN.html
https://docs.neuroml.org/Userdocs/Software/Tools/EDEN.html
https://docs.neuroml.org/Userdocs/Software/Tools/MOOSE.html
https://docs.neuroml.org/Userdocs/Software/Tools/MOOSE.html
https://docs.neuroml.org/Userdocs/Software/Tools/PyNN.html
https://docs.neuroml.org/Userdocs/Software/Tools/PyNN.html
https://docs.neuroml.org/Userdocs/Software/Tools/NEST.html
https://docs.neuroml.org/Userdocs/Software/Tools/NEST.html
https://docs.neuroml.org/Userdocs/Software/Tools/Brian.html
https://docs.neuroml.org/Userdocs/Software/Tools/Brian.html
https://docs.neuroml.org/Userdocs/Software/Tools/Arbor.html
https://docs.neuroml.org/Userdocs/Software/Tools/Arbor.html
https://docs.neuroml.org/Userdocs/Software/Tools/N2A.html
https://docs.neuroml.org/Userdocs/Software/Tools/N2A.html
https://www.opensourcebrain.org/
https://neuroml-db.org/
https://github.com/OpenSourceBrain/osb-model-validation
https://github.com/OpenSourceBrain/osb-model-validation
https://github.com/OpenSourceBrain/osb-model-validation
https://github.com/scidash/sciunit
https://bluepyopt.readthedocs.io/
https://github.com/NeuralEnsemble/neurotune
https://github.com/NeuralEnsemble/neurotune
https://github.com/NeuralEnsemble/pyelectro
https://github.com/NeuralEnsemble/pyelectro

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 13 of 44

multi-level testing in software development. Importantly, most of the validation tests in NeuroML are
run on the models’ NeuroML descriptions prior to simulation.

A first level of validation checks the structure of individual model elements against their formal
specifications contained in the NeuroML standard. The standard includes information on the param-
eters of each model element, restrictions on parameter values, their allowed units, their cardinality,
and the location of the model element in the model hierarchy—i.e., parent/children relationships. A
second level of validation includes a suite of semantic and logical checks. For example, at this level,
a model of a multi-compartmental cell can be checked to ensure that all segments referenced in
segment groups (e.g. the group of dendritic segments) have been defined, and only defined once
with unique identifiers. A list of validation tests currently included in the NeuroML core tools can be
found in Table 6. These can be run against NeuroML files at the command line or programmatically
in Python (Figure 6).

A key advantage of using the NeuroML2/LEMS framework is that dimensions and units are inbuilt
into LEMS descriptions. This enables automated conversions of units, unit checking, together with the
validation of equations. Any expressions in models which are dimensionally inconsistent will be high-
lighted at this stage. Note that LEMS handles unit conversions internally—modelers have flexibility in
how they enter the units of parameter values (e.g. specifying conductance density in ‍S/m2‍ or ‍mS/cm2‍) in
the NeuroML files, with the underlying LEMS definitions ensuring that a consistent set of dimensions
are used in model equations (Cannon et al., 2014). LEMS then takes care of mapping the entered
units to the target simulator’s preferred units. This makes model definition, inspection, use, extension,
and translation easier and less error-prone.

Once the set of NeuroML files are validated, the model can be simulated, and checks can be made
to test whether execution produces consistent results (e.g. firing rate of neurons in a given popula-
tion) across multiple simulators (or versions of the same simulator). For this, the OSB Model Validation
(OMV) framework has been developed (Gleeson et al., 2019b). This framework can automatically
check that the output (e.g. spike times) of a NeuroML model running on a given simulator is within an
allowed tolerance of the expected value. OMV has been applied to NeuroML models that have been
shared on OSB, to test consistent behavior of models as the models themselves, and all supported

Table 5. Step-by-step guides for using NeuroML illustrating the various stages of the model
development life cycle.
These include Introductory guides aimed at teaching the fundamental NeuroML concepts,
Advanced guides illustrating specific modeling workflows, and Walkthrough guides discussing the
steps required for converting models to NeuroML. An updated list is available at http://neuroml.org/
gettingstarted.

Link Description Model life cycle stages

Introductory guides

Guide 1
Create and simulate a simple regular spiking Izhikevich neuron in
NeuroML Create, Validate, Simulate

Guide 2
Create a network of two synaptically connected populations of
Izhikevich neurons Create, Validate, Visualize, Simulate

Guide 3 Build and simulate a single compartment Hodgkin-Huxley neuron Create, Validate, Visualize, Simulate

Guide 4 Create and simulate a multi compartment hippocampal OLM neuron Create, Validate, Visualize, Simulate

Advanced guides

Guide 5 Create novel NeuroML models from components on NeuroML-DB Reuse, Create, Validate, Simulate

Guide 6 Optimize/fit NeuroML models to experimental data Create, Validate, Simulate, Fit

Guide 7 Extend NeuroML by creating a novel model type in LEMS Create, Simulate

Walkthroughs

Guide 8
Guide to converting cell models to NeuroML and sharing them on
Open Source Brain Create, Validate, Simulate, Share

Guide 9 Conversion of Ray et al., 2020
Create, Validate, Visualize, Simulate,
Share

https://doi.org/10.7554/eLife.95135
http://neuroml.org/gettingstarted
http://neuroml.org/gettingstarted
https://docs.neuroml.org/Userdocs/NML2_examples/SingleNeuron.html
https://docs.neuroml.org/Userdocs/IzhikevichNetworkExample.html
https://docs.neuroml.org/Userdocs/SingleCompartmentHHExample.html
https://docs.neuroml.org/Userdocs/MultiCompartmentOLMexample.html
https://docs.neuroml.org/Userdocs/NML2_examples/NeuroML-DB.html
https://docs.neuroml.org/Userdocs/OptimisingNeuroMLModels.html
https://docs.neuroml.org/Userdocs/ExtendingNeuroMLv2.html#example-lorenz-model-for-cellular-convection
https://docs.neuroml.org/Userdocs/CreatingNeuroMLModels.html#converting-cell-models-to-neuroml-and-sharing-them-on-open-source-brain
https://docs.neuroml.org/Userdocs/Walkthroughs/RayEtAl2020/RayEtAl2020.html#userdocs-walkthroughs-rayetal2020

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 14 of 44

simulators, are updated. This has proven to be a valuable process for ensuring uniform usage and
interpretation of NeuroML across the ecosystem of supporting tools.

A final level of validation concerns checking whether the model elements have emergent features
that are in line with experimentally observed behavior of the biological equivalents. NeuronUnit
(Gerkin et al., 2019), a SciUnit (Omar et al., 2014) package for data-driven unit testing and validation
of neuronal and ion channel models, is also fully NeuroML compliant, and also supports automated
validation of NeuroML models shared on NeuroML-DB and OSB.

Visualizing/analyzing NeuroML models
Multiple visualization, inspection, and analysis tools are available in the NeuroML software ecosystem.
Since NeuroML models have a fixed, well-defined structure, NeuroML libraries can extract all informa-
tion from their descriptions. This information can be used by modelers and their programs/tools to run
automated programmatic analyses on models.

pyNeuroML includes a range of ready-made inspection utilities for users (Figure 6) that can be used
via Python scripts, interactive Jupyter Notebooks, and command line tools. Examining the structure of
cell and network models with 2D and 3D views is important for manual validation and to compare them
to their biological counterparts. Graphical views of cell model morphology and the 3-dimensional
network layout (Figure 8), population and connectivity matrices/graphs at different levels (Figure 9),
and model summaries can all be generated (Figure 10). In addition to these inspection functions, a

NeuroML/LEMS serialization (XML)

NeuroML core software

Simulator specific
export modules

Execute in native
simulators

Generate helper
scripts

Expanded LEMS
description

Build NeuroML
core Components

Reuse existing
Components

tools

4) Generated simulator scripts

NEURON Brian2

1) NeuroML reference simulators

jNeuroML PyLEMS

NetPyNE MOOSE

3) Simulators import NeuroML

2) Native NeuroML simulators

EDEN

5) Other standardized formats

SBMLSONATAPyNN

User defined
Components in LEMS

pyNeuroML

Figure 5. Workflow showing how to create and simulate NeuroML models using Python. The Python API can be
used to create models which may include elements built from scratch from the NeuroML standard, re-use elements
from previously created models, or create new components based on novel model definitions expressed in LEMS
(red). The generated model elements are saved in the default XML-based serialization (blue). The NeuroML core
tools and libraries (orange) include modules to import model descriptions expressed in the XML serialization,
and support multiple options for how simulators can execute these models (green). These include: (1) execution
of the NeuroML models by reference simulators; (2) execution by other independently developed simulators that
natively support NeuroML, such as EDEN; (3) generation of Python ‘import scripts’ which allow NeuroML models
to be imported (and converted to internal formats) by simulators which support this; (4) fully expanding the LEMS
description of the models, which can be mapped to generated simulator specific scripts for target simulators; (5)
mapping to other standardized formats in neuroscience and systems biology.

https://doi.org/10.7554/eLife.95135

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 15 of 44

Create (using Python API)

from neuroml import *

Create a container document
doc = NeuroMLDocument(id="network0")

Add single exponential synapse model
syn0 = doc.add("ExpOneSynapse", id="syn0", gbase="65nS", erev="0mV", tau_decay="3ms")

Reuse existing ion channel model
doc.add("IncludeType", href="Na_chan.channel.nml")

Create a cell with 3D morphology using the Cell ComponentType
cell = doc.add("Cell", id="olm", neuro_lex_id="NLXCELL:091206") # Hippocampal CA1 OLM cell
cell.set_init_memb_potential("-67mV")
cell.set_resistivity("0.15 kohm_cm")
cell.add_channel_density(doc, cd_id="na_all", cond_density="10 mS_per_cm2",

ion_channel="Na_chan", ion_chan_def_file="Na.channel.nml",
erev="50mV", ion="na")

cell.add_unbranched_segment_group("soma_group")
soma_0 = cell.add_segment(prox=[0, 0, 0, 10], dist=[0, 10, 0, 10], name="Seg0_soma_0",

group_id="soma_group", seg_type="soma")

API examples Command line usage examples

Validate
validate_neuroml2("file.nml") > pynml "file.nml" -validate
doc.validate(recursive=True)

Inspect and visualize
element.info()

>)cod(yrammus pynml-summary "file.nml"
>)cod(gnp_ot_2lmn pynml -png "file.nml"
>)cod(gvs_ot_2lmn pynml -svg "file.nml"
>)cod(hparglmn_etareneg pynml "file.nml" -graph
> pynml "file.nml" -matrix 1
>)llec(D2_tolp pynml-plotmorph "cell.nml"

plot_interactive_3d(cell) > pynml-plotmorph -interactive3d "cell.nml"
plot_interactive_3d(network) > pynml-plotmorph -interactive3d "net.nml"

> pynml-channelanalysis "channel.nml"
plot_channel_densities(cell) > pynml-plotchan "cell.nml"

Simulate
run_lems_with_jneuroml("sim.xml") > pynml "sim.xml"
run_lems_with_jneuroml_neuron("sim.xml") > pynml "sim.xml" -neuron -run
run_lems_with_jneuroml_netpyne("sim.xml") > pynml "sim.xml" -netpyne -run
run_on_nsg("jneuroml_neuron", "sim.xml")
. . .

Share and archive
create_combine_archive("sim.xml") > pynml-archive "neuron.cell.nml"

Figure 6. PyNeuroML provides Python functions and command line utilities supporting all stages of the model life
cycle.

https://doi.org/10.7554/eLife.95135

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 16 of 44

variety of utilities for the inspection of NeuroML descriptions of electrophysiological properties of
membrane conductances and their spatial distribution over the neuronal membrane are also provided
(Figure 10).

The graphical applications included in the NeuroML ecosystem (e.g. neuroConstruct, NeuroML-DB,
OSB (v1 [https://v1.opensourcebrain.org] and v2), NetPyNE, and Arbor-GUI) also provide many of
their own analysis and visualization functions. OSBv1, for example, supports automated 3D visual-
ization of networks and cell morphologies, network connectivity graphs and metrics, and advanced
model inspection features (Gleeson et al., 2019b; Figure 8b). On OSBv2, NetPyNE provides
advanced graphical plotting and analysis facilities (Figure 8c). A complete JupyterLab (https://jupyter.​
org/) interface is also included in OSBv2 for Python scripting, allowing interactive notebooks to be
created and shared, mixing scripting and graphical elements, including those generated by pyNeu-
roML. NeuroML-DB also provides information on electrophysiology, morphology, and the simulation
aspects of neuronal models (Birgiolas et al., 2023; Figure 10a). In general, any NeuroML-compliant
application can be used to inspect and analyze elements of NeuroML models, each having their own
distinct advantages.

Simulating NeuroML models
Users can simulate NeuroML models using a number of simulation engines without making any
changes to their models. This is because the NeuroML/LEMS descriptions of the models are simulator
independent and can be translated to simulator specific formats. pyNeuroML facilitates access to all
available simulation options, both from the command line and using function calls in Python scripts
when using the Python API (Figure 6).

Simulation engines can be classified into five broad categories (Figure 5):

1.	 reference NeuroML/LEMS simulators.
2.	 independently developed simulators that natively support NeuroML.

Model description

NeuroML validity checks
Does the model include all required model elements?

Are all necessary model element attributes/parameters set?
Are all model elements correctly ordered?

Do all parameters use correct physiological units?

Additional/logical checks
Do model elements correctly reference each other?
Are synapses/connections/projections correctly defined?
Are multi-compartmental cell morphologies valid?

LEMS checks

Model simulation

Are all model elements mappable to simulation back-ends?

OMV checks
Does the model produce the same results on all simulators?

Behavioral checks (SciUnit)
Do the simulation results match experimental data?

Are all of the units and dimensions consistent?

Figure 7. NeuroML model development incorporates multi-level validation of models. Checks are performed on
the model descriptions (blue) before simulation using validation at both the NeuroML and LEMS levels (green).
After the models are simulated (yellow), further checks can be run to ensure the output is in line with expected
behavior (brown). The OSB Model Validation (OMV) framework can be used to ensure consistent behavior across
simulators, and comparisons can be made of model activity to their biological equivalents using SciUnit.

https://doi.org/10.7554/eLife.95135
https://v1.opensourcebrain.org
https://jupyter.org/
https://jupyter.org/

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 17 of 44

3.	 simulators that import/translate NeuroML to their own internal formats.
4.	 simulators that are supported through generation of simulator-specific scripts by the core

NeuroML tools.
5.	 export to other standardized formats which may allow simulation/analysis in other packages.

Each simulation engine supports a different set of features that NeuroML users can take advan-
tage of (Table 7). For example, the reference NeuroML and LEMS simulators, jNeuroML, jLEMS, and
PyLEMS, can simulate all LEMS models and most NeuroML models. They cannot, however, simulate

Table 6. Listing of validation tests run by NeuroML.

Test Description

Schema tests

Check names
Check that names of all elements, attributes, parameters match those
provided in the schema

Check types Check that the types of all included elements

Check values Check that values follow given restrictions

Check inclusion Check that required elements are included

Check cardinality Check the number of elements

Check hierarchy
Check that child/children elements are included in the correct parent
elements

Check sequence order Check that child/children elements are included in the correct order

Additional tests

Check top level ids Check that top level (root) elements have unique ids

Check Network level ids Check that child/children of the Network element have unique ids

Check Cell Segment ids Check that all Segments in a Cell have unique ids

Check single Segment without parent Check that only one Segment is without parents (the soma Segment)

Check SegmentGroup ids Check that all SegmentGroups in a Cell have unique ids

Check Member segment ids exist Check that Segments referred to in SegmentGroup Members exist

Check SegmentGroup definition Check that SegmentGroups being referenced are defined

Check SegmentGroup definition order Check that SegmentGroups are defined before being referenced

Check included SegmentGroups
Check that SegmentGroups referenced by Include elements of other
SegmentGroups exist

Check numberInternalDivisions

Check that SegmentGroups define numberInternalDivisions (used by
simulators to discretize un-branched branches into compartments for
simulation)

Check included model files Check that model files included by other files exist

Check Population component Check that a component id provided to a Population exists

Check ion channel exists Check that an ion channel used to define a ChannelDensity element exists

Check concentration model species Check that the species used in ConcentrationModel elements are defined

Check Population size
Check that the size attribute of a PopulationList matches the number of
defined Instances

Check Projection component Check that Populations used in the Projection elements exist

Check Connection Segment Check that the Segment used in Connection elements exist

Check Connection pre/post cells
Check that the pre- and post-synaptic cells used in Connection elements
exist and are correctly specified

Check Synapse Check that the Synapse component used in a Projection element exists

Check root id Check that the root Segment in a Cell morphology has id 0

https://doi.org/10.7554/eLife.95135

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 18 of 44

Figure 8. Visualization of detailed neuronal morphology of neurons and networks together with their functional
properties (results from model simulation) enabled by NeuroML. (a) Interactive 3-D (VisPy (Campagnola, 2023)
based) visualization of an olfactory bulb network with detailed mitral and granule cells (Migliore et al., 2014),
generated using pyNeuroML. (b) Visualization of an inhibition stabilized network based on Sadeh et al., 2017
using Open Source Brain (OSB) version 1 (Gleeson et al., 2019b). (c) Visualization of 3D network of simplified
multi-compartmental cortical neurons (from Traub et al., 2005, imported as NeuroML Gleeson, 2019a) and
simulated spiking activity using NetPyNE’s GUI (Dura-Bernal et al., 2019), which is embedded in OSB version 2.

https://doi.org/10.7554/eLife.95135

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 19 of 44

multi-compartmental models, and users should opt for a simulator that does, e.g., NEURON (Hines
and Carnevale, 1997) or EDEN (Panagiotou et al., 2022).

Another criteria that is relevant when choosing a simulation engine is the efficiency of simulation.
Simulation engines implement different computing techniques—e.g., NetPyNE, Arbor, and EDEN
support parallel execution on clusters and super computers via MPI—to enable simulation of large-
scale models. Thus, for efficient large-scale simulation, users may prefer one of these simulation
engines.

The preferred programming language for working with NeuroML is Python (Muller et al., 2015).
A Python-based ecosystem ensures that automated simulation of models can easily be carried out
either using scripts, or the command line tools. Utilities to enable the execution of simulations on
dedicated supercomputing resources, such as the Neuroscience Gateway (NSG) (Sivagnanam, 2013;

Figure 9. Analysis and visualization of network connectivity from NeuroML model descriptions prior to simulation.
Network connectivity schematic (a) and connectivity matrix (b) for a half scale implementation of the human layer
2/3 cortical network model (Yao et al., 2022) generated using pyNeuroML.

Table 7. Features supported by NeuroML in different simulation engines.
Note: the simulators themselves may support more features, but these have not been mapped onto by the NeuroML tools.
Abstract cell models: abstract cell models included in the NeuroML standard (see Table 1). Single compartmental cells: neuronal
models that include a single compartment (these engines do not support multi-compartmental cells). Multiple compartmental cells:
neuronal models that include multiple compartments. Conductance-based models: models that support ionic conductances. Parallel
execution: engines that support parallel execution using MPI/GPUs. Y: full support; N: no support; L: limited support in NeuroML
toolchain.

Tool
Abstract cell
models

Single compartment
cells

Multiple compartment
cells

Conductance-based
models

Parallel
execution

jNeuroML/pyNeuroML Y Y N Y N

NEURON Y Y Y Y N

NetPyNE Y Y Y Y Y

EDEN Y Y Y Y Y

MOOSE Y Y L Y N

PyNN Y Y L L Y

NEST Y Y N N Y

Brian2 Y Y Y Y L

Arbor L Y Y L Y

https://doi.org/10.7554/eLife.95135

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 20 of 44

Figure 10. Examples of visualizing biophysical properties of a NeuroML model neuron. (a) Electrophysiological
properties generated by the NeuroML-DB web-based platform (Birgiolas et al., 2023). (Plots show four
superimposed voltage traces in the top panel and corresponding current injection traces below). (b) Example
plots of steady states of activation (na_channel na_m inf) and inactivation (na_channel na_h inf) variables and their
time courses (na_channel na_m tau and na_channel na_h tau) for the Na channel from the classic Hodgkin Huxley
model (Hodgkin and Huxley, 1952). (c) The distribution of the peak conductances for the Ih channel over a layer
5 Pyramidal cell (Hay et al., 2011). Both (b) and (c) were generated using the analysis features in pyNeuroML, and
similar functionality is also available in OSBv1 (Gleeson et al., 2019b).

https://doi.org/10.7554/eLife.95135

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 21 of 44

http://www.nsgportal.org/) are also available within the ecosystem. OSBv1 takes advantage of these
to support the submission of NeuroML model simulation jobs using the NEURON simulator on NSG.
NetPyNE also includes parallel execution of simulations, batch processing, and parameter explora-
tion features, and its deployment on OSBv2 allows users to easily access these features on a scal-
able, cloud-based platform. Finally, the JupyterLab environment on OSBv2 contains all of the core
NeuroML tools and various simulation engines as pre-installed software packages, ready to use.

Optimizing NeuroML models
Development of biologically detailed models of brain function requires that components and emer-
gent properties match the behavior of the corresponding biology as closely as possible. Thus, fitting
neurons and networks to experimental data is a critical step in the model life cycle (Rossant et al.,
2011; Druckmann et al., 2007). pyNeuroML promotes data-driven modeling by providing func-
tions to fit and optimize NeuroML models against experimental data. It includes the NeuroMLTuner
module (https://pyneuroml.readthedocs.io/en/development/pyneuroml.tune.html), which builds on
the Neurotune package (https://github.com/NeuralEnsemble/neurotune; Vella and Gleeson, 2023)
for tuning and optimizing NeuroML models against data using evolutionary computation techniques.
This module allows users to select a set of weighted features from their data to calculate the fitness
of populations of candidate models. In each generation, the fittest models are found and mutated to
create the next generation of models, until a set of models that best exhibit the selected data features
are isolated (see Guide 6 in Table 5) (https://docs.neuroml.org/Userdocs/OptimisingNeuroMLModels.​
html).

The NeuroML ecosystem includes multiple tools that also provide model fitting features. The Blue
Brain Python Optimisation Library (BluePyOpt) (Van Geit et al., 2016), an extensible framework for
data-driven model parameter optimization, supports exporting optimized models to NeuroML files
(https://github.com/BlueBrain/BluePyOpt/blob/master/examples/neuroml/neuroml.ipynb). Similar
to pyNeuroML, NetPyNE also uses the inspyred Python package (https://github.com/aarongarrett/​
inspyred; Sinha and Garrett, 2024) to provide evolutionary computation-based model optimization
features (Dura-Bernal et al., 2019).

Sharing NeuroML models
The NeuroML ecosystem includes the advanced web-based model sharing platforms NeuroML-DB
(Birgiolas et al., 2023; https://neuroml-db.org) and OSB (Gleeson et al., 2019b). These resources
have been designed specifically for the dissemination of models and model elements standardized
in NeuroML. The OSB platform also supports visualization, analysis, simulation, and development of
NeuroML models. Researchers can create shared, collaborative NeuroML projects on it and can take
advantage of the in-built automated visualization and analysis pipelines to explore and re-use models
and their components. Whereas version 1 (OSBv1) focused on providing an interactive 3D interface
for running pre-existing NeuroML models (e.g. sourced from linked GitHub repositories) (Gleeson
et al., 2019b), OSBv2 provides cloud-based workspaces for researchers to construct NeuroML-based
computational models as well as analyze, and compare them to, the experimental data on which they
are based, thus facilitating data-driven computational modeling. Table 8 provides a list of stable,
well-tested NeuroML compliant models from brain regions including the neocortex, cerebellum, and
hippocampus, which have been shared on OSB.

NeuroML-DB aims to promote the uptake of standardized NeuroML models by providing a conve-
nient location for archiving and exploration. It includes advanced database search functions, including
ontology-based search (Birgiolas et al., 2015), coupled with pre-computed analyses on models’ elec-
trophysiological and morphological properties, as well as an indication of the relative speed of execu-
tion of different models.

NeuroML’s modular nature ensures that models and their components can be easily shared with
others through standard code sharing resources. The simplest way of sharing NeuroML models and
components is to make their Python descriptions or their XML serializations available through these
resources. Indeed, it is straightforward to make Python descriptions or the XML serializations available
via different file, code (GitHub, GitLab), model sharing (ModelDB Migliore et al., 2003; McDougal
et al., 2017), and archival (Zenodo, Open Science Framework) platforms, just like any other code/data
produced in scientific investigations. Complex models with many components, spanning multiple files,

https://doi.org/10.7554/eLife.95135
http://www.nsgportal.org/
https://pyneuroml.readthedocs.io/en/development/pyneuroml.tune.html
https://github.com/NeuralEnsemble/neurotune
https://docs.neuroml.org/Userdocs/OptimisingNeuroMLModels.html
https://docs.neuroml.org/Userdocs/OptimisingNeuroMLModels.html
https://github.com/BlueBrain/BluePyOpt/blob/master/examples/neuroml/neuroml.ipynb
https://github.com/aarongarrett/inspyred
https://github.com/aarongarrett/inspyred
https://neuroml-db.org

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 22 of 44

Table 8. Listing of NeuroML models and example repositories.

Model Description URL

Neocortex

Billeh et al., 2020

Morphologically detailed and point neuron
models based on electrophysiological recordings
from visual cortex neurons

https://github.com/OpenSourceBrain/
AllenInstituteNeuroML

Brunel, 2000
Spiking network illustrating balance between
excitation and inhibition https://github.com/OpenSourceBrain/Brunel2000

Hay et al., 2011
Layer 5 pyramidal cell model constrained by
somatic and dendritic recordings

https://github.com/OpenSourceBrain/
L5bPyrCellHayEtAl2011

Izhikevich, 2004
Spiking neuron model reproducing wide range of
neuronal activity

https://github.com/OpenSourceBrain/
IzhikevichModel

Markram et al., 2015
Cell models from Neocortical Microcircuit of Blue
Brain Project

https://github.com/OpenSourceBrain/
BlueBrainProjectShowcase

Pospischil et al., 2008
HH-based models for different classes of cortical
and thalamic neurons

https://github.com/OpenSourceBrain/
PospischilEtAl2008

Potjans and Diesmann, 2014
Microcircuit model of sensory cortex with 8
populations across 4 layers

https://github.com/OpenSourceBrain/
PotjansDiesmann2014

Dura-Bernal et al., 2017 Model of mouse primary motor cortex (M1)
https://github.com/OpenSourceBrain/
M1NetworkModel

Sadeh et al., 2017
Point neuron model of Inhibition Stabilized
Network

https://github.com/OpenSourceBrain/
SadehEtAl2017-InhibitionStabilizedNetworks

Smith et al., 2013
Layer 2/3 cell model used to investigate dendritic
spikes

https://github.com/OpenSourceBrain/
SmithEtAl2013-L23DendriticSpikes

Traub et al., 2005
Single column network model containing 14 cell
populations from cortex and thalamus

https://github.com/OpenSourceBrain/
Thalamocortical

Bahl et al., 2012
A set of reduced models of layer 5 pyramidal
neurons

https://github.com/OpenSourceBrain/
BahlEtAl2012_ReducedL5PyrCell

Wilson and Cowan, 1972

A classic rate-based model describing the
dynamics and interactions between the excitatory
and inhibitory populations of neurons

https://github.com/OpenSourceBrain/
WilsonCowan

Garcia Del Molino et al., 2017

Rate-based model showing paradoxical response
reversal of top-down modulation in cortical
circuits with three interneuron types

https://github.com/OpenSourceBrain/del-
Molino2017

Mejias et al., 2016

A rate-based model simulating the dynamics of a
cortical laminar structure across multiple scales:
intralaminar, interlaminar, interareal and whole
cortex

https://github.com/OpenSourceBrain/
MejiasEtAl2016

Cerebellum

Maex and Schutter, 1998 Cerebellar granule cell
https://github.com/OpenSourceBrain/
GranuleCell

Cayco-Gajic et al., 2017 Cerebellar granule cell layer network
https://github.com/SilverLabUCL/MF-GC-
network-backprop-public

Maex and Schutter, 1998 3D Cerebellar granule cell layer network
https://github.com/OpenSourceBrain/
GranCellLayer

Solinas et al., 2007 Cerebellar Golgi cell model
https://github.com/OpenSourceBrain/
SolinasEtAl-GolgiCell

Vervaeke et al., 2010
Electrically connected cerebellar Golgi cell
network model

https://github.com/OpenSourceBrain/
VervaekeEtAl-GolgiCellNetwork

Hippocampus

Bezaire et al., 2016 Full scale network model of CA1 region of
hippocampus

https://github.com/mbezaire/ca1

Table 8 continued on next page

https://doi.org/10.7554/eLife.95135
https://github.com/OpenSourceBrain/AllenInstituteNeuroML
https://github.com/OpenSourceBrain/AllenInstituteNeuroML
https://github.com/OpenSourceBrain/Brunel2000
https://github.com/OpenSourceBrain/L5bPyrCellHayEtAl2011
https://github.com/OpenSourceBrain/L5bPyrCellHayEtAl2011
https://github.com/OpenSourceBrain/IzhikevichModel
https://github.com/OpenSourceBrain/IzhikevichModel
https://github.com/OpenSourceBrain/BlueBrainProjectShowcase
https://github.com/OpenSourceBrain/BlueBrainProjectShowcase
https://github.com/OpenSourceBrain/PospischilEtAl2008
https://github.com/OpenSourceBrain/PospischilEtAl2008
https://github.com/OpenSourceBrain/PotjansDiesmann2014
https://github.com/OpenSourceBrain/PotjansDiesmann2014
https://github.com/OpenSourceBrain/M1NetworkModel
https://github.com/OpenSourceBrain/M1NetworkModel
https://github.com/OpenSourceBrain/SadehEtAl2017-InhibitionStabilizedNetworks
https://github.com/OpenSourceBrain/SadehEtAl2017-InhibitionStabilizedNetworks
https://github.com/OpenSourceBrain/SmithEtAl2013-L23DendriticSpikes
https://github.com/OpenSourceBrain/SmithEtAl2013-L23DendriticSpikes
https://github.com/OpenSourceBrain/Thalamocortical
https://github.com/OpenSourceBrain/Thalamocortical
https://github.com/OpenSourceBrain/BahlEtAl2012_ReducedL5PyrCell
https://github.com/OpenSourceBrain/BahlEtAl2012_ReducedL5PyrCell
https://github.com/OpenSourceBrain/WilsonCowan
https://github.com/OpenSourceBrain/WilsonCowan
https://github.com/OpenSourceBrain/del-Molino2017
https://github.com/OpenSourceBrain/del-Molino2017
https://github.com/OpenSourceBrain/MejiasEtAl2016
https://github.com/OpenSourceBrain/MejiasEtAl2016
https://github.com/OpenSourceBrain/GranuleCell
https://github.com/OpenSourceBrain/GranuleCell
https://github.com/SilverLabUCL/MF-GC-network-backprop-public
https://github.com/SilverLabUCL/MF-GC-network-backprop-public
https://github.com/OpenSourceBrain/GranCellLayer
https://github.com/OpenSourceBrain/GranCellLayer
https://github.com/OpenSourceBrain/SolinasEtAl-GolgiCell
https://github.com/OpenSourceBrain/SolinasEtAl-GolgiCell
https://github.com/OpenSourceBrain/VervaekeEtAl-GolgiCellNetwork
https://github.com/OpenSourceBrain/VervaekeEtAl-GolgiCellNetwork
https://github.com/mbezaire/ca1

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 23 of 44

Model Description URL

Ferguson et al., 2013
Parvalbumin-positive interneuron from CA1,
based on Izhikevich cell model

https://github.com/OpenSourceBrain/
FergusonEtAl2013-PVFastFiringCell

Ferguson et al., 2014
Pyramidal cell from CA1, based on Izhikevich cell
model

https://github.com/OpenSourceBrain/
FergusonEtAl2014-CA1PyrCell

Migliore et al., 2005
Multi-compartmental model of pyramidal cell
from CA1 region of hippocampus

https://github.com/OpenSourceBrain/
CA1PyramidalCell

Pinsky and Rinzel, 1994 Simplified model of CA3 pyramidal cell
https://github.com/OpenSourceBrain/
PinskyRinzelModel

Wang and Buzsáki, 1996
Hippocampal interneuronal network model
exhibiting gamma oscillations

https://github.com/OpenSourceBrain/
WangBuzsaki1996

Olfactory bulb

Migliore et al., 2014
Large-scale 3D olfactory bulb network with
detailed mitral cells and granule cells

https://github.com/OpenSourceBrain/
MiglioreEtAl14_OlfactoryBulb3D

Invertebrate

Hodgkin and Huxley, 1952
Classic investigation of the ionic basis of the
action potential

https://github.com/openworm/hodgkin_huxley_
tutorial

FitzHugh, 1961 Simplified form of Hodgkin Huxley model
https://github.com/OpenSourceBrain/FitzHugh-
Nagumo

Prinz et al., 2004
Pyloric network of the lobster stomatogastric
ganglion system

https://github.com/OpenSourceBrain/
PyloricNetwork

Boyle and Cohen, 2008 Model of body wall muscle from C. elegans https://github.com/openworm/muscle_model

Gleeson et al., 2018
A multiscale framework for modeling the nervous
system of C. elegans https://github.com/openworm/c302

General

Morris and Lecar, 1981
Two dimensional reduced neuron model with
calcium and potassium conductances

https://github.com/OpenSourceBrain/
MorrisLecarModel

Hindmarsh and Rose, 1984

A simplified point cell model which captures
complex firing patterns of single neurons, such as
periodic and chaotic bursting

https://github.com/OpenSourceBrain/
HindmarshRose1984

Showcases

NEST Showcase Examples of interactions with simulator NEST
https://github.com/OpenSourceBrain/
NESTShowcase

PyNN Showcase
Examples of interactions between NeuroML and
PyNN

https://github.com/OpenSourceBrain/
PyNNShowcase

NetPyNE Showcase
Examples of interactions between NeuroML and
NetPyNE

https://github.com/OpenSourceBrain/
NetPyNEShowcase

SBML Showcase
Examples of interactions between NeuroML and
SBML

https://github.com/OpenSourceBrain/
SBMLShowcase

Brian Showcase
Examples of interactions between NeuroML and
Brian

https://github.com/OpenSourceBrain/
BrianShowcase

MOOSE Showcase
Examples of interactions between NeuroML and
MOOSE

https://github.com/OpenSourceBrain/
MOOSEShowcase

Arbor Showcase
Examples of interactions between NeuroML and
Arbor

https://github.com/OpenSourceBrain/
ArborShowcase

EDEN Showcase
Examples of interactions between NeuroML and
EDEN

https://github.com/OpenSourceBrain/
EDENShowcase

The Virtual Brain Showcase Examples of interactions between NeuroML and
TVB

https://github.com/OpenSourceBrain/
TheVirtualBrainShowcase

Table 8 continued

Table 8 continued on next page

https://doi.org/10.7554/eLife.95135
https://github.com/OpenSourceBrain/FergusonEtAl2013-PVFastFiringCell
https://github.com/OpenSourceBrain/FergusonEtAl2013-PVFastFiringCell
https://github.com/OpenSourceBrain/FergusonEtAl2014-CA1PyrCell
https://github.com/OpenSourceBrain/FergusonEtAl2014-CA1PyrCell
https://github.com/OpenSourceBrain/CA1PyramidalCell
https://github.com/OpenSourceBrain/CA1PyramidalCell
https://github.com/OpenSourceBrain/PinskyRinzelModel
https://github.com/OpenSourceBrain/PinskyRinzelModel
https://github.com/OpenSourceBrain/WangBuzsaki1996
https://github.com/OpenSourceBrain/WangBuzsaki1996
https://github.com/OpenSourceBrain/MiglioreEtAl14_OlfactoryBulb3D
https://github.com/OpenSourceBrain/MiglioreEtAl14_OlfactoryBulb3D
https://github.com/openworm/hodgkin_huxley_tutorial
https://github.com/openworm/hodgkin_huxley_tutorial
https://github.com/OpenSourceBrain/FitzHugh-Nagumo
https://github.com/OpenSourceBrain/FitzHugh-Nagumo
https://github.com/OpenSourceBrain/PyloricNetwork
https://github.com/OpenSourceBrain/PyloricNetwork
https://github.com/openworm/muscle_model
https://github.com/openworm/c302
https://github.com/OpenSourceBrain/MorrisLecarModel
https://github.com/OpenSourceBrain/MorrisLecarModel
https://github.com/OpenSourceBrain/HindmarshRose1984
https://github.com/OpenSourceBrain/HindmarshRose1984
https://github.com/OpenSourceBrain/NESTShowcase
https://github.com/OpenSourceBrain/NESTShowcase
https://github.com/OpenSourceBrain/PyNNShowcase
https://github.com/OpenSourceBrain/PyNNShowcase
https://github.com/OpenSourceBrain/NetPyNEShowcase
https://github.com/OpenSourceBrain/NetPyNEShowcase
https://github.com/OpenSourceBrain/SBMLShowcase
https://github.com/OpenSourceBrain/SBMLShowcase
https://github.com/OpenSourceBrain/BrianShowcase
https://github.com/OpenSourceBrain/BrianShowcase
https://github.com/OpenSourceBrain/MOOSEShowcase
https://github.com/OpenSourceBrain/MOOSEShowcase
https://github.com/OpenSourceBrain/ArborShowcase
https://github.com/OpenSourceBrain/ArborShowcase
https://github.com/OpenSourceBrain/EDENShowcase
https://github.com/OpenSourceBrain/EDENShowcase
https://github.com/OpenSourceBrain/TheVirtualBrainShowcase
https://github.com/OpenSourceBrain/TheVirtualBrainShowcase

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 24 of 44

such as networks and neuronal models that reference multiple cell and ionic conductance definitions,
can also be exported into a COMBINE zip archive (Bergmann et al., 2014), a zip file that includes
metadata about its contents. pyNeuroML includes functions to easily create COMBINE archives from
NeuroML models and simulations (Figure 6).

OSB is designed so that researchers can share their code on their chosen platform (e.g. GitHub),
while retaining full control over write access to their repositories. Afterwards, a page for the model
can be created on OSB which lists the latest files present there, with links to OSB visualization/anal-
ysis/simulation features which can use the standardized files found in the resource.

NeuroML supports the embedding of structured ontological information in model descriptions
(Neal et al., 2019). Models can include NeuroLex (now InterLex) (Larson and Martone, 2013) identi-
fiers for their components (e.g. neuro_lex_id in Figure 6). This links model components to their biolog-
ical counterparts and makes them more transparent, findable, and reusable. For example, different
types of neurons and brain regions have unique ontological ids. A user can use these ids to search for
relevant model components on NeuroML-DB. More general information to maintain provenance can
also be included in NeuroML models (https://docs.neuroml.org/Userdocs/Provenance.html).

Reusing NeuroML models
NeuroML models, once openly shared, become community resources that are accessible to all.
Researchers can use models shared on NeuroML-DB and OSB without restrictions. Guide 5 in Table 5
provides an example of finding NeuroML-based model components using the API of NeuroML-DB,
and creating novel models incorporating these elements.

In addition to these platforms, other experimental data and model dissemination platforms also
provide standardized NeuroML versions of relevant models to promote uptake and reuse. For example, ​
NeuroMorpho.​org (Ascoli et al., 2007) includes a tool to download NeuroML compliant versions
of its cellular reconstructions (https://github.com/NeuroML/Cvapp-NeuroMorpho.org, https://docs.​
neuroml.org/Userdocs/Software/Tools/SWC.html). NeuroML versions of models released by organiza-
tions such as the Blue Brain Project (Markram et al., 2015) (whole cell models as well as ion channel
models from Channelpedia Ranjan et al., 2011), the Allen Institute for Brain Science (Billeh et al.,
2020), and the OpenWorm project (Gleeson et al., 2018) are also openly available for reuse (Table 8).

NeuroML can also interact with other standards to further promote model re-use. Whereas NeuroML
is a declarative standard, PyNN (Davison et al., 2008) is a procedural standard with a Python API for
creating network models that can be simulated on multiple simulators. NeuroML models which are
within the scope of PyNN can be converted to the PyNN format, and vice-versa. Similarly, NeuroML
also interacts with SONATA (Dai et al., 2020) data format by supporting the two way conversion
of the network structures of NeuroML models into SONATA. In standards not specific to neurosci-
ence, models from the well established SBML standard (Hucka et al., 2003) can be converted to
LEMS (Cannon et al., 2014), for inclusion in neuroscience-related modeling pipelines, and a subset
of NeuroML/LEMS models can be exported to SBML, which allows use with simulators and anal-
ysis packages compliant to this standard, e.g., Tellurium (Choi et al., 2018). Simulation execution
details of NeuroML/LEMS models can also be exported to Simulation Experiment Description Markup
Language (SED-ML) (Waltemath et al., 2011), allowing advanced resources such as Biosimulators
(Shaikh et al., 2022) (https://biosimulators.org) to feature NeuroML models.

Model Description URL

NEURON Showcase
Examples of interactions between NeuroML and
NEURON

https://github.com/OpenSourceBrain/
NEURONShowcase

neuroConstruct Showcase Examples of neuroConstruct projects
https://github.com/OpenSourceBrain/
neuroConstructShowcase

NeuroMorpho.Org
Examples of reconstructions from NeuroMorpho.
Org

https://github.com/OpenSourceBrain/
NeuroMorpho

Janelia MouseLight
Janelia MouseLight project neuronal
reconstructions

https://github.com/OpenSourceBrain/
MouseLightShowcase

Table 8 continued

https://doi.org/10.7554/eLife.95135
https://docs.neuroml.org/Userdocs/Provenance.html
https://github.com/NeuroML/Cvapp-NeuroMorpho.org
https://docs.neuroml.org/Userdocs/Software/Tools/SWC.html
https://docs.neuroml.org/Userdocs/Software/Tools/SWC.html
https://biosimulators.org
https://github.com/OpenSourceBrain/NEURONShowcase
https://github.com/OpenSourceBrain/NEURONShowcase
https://github.com/OpenSourceBrain/neuroConstructShowcase
https://github.com/OpenSourceBrain/neuroConstructShowcase
https://github.com/OpenSourceBrain/NeuroMorpho
https://github.com/OpenSourceBrain/NeuroMorpho
https://github.com/OpenSourceBrain/MouseLightShowcase
https://github.com/OpenSourceBrain/MouseLightShowcase

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 25 of 44

NeuroML is extensible
While the standard NeuroML elements (Tables 1 and 2) provide a broad range of curated model types
for simulation-based investigations, NeuroML can be extended (using LEMS) to incorporate novel
model elements and types when they are not (yet) available in the standard.

LEMS is a general purpose model specification language for creating fully machine readable defini-
tions of the structure and behavior of model elements (Cannon et al., 2014). The dynamics of NeuroML
elements are described in LEMS. The hierarchical nature of LEMS means that new elements can build
on pre-existing elements of the modular NeuroML framework. For example, a novel ionic conduc-
tance element can extend the ‘ionChannelHH’ element, which in turn extends ‘baseIonChannel.’ Thus,
the new element will be known to the NeuroML elements as depending on an external voltage and
producing a conductance, properties that are inherited from ‘baseIonChannel.’ Other elements, such
as a cell, can incorporate this new type without needing any other information about its internal
workings.

LEMS (and, therefore, NeuroML) element definitions (called ‘ComponentTypes’) specify the dynam-
ical behavior of the model element in terms of a list of yet to be set parameters. Once the generic
model behavior is defined, modelers only need to fill in the appropriate values of the required param-
eters (e.g. conductance density, reversal potential, etc.) to create new instances (called ‘Compo-
nents’) of the element (see Methods for more details). Users can, therefore create arbitrary, reusable
model elements in LEMS, which can be treated the same way as the standard model elements (for an
example see Guide 7 in Table 5).

Another major advantage of NeuroML’s use of the LEMS language is its translatability. Since LEMS
is fully machine readable, its primitives (e.g. state variables and their dynamics, expressed as ordinary
differential equations) can be readily mapped into other languages. As a result, simulator specific
code (Blundell et al., 2018) can be generated from NeuroML models and their LEMS extensions
(Figure 5), allowing NeuroML to remain simulator-independent while supporting multiple simulation
engines.

Newly created elements that may be of interest to the wider research community can be submitted
to the NeuroML Editorial Board for inclusion into the standard. The standard, therefore, evolves as
new model elements are added and improved versions of the standard and associated software tool
chain are regularly released to the community.

NeuroML is a global open community initiative
NeuroML is a global open community standard that is used and maintained collectively by a diverse
set of stakeholders. The NeuroML Scientific Committee (https://docs.neuroml.org/NeuroMLOrg/​
ScientificCommittee.html) and the elected NeuroML Editorial Board (https://docs.neuroml.org/​
NeuroMLOrg/Board.html) oversee the standard, the core tools, and the initiative. This ensures that
NeuroML supports the myriad of use cases generated by a multi-disciplinary computational modeling
community.

NeuroML is an endorsed INCF (Abrams et al., 2022) community standard (Martone and Das,
2019) and is one of the main standards of the international COMBINE initiative (Hucka et al.,
2015), which supports the development of other standards in computational biology as well (e.g.
SBML (Hucka et al., 2003) and CellML Lloyd et al., 2004). Participation in these organizations
guarantees that NeuroML follows current best practices in standardization, and remains linked to
and interoperable with other standards wherever possible. The NeuroML community also partic-
ipates in training and outreach activities such as Google Summer of Code (https://docs.neuroml.​
org/NeuroMLOrg/OutreachTraining.html), tutorials, and internships under these and other
organizations.

The NeuroML community maintains public open communication channels to ensure that all
community members can easily participate in troubleshooting, discussions, and development activ-
ities. A public mailing list (https://lists.sourceforge.net/lists/listinfo/neuroml-technology) is used for
asynchronous communication and announcements while open chat channels on Gitter (now Matrix/
Element (#/#​NeuroML_​community:​gitter.​im)) provide immediate access to the NeuroML community.
All software repositories hosted on GitHub also have issue trackers for software specific queries. A
community Code of Conduct (https://docs.neuroml.org/NeuroMLOrg/CoC.html) sets the standards
of communication and behavior expected on all community channels.

https://doi.org/10.7554/eLife.95135
https://docs.neuroml.org/NeuroMLOrg/ScientificCommittee.html
https://docs.neuroml.org/NeuroMLOrg/ScientificCommittee.html
https://docs.neuroml.org/NeuroMLOrg/Board.html
https://docs.neuroml.org/NeuroMLOrg/Board.html
https://docs.neuroml.org/NeuroMLOrg/OutreachTraining.html
https://docs.neuroml.org/NeuroMLOrg/OutreachTraining.html
https://lists.sourceforge.net/lists/listinfo/neuroml-technology
https://docs.neuroml.org/NeuroMLOrg/CoC.html

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 26 of 44

A crucial aim of NeuroML is to enable Open Science and ensure models in computational neuro-
science are FAIR. To this end, all development and discussions related to NeuroML are done publicly.
The schema, all core software tools, and relevant resources such as documentation are made freely
available under suitable Free/Open Source Software (FOSS) licenses on public platforms. Everyone
can, therefore, use, modify, study, and share all NeuroML artifacts without restriction. Users and devel-
opers are encouraged to contribute modifications and improvements to the schema and core tools
and to participate in the general maintenance and release process.

Discussion
NeuroMLv2 has matured into a widely adopted community standard for computational neurosci-
ence. Its modular, hierarchical structure can define a wide range of neuronal and circuit model types
including simplified representations and those with a high degree of biological detail. The standard-
ized, machine readable format of the NeuroMLv2/LEMS framework provides a flexible, common
language for communicating between a wide range of tools and simulators used to create, validate,
visualize, analyze, simulate, share, and reuse models. By enabling this interoperability, NeuroMLv2
has spawned a large ecosystem of interacting tools that cover all stages of the model development
life cycle, bringing greater coherence to a previously fragmented landscape. Moreover, the modular
nature of the model components and hierarchical structure conferred by NeuroMLv2, combined with
the flexibility of coding in Python, has created a powerful ‘building block’ approach for constructing
standardized models from scratch.

NeuroML has, therefore, evolved from a standardized archiving format into a mature language
that supports an ecosystem of tools for the creation and execution of models that support the FAIR
principles and promote open, transparent, and reproducible science.

Evolution of NeuroML and emergence of the NeuroMLv2 tool
ecosystem
NeuroML was conceived (Goddard et al., 2001) and developed (Gleeson et al., 2010) as a declar-
ative XML-based framework for defining biophysical models of neurons and networks in a standard-
ized form in order to compare model properties across simulators and to promote transparency and
reuse. NeuroML version 1 achieved these aims and was mainly used to archive and visualize existing
models (Gleeson et al., 2010). Building on this, the subsequent development of the NeuroMLv2/
LEMS framework provided a way to describe models as a hierarchical set of components with dimen-
sional parameters and state variables, so that their structure and dynamics are fully machine readable
(Cannon et al., 2014). This enabled models to be losslessly mapped to other representations, greatly
promoting interoperability between tools through read-write and automated code generation (Blun-
dell et al., 2018). As NeuroMLv2 matured and became a community standard recognized by the INCF
with a formal governance structure, an increasingly wide range of models and modeling tools have
been developed or modified to be NeuroMLv2 compliant (Tables 8, 3 and 4). The core tools, main-
tained directly by the NeuroML developers (Figure 4), provide functionality to read, modify, or create
new NeuroML models, as well as to analyze and visualize, and simulate the models. Furthermore,
there are now a larger number of tools that have been developed by other members of the commu-
nity (Figure 3) including a neuronal simulator designed specifically for NeuroMLv2 (Panagiotou et al.,
2022). The emergence of an ecosystem of NeuroMLv2 compliant tools enables modelers to build tool
chains that span the model life cycle and build and reuse standardized models.

NeuroML and other standards in computational neuroscience
Several other standards and formats exist to support computational modeling of neuronal systems.
Whereas NeuroML is a modular, declarative simulator independent standard for biophysical neuronal
modeling, PyNN (Davison et al., 2008) and SONATA (Dai et al., 2020) provide a procedural Python-
based simulator independent API and a framework for efficiently handling large-scale network simula-
tions, respectively. Even though there is some overlap in the functionality provided by these standards,
they each target distinct use cases and have their own goals and features. The teams developing these
standards work in concert to ensure that they remain interoperable with each other, frequently sharing
methods and techniques (Dai et al., 2020). This allows researchers to use their standard of choice and

https://doi.org/10.7554/eLife.95135

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 27 of 44

easily combine with another if the need arises. PyNN and SONATA are, therefore, integral parts of the
wider NeuroML ecosystem.

Why using NeuroML and Python promotes the construction of FAIR
models
The modular and hierarchical structure of NeuroMLv2, when combined with Python, provides a
powerful combination of structured declarative elements and flexible procedural approaches that
enables a ‘Lego-like’ building block approach for constructing biologically detailed models (Cayco-
Gajic et al., 2017; Billings et al., 2014; Kriener et al., 2022; Gurnani and Silver, 2021). This has
been advanced by the development of pyNeuroML, which provides a single installable package
offering direct access to a range of functionality for handling NeuroML models (Figure 6). More-
over, the web-based documentation of NeuroMLv2, with multiple Python scripts illustrating the usage
of the language and associated tools (Table 5), has recently been updated and expanded (https://​
docs.neuroml.org). This provides a central resource for both new and experienced users of NeuroML
supporting its use in model building. As the examples of this resource illustrate, building models
using NeuroMLv2 is efficient and intuitive, as the model components are pre-made and how they fit
together specified. The structured format allows APIs like libNeuroML to incorporate features such as
auto-completion and inline validation of model parameters and structure as scripts are being devel-
oped. In addition, automated multi-stage model validation ensures the code, equations and internal
structure are validated against the NeuroML schema minimizing human errors and model simulations
outputs are within acceptable bounds (Figure 7). The NeuroMLv2 ecosystem also provides convenient
ways to visualize and inspect the inner structure of models. pyNeuroML provides Python functions
and corresponding command line utilities to view neuronal morphology (Figure 8), neuronal electro-
physiology (Figure 10), circuit connectivity and schematics (Figure 9). In addition, custom analysis
pipelines and advanced neuroinformatics resources can easily be built using the APIs. For example,
loading a NeuroML model of a neuron into OSB enables visualization of the morphology and the
spatial distribution of ionic conductance over the membrane as well as inspection of the conductance
state variables, while the connectivity and synaptic weight matrices can be automatically displayed for
circuit models (Figure 8; Gleeson et al., 2019b). Such features of OSB, which are made possible by
the structured format of NeuroMLv2, promote model transparency, reproducibility, and sharing. By
enabling the development and sharing of well tested and transparent models the wider NeuroMLv2
ecosystem promotes Open Science.

Limitations of NeuroML and current work
A limitation of any standardized framework is that there will always be models and model elements
that fall outside the current scope of the standard. Although NeuroML suffers from this limitation, the
underlying LEMS-based framework provides a flexible route to develop a wide range of new types
of physio-chemical models (Cannon et al., 2014). This is relatively straightforward if the new model
component, such as a synaptic plasticity mechanism, fits within the existing hierarchical structure of
NeuroMLv2 as the new type of synaptic element can build on an existing base synapse type which
specifies the relevant input and outputs (e.g. local voltage and synaptic current). For more radical
shifts in model types (e.g. neuronal morphologies that grow during learning) that do not fit neatly into
the current NeuroMLv2 schema, structural changes to the language would be required. This route
is more involved as the pros and cons of changes to the structure of NeuroMLv2 would need to be
considered by the Scientific Committee and, if approved, implemented by the Editorial Board.

Whereas the current scope of NeuroMLv2 encompasses models of spiking neurons and networks
at different levels of biological detail, plans are in place to extend its scope to include more abstract,
rate-based models of neuronal populations (e.g. see Wilson and Cowan, 1972; Mejias et al., 2016
in Table 8). Additionally, work is under way to extend current support for SBML (Hucka et al., 2003)
based descriptions of chemical signaling pathways (Cannon et al., 2014), to enable better biochem-
ical descriptions of sub-cellular activity in neurons and synapses.

There is a growing interest in the field for the efficient generation and serialization of large-scale
network models, containing numbers of neurons closer to their biological equivalents (Markram et al.,
2015; Billeh et al., 2020; Einevoll et al., 2019). While a multitude of applications in the NeuroML
ecosystem support large-scale model generation (e.g. NetPyNE, neuroConstruct, PyNN), the default

https://doi.org/10.7554/eLife.95135
https://docs.neuroml.org
https://docs.neuroml.org

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 28 of 44

serialization of NeuroML (XML) is inefficient for reading/writing/storing such extensive descriptions.
NeuroML does have an internal format for serializing in the binary format HDF5 (see Methods), but
has also recently added support for export of models to the SONATA data format (Dai et al., 2020)
allowing efficient serialization of large-scale models. Even though individual instances of large-scale
models are useful, the ability to generate families of these for multiple simulation runs and more
particularly a way to encapsulate, examine and reuse templates for network models, is also required.
A prototype package, NeuroMLlite (https://github.com/NeuroML/NeuroMLlite), has been developed
which allows these concise network templates to be described and multiple instances of networks to
be generated, and facilitates interaction with simulation platforms and efficient serialization formats.

As discoveries and insights in neuroscience inform machine learning and visa versa, there is an
increasing need to develop a common framework for describing both biological and artificial neural
networks. Model Description Format (MDF) has been developed to address this (Gleeson et al.,
2023). This initiative has developed a standardized format, along with a Python API, which allows
the specification of artificial neural networks (e.g. Convolutional Neural Networks, Recurrent Neural
Networks) and biological neurons using the same underlying entities. Support for mapping MDF to/
from NeuroMLv2/LEMS has been included from the start. This work will enable deeper integration of
computational neuroscience and ‘brain-inspired’ networks in Artificial Intelligence (AI).

Conclusion and vision for the future
NeuroMLv2 is already a mature community standard that provides a framework for standardizing
biologically detailed neuronal network models. By providing a stable, common framework defining
the essential entities required for biologically detailed neuronal modeling, NeuroML has spawned an
ecosystem of tools that span all stages of the model development life cycle. In the short term, we
envision the functionality of NeuroML to expand further and for new online resources that encourage
the construction of FAIR models using pyNeuroML to be taken up by the community. The NeuroML
development team are also beginning to explore how to combine NeuroML-based circuit models with
musculo-skeletal simulations to enable models of the neural control of behavior. In the longer term,
developing seamless interfaces between NeuroML and other domain specific standards will enable
the development of more holistic models of the neural control of body systems across a wide range of
organisms, as well as greater exchange of models and insights between computational neuroscience
and AI.

Materials and methods
NeuroMLv2 is formally specified by the NeuroMLv2 XML schema, which defines the allowed structure
of XML files which comply to the standard, and the LEMS ComponentType definitions, which define
the internal state variables of the underlying elements, providing a machine-readable specification of
the time evolution of model components. The specification is backed up by a suite of software tools
that support the model life cycle and the accompanying usage and development documentation.

We illustrate the key parts of this framework using the HindmarshRose cell model (Hindmarsh and
Rose, 1984; Figure 11), which as an abstract point neuron model, serves as an appropriate simple
NeuroMLv2 ComponentType.

The NeuroML XML Schema
We begin with the NeuroMLv2 standard. The standard consists of two parts, each serving different
functions:

1.	 the NeuroMLv2 XML schema
2.	 corresponding LEMS component type definitions

The NeuroMLv2 schema is a language independent data model that constrains the structure of a
NeuroMLv2 model description. The NeuroML schema is formally described as an XML Schema docu-
ment (https://neuroml.org/schema/neuroml2) in the XML Schema Definition (XSD) format, a recom-
mendation of the World Wide Web Consortium (W3C) (https://www.w3.org/TR/xmlschema-1/). An
XML document that claims to conform to a particular schema can be validated against the schema. All
NeuroMLv2 model descriptions can, therefore, be validated against the NeuroMLv2 schema.

https://doi.org/10.7554/eLife.95135
https://github.com/NeuroML/NeuroMLlite
https://neuroml.org/schema/neuroml2
https://www.w3.org/TR/xmlschema-1/

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 29 of 44

The basic building blocks of an XSD schema are ‘simple’ or ‘complex’ types and their ‘attributes.’
All types are created as ‘extensions’ or ‘restrictions’ of other types. Complex types may contain other
types and attributes whereas simple types may not. Figure 12 shows some example types defined
in the NeuroMLv2 schema. For example, the Nml2Quantity_none simple type restricts the in-built
‘string’ type using a regular expression ‘pattern’ that limits what string values it can contain. The type
is Nml2Quantity_none is to be used for unit-less quantities (e.g. 3, 6.7, –1.1e-5) and the restriction
pattern for translates to ‘a string that may start with a hyphen (negative sign), followed by any number
of numerical characters (potentially containing a decimal point) and a string containing capital or
small ‘e’ (to specify the exponent).’ The restriction pattern for the Nml2Quantity_voltage type is
similar, but must be followed by a ‘V’ or ‘mV.’ In this way, the restriction ensures that a value of type
‘Nml2Quantity_voltage’ represents a physical voltage quantity with units ‘V’ (volt) or ‘mV’ (millivolt).
Furthermore, a NeuroMLv2 model description that uses a voltage value that does not match this
pattern, for example ‘0.5 s,’ will be invalid.

The example of a complex type in Figure 12 is the HindmarshRose1984Cell type that extends
the BaseCellMembPotCap complex type (the base type for any cell producing a membrane potential

a. NeuroML model description serialization

<neuroml xmlns="http://www.neuroml.org/schema/neuroml2"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.neuroml.org/schema/neuroml2
https://raw.github.com/NeuroML/NeuroML2/development/Schemas/NeuroML2/NeuroML_v2.3.xsd"
id="HindmarshRoseNeuron">

<hindmarshRose1984Cell id="hr_regular_bursting" C="28.57142857pF" a="1.0" b="3.0"
c="-3.0" d="5.0" s="4.0" x1="-1.3" r="0.002" x0="-1.1" y0="-9" z0="1.0"
v_scaling="1.0mV"/>

<pulseGenerator id="pulseGen_0" delay="0s" duration="1000s" amplitude="5nA"/>

<network id="HRNet">
<population id="HRPop0" component="hr_regular_bursting" size="1"/>
<explicitInput target="HRPop0[0]" input="pulseGen_0" destination="synapses"/>

</network>
</neuroml>

b.

Figure 11. Example model description of a HindmarshRose1984Cell NeuroML component. (a) XML serialization of
the model description containing the main hindmarshRose1984Cell element with a set of parameters which result
in regular bursting. A current clamp stimulus is applied using a pulseGenerator, and a population of one cell is
added with this in a network. This XML can be validated against the NeuroML Schema. (b) Membrane potentials
generated from a simulation of the model in (a). The LEMS simulation file to execute this is shown in Figure 15.
The code used in this example is available here: https://github.com/OpenSourceBrain/HindmarshRose1984/tree/
master/NeuroML2/examples.

https://doi.org/10.7554/eLife.95135
https://github.com/OpenSourceBrain/HindmarshRose1984/tree/master/NeuroML2/examples
https://github.com/OpenSourceBrain/HindmarshRose1984/tree/master/NeuroML2/examples

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 30 of 44

v with a capacitance parameter C), and defines new ‘required’ (compulsory) attributes. These attri-
butes are of simple types—these are all unit-less quantities apart from v_scaling, which has dimen-
sion voltage. Note that inherited attributes are not re-listed in the complex type definition—the
compulsory capacitance attribute, C, is inherited here from BaseCellMembPotCap.

The NeuroMLv2 schema serves multiple critical functions. A variety of tools and libraries support
the validation of files against XSD schema definitions. Therefore, the NeuroMLv2 schema enables
the validation of model descriptions—model structure, parameters, parameter values and their units,
cardinality, element positioning in the model hierarchy (level 1 validation in Figure 7)—prior to simu-
lation. XSD schema definitions, as language independent data models, also allow the generation of
APIs in different languages. More information on how APIs in different languages are generated using
the NeuroMLv2 XSD schema definition is provided in later sections.

The NeuroMLv2 XSD schema is also released and maintained as a versioned artifact, similar to
the software packages. The current version is 2.3, and can be found in the NeuroML2 repository on
GitHub (https://github.com/NeuroML/NeuroML2/tree/master/Schemas/NeuroML2).

LEMS ComponentType definitions
The second part of the NeuroMLv2 standard consists of the corresponding LEMS ComponentType
definitions. Whereas the XSD Schema describes the structure of a NeuroMLv2 model description, the
LEMS ComponentType definitions formally describe the dynamics of the model elements.

<xs:simpleType name="Nml2Quantity_none"> <!-- For dimensionless parameters -->
<xs:restriction base="xs:string">

<xs:pattern value="-?([0-9]*(\.[0-9]+)?)([eE]-?[0-9]+)?"/>
</xs:restriction>

</xs:simpleType>

<xs:simpleType name="Nml2Quantity_voltage"> <!-- For params with dimension voltage -->
<xs:restriction base="xs:string">

<xs:pattern value="-?([0-9]*(\.[0-9]+)?)([eE]-?[0-9]+)?[\s]*(V|mV)"/>
</xs:restriction>

</xs:simpleType>

<xs:complexType name="HindmarshRose1984Cell">
<xs:annotation>

<xs:documentation>The Hindmarsh Rose model is a simplified point cell model which
captures complex firing patterns of single neurons, such as
periodic and chaotic bursting...

</xs:documentation>
</xs:annotation>
<xs:complexContent>

<xs:extension base="BaseCellMembPotCap">
<xs:attribute name="a" type="Nml2Quantity_none" use="required"/>
<xs:attribute name="b" type="Nml2Quantity_none" use="required"/>
<xs:attribute name="c" type="Nml2Quantity_none" use="required"/>
<xs:attribute name="d" type="Nml2Quantity_none" use="required"/>
<xs:attribute name="s" type="Nml2Quantity_none" use="required"/>
<xs:attribute name="x1" type="Nml2Quantity_none" use="required"/>
<xs:attribute name="r" type="Nml2Quantity_none" use="required"/>
<xs:attribute name="x0" type="Nml2Quantity_none" use="required"/>
<xs:attribute name="y0" type="Nml2Quantity_none" use="required"/>
<xs:attribute name="z0" type="Nml2Quantity_none" use="required"/>
<xs:attribute name="v_scaling" type="Nml2Quantity_voltage" use="required"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>

Figure 12. Type definitions taken from the NeuroMLv2 schema (https://github.com/NeuroML/NeuroML2/
blob/master/Schemas/NeuroML2/NeuroML_v2.3.1.xsd) which describes the structure of NeuroMLv2 elements.
Top: ‘simple’ types may not include other elements or attributes. Here, the Nml2Quantity_none and
Nml2Quantity_voltage types define restrictions on the default string type to limit what strings can be used
as valid values for attributes of these types. Bottom: example of a ‘complex’ type, the HindmarshRose cell model
(Hindmarsh and Rose, 1984), that can also include other elements of other types, and extend other types.

https://doi.org/10.7554/eLife.95135
https://github.com/NeuroML/NeuroML2/tree/master/Schemas/NeuroML2
https://github.com/NeuroML/NeuroML2/blob/master/Schemas/NeuroML2/NeuroML_v2.3.1.xsd
https://github.com/NeuroML/NeuroML2/blob/master/Schemas/NeuroML2/NeuroML_v2.3.1.xsd

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 31 of 44

LEMS (Cannon et al., 2014) is a domain independent general purpose machine-readable language
for describing models and their simulations. A complete description of LEMS is provided in Cannon
et al., 2014 and in our documentation (https://docs.neuroml.org/Userdocs/LEMSSchema.html). Here,
we limit ourselves to a short summary necessary for understanding the NeuroMLv2 ComponentType
definitions.

LEMS allows the definition of new model types called ComponentTypes. These are formal descrip-
tions of how a generic model element of that type behaves (the ‘dynamics’), independent of the
specific set of parameters in any instance. To describe the dynamics, such descriptions must list any
necessary parameters that are required, as well as the time-varying state variables. The dimensions
of these parameters and state variables must be specified, and any expressions involving them must
be dimensionally consistent. An instance of such a generic model is termed a Component and can
be instantiated from a ComponentType by providing the necessary parameters. One can think of
ComponentTypes as user defined data types similar to ‘classes’ in many programming languages and
Components as ‘objects’ of these types with particular sets of parameters. Types in LEMS can also
extend other types, enabling the construction of a hierarchical library of types. In addition, since LEMS
is designed for model simulation, ComponentType definitions also include other simulation-related
features such as Exposures, specifying quantities that may be accessed/recorded by users.

For model elements included in the NeuroML standard, there is a one-to-one mapping between
types specified in the NeuroML XSD schema and LEMS ComponentTypes, with the same parameters
specified in each. The addition of new model elements to the NeuroML standard, therefore, requires
the addition of new type definitions to both the XSD schema and the LEMS definitions. New user
defined ComponentTypes, nevertheless, can be defined in LEMS and used freely in models, and
these do not need to be added to the standard before use. The only limitation here is that new user
defined ComponentTypes cannot be validated against the NeuroML schema since their type defini-
tions will not be included there.

Figure 13 shows the ComponentType definition for the HindmarshRose1984Cell model
element. Here, the HindmarshRose1984Cell ComponentType extends baseCellMembPotCap
and inherits its elements. The ComponentType includes parameters that users must provide when
creating a new instance (component): ‍a, b, c, d, r, v, x1, v_scaling‍.

Other parameters, ‍x0‍, ‍y0‍, and ‍z0‍ are used to initialize the three state variables of the model, ‍x, y, z‍.
x is the proxy for the membrane potential of the cell used in the original formulation of the model
(Hindmarsh and Rose, 1984) and is here scaled by a factor ‍v_scaled‍ to expose a more physiological
value for the membrane potential of the cell in StateVariable ‍v‍. A Constant, ‍MSEC‍, is defined
to hold the value of ‍1 ms‍ for use in the ComponentType. Next, an Attachment enables the addition
of entities that would provide external inputs to the ComponentType. Here, synapses are Attach-
ments of the type basePointCurrent and provide synaptic current input to this ComponentType.

The Dynamics block lists the mathematical formalism required to simulate the ComponentType.
By default, variables defined in the Dynamics block are private, i.e., they are not visible outside the
ComponentType. To make these visible to other ComponentTypes and to allow users to record
them, they must be connected to Exposures. Exposures for this ComponentType include the three
state variables and also the internal derived variables, which while not used by other components,
are useful in inspecting the ComponentType and its dynamics. An extra exposure, ‍spiking‍, is added
to allow other NeuroML components access to the spiking state of the cell that will be determined in
the Dynamics block.

StateVariable definitions are followed by DerivedVariables, variables whose values depend
on other variables but are not time derivatives (which are handled separately in TimeDerivative
blocks (below)). The total synaptic current, ‍iSyn‍, is a summation of all the synaptic currents, ‍i‍ received
by the synapses that may be attached on to this ComponentType. The synapse[*]/i value of the
select field tells LEMS to collect all the i exposures from any synapses Attachments, and the add
value of the reduce field tells LEMS to sum the multiple values. As noted, ‍x‍ is a scaled version of the
membrane potential variable, ‍v‍. This is followed by the three derived variables, ‍phi‍, ‍chi‍, ‍rho‍ where:

	﻿‍ phi = y − ax3 + bx2
‍� (1)

	﻿‍ chi = c − dx2 − y‍� (2)

https://doi.org/10.7554/eLife.95135
https://docs.neuroml.org/Userdocs/LEMSSchema.html

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 32 of 44

	﻿‍ rho = s(x − x1) − z‍� (3)

The total membrane potential of the cell, ‍iMemb‍, is calculated as the sum of the capacitive current
and the synaptic current:

	﻿‍
iMemb = C(v_scaling(phi − z))

MSEC
+ iSyn

‍�
(4)

<ComponentType name="hindmarshRose1984Cell" extends="baseCellMembPotCap" description="The Hindmarsh Rose
model">
<Parameter name="a" dimension="none" description="cubic term in x nullcline"/>
<Parameter name="b" dimension="none" description="quadratic term in x nullcline"/>
<Parameter name="c" dimension="none" description="constant term in y nullcline"/>
<Parameter name="d" dimension="none" description="quadratic term in y nullcline"/>
<Parameter name="r" dimension="none" description="timescale separation between slow and fast subsystem (r

greater than 0; r much less than 1)"/>
<Parameter name="s" dimension="none" description="related to adaptation"/>
<Parameter name="x1" dimension="none" description="related to the system s resting potential"/>
<Parameter name="v_scaling" dimension="voltage" description="scaling of x for physiological membrane

potential"/>

<!-- Initial Conditions -->
<Parameter name="x0" dimension="none"/>
<Parameter name="y0" dimension="none"/>
<Parameter name="z0" dimension="none"/>

<Constant name="MSEC" dimension="time" value="1ms"/>

<Attachments name="synapses" type="basePointCurrent"/>

<Exposure name="x" dimension="none"/>
<Exposure name="y" dimension="none"/>
<Exposure name="z" dimension="none"/>
<Exposure name="phi" dimension="none"/>
<Exposure name="chi" dimension="none"/>
<Exposure name="rho" dimension="none"/>
<Exposure name="spiking" dimension="none"/>
<Dynamics>

<StateVariable name="v" dimension="voltage" exposure="v"/>
<StateVariable name="y" dimension="none" exposure="y"/>
<StateVariable name="z" dimension="none" exposure="z"/>
<StateVariable name="spiking" dimension="none" exposure="spiking"/>

<DerivedVariable name="iSyn" dimension="current" exposure="iSyn" select="synapses[*]/i" reduce="add" />
<DerivedVariable name="x" dimension="none" exposure="x" value="v / v_scaling"/>
<DerivedVariable name="phi" dimension="none" exposure="phi" value="y - a * x^3 + b * x^2"/>
<DerivedVariable name="chi" dimension="none" exposure="chi" value="c - d * x^2 - y"/>
<DerivedVariable name="rho" dimension="none" exposure="rho" value="s * (x - x1) - z"/>
<DerivedVariable name="iMemb" dimension="current" exposure="iMemb"

value="(C * (v_scaling * (phi - z) / MSEC)) + iSyn"/>

<TimeDerivative variable="v" value="iMemb/C"/>
<TimeDerivative variable="y" value="chi / MSEC"/>
<TimeDerivative variable="z" value="r * rho / MSEC"/>

<OnStart>
<StateAssignment variable="v" value="x0 * v_scaling"/>
<StateAssignment variable="y" value="y0"/>
<StateAssignment variable="z" value="z0"/>

</OnStart>
<OnCondition test="v .gt. 0 .and. spiking .lt. 0.5">

<StateAssignment variable="spiking" value="1"/>
<EventOut port="spike"/>

</OnCondition>
<OnCondition test="v .lt. 0">

<StateAssignment variable="spiking" value="0"/>
</OnCondition>

</Dynamics>
</ComponentType>

Figure 13. LEMS ComponentType definition of the HindmarshRose cell model (Hindmarsh and Rose, 1984,
https://github.com/NeuroML/NeuroML2/blob/master/NeuroML2CoreTypes/Cells.xml).

https://doi.org/10.7554/eLife.95135
https://github.com/NeuroML/NeuroML2/blob/master/NeuroML2CoreTypes/Cells.xml

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 33 of 44

‍v, y, z‍ are TimeDerivatives, with the ‘value’ representing the rate of change of each variable:

	﻿‍ dv/dt = iMemb/C‍� (5)

	﻿‍ dy/dt = chi/MSEC‍� (6)

	﻿‍ dz/dt = (r × rho)/MSEC‍� (7)

The final few blocks set the initial state of the component (OnStart),

	﻿‍ v = x0 × v_scaling‍� (8)

	﻿‍ y = y0‍� (9)

	﻿‍ z = z0‍� (10)

and define conditional expressions to set the spiking state of the cell:

	﻿‍

spiking =





1 if (v > 0) ∧ (spiking < 0.5)

0 if (v < 0)
‍�

(11)

Both the XSD schema and the LEMS ComponentType definitions enable model validation.
However, despite some overlap, they support different types of validation. Whereas the XSD schema
allows for the validation of model descriptions (e.g. the XML files), the LEMS ComponentType defini-
tions enable validation of model instances, i.e., the ‘runnable’ instances of models that are constructed
once components have been created by instantiating ComponentTypes with the necessary parame-
ters, and various attachments created between source and target components. A model description
may be used to create many different model instances for simulation. Indeed, it is common practice to
run models that include stochasticity with different seeds for random number generators to verify the
robustness of simulation results. Thus, the validation of dimensions and units that LEMS carries out is
done only after a runnable instance of a model has been created.

The LEMS ComponentType definitions for NeuroMLv2 are also maintained as versioned files that
are updated along with the XSD schema. These can also be seen in the NeuroMLv2 GitHub repos-
itory (https://github.com/NeuroML/NeuroML2/tree/master/NeuroML2CoreTypes). An index of the
ComponentTypes included in version 2.3 of the NeuroML standard, with links to online documenta-
tion, is also provided in Tables 1 and 2.

NeuroML APIs
The NeuroMLv2 software stack relies on the NeuroML APIs that provide functionality to read, write,
validate, and inspect NeuroML models. The APIs are programmatically generated from the machine
readable XSD schema, thus ensuring that the class for defining a specific NeuroML element in a given
language (e.g. Java) has the correct set of fields with the appropriate type (e.g. float or string) corre-
sponding to the allowed parameters in the corresponding NeuroML element. NeuroMLv2 currently
provides APIs in numerous languages—Python (libNeuroML which is generated via generateDS
(http://www.davekuhlman.org/generateDS.html)), Java (​org.​neuroml.​model via JAXB XJC (https://​
javaee.github.io/jaxb-v2/)), C++ (NeuroML_CPP via XSD (https://www.codesynthesis.com/products/​
xsd/)) and MATLAB (NeuroMLToolbox which accesses the Java API from MATLAB), and APIs for
other languages can also be easily generated as required. LEMS is also supported by a similar set of
APIs—PyLEMS in Python, and jLEMS in Java—and since a NeuroMLv2 model description is a set of
LEMS Components, the LEMS APIs also support them (e.g. the hindmarshRose1984Cell example
in Figure 11 could be loaded by jLEMS and treated as a LEMS Component).

Figure 14 shows the use of the NeuroML Python API to describe a model with one HindmarshRose
cell. In Python, the instances of ComponentTypes, their Components, are represented as Python
objects. The hr0 Python variable stores the created HindmarshRose1984Cell component/object.
This is added to a Population pop0 in the Network net. The network also includes a PulseGen-
erator with amplitude 5 nA as an ExplicitInput that is targeted at the cell in the population. The
model description is serialized to XML (Figure 11) and validated. Note that as the standard conven-
tion for classes in Python is to use capitalized names, HindmarshRose1984Cell is used in Python
but is serialized as <hindmarshRose1984Cell>in the XML. Users can either share the Python script

https://doi.org/10.7554/eLife.95135
https://github.com/NeuroML/NeuroML2/tree/master/NeuroML2CoreTypes
http://www.davekuhlman.org/generateDS.html
https://javaee.github.io/jaxb-v2/
https://javaee.github.io/jaxb-v2/
https://www.codesynthesis.com/products/xsd/
https://www.codesynthesis.com/products/xsd/

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 34 of 44

itself or share the XML serialization. Any valid XML serialization can be also loaded into a Python
object model and modified.

XML is the default serialization of NeuroML and all existing APIs can read and write the format (and
it should be seen as a minimal requirement for new APIs to support XML). There is, however, an alter-
native HDF5 (https://www.hdfgroup.org/solutions/hdf5) based serialization of NeuroML files which is
supported by both libNeuroML and the Java API, ​org.​neuroml.​model (https://docs.neuroml.org/User-
docs/HDF5.html). This format is based on an efficient representation of cell positions and connectivity
data as HDF5 data sets which can be serialized in compact binary format and loaded into memory
for optimized access (e.g. as numpy arrays in libNeuroML). This reduces the size of the saved files for
large-scale networks and speeds up loading/writing models eliminating the need to parse/generate
large text files containing XML. Models serialized in this format can be loaded and transformed to
simulator code in the same way as XML-based models by the Java and Python APIs.

Simulating NeuroML models
The model description shown in Figure 11 contains no information about how it is to be simulated,
or on the dynamics of each model component. Providing this simulation information and linking in
the ComponentType definition requires creating a LEMS file to fully specify the simulation. Figure 15
shows the use of utilities included in the Python pyNeuroML package to describe a LEMS simulation
of the HindmarshRose model defined in Figure 11. The LEMSSimulation object includes simulation
specific information such as the duration of the simulation, the integration time step, and the seed
value. It also allows the specification of files for the storage of data recorded from the simulation. In
this example, we record the membrane potential, ‍v‍, of our cell in its population, HRPop0[0]. Similar
to the NeuroMLv2 model description, the simulation object can also be serialized to XML for storage
and sharing (Figure 15, bottom).

As noted previously, NeuroML/LEMS model and simulation descriptions are machine readable and
simulator independent and can be simulated by simulation engines using a multitude of strategies
(Figure 5).

The first category of tools consists of the reference NeuroML and LEMS simulation engines. These
work directly with NeuroML and LEMS as their base descriptions of modeling entities and do not

Create a new HindmarshRose cell component with parameters for regular spiking

nml_doc = component_factory("NeuroMLDocument", id="HindmarshRoseNeuron")
hr0 = nml_doc.add("HindmarshRose1984Cell", id="hr_regular", a="1.0", b="3.0", c="-3.0", d="5.0",

s="4.0", x1="-1.3", r="0.002", x0="-1.1", y0="-9", z0="1.0", C="28.57142857pF",
v_scaling="35.0mV")

net = nml_doc.add("Network", id="HRNet", validate=False)

Create a population of cells (1 cell)

pop0 = net.add("Population", id="HRPop0", component=hr0.id, size=1)

Add external stimuli to the population

pg = nml_doc.add("PulseGenerator", id="pulseGen_%i" % 0, delay="0s", duration="1000s",
amplitude="5nA")

exp_input = net.add("ExplicitInput", target="%s[%i]" % (pop0.id, 0), input=pg.id,
destination="synapses")

Save (serialize) the model to a file

nml_file = hindmarshrose1984_single_cell_network.nml
writers.NeuroMLWriter.write(nml_doc, nml_file)

Validate the model

validate_neuroml2(nml_file)

Figure 14. Example model description of a HindmarshRose1984Cell NeuroML component in Python using
parameters for regular bursting. This script generates the XML in Figure 11. The code used in this example is
available here: https://github.com/OpenSourceBrain/HindmarshRose1984/tree/master/NeuroML2/examples.

https://doi.org/10.7554/eLife.95135
https://www.hdfgroup.org/solutions/hdf5
https://docs.neuroml.org/Userdocs/HDF5.html
https://docs.neuroml.org/Userdocs/HDF5.html
https://github.com/OpenSourceBrain/HindmarshRose1984/tree/master/NeuroML2/examples

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 35 of 44

have their own specific formats. They are maintained by the NeuroML Editorial Board—jLEMS, jNeu-
roML, and PyLEMS (Figure 4). jLEMS serves as the reference implementation for the LEMS language
and as such it can simulate any model described in LEMS (not necessarily from neuroscience). When
coupled with the LEMS definitions of NeuroML standard entity structure/dynamics, it can simulate
most NeuroML models, though it does not currently support multi-compartmental neurons. jNeu-
roML bundles the NeuroML standard LEMS definitions, jLEMS, and other functionality into a single
package for ease of installation/usage. There is also a pure Python implementation of a LEMS inter-
preter, PyLEMS, which can be used in a similar way to jLEMS. The pyNeuroML package encapsulates
all of these tools to give easy access (at both command line and in Python) to all of their functionality
(Figure 6).

The second category consists of other simulators which support NeuroML natively. The EDEN
simulator is an independently developed tool that was designed from its inception to read NeuroML
and LEMS models for efficient, parallel simulation (Panagiotou et al., 2022).

The third category involves simulators which have their own internal formats and include methods
to translate NeuroMLv2/LEMS models to their own formats. Examples include NetPyNE (Dura-Bernal
et al., 2019), MOOSE (Ray and Bhalla, 2008), and N2A (Rothganger et al., 2014).

The fourth category comprises tools for which the NeuroML tools generate simulator specific scripts.
The simulation engines then execute these scripts, similar to how they would execute handwritten

Create a simulation of the model

simulation_id = "example-single-hindmarshrose1984cell-sim"
simulation = LEMSSimulation(sim_id=simulation_id, duration=1.4e3, dt=0.0025, simulation_seed=123)
simulation.assign_simulation_target(net.id)
simulation.include_neuroml2_file(nml_file)

Record membrane potential to an output file

simulation.create_output_file("output0", "%s.v.dat" % simulation_id)
simulation.add_column_to_output_file("output0", HRPop0[0] , HRPop0[0]/v)

Save the simulation to file and run it in jNeuroML/jLEMS

lems_simulation_file = simulation.save_to_file()
pynml.run_lems_with_jneuroml(lems_simulation_file, max_memory="2G", nogui=True, plot=False)

LEMS simulation description serialization

<Lems>
<!-- Specify which component to run -->
<Target component="example-single-hindmarshrose1984cell-sim"/>

<!-- Include core NeuroML2 ComponentType definitions -->
<Include file="Cells.xml"/>
<Include file="Networks.xml"/>
<Include file="Simulation.xml"/>

<Include file="hindmarshrose1984_single_cell_network.nml"/>

<Simulation id="example-single-hindmarshrose1984cell-sim" length="1400.0ms" step="0.0025ms"
target="HRNet" seed="123"> <!-- Note seed: ensures same random numbers used every run
-->
<OutputFile id="output0" fileName="example-single-hindmarshrose1984cell-sim.v.dat">

<OutputColumn id="HRPop0[0]" quantity="HRPop0[0]/v"/>
</OutputFile>

</Simulation>
</Lems>

Figure 15. An example simulation of the HindmarshRose model description shown in Figure 14 with the
LEMS serialization shown at the bottom. The code used in this example is available here: https://github.com/
OpenSourceBrain/HindmarshRose1984/tree/master/NeuroML2/examples.

https://doi.org/10.7554/eLife.95135
https://github.com/OpenSourceBrain/HindmarshRose1984/tree/master/NeuroML2/examples
https://github.com/OpenSourceBrain/HindmarshRose1984/tree/master/NeuroML2/examples

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 36 of 44

user scripts. These include NEURON (Hines and Carnevale, 1997) for which the NeuroML tools
generate scripts in Python and the simulator’s hoc and NMODL formats and the Brian simulator (Stim-
berg et al., 2019) which uses Python scripts.

The final category consists of export options to standardized formats in neuroscience and the wider
computational biology field, which enable interaction with simulators and applications supporting
those formats. These include the PyNN package (Davison et al., 2008), which can be run in either
NEURON, NEST (Gewaltig and Diesmann, 2007) or Brian, the SONATA data format (Dai et al., 2020)
and the SBML standard (Hucka et al., 2003) (see Reusing NeuroML models for more details).

Having multiple strategies in place for supporting NeuroML gives more freedom to simulator devel-
opers to choose how much they wish to be involved with implementing and supporting NeuroML
functionality in their applications, while maximizing the options available for end users.

The primary tool for simulating NeuroML/LEMS models via different engines is jNeuroML, which
is included in pyNeuroML. jNeuroML supports all simulator engine categories (Figure 5). It includes
jLEMS for simulation of LEMS and single compartmental NeuroML models. It can also pass simula-
tions to the EDEN simulator (Panagiotou et al., 2022) for direct simulation. Using the ​org.​neuroml.​
export library (https://github.com/NeuroML/org.neuroml.export), jNeuroML can also generate import
scripts for simulators (e.g. NetPyNE Dura-Bernal et al., 2019) or convert NeuroML/LEMS models to
simulator specific formats (e.g. NEURON Hines and Carnevale, 1997). Supporting a new simulation
engine that requires translation of NeuroML/LEMS into another format can be done by adding a
new ‘writer’ to the ​org.​neuroml.​export library. Finally, jNeuroML also includes the ​org.​neuroml.​import
(https://github.com/NeuroML/jNeuroML) library that converts from other formats (e.g. SBML Hucka
et al., 2003) to LEMS for combination with NeuroML models.

It is important to note though that not all NeuroML models can be exported to/are supported by
each of these target simulators (Table 7). This depends on the capabilities of the simulator in ques-
tion (whether it supports networks, or morphologically detailed cells) and pyNeuroML/jNeuroML will
provide feedback if a feature of the model is not supported in a chosen environment.

All NeuroML and LEMS software packages are made available under FOSS licenses. The source
code for all NeuroML packages and the standard can be obtained from the NeuroML GitHub orga-
nization (https://github.com/NeuroML). The NeuroML Python API (https://github.com/NeuralEn-
semble/libNeuroML) was developed in collaboration with the NeuralEnsemble initiative (https://​
github.com/NeuralEnsemble/), which also maintains other commonly used Python packages such as
PyNN (Davison et al., 2008), Neo (Garcia et al., 2014) and Elephant (Denker, 2018). LEMS packages
are available from the LEMS GitHub organization (https://github.com/LEMS).

To ensure replication and reproduction of studies, it is important to note the exact versions of
software used in studies. For NeuroML and LEMS packages, archives of each release along with cita-
tions are published on Zenodo (https://zenodo.org) to enable researchers to cite them in their work
(Gleeson, 2021; Gleeson, 2024a; Gleeson et al., 2019b; Gleeson, 2024b; Sinha, 2024).

Documentation
A standard and its accompanying software ecosystem must be supported by comprehensive docu-
mentation if it is to be of use to the research community. The primary NeuroML documentation for
users that accompanies this paper has been consolidated into a JupyterBook (Executable Books
Community, 2020) at https://docs.neuroml.org. This includes explanations of NeuroML and compu-
tational modeling concepts, interactive tutorials with varying levels of complexity, information about
tools and what functions they provide to support different stages of the model life cycle. The Jupy-
terBook framework supports ‘executable’ documentation through the inclusion of interactive Jupyter
notebooks which may be run in the users’ web browser on free services such as OSBv2, ​Binder.​org
(https://mybinder.org/) and Google Colab (https://colab.research.google.com/). Finally, the machine
readable nature of the schema and LEMS also enables the automated generation of human readable
documentation for the standard and low level APIs (Figure 16) along with their examples (https://​
docs.neuroml.org/Userdocs/Schemas/Cells.html#hindmarshrose1984cell). In addition, the individual
NeuroML software packages each have their own individual documentation (e.g. pyNeuroML (https://​
pyneuroml.readthedocs.io/en/stable/,) libNeuroML (https://libneuroml.readthedocs.io/en/stable/)).

As with the rest of the NeuroML ecosystem, the documentation is hosted on GitHub (https://​
github.com/NeuroML/Documentation), licensed under a FOSS license, and community contributions

https://doi.org/10.7554/eLife.95135
https://github.com/NeuroML/org.neuroml.export
https://github.com/NeuroML/jNeuroML
https://github.com/NeuroML
https://github.com/NeuralEnsemble/libNeuroML
https://github.com/NeuralEnsemble/libNeuroML
https://github.com/NeuralEnsemble/
https://github.com/NeuralEnsemble/
https://github.com/LEMS
https://zenodo.org
https://docs.neuroml.org
https://mybinder.org/
https://colab.research.google.com/
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#hindmarshrose1984cell
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#hindmarshrose1984cell
https://pyneuroml.readthedocs.io/en/stable/
https://pyneuroml.readthedocs.io/en/stable/
https://libneuroml.readthedocs.io/en/stable/
https://github.com/NeuroML/Documentation
https://github.com/NeuroML/Documentation

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 37 of 44

Figure 16. Documentation for the HindmarshRose1984Cell NeuroMLv2 ComponentType generated from the
XSD schema and LEMS definitions on the NeuroML documentation website showing its dynamics (https://docs.
neuroml.org/Userdocs/Schemas/Cells.html#hindmarshrose1984cell). More information about the ComponentType
can be obtained from the tabs provided.

https://doi.org/10.7554/eLife.95135
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#hindmarshrose1984cell
https://docs.neuroml.org/Userdocs/Schemas/Cells.html#hindmarshrose1984cell

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 38 of 44

to it are welcomed. A PDF version of the documentation can also be downloaded for offline use
(https://docs.neuroml.org/_static/files/neuroml-documentation.pdf).

Maintenance of the Schema and core software
The NeuroML Scientific Committee (https://docs.neuroml.org/NeuroMLOrg/ScientificCommittee.​
html) and the elected NeuroML Editorial Board (https://docs.neuroml.org/NeuroMLOrg/Board.html)
oversee the standard, the core tools, and the initiative. The Scientific Committee sets the scientific
focus of the NeuroML initiative. It ensures that the standard represents the state of the art—that it
can encapsulate the latest knowledge in neuronal anatomy and physiology in their corresponding
model components. The Scientific Committee also defines the governance structure of the initiative
and works with the wider scientific community to gather feedback on NeuroML and promote its use.
The Editorial Board manages the day-to-day development and maintenance of LEMS, the NeuroML
schema, the core software tools, and critical resources such as the documentation. The Editorial Board
works with simulator developers in the extended ecosystem to help make tools NeuroML compliant
by testing reference implementations and answering technical queries about NeuroML and the core
software tools.

Acknowledgements
We thank all the members of the NeuroML Community who have contributed to the development
of the standard over the years, have added support for the language to their applications, or who
have converted published models to NeuroML. We would particularly like to thank the following for
contributions to the NeuroML Scientific Committee: Upi Bhalla, Avrama Blackwell, Hugo Cornells,
Robert McDougal, Lyle Graham, Cengiz Gunay, and Michael Hines. The following have also contrib-
uted to developments related to the named tools/simulators/resources: EDEN - Mario Negrello and
Christos Strydis, SONATA - Anton Arkhipov and Kael Dai, MOOSE - Subhasis Ray, NeuroML-DB -
Justas Birgiolas, NeuroMorpho.Org - Giorgio Ascoli, N2A - Fred Rothganger, pyLEMS - Gautham
Ganapathy, MDF - Manifest Chakalov, libNeuroML and NeuroTune - Mike Vella, Open Source Brain
- Matt Earnshaw, Adrian Quintana and Eugenio Piasini, SciUnit/NeuronUnit - Richard C Gerkin, Brian -
Marcel Stimberg and Dominik Krzemiński, Arbor - Nora Abi Akar, Thorsten Hater and Brent Huisman,
BluePyOpt - Jaquier Aurélien Tristan and Werner van Geit, C++/MATLAB APIs - Jonathan Cooper.
We thank Rokas Stanislavos, András Ecker, Jessica Dafflon, Ronaldo Nunes, Anuja Negi, and Shayan
Shafquat for their work converting models to NeuroML format as part of the Google Summer of Code
program. We also thank Diccon Coyle for feedback on the manuscript.

Additional information

Competing interests
Matteo Cantarelli: MetaCell Ltd. was contracted by UCL to develop some of the NeuroML support
on the Open Source Brain platform; MC has a financial interest in MetaCell Ltd. Robert C Cannon:
Employee of Opus2 International Ltd. The other authors declare that no competing interests exist.

Funding

Funder Grant reference number Author

Wellcome Trust 10.35802/101445 Padraig Gleeson
Robin Angus Silver

Wellcome Trust 10.35802/212941 Padraig Gleeson
Robin Angus Silver

Wellcome Trust 10.35802/203048 Robin Angus Silver

Wellcome Trust 10.35802/224499 Robin Angus Silver

Kavli Foundation LS-2022-GR-40-2648 Padraig Gleeson

https://doi.org/10.7554/eLife.95135
https://docs.neuroml.org/_static/files/neuroml-documentation.pdf
https://docs.neuroml.org/NeuroMLOrg/ScientificCommittee.html
https://docs.neuroml.org/NeuroMLOrg/ScientificCommittee.html
https://docs.neuroml.org/NeuroMLOrg/Board.html
https://doi.org/10.35802/101445
https://doi.org/10.35802/212941
https://doi.org/10.35802/203048
https://doi.org/10.35802/224499

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 39 of 44

Funder Grant reference number Author

Engineering and Physical
Sciences Research Council

EP/X011151/1 Padraig Gleeson

National Institutes of
Health

MH081905 Sharon Crook

National Institutes of
Health

EB014640 Sharon Crook

National Institutes of
Health

MH106674 Sharon Crook

National Institutes of
Health

U24EB028998 Salvador Dura-Bernal

New York State
Department of Health -
Wadsworth Center

DOH01-C38328GG Salvador Dura-Bernal

HORIZON EUROPE
Framework Programme

SEPTON (Gr. Agr. No.
101094901)

Sotirios Panagiotou

The funders had no role in study design, data collection and interpretation, or the
decision to submit the work for publication. For the purpose of Open Access, the
authors have applied a CC BY public copyright license to any Author Accepted
Manuscript version arising from this submission.

Author contributions
Ankur Sinha, Conceptualization, Resources, Data curation, Software, Formal analysis, Validation,
Investigation, Visualization, Methodology, Writing – original draft, Project administration, Writing –
review and editing; Padraig Gleeson, Conceptualization, Resources, Data curation, Software, Formal
analysis, Supervision, Funding acquisition, Validation, Investigation, Visualization, Methodology,
Writing – original draft, Project administration, Writing – review and editing; Bóris Marin, Conceptu-
alization, Resources, Software, Validation, Investigation, Methodology, Writing – review and editing;
Salvador Dura-Bernal, Conceptualization, Resources, Software, Funding acquisition, Investigation,
Visualization, Methodology, Writing – review and editing; Sotirios Panagiotou, Resources, Software,
Validation, Investigation, Methodology, Writing – review and editing; Sharon Crook, Conceptualiza-
tion, Resources, Software, Supervision, Funding acquisition, Validation, Investigation, Methodology,
Writing – review and editing; Matteo Cantarelli, Conceptualization, Resources, Software, Validation,
Investigation, Visualization, Methodology, Writing – review and editing; Robert C Cannon, Conceptu-
alization, Resources, Software, Investigation, Methodology; Andrew P Davison, Software, Investiga-
tion, Methodology, Writing – review and editing; Harsha Gurnani, Data curation, Software, Validation,
Investigation, Methodology; Robin Angus Silver, Conceptualization, Formal analysis, Supervision,
Funding acquisition, Investigation, Methodology, Writing – original draft, Project administration,
Writing – review and editing

Author ORCIDs
Ankur Sinha ‍ ‍ http://orcid.org/0000-0001-7568-7167
Padraig Gleeson ‍ ‍ https://orcid.org/0000-0001-5963-8576
Matteo Cantarelli ‍ ‍ https://orcid.org/0000-0002-0054-226X
Andrew P Davison ‍ ‍ https://orcid.org/0000-0002-4793-7541
Robin Angus Silver ‍ ‍ https://orcid.org/0000-0002-5480-6638

Peer review material
Reviewer #1 (Public review): https://doi.org/10.7554/eLife.95135.3.sa1
Reviewer #2 (Public review): https://doi.org/10.7554/eLife.95135.3.sa2
Author response https://doi.org/10.7554/eLife.95135.3.sa3

Additional files
Supplementary files
MDAR checklist

https://doi.org/10.7554/eLife.95135
http://orcid.org/0000-0001-7568-7167
https://orcid.org/0000-0001-5963-8576
https://orcid.org/0000-0002-0054-226X
https://orcid.org/0000-0002-4793-7541
https://orcid.org/0000-0002-5480-6638
https://doi.org/10.7554/eLife.95135.3.sa1
https://doi.org/10.7554/eLife.95135.3.sa2
https://doi.org/10.7554/eLife.95135.3.sa3

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 40 of 44

Data availability
No data was generated in this study. All software noted in this manuscript is open source. The
NeuroML core libraries can be found at https://github.com/neuroml (copy archived at Gleeson and
Sinha , 2024). Tables 3 and 4 provide links to the software packages and their source code reposito-
ries include DOI information for each software release.

References
Abrams MB, Bjaalie JG, Das S, Egan GF, Ghosh SS, Goscinski WJ, Grethe JS, Kotaleski JH, Ho ETW,

Kennedy DN, Lanyon LJ, Leergaard TB, Mayberg HS, Milanesi L, Mouček R, Poline JB, Roy PK, Strother SC,
Tang TB, Tiesinga P, et al. 2022. A standards organization for open and fair neuroscience: the international
neuroinformatics coordinating facility. Neuroinformatics 20:25–36. DOI: https://doi.org/10.1007/s12021-020-​
09509-0, PMID: 33506383

Akar NA, Cumming B, Karakasis V, Kusters A, Klijn W, Peyser A, Yates S. 2019. Arbor — a morphologically-
detailed neural network simulation library for contemporary high-performance computing architectures. 2019
27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP.
274–282. DOI: https://doi.org/10.1109/EMPDP.2019.8671560

Ascoli GA, Donohue DE, Halavi M. 2007. NeuroMorpho.Org: a central resource for neuronal morphologies. The
Journal of Neuroscience 27:9247–9251. DOI: https://doi.org/10.1523/JNEUROSCI.2055-07.2007, PMID:
17728438

Awile O, Kumbhar P, Cornu N, Dura-Bernal S, King JG, Lupton O, Magkanaris I, McDougal RA, Newton AJH,
Pereira F, Săvulescu A, Carnevale NT, Lytton WW, Hines ML, Schürmann F. 2022. Modernizing the NEURON
simulator for sustainability, portability, and performance. Frontiers in Neuroinformatics 16:884046. DOI: https://​
doi.org/10.3389/fninf.2022.884046, PMID: 35832575

Bahl A, Stemmler MB, Herz AVM, Roth A. 2012. Automated optimization of a reduced layer 5 pyramidal cell
model based on experimental data. Journal of Neuroscience Methods 210:22–34. DOI: https://doi.org/10.​
1016/j.jneumeth.2012.04.006, PMID: 22524993

Bergmann FT, Adams R, Moodie S, Cooper J, Glont M, Golebiewski M, Hucka M, Laibe C, Miller AK,
Nickerson DP, Olivier BG, Rodriguez N, Sauro HM, Scharm M, Soiland-Reyes S, Waltemath D, Yvon F,
Le Novère N. 2014. COMBINE archive and OMEX format: one file to share all information to reproduce a
modeling project. BMC Bioinformatics 15:369. DOI: https://doi.org/10.1186/s12859-014-0369-z, PMID:
25494900

Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I. 2016. Interneuronal mechanisms of hippocampal theta oscillations
in a full-scale model of the rodent CA1 circuit. eLife 5:e18566. DOI: https://doi.org/10.7554/eLife.18566,
PMID: 28009257

Billeh YN, Cai B, Gratiy SL, Dai K, Iyer R, Gouwens NW, Abbasi-Asl R, Jia X, Siegle JH, Olsen SR, Koch C,
Mihalas S, Arkhipov A. 2020. Systematic integration of structural and functional data into multi-scale models of
mouse primary visual cortex. Neuron 106:388–403. DOI: https://doi.org/10.1016/j.neuron.2020.01.040, PMID:
32142648

Billings G, Piasini E, Lőrincz A, Nusser Z, Silver RA. 2014. Network structure within the cerebellar input layer
enables lossless sparse encoding. Neuron 83:960–974. DOI: https://doi.org/10.1016/j.neuron.2014.07.020,
PMID: 25123311

Birgiolas J, Dietrich SW, Crook S, Rajadesingan A, Zhang C, Penchala SV, Addepalli V. 2015. Ontology-assisted
keyword search for NeuroML models. SSDBM 2015. . DOI: https://doi.org/10.1145/2791347.2791360

Birgiolas J, Haynes V, Gleeson P, Gerkin RC, Dietrich SW, Crook S. 2023. NeuroML-DB: Sharing and
characterizing data-driven neuroscience models described in NeuroML. PLOS Computational Biology
19:e1010941. DOI: https://doi.org/10.1371/journal.pcbi.1010941, PMID: 36867658

Blundell I, Brette R, Cleland TA, Close TG, Coca D, Davison AP, Diaz-Pier S, Fernandez Musoles C, Gleeson P,
Goodman DFM, Hines M, Hopkins MW, Kumbhar P, Lester DR, Marin B, Morrison A, Müller E, Nowotny T,
Peyser A, Plotnikov D, et al. 2018. Code generation in computational neuroscience: a review of tools and
techniques. Frontiers in Neuroinformatics 12:68. DOI: https://doi.org/10.3389/fninf.2018.00068, PMID:
30455637

Bower JM, Beeman D. 1998. The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural
SImu Lation System. Springer. DOI: https://doi.org/10.1007/978-1-4612-1634-6

Boyle JH, Cohen N. 2008. Caenorhabditis elegans body wall muscles are simple actuators. Biosystems 94:170–
181. DOI: https://doi.org/10.1016/j.biosystems.2008.05.025

Brunel N. 2000. Brunel N. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons.
Journal of Computational Neuroscience 8:183–208. DOI: https://doi.org/10.1023/A:1008925309027

Campagnola L. 2023. Vispy/vispy. 0.13.0. Zenodo. https://doi.org/10.5281/zenodo.7945364
Cannon RC, Gewaltig MO, Gleeson P, Bhalla US, Cornelis H, Hines ML, Howell FW, Muller E, Stiles JR, Wils S,

De Schutter E. 2007. Interoperability of neuroscience modeling software: current status and future directions.
Neuroinformatics 5:127–138. DOI: https://doi.org/10.1007/s12021-007-0004-5, PMID: 17873374

Cannon RC, Gleeson P, Crook S, Ganapathy G, Marin B, Piasini E, Silver RA. 2014. LEMS: a language for
expressing complex biological models in concise and hierarchical form and its use in underpinning NeuroML 2.
Frontiers in Neuroinformatics 8:79. DOI: https://doi.org/10.3389/fninf.2014.00079, PMID: 25309419

https://doi.org/10.7554/eLife.95135
https://github.com/neuroml
https://doi.org/10.1007/s12021-020-09509-0
https://doi.org/10.1007/s12021-020-09509-0
http://www.ncbi.nlm.nih.gov/pubmed/33506383
https://doi.org/10.1109/EMPDP.2019.8671560
https://doi.org/10.1523/JNEUROSCI.2055-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/17728438
https://doi.org/10.3389/fninf.2022.884046
https://doi.org/10.3389/fninf.2022.884046
http://www.ncbi.nlm.nih.gov/pubmed/35832575
https://doi.org/10.1016/j.jneumeth.2012.04.006
https://doi.org/10.1016/j.jneumeth.2012.04.006
http://www.ncbi.nlm.nih.gov/pubmed/22524993
https://doi.org/10.1186/s12859-014-0369-z
http://www.ncbi.nlm.nih.gov/pubmed/25494900
https://doi.org/10.7554/eLife.18566
http://www.ncbi.nlm.nih.gov/pubmed/28009257
https://doi.org/10.1016/j.neuron.2020.01.040
http://www.ncbi.nlm.nih.gov/pubmed/32142648
https://doi.org/10.1016/j.neuron.2014.07.020
http://www.ncbi.nlm.nih.gov/pubmed/25123311
https://doi.org/10.1145/2791347.2791360
https://doi.org/10.1371/journal.pcbi.1010941
http://www.ncbi.nlm.nih.gov/pubmed/36867658
https://doi.org/10.3389/fninf.2018.00068
http://www.ncbi.nlm.nih.gov/pubmed/30455637
https://doi.org/10.1007/978-1-4612-1634-6
https://doi.org/10.1016/j.biosystems.2008.05.025
https://doi.org/10.1023/A:1008925309027
https://doi.org/10.5281/zenodo.7945364
https://doi.org/10.1007/s12021-007-0004-5
http://www.ncbi.nlm.nih.gov/pubmed/17873374
https://doi.org/10.3389/fninf.2014.00079
http://www.ncbi.nlm.nih.gov/pubmed/25309419

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 41 of 44

Cayco-Gajic NA, Clopath C, Silver RA. 2017. Sparse synaptic connectivity is required for decorrelation and
pattern separation in feedforward networks. Nature Communications 8:1116. DOI: https://doi.org/10.1038/​
s41467-017-01109-y, PMID: 29061964

Choi K, Medley JK, König M, Stocking K, Smith L, Gu S, Sauro HM. 2018. Tellurium: An extensible python-based
modeling environment for systems and synthetic biology. Bio Systems 171:74–79. DOI: https://doi.org/10.​
1016/j.biosystems.2018.07.006, PMID: 30053414

Dai K, Hernando J, Billeh YN, Gratiy SL, Planas J, Davison AP, Dura-Bernal S, Gleeson P, Devresse A, Dichter BK,
Gevaert M, King JG, Van Geit WAH, Povolotsky AV, Muller E, Courcol JD, Arkhipov A. 2020. The SONATA data
format for efficient description of large-scale network models. PLOS Computational Biology 16:e1007696.
DOI: https://doi.org/10.1371/journal.pcbi.1007696, PMID: 32092054

Davison AP, Brüderle D, Eppler J, Kremkow J, Muller E, Pecevski D, Perrinet L, Yger P. 2008. PyNN: a common
interface for neuronal network simulators. Frontiers in Neuroinformatics 2:11. DOI: https://doi.org/10.3389/​
neuro.11.011.2008, PMID: 19194529

Denker M. 2018. Collaborative HPC-enabled workflows on the HBP Collaboratory using the Elephant
framework. Neuroinformatics 19:0019. DOI: https://doi.org/10.12751/incf.ni2018.0019

De Schutter E, Bower JM. 1994. An active membrane model of the cerebellar Purkinje cell. I. Simulation of
current clamps in slice. Journal of Neurophysiology 71:375–400. DOI: https://doi.org/10.1152/jn.1994.71.1.​
375, PMID: 7512629

Druckmann S, Banitt Y, Gidon A, Schürmann F, Markram H, Segev I. 2007. A novel multiple objective
optimization framework for constraining conductance-based neuron models by experimental data. Frontiers in
Neuroscience 1:7–18. DOI: https://doi.org/10.3389/neuro.01.1.1.001.2007, PMID: 18982116

Dura-Bernal S, Neymotin SA, Kerr CC, Sivagnanam S, Majumdar A, Francis JT, Lytton WW. 2017. Evolutionary
algorithm optimization of biological learning parameters in a biomimetic neuroprosthesis. IBM Journal of
Research and Development 61:6. DOI: https://doi.org/10.1147/JRD.2017.2656758, PMID: 29200477

Dura-Bernal S, Suter BA, Gleeson P, Cantarelli M, Quintana A, Rodriguez F, Kedziora DJ, Chadderdon GL,
Kerr CC, Neymotin SA, McDougal RA, Hines M, Shepherd GM, Lytton WW. 2019. NetPyNE, a tool for
data-driven multiscale modeling of brain circuits. eLife 8:e44494. DOI: https://doi.org/10.7554/eLife.44494,
PMID: 31025934

Einevoll GT, Destexhe A, Diesmann M, Grün S, Jirsa V, de Kamps M, Migliore M, Ness TV, Plesser HE,
Schürmann F. 2019. The scientific case for brain simulations. Neuron 102:735–744. DOI: https://doi.org/10.​
1016/j.neuron.2019.03.027, PMID: 31121126

Executable Books Community. 2020. Executable books community, jupyter book. 01. Zenodo. https://doi.org/​
10.5281/zenodo.4539666

Ferguson KA, Huh CYL, Amilhon B, Williams S, Skinner FK. 2013. Experimentally constrained CA1 fast-firing
parvalbumin-positive interneuron network models exhibit sharp transitions into coherent high frequency
rhythms. Frontiers in Computational Neuroscience 7:144. DOI: https://doi.org/10.3389/fncom.2013.00144,
PMID: 24155715

Ferguson KA, Huh CYL, Amilhon B, Williams S, Skinner FK. 2014. Simple, biologically-constrained CA1
pyramidal cell models using an intact, whole hippocampus context. F1000Research 3:104. DOI: https://doi.org/​
10.12688/f1000research.3894.1, PMID: 25383182

FitzHugh R. 1961. Impulses and physiological states in theoretical models of nerve membrane. Biophysical
Journal 1:445–466. DOI: https://doi.org/10.1016/S0006-3495(61)86902-6

Garcia S, Guarino D, Jaillet F, Jennings T, Pröpper R, Rautenberg PL, Rodgers CC, Sobolev A, Wachtler T, Yger P,
Davison AP. 2014. Neo: an object model for handling electrophysiology data in multiple formats. Frontiers in
Neuroinformatics 8:10. DOI: https://doi.org/10.3389/fninf.2014.00010, PMID: 24600386

Garcia Del Molino LC, Yang GR, Mejias JF, Wang X-J. 2017. Paradoxical response reversal of top-down
modulation in cortical circuits with three interneuron types. eLife 6:e29742. DOI: https://doi.org/10.7554/eLife.​
29742, PMID: 29256863

Gerkin RC, Birgiolas J, Jarvis RJ, Omar C, Crook SM. 2019. NeuronUnit: a package for data-driven validation of
neuron models using sciunit. bioRxiv. DOI: https://doi.org/10.1101/665331

Gewaltig MO, Diesmann M. 2007. NEST (NEural Simulation Tool). Scholarpedia 2:1430. DOI: https://doi.org/10.​
4249/scholarpedia.1430

Gleeson P, Steuber V, Silver RA. 2007. neuroConstruct: a tool for modeling networks of neurons in 3D space.
Neuron 54:219–235. DOI: https://doi.org/10.1016/j.neuron.2007.03.025, PMID: 17442244

Gleeson P, Crook S, Cannon RC, Hines ML, Billings GO, Farinella M, Morse TM, Davison AP, Ray S, Bhalla US,
Barnes SR, Dimitrova YD, Silver RA. 2010. NeuroML: a language for describing data driven models of neurons
and networks with a high degree of biological detail. PLOS Computational Biology 6:e1000815. DOI: https://​
doi.org/10.1371/journal.pcbi.1000815, PMID: 20585541

Gleeson P, Lung D, Grosu R, Hasani R, Larson SD. 2018. c302: a multiscale framework for modelling the nervous
system of Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London. Series B,
Biological Sciences 373:20170379. DOI: https://doi.org/10.1098/rstb.2017.0379, PMID: 30201842

Gleeson P. 2019a. OpenSourceBrain/thalamocortical. 0.4. Zenodo. https://doi.org/10.5281/zenodo.2535506
Gleeson P, Cantarelli M, Marin B, Quintana A, Earnshaw M, Sadeh S, Piasini E, Birgiolas J, Cannon RC,

Cayco-Gajic NA, Crook S, Davison AP, Dura-Bernal S, Ecker A, Hines ML, Idili G, Lanore F, Larson SD,
Lytton WW, Majumdar A, et al. 2019b. Open source brain: a collaborative resource for visualizing, analyzing,
simulating, and developing standardized models of neurons and circuits. Neuron 103:395–411. DOI: https://​
doi.org/10.1016/j.neuron.2019.05.019, PMID: 31201122

https://doi.org/10.7554/eLife.95135
https://doi.org/10.1038/s41467-017-01109-y
https://doi.org/10.1038/s41467-017-01109-y
http://www.ncbi.nlm.nih.gov/pubmed/29061964
https://doi.org/10.1016/j.biosystems.2018.07.006
https://doi.org/10.1016/j.biosystems.2018.07.006
http://www.ncbi.nlm.nih.gov/pubmed/30053414
https://doi.org/10.1371/journal.pcbi.1007696
http://www.ncbi.nlm.nih.gov/pubmed/32092054
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.3389/neuro.11.011.2008
http://www.ncbi.nlm.nih.gov/pubmed/19194529
https://doi.org/10.12751/incf.ni2018.0019
https://doi.org/10.1152/jn.1994.71.1.375
https://doi.org/10.1152/jn.1994.71.1.375
http://www.ncbi.nlm.nih.gov/pubmed/7512629
https://doi.org/10.3389/neuro.01.1.1.001.2007
http://www.ncbi.nlm.nih.gov/pubmed/18982116
https://doi.org/10.1147/JRD.2017.2656758
http://www.ncbi.nlm.nih.gov/pubmed/29200477
https://doi.org/10.7554/eLife.44494
http://www.ncbi.nlm.nih.gov/pubmed/31025934
https://doi.org/10.1016/j.neuron.2019.03.027
https://doi.org/10.1016/j.neuron.2019.03.027
http://www.ncbi.nlm.nih.gov/pubmed/31121126
https://doi.org/10.5281/zenodo.4539666
https://doi.org/10.5281/zenodo.4539666
https://doi.org/10.3389/fncom.2013.00144
http://www.ncbi.nlm.nih.gov/pubmed/24155715
https://doi.org/10.12688/f1000research.3894.1
https://doi.org/10.12688/f1000research.3894.1
http://www.ncbi.nlm.nih.gov/pubmed/25383182
https://doi.org/10.1016/S0006-3495(61)86902-6
https://doi.org/10.3389/fninf.2014.00010
http://www.ncbi.nlm.nih.gov/pubmed/24600386
https://doi.org/10.7554/eLife.29742
https://doi.org/10.7554/eLife.29742
http://www.ncbi.nlm.nih.gov/pubmed/29256863
https://doi.org/10.1101/665331
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1016/j.neuron.2007.03.025
http://www.ncbi.nlm.nih.gov/pubmed/17442244
https://doi.org/10.1371/journal.pcbi.1000815
https://doi.org/10.1371/journal.pcbi.1000815
http://www.ncbi.nlm.nih.gov/pubmed/20585541
https://doi.org/10.1098/rstb.2017.0379
http://www.ncbi.nlm.nih.gov/pubmed/30201842
https://doi.org/10.5281/zenodo.2535506
https://doi.org/10.1016/j.neuron.2019.05.019
https://doi.org/10.1016/j.neuron.2019.05.019
http://www.ncbi.nlm.nih.gov/pubmed/31201122

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 42 of 44

Gleeson P. 2021. LEMS/LEMS. 0.7.6. Zenodo. https://doi.org/10.5281/zenodo.6417333​DOI: https://doi.
org/10.5281/zenodo.5788686

Gleeson P, Crook S, Turner D, Mantel K, Raunak M, Willke T, Cohen JD. 2023. Integrating model development
across computational neuroscience, cognitive science, and machine learning. Neuron 111:1526–1530. DOI:
https://doi.org/10.1016/j.neuron.2023.03.037, PMID: 37100054

Gleeson P. 2024a. LEMS/jlems. 0.11.1. Zenodo. https://doi.org/10.5281/zenodo.13350473
Gleeson P. 2024b. NeuroML/jneuroml. 0.13.3. Zenodo. https://doi.org/10.5281/zenodo.13342731
Gleeson P, SinhaA. 2024. NeuroML 2. swh:1:rev:50aacc6f0b97cf4a70f6887d4beb6b3b67c32eb6. Software

Heritage. https://archive.softwareheritage.org/swh:1:dir:154dee293f0193f24f7a66dc41d07442168ef9b8;​
origin=https://github.com/NeuroML/NeuroML2;visit=swh:1:snp:afc51d39c98b0e7463ca75776835b801​
4dc7b4c2;anchor=swh:1:rev:50aacc6f0b97cf4a70f6887d4beb6b3b67c32eb6

Goddard NH, Hucka M, Howell F, Cornelis H, Shankar K, Beeman D. 2001. Towards NeuroML: model description
methods for collaborative modelling in neuroscience. Philosophical Transactions of the Royal Society of
London. Series B, Biological Sciences 356:1209–1228. DOI: https://doi.org/10.1098/rstb.2001.0910, PMID:
11545699

Gorgolewski KJ, Auer T, Calhoun VD, Craddock RC, Das S, Duff EP, Flandin G, Ghosh SS, Glatard T,
Halchenko YO, Handwerker DA, Hanke M, Keator D, Li X, Michael Z, Maumet C, Nichols BN, Nichols TE,
Pellman J, Poline J-B, et al. 2016. The brain imaging data structure, a format for organizing and describing
outputs of neuroimaging experiments. Scientific Data 3:160044. DOI: https://doi.org/10.1038/sdata.2016.44,
PMID: 27326542

Gurnani H, Silver RA. 2021. Multidimensional population activity in an electrically coupled inhibitory circuit in the
cerebellar cortex. Neuron 109:1739–1753.. DOI: https://doi.org/10.1016/j.neuron.2021.03.027, PMID:
33848473

Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S,
Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, Del Río JF, Wiebe M, Peterson P,
Gérard-Marchant P, et al. 2020. Array programming with NumPy. Nature 585:357–362. DOI: https://doi.org/10.​
1038/s41586-020-2649-2, PMID: 32939066

Hay E, Hill S, Schürmann F, Markram H, Segev I. 2011. Models of neocortical layer 5b pyramidal cells capturing a
wide range of dendritic and perisomatic active properties. PLOS Computational Biology 7:e1002107. DOI:
https://doi.org/10.1371/journal.pcbi.1002107, PMID: 21829333

Hindmarsh JL, Rose RM. 1984. A model of neuronal bursting using three coupled first order differential
equations. Proceedings of the Royal Society of London. Series B, Biological Sciences 221:87–102. DOI: https://​
doi.org/10.1098/rspb.1984.0024, PMID: 6144106

Hines ML, Carnevale NT. 1997. The NEURON simulation environment. Neural Computation 9:1179–1209. DOI:
https://doi.org/10.1162/neco.1997.9.6.1179

Hodgkin AL, Huxley AF. 1952. A quantitative description of membrane current and its application to conduction
and excitation in nerve. The Journal of Physiology 117:500–544. DOI: https://doi.org/10.1113/jphysiol.1952.​
sp004764, PMID: 12991237

Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A,
Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr JH,
Hunter PJ, et al. 2003. The systems biology markup language (SBML): a medium for representation and
exchange of biochemical network models. Bioinformatics 19:524–531. DOI: https://doi.org/10.1093/​
bioinformatics/btg015, PMID: 12611808

Hucka M, Nickerson DP, Bader GD, Bergmann FT, Cooper J, Demir E, Garny A, Golebiewski M, Myers CJ,
Schreiber F, Waltemath D, Le Novère N. 2015. Promoting coordinated development of community-based
information standards for modeling in biology: the COMBINE initiative. Frontiers in Bioengineering and
Biotechnology 3:19. DOI: https://doi.org/10.3389/fbioe.2015.00019, PMID: 25759811

Hunter JD. 2007. Matplotlib: A 2D graphics environment. Computing in Science & Engineering 9:90–95. DOI:
https://doi.org/10.1109/MCSE.2007.55

INCF. 2023. Role of community standards. https://www.incf.org/role-community-standards [Accessed November
9, 2023].

Izhikevich EM. 2004. Which model to use for cortical spiking neurons? IEEE Transactions on Neural Networks
15:1063–1070. DOI: https://doi.org/10.1109/TNN.2004.832719, PMID: 15484883

Kriener B, Hu H, Vervaeke K. 2022. Parvalbumin interneuron dendrites enhance gamma oscillations. Cell Reports
39:110948. DOI: https://doi.org/10.1016/j.celrep.2022.110948, PMID: 35705055

Lapicque L. 1907. Recherches quantitatives sur L’excitation électrique des nerfs traitée comme une polarisation.
Journal de Physiologie et de Pathologie Generale 9:620–635.

Larson SD, Martone ME. 2013. ​NeuroLex.​org: an online framework for neuroscience knowledge. Frontiers in
Neuroinformatics 7:18. DOI: https://doi.org/10.3389/fninf.2013.00018, PMID: 24009581

Lloyd CM, Halstead MDB, Nielsen PF. 2004. CellML: its future, present and past. Progress in Biophysics and
Molecular Biology 85:433–450. DOI: https://doi.org/10.1016/j.pbiomolbio.2004.01.004

Maex R, Schutter ED. 1998. Synchronization of golgi and granule cell firing in a detailed network model of the
cerebellar granule cell layer. Journal of Neurophysiology 80:2521–2537. DOI: https://doi.org/10.1152/jn.1998.​
80.5.2521

Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M, Sanchez CA, Ailamaki A, Alonso-Nanclares L,
Antille N, Arsever S, Kahou GAA, Berger TK, Bilgili A, Buncic N, Chalimourda A, Chindemi G, Courcol JD,

https://doi.org/10.7554/eLife.95135
https://doi.org/10.5281/zenodo.6417333
https://doi.org/10.5281/zenodo.5788686
https://doi.org/10.5281/zenodo.5788686
https://doi.org/10.1016/j.neuron.2023.03.037
http://www.ncbi.nlm.nih.gov/pubmed/37100054
https://doi.org/10.5281/zenodo.13350473
https://doi.org/10.5281/zenodo.13342731
https://archive.softwareheritage.org/swh:1:dir:154dee293f0193f24f7a66dc41d07442168ef9b8;origin=https://github.com/NeuroML/NeuroML2;visit=swh:1:snp:afc51d39c98b0e7463ca75776835b8014dc7b4c2;anchor=swh:1:rev:50aacc6f0b97cf4a70f6887d4beb6b3b67c32eb6
https://archive.softwareheritage.org/swh:1:dir:154dee293f0193f24f7a66dc41d07442168ef9b8;origin=https://github.com/NeuroML/NeuroML2;visit=swh:1:snp:afc51d39c98b0e7463ca75776835b8014dc7b4c2;anchor=swh:1:rev:50aacc6f0b97cf4a70f6887d4beb6b3b67c32eb6
https://archive.softwareheritage.org/swh:1:dir:154dee293f0193f24f7a66dc41d07442168ef9b8;origin=https://github.com/NeuroML/NeuroML2;visit=swh:1:snp:afc51d39c98b0e7463ca75776835b8014dc7b4c2;anchor=swh:1:rev:50aacc6f0b97cf4a70f6887d4beb6b3b67c32eb6
https://doi.org/10.1098/rstb.2001.0910
http://www.ncbi.nlm.nih.gov/pubmed/11545699
https://doi.org/10.1038/sdata.2016.44
http://www.ncbi.nlm.nih.gov/pubmed/27326542
https://doi.org/10.1016/j.neuron.2021.03.027
http://www.ncbi.nlm.nih.gov/pubmed/33848473
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://www.ncbi.nlm.nih.gov/pubmed/32939066
https://doi.org/10.1371/journal.pcbi.1002107
http://www.ncbi.nlm.nih.gov/pubmed/21829333
https://doi.org/10.1098/rspb.1984.0024
https://doi.org/10.1098/rspb.1984.0024
http://www.ncbi.nlm.nih.gov/pubmed/6144106
https://doi.org/10.1162/neco.1997.9.6.1179
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1113/jphysiol.1952.sp004764
http://www.ncbi.nlm.nih.gov/pubmed/12991237
https://doi.org/10.1093/bioinformatics/btg015
https://doi.org/10.1093/bioinformatics/btg015
http://www.ncbi.nlm.nih.gov/pubmed/12611808
https://doi.org/10.3389/fbioe.2015.00019
http://www.ncbi.nlm.nih.gov/pubmed/25759811
https://doi.org/10.1109/MCSE.2007.55
https://www.incf.org/role-community-standards
https://doi.org/10.1109/TNN.2004.832719
http://www.ncbi.nlm.nih.gov/pubmed/15484883
https://doi.org/10.1016/j.celrep.2022.110948
http://www.ncbi.nlm.nih.gov/pubmed/35705055
https://doi.org/10.3389/fninf.2013.00018
http://www.ncbi.nlm.nih.gov/pubmed/24009581
https://doi.org/10.1016/j.pbiomolbio.2004.01.004
https://doi.org/10.1152/jn.1998.80.5.2521
https://doi.org/10.1152/jn.1998.80.5.2521

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 43 of 44

Delalondre F, Delattre V, Druckmann S, et al. 2015. Reconstruction and simulation of neocortical microcircuitry.
Cell 163:456–492. DOI: https://doi.org/10.1016/j.cell.2015.09.029, PMID: 26451489

Martone M, Das S. 2019. Call for community review of NeuroML — a model description language for
computational neuroscience. F1000 Research 8:75. DOI: https://doi.org/10.7490/F1000RESEARCH.1116398.1

McDougal RA, Morse TM, Carnevale T, Marenco L, Wang R, Migliore M, Miller PL, Shepherd GM, Hines ML.
2017. Twenty years of ModelDB and beyond: building essential modeling tools for the future of neuroscience.
Journal of Computational Neuroscience 42:1–10. DOI: https://doi.org/10.1007/s10827-016-0623-7, PMID:
27629590

Mejias JF, Murray JD, Kennedy H, Wang XJ. 2016. Feedforward and feedback frequency-dependent interactions
in a large-scale laminar network of the primate cortex. Science Advances 2:e1601335. DOI: https://doi.org/10.​
1126/sciadv.1601335, PMID: 28138530

Migliore M, Morse TM, Davison AP, Marenco L, Shepherd GM, Hines ML. 2003. ModelDB: making models
publicly accessible to support computational neuroscience. Neuroinformatics 1:135–139. DOI: https://doi.org/​
10.1385/NI:1:1:135, PMID: 15055399

Migliore M, Ferrante M, Ascoli GA. 2005. Signal propagation in oblique dendrites of CA1 pyramidal cells.
Journal of Neurophysiology 94:4145–4155. DOI: https://doi.org/10.1152/jn.00521.2005, PMID: 16293591

Migliore M, Cavarretta F, Hines ML, Shepherd GM. 2014. Distributed organization of a brain microcircuit
analyzed by three-dimensional modeling: the olfactory bulb. Frontiers in Computational Neuroscience 8:50.
DOI: https://doi.org/10.3389/fncom.2014.00050, PMID: 24808855

Morris C, Lecar H. 1981. Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal 35:193–213.
DOI: https://doi.org/10.1016/S0006-3495(81)84782-0, PMID: 7260316

Muller E, Bednar JA, Diesmann M, Gewaltig MO, Hines M, Davison AP. 2015. Python in neuroscience. Frontiers
in Neuroinformatics 9:11. DOI: https://doi.org/10.3389/fninf.2015.00011, PMID: 25926788

Neal ML, König M, Nickerson D, Mısırlı G, Kalbasi R, Dräger A, Atalag K, Chelliah V, Cooling MT, Cook DL,
Crook S, de Alba M, Friedman SH, Garny A, Gennari JH, Gleeson P, Golebiewski M, Hucka M, Juty N, Myers C,
et al. 2019. Harmonizing semantic annotations for computational models in biology. Briefings in Bioinformatics
20:540–550. DOI: https://doi.org/10.1093/bib/bby087, PMID: 30462164

Omar C, Aldrich J, Gerkin RC. 2014 Collaborative infrastructure for test-driven scientific model validation. ICSE
’14 Association for Computing Machinery. . DOI: https://doi.org/10.1145/2591062.2591129

Panagiotou S, Sidiropoulos H, Soudris D, Negrello M, Strydis C. 2022. EDEN: a high-performance, general-
purpose, NeuroML-based neural simulator. Frontiers in Neuroinformatics 16:724336. DOI: https://doi.org/10.​
3389/fninf.2022.724336

Pinsky PF, Rinzel J. 1994. Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons.
Journal of Computational Neuroscience 1:39–60. DOI: https://doi.org/10.1007/BF00962717, PMID: 8792224

Poirazi P, Papoutsi A. 2020. Illuminating dendritic function with computational models. Nature Reviews
Neuroscience 21:303–321. DOI: https://doi.org/10.1038/s41583-020-0301-7

Pospischil M, Toledo-Rodriguez M, Monier C, Piwkowska Z, Bal T, Frégnac Y, Markram H, Destexhe A. 2008.
Minimal Hodgkin-Huxley type models for different classes of cortical and thalamic neurons. Biological
Cybernetics 99:427–441. DOI: https://doi.org/10.1007/s00422-008-0263-8, PMID: 19011929

Potjans TC, Diesmann M. 2014. The cell-type specific cortical microcircuit: relating structure and activity in a
full-scale spiking network model. Cerebral Cortex 24:785–806. DOI: https://doi.org/10.1093/cercor/bhs358

Prinz AA, Bucher D, Marder E. 2004. Similar network activity from disparate circuit parameters. Nature
Neuroscience 7:1345–1352. DOI: https://doi.org/10.1038/nn1352

Ranjan R, Khazen G, Gambazzi L, Ramaswamy S, Hill SL, Schürmann F, Markram H. 2011. Channelpedia: an
integrative and interactive database for ion channels. Frontiers in Neuroinformatics 5:36. DOI: https://doi.org/​
10.3389/fninf.2011.00036, PMID: 22232598

Ray S, Bhalla US. 2008. PyMOOSE: interoperable scripting in python for MOOSE. Frontiers in Neuroinformatics
2:6. DOI: https://doi.org/10.3389/neuro.11.006.2008, PMID: 19129924

Ray S, Aldworth ZN, Stopfer MA. 2020. Feedback inhibition and its control in an insect olfactory circuit. eLife
9:e53281. DOI: https://doi.org/10.7554/eLife.53281, PMID: 32163034

Rossant C, Goodman DFM, Fontaine B, Platkiewicz J, Magnusson AK, Brette R. 2011. Fitting neuron models to
spike trains. Frontiers in Neuroscience 5:9. DOI: https://doi.org/10.3389/fnins.2011.00009

Rothganger F, Warrender CE, Trumbo D, Aimone JB. 2014. N2A: a computational tool for modeling from
neurons to algorithms. Frontiers in Neural Circuits 8:1. DOI: https://doi.org/10.3389/fncir.2014.00001, PMID:
24478635

Sadeh S, Silver RA, Mrsic-Flogel TD, Muir DR. 2017. Assessing the role of inhibition in stabilizing neocortical
networks requires large-scale perturbation of the inhibitory population. The Journal of Neuroscience
37:12050–12067. DOI: https://doi.org/10.1523/JNEUROSCI.0963-17.2017, PMID: 29074575

Shaikh B, Smith LP, Vasilescu D, Marupilla G, Wilson M, Agmon E, Agnew H, Andrews SS, Anwar A, Beber ME,
Bergmann FT, Brooks D, Brusch L, Calzone L, Choi K, Cooper J, Detloff J, Drawert B, Dumontier M,
Ermentrout GB, et al. 2022. BioSimulators: a central registry of simulation engines and services for
recommending specific tools. Nucleic Acids Research 50:W108–W114. DOI: https://doi.org/10.1093/nar/​
gkac331, PMID: 35524558

Sinha A. 2023. NeuralEnsemble/libneuroml. v0.5.5. Zenodo. https://doi.org/10.5281/zenodo.8364786
Sinha A. 2024. NeuroML/pyneuroml. v1.2.5. Zenodo. https://doi.org/10.5281/zenodo.10783062
Sinha A, Garrett A. 2024. inspyred -- A framework for creating bio-inspired computational intelligence algorithms

in python. 1d0089c. GitHub. https://github.com/aarongarrett/inspyred

https://doi.org/10.7554/eLife.95135
https://doi.org/10.1016/j.cell.2015.09.029
http://www.ncbi.nlm.nih.gov/pubmed/26451489
https://doi.org/10.7490/F1000RESEARCH.1116398.1
https://doi.org/10.1007/s10827-016-0623-7
http://www.ncbi.nlm.nih.gov/pubmed/27629590
https://doi.org/10.1126/sciadv.1601335
https://doi.org/10.1126/sciadv.1601335
http://www.ncbi.nlm.nih.gov/pubmed/28138530
https://doi.org/10.1385/NI:1:1:135
https://doi.org/10.1385/NI:1:1:135
http://www.ncbi.nlm.nih.gov/pubmed/15055399
https://doi.org/10.1152/jn.00521.2005
http://www.ncbi.nlm.nih.gov/pubmed/16293591
https://doi.org/10.3389/fncom.2014.00050
http://www.ncbi.nlm.nih.gov/pubmed/24808855
https://doi.org/10.1016/S0006-3495(81)84782-0
http://www.ncbi.nlm.nih.gov/pubmed/7260316
https://doi.org/10.3389/fninf.2015.00011
http://www.ncbi.nlm.nih.gov/pubmed/25926788
https://doi.org/10.1093/bib/bby087
http://www.ncbi.nlm.nih.gov/pubmed/30462164
https://doi.org/10.1145/2591062.2591129
https://doi.org/10.3389/fninf.2022.724336
https://doi.org/10.3389/fninf.2022.724336
https://doi.org/10.1007/BF00962717
http://www.ncbi.nlm.nih.gov/pubmed/8792224
https://doi.org/10.1038/s41583-020-0301-7
https://doi.org/10.1007/s00422-008-0263-8
http://www.ncbi.nlm.nih.gov/pubmed/19011929
https://doi.org/10.1093/cercor/bhs358
https://doi.org/10.1038/nn1352
https://doi.org/10.3389/fninf.2011.00036
https://doi.org/10.3389/fninf.2011.00036
http://www.ncbi.nlm.nih.gov/pubmed/22232598
https://doi.org/10.3389/neuro.11.006.2008
http://www.ncbi.nlm.nih.gov/pubmed/19129924
https://doi.org/10.7554/eLife.53281
http://www.ncbi.nlm.nih.gov/pubmed/32163034
https://doi.org/10.3389/fnins.2011.00009
https://doi.org/10.3389/fncir.2014.00001
http://www.ncbi.nlm.nih.gov/pubmed/24478635
https://doi.org/10.1523/JNEUROSCI.0963-17.2017
http://www.ncbi.nlm.nih.gov/pubmed/29074575
https://doi.org/10.1093/nar/gkac331
https://doi.org/10.1093/nar/gkac331
http://www.ncbi.nlm.nih.gov/pubmed/35524558
https://doi.org/10.5281/zenodo.8364786
https://doi.org/10.5281/zenodo.10783062
https://github.com/aarongarrett/inspyred

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 44 of 44

Sivagnanam S. 2013. Introducing the Neuroscience Gateway. IWSG.
Smith SL, Smith IT, Branco T, Häusser M. 2013. Dendritic spikes enhance stimulus selectivity in cortical neurons in

vivo. Nature 503:115–120. DOI: https://doi.org/10.1038/nature12600, PMID: 24162850
Solinas S, Forti L, Cesana E, Mapelli J, De Schutter E, D’Angelo E. 2007. Computational reconstruction of

pacemaking and intrinsic electroresponsiveness in cerebellar Golgi cells. Frontiers in Cellular Neuroscience 1:2.
DOI: https://doi.org/10.3389/neuro.03.002.2007, PMID: 18946520

Stimberg M, Brette R, Goodman DF. 2019. Brian 2, an intuitive and efficient neural simulator. eLife 8:e47314.
DOI: https://doi.org/10.7554/eLife.47314

Teeters JL, Godfrey K, Young R, Dang C, Friedsam C, Wark B, Asari H, Peron S, Li N, Peyrache A, Denisov G,
Siegle JH, Olsen SR, Martin C, Chun M, Tripathy S, Blanche TJ, Harris K, Buzsáki G, Koch C, et al. 2015.
Neurodata without borders: creating a common data format for neurophysiology. Neuron 88:629–634. DOI:
https://doi.org/10.1016/j.neuron.2015.10.025

Traub RD, Contreras D, Cunningham MO, Murray H, LeBeau FEN, Roopun A, Bibbig A, Wilent WB, Higley MJ,
Whittington MA. 2005. Single-column thalamocortical network model exhibiting gamma oscillations, sleep
spindles, and epileptogenic bursts. Journal of Neurophysiology 93:2194–2232. DOI: https://doi.org/10.1152/​
jn.00983.2004, PMID: 15525801

Van Geit W, Gevaert M, Chindemi G, Rössert C, Courcol JD, Muller EB, Schürmann F, Segev I, Markram H. 2016.
BluePyOpt: leveraging open source software and cloud infrastructure to optimise model parameters in
neuroscience. Frontiers in Neuroinformatics 10:17. DOI: https://doi.org/10.3389/fninf.2016.00017, PMID:
27375471

Vella M, Cannon RC, Crook S, Davison AP, Ganapathy G, Robinson HPC, Silver RA, Gleeson P. 2014. libNeuroML
and PyLEMS: using Python to combine procedural and declarative modeling approaches in computational
neuroscience. Frontiers in Neuroinformatics 8:38. DOI: https://doi.org/10.3389/fninf.2014.00038

Vella M, Gleeson P. 2023. Neurotune. 66ba110. GitHub. https://github.com/NeuralEnsemble/neurotune
Vervaeke K, Lőrincz A, Gleeson P, Farinella M, Nusser Z, Silver RA. 2010. Rapid desynchronization of an

electrically coupled interneuron network with sparse excitatory synaptic input. Neuron 67:435–451. DOI:
https://doi.org/10.1016/j.neuron.2010.06.028

Waltemath D, Adams R, Bergmann FT, Hucka M, Kolpakov F, Miller AK, Moraru II, Nickerson D, Sahle S,
Snoep JL, Le Novère N. 2011. Reproducible computational biology experiments with SED-ML--the simulation
experiment description markup language. BMC Systems Biology 5:198. DOI: https://doi.org/10.1186/​
1752-0509-5-198, PMID: 22172142

Wang XJ, Buzsáki G. 1996. Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network
model. The Journal of Neuroscience 16:6402–6413. DOI: https://doi.org/10.1523/JNEUROSCI.16-20-06402.​
1996, PMID: 8815919

Wilkinson MD, Dumontier M, Aalbersberg IJJ, Appleton G, Axton M, Baak A, Blomberg N, Boiten JW,
da Silva Santos LB, Bourne PE, Bouwman J, Brookes AJ, Clark T, Crosas M, Dillo I, Dumon O, Edmunds S,
Evelo CT, Finkers R, Gonzalez-Beltran A, et al. 2016. The FAIR guiding principles for scientific data
management and stewardship. Scientific Data 3:160018. DOI: https://doi.org/10.1038/sdata.2016.18, PMID:
26978244

Wilson HR, Cowan JD. 1972. Excitatory and inhibitory interactions in localized populations of model neurons.
Biophysical Journal 12:1–24. DOI: https://doi.org/10.1016/S0006-3495(72)86068-5, PMID: 4332108

Yao HK, Guet-McCreight A, Mazza F, Moradi Chameh H, Prevot TD, Griffiths JD, Tripathy SJ, Valiante TA,
Sibille E, Hay E. 2022. Reduced inhibition in depression impairs stimulus processing in human cortical
microcircuits. Cell Reports 38:110232. DOI: https://doi.org/10.1016/j.celrep.2021.110232, PMID: 35021088

https://doi.org/10.7554/eLife.95135
https://doi.org/10.1038/nature12600
http://www.ncbi.nlm.nih.gov/pubmed/24162850
https://doi.org/10.3389/neuro.03.002.2007
http://www.ncbi.nlm.nih.gov/pubmed/18946520
https://doi.org/10.7554/eLife.47314
https://doi.org/10.1016/j.neuron.2015.10.025
https://doi.org/10.1152/jn.00983.2004
https://doi.org/10.1152/jn.00983.2004
http://www.ncbi.nlm.nih.gov/pubmed/15525801
https://doi.org/10.3389/fninf.2016.00017
http://www.ncbi.nlm.nih.gov/pubmed/27375471
https://doi.org/10.3389/fninf.2014.00038
https://github.com/NeuralEnsemble/neurotune
https://doi.org/10.1016/j.neuron.2010.06.028
https://doi.org/10.1186/1752-0509-5-198
https://doi.org/10.1186/1752-0509-5-198
http://www.ncbi.nlm.nih.gov/pubmed/22172142
https://doi.org/10.1523/JNEUROSCI.16-20-06402.1996
https://doi.org/10.1523/JNEUROSCI.16-20-06402.1996
http://www.ncbi.nlm.nih.gov/pubmed/8815919
https://doi.org/10.1038/sdata.2016.18
http://www.ncbi.nlm.nih.gov/pubmed/26978244
https://doi.org/10.1016/S0006-3495(72)86068-5
http://www.ncbi.nlm.nih.gov/pubmed/4332108
https://doi.org/10.1016/j.celrep.2021.110232
http://www.ncbi.nlm.nih.gov/pubmed/35021088

	The NeuroML ecosystem for standardized multi-­scale modeling in neuroscience
	eLife Assessment
	Introduction
	Results
	NeuroML provides a ready-to-use set of curated model elements
	NeuroML is a modular, structured language for defining FAIR models
	NeuroML supports a large ecosystem of software tools that cover all stages of the model life cycle
	Creating NeuroML models
	Validating NeuroML models
	Visualizing/analyzing NeuroML models
	Simulating NeuroML models
	Optimizing NeuroML models
	Sharing NeuroML models
	Reusing NeuroML models
	NeuroML is extensible
	NeuroML is a global open community initiative

	Discussion
	Evolution of NeuroML and emergence of the NeuroMLv2 tool ecosystem
	NeuroML and other standards in computational neuroscience
	Why using NeuroML and Python promotes the construction of FAIR models
	Limitations of NeuroML and current work
	Conclusion and vision for the future

	Materials and methods
	The NeuroML XML Schema
	LEMS ComponentType definitions
	NeuroML APIs
	Simulating NeuroML models
	Documentation
	Maintenance of the Schema and core software

	Acknowledgements
	Additional information
	﻿Competing interests
	﻿Funding
	Author contributions
	Author ORCIDs
	Peer review material

	Additional files
	Supplementary files

	References

