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This important work presents a consolidated overview of the NeuroML2 open community standard 
and provides convincing evidence for its central role within a broader software ecosystem for the 
development of neuronal models that are open, shareable, reproducible, and interoperable. A major 
strength of the work is the continued development over more than two decades to establish, main-
tain, and adapt this standard to meet the evolving needs of the field. This work is of broad interest 
to the sub-cellular, cellular, computational, and systems neuroscience communities undertaking 
studies involving theory, modeling, and simulation.

Abstract Data-driven models of neurons and circuits are important for understanding how 
the properties of membrane conductances, synapses, dendrites, and the anatomical connectivity 
between neurons generate the complex dynamical behaviors of brain circuits in health and disease. 
However, the inherent complexity of these biological processes makes the construction and reuse 
of biologically detailed models challenging. A wide range of tools have been developed to aid their 
construction and simulation, but differences in design and internal representation act as technical 
barriers to those who wish to use data-driven models in their research workflows. NeuroML, a model 
description language for computational neuroscience, was developed to address this fragmentation 
in modeling tools. Since its inception, NeuroML has evolved into a mature community standard 
that encompasses a wide range of model types and approaches in computational neuroscience. It 
has enabled the development of a large ecosystem of interoperable open-source software tools for 
the creation, visualization, validation, and simulation of data-driven models. Here, we describe how 
the NeuroML ecosystem can be incorporated into research workflows to simplify the construction, 
testing, and analysis of standardized models of neural systems, and supports the FAIR (Findability, 
Accessibility, Interoperability, and Reusability) principles, thus promoting open, transparent and 
reproducible science.
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Introduction
Development of an in-depth, mechanistic understanding of brain function in health and disease 
requires different scientific approaches spanning multiple scales, from gene expression to behavior. 
Although ‘wet’ experimental approaches are essential for characterizing the properties of neural 
systems and testing hypotheses, theory and modeling are critical for exploring how these complex 
systems behave across a wider range of conditions, and for generating new experimentally testable, 
physically plausible hypotheses. Theory and modeling also provide a way to integrate a panoply of 
experimentally measured parameters, functional properties, and responses to perturbations into a 
physio-chemically coherent framework that reproduces the properties of the neural system of interest 
(Einevoll et  al., 2019; Yao et  al., 2022; Poirazi and Papoutsi, 2020; Gurnani and Silver, 2021; 
Gleeson et al., 2018; Cayco-Gajic et al., 2017; Billings et al., 2014; Vervaeke et al., 2010; Kriener 
et al., 2022; Billeh et al., 2020; Markram et al., 2015).

Computational models in neuroscience often focus on different levels of description. For example, 
a cellular physiologist may construct a complex multi-compartmental model to explain the dynam-
ical behavior of an individual neuron in terms of its morphology, biophysical properties, and ionic 
conductances (Hay et al., 2011; De Schutter and Bower, 1994; Migliore et al., 2005). In contrast, 
to relate neural population activity to sensory processing and behavior, a systems neurophysiologist 
may build a circuit-level model consisting of thousands of much simpler integrate-and-fire neurons 
(Lapicque, 1907; Potjans and Diesmann, 2014; Brunel, 2000). Domain specific tools have been 
developed to aid the construction and simulation of models at varying levels of biological detail 
and scales. An ecosystem of diverse tools is powerful and flexible, but it also creates serious chal-
lenges for the research community (Cannon et  al., 2007). Each tool typically has its own design, 
features, Application Programming Interface (API) and syntax, a custom set of utility libraries, and 
finally, a distinct machine-readable representation of the model’s physiological components. This 
represents a complex landscape for users to navigate. Additionally, models developed in different 
simulators cannot be mixed and matched or easily compared, and the translation of a model from 
one tool-specific implementation to another can be non-trivial and error-prone. This fragmentation in 
modeling tools and approaches can act as a barrier to neuroscientists who wish to use models in their 
research, as well as impede how Findable, Accessible, Interoperable, and Reusable (FAIR) models are 
(Wilkinson et al., 2016).

To counter fragmentation and promote cooperation and interoperability within and across fields, 
standardization is required. The International Neuroinformatics Co-ordinating Facility (INCF) (Abrams 
et al., 2022) has highlighted the need for standards to ‘make research outputs machine-readable and 
computable and are necessary for making research FAIR’ (INCF, 2023). In biology, several community 
standards have been developed to describe experimental data (e.g. Brain Imaging Data Structure 
[BIDS; Gorgolewski et  al., 2016], Neurodata Without Borders [NWB; Teeters et  al., 2015]) and 
computational models (e.g. Systems Biology Markup Language [SBML; Hucka et al., 2003], CellML 
[Lloyd et  al., 2004], Scalable Open Network Architecture TemplAte [SONATA; Dai et  al., 2020], 
PyNN [Davison et al., 2008] and Neural Open Markup Language [NeuroML; Gleeson et al., 2010]). 
These standards have enabled open and interoperable ecosystems of software applications, libraries, 
and databases to emerge, facilitating the sharing of research outputs, an endeavor encouraged by a 
growing number of funding agencies and scientific journals.

The initial version of the NeuroML standard, version 1 (NeuroMLv1), was originally conceived as a 
model description format (Goddard et al., 2001) and implemented as a three-layered, declarative, 
modular, simulator-independent language (Gleeson et al., 2010). NeuroMLv1 could describe detailed 
neuronal morphologies and their biophysical properties as well as specific instantiations of networks. 
It enabled the archiving of models in a standardized format and addressed the issue of simulator frag-
mentation by acting as the common language for model exchange between established simulation 
environments—NEURON (Hines and Carnevale, 1997; Awile et al., 2022), GENESIS (Bower and 
Beeman, 1998), and MOOSE (Ray and Bhalla, 2008). While solving a number of long-standing prob-
lems in computational neuroscience, NeuroMLv1 had several key limitations. The most restrictive of 
these was that the dynamical behavior of model elements was not formally described in the standard 
itself, making it only partially machine readable. Information on the dynamics of elements (i.e. how the 
state variables should evolve in time) was only provided in the form of human-readable documenta-
tion, requiring the developers of each new simulator to re-implement the behavior of these elements 
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in their native format. Additionally, the introduction of new model components required updates to 
the standard and all supporting simulators, making extension of the language difficult. Finally, the use 
of Extensible Markup Language (XML) as the primary interface language limited usability—applica-
tions would generally have to add their own code to read/write XML files.

To address these limitations, NeuroML was redesigned from the ground up in version 2 (NeuroMLv2) 
using the Low Entropy Modeling Specification (LEMS) language (Cannon et al., 2014). LEMS was 
designed to define a wide range of physio-chemical systems, enabling the creation of fully machine-
readable, formal definitions of the structure and dynamics of any model components. Modeling 
elements in NeuroMLv2 (cells, ion channels, synapses) have their mathematical and structural defi-
nitions described in LEMS (e.g. the parameters required and how the state variables change with 
time). Thus, NeuroMLv2 retains all the features of NeuroMLv1—it remains modular, declarative, and 
continues to support multiple simulation engines—but unlike version 1, it is extensible, and all speci-
fications are fully machine-readable. NeuroMLv2 also moved to Python as its main interface language 
and provides a comprehensive set of Python libraries to improve usability (Vella et al., 2014), with 
XML retained as a machine-readable serialization format (i.e. the form in which the model files are 
saved/shared).

Since its release in 2014, the NeuroMLv2 standard, the software ecosystem, and the commu-
nity have all steadily grown. An open, community-based governance structure was put in place—an 
elected Editorial Board, overseen by an independent Scientific Committee, maintains the standard 
and core software tools—APIs, reference simulators, and utilities. Although these tools were initially 
focused on enabling the simulation of models on multiple platforms, they have been expanded to 
support all stages of the model life cycle (Figure 1). Modelers can use these tools to easily create, 
inspect and visualize, validate, simulate, fit and optimize, share and disseminate NeuroMLv2 models 
and outputs (Billings et al., 2014; Cayco-Gajic et al., 2017; Gurnani and Silver, 2021; Kriener et al., 
2022; Gleeson et al., 2019b). To provide clear, concise, searchable information for both users and 
developers, the NeuroML documentation has been significantly expanded and re-deployed using 
the latest modern web technologies (https://docs.neuroml.org). Increased community-wide collabora-
tions have also extended the software ecosystem well beyond the NeuroMLv2 tools developed by the 
NeuroML team: additional simulators such as Brian (Stimberg et al., 2019), NetPyNE (Dura-Bernal 
et al., 2019), Arbor (Akar et al., 2019) and EDEN (Panagiotou et al., 2022) all support NeuroMLv2. 
We have worked to ensure interoperability with other structured formats for model development 
in neuroscience such as PyNN (Davison et  al., 2008) and SONATA (Dai et  al., 2020). Platforms 
for collaboratively developing, visualizing, and sharing NeuroML models (Open Source Brain (OSB) 
Gleeson et al., 2019b) as well as a searchable database of NeuroML model components NeuroML 
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Figure 1. The NeuroML software ecosystem supports all stages of the model development life cycle.
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Database (NeuroML-DB) (Birgiolas et al., 2023) have been developed. These enhancements, driven 
by an ever-expanding community, have helped NeuroMLv2 grow into a standard that has been offi-
cially endorsed by international organizations such as the INCF and COmputational Modeling in 
Biology NEtwork (COMBINE) (Hucka et al., 2015), and that is now sufficiently mature to be incorpo-
rated into a wide range of research workflows.

In this paper, we provide an overview of the current scope of version 2 of the NeuroML standard, 
describe the current software ecosystem and community, and outline the extensive resources to assist 
researchers in incorporate NeuroML into their modeling work. We demonstrate, with examples, that 
NeuroML supports users at all stages of the model development life cycle (Figure 1) and promotes 
FAIR principles in computational neuroscience. We highlight the various NeuroML tools and libraries, 
additional utilities, supported simulation engines, and the related projects that build upon NeuroML 
for automated model validation, advanced analysis, visualization, and sharing/re-use of models. Finally, 
we summarize the organizational aspects of NeuroML, its governance structure and its community.

Results
NeuroML provides a ready-to-use set of curated model elements
A central aim of the NeuroML initiative is to enable and encourage the use of multi-scale biophysically 
detailed models of neurons and neuronal circuits in neuroscience research. The initiative takes a range 
of steps to achieve this aim.

NeuroML provides users with a curated library of model elements that form the NeuroML standard 
(An index of all the model elements included in version 2.3 of NeuroML, with links to further online 
documentation, is provided in Tables 1 and 2; Figure 2). The standard is maintained by the NeuroML 
Editorial Board that has identified a fundamental set of model types to support, to ensure that a 
significant proportion of commonly used neurobiological modeling entities can be described with the 
language. This includes (but is not limited to): active membrane conductances (using Hodgkin-Huxley 
style [Hodgkin and Huxley, 1952] or kinetic scheme-based ionic conductances), multiple synapse and 
plasticity mechanisms, detailed multi-compartmental neuron models with morphologies and biophys-
ical properties, abstract point neuron models, and networks of such cells spatially arranged in popula-
tions, connected by targeted projections, receiving spiking and currently based inputs.

The NeuroMLv2 standard consists of two levels that are designed to enable users to easily create 
their models without worrying about simulator-specific details. The first level defines a formal ‘schema’ 
for the standard model elements, their attributes/parameters (e.g. an integrate and fire cell model 
and its necessary attributes: a threshold parameter, a reset parameter, etc.), and the relationships 
between them (e.g. a network contains populations; a multi-compartmental cell morphology contains 
segments). This allows the validation of the completeness of the description of individual NeuroML 
model elements and models, prior to simulation. The second level defines the underlying dynamical 
behavior of the model elements (e.g. how the time-varying membrane potential of a cell model is to 
be calculated). Most users do not need to interact with this level (which is enabled by LEMS), which, 
among other features, enables the automated translation of simulator-independent NeuroML models 
into simulator-specific code.

Thus, modelers can use the standard NeuroML elements to conveniently build simulator-
independent models, while also being able to examine and extend the underlying implementations 
of models. As a simulator-independent language, NeuroML also promotes interoperability between 
different computational modeling tools, and as a result, the standard library is complemented by a 
large, well-maintained ecosystem of software tools that support all stages of the model life cycle—
from creation, analysis, simulation, and fitting, to sharing and reuse. Finally, as discussed in later 
sections, for advanced use cases where the existing NeuroML model building blocks are insufficient, 
NeuroML also includes a framework for creating and including new model elements.

NeuroML is a modular, structured language for defining FAIR models
NeuroMLv2 is a modular, structured, hierarchical, simulator-independent format. All NeuroML elements 
are formally defined, independent, and self-contained with hierarchical relationships between them. 
An ‘ionic conductance’ model element in NeuroML, for example, can contain zero, one, or more 
‘gates’ and be added into a ‘cell’ model element along with a ‘morphology’ element, which can then 
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Table 1. Index of standard NeuroMLv2 ComponentTypes.
Core components

annotation bqbiol_encodes bqbiol_hasPart

bqbiol_hasProperty bqbiol_hasTaxon bqbiol_hasVersion

bqbiol_is bqbiol_isDescribedBy bqbiol_isEncodedBy

bqbiol_isHomologTo bqbiol_isPartOf bqbiol_isPropertyOf

bqbiol_isVersionOf bqbiol_occursIn bqmodel_is

bqmodel_isDerivedFrom bqmodel_isDescribedBy rdf_Bag

rdf_Description rdf_li rdf_RDF

property point3DWithDiam notes

Core dimensions

area capacitance charge

charge_per_mole concentration conductance

conductance_per_voltage conductanceDensity current

currentDensity idealGasConstantDims length

per_time per_voltage permeability

resistance resistivity rho_factor

specificCapacitance substance temperature

time voltage volume

Abstract cell models

adExIaFCell fitzHughNagumoCell hindmarshRose1984Cell

iafCell iafRefCell iafTauCell

iafTauRefCell izhikevich2007Cell izhikevichCell

pinskyRinzelCA3Cell

ComponentTypes related to biophysically detailed cells

biophysical Properties biophysicalProperties2CaPools cell

cell2CaPools concentration Model decayingPoolConcentrationModel

distal distalProperties fixedFactorConcentrationModel

fixedFactorConcentrationModelTraub from include

inhomogeneousParameter inhomogeneousValue initMembPotential

intracellular Properties intracellularProperties2CaPools member

membraneProperties membraneProperties2CaPools morphology

parent path pointCellCondBased

pointCellCondBasedCa proximal proximalProperties

segment segment Group species

spikeThresh subTree to

variable Parameter channel Density channelDensityGHK

channelDensityGHK2 channelDensityNernst channelDensityNernstCa2

channelDensityNonUniform channelDensityNonUniformGHK channelDensityNonUniformNernst

channelDensityVShift channelPopulation channelPopulationNernst

ComponentTypes related to ion channels

fixedTimeCourse forward Transition gate

gateFractional gateHHInstantaneous gateHHrates

gateHHratesInf gateHHratesTau gateHHratesTauInf

Table 1 continued on next page
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fit into a ‘population’ of a ‘network’ (Figure 2). To support the range of electrical properties found in 
biological neurons, ionic conductances with distinct ionic selectivities and dynamics can be generated 
in NeuroML through the inclusion of different types of gates (e.g. activation, inactivation), their depen-
dence on variables such as voltage and [Ca2+] and their reversal potential. Cell types with different 
functional and biophysical properties can then be generated by conferring combinations of ionic 
conductances on their membranes. The conductance density can be adjusted to generate the elec-
trophysiological properties found in real neurons. In practice, many examples of ionic conductances 
that underlie the electrical behavior of neurons are already available in NeuroMLv2 and can simply be 
inserted into a cell membrane (Figure 2). Indeed, a model element, once defined in NeuroML, acts as 
a building block that may be reused any number of times within or across models. Elements such as 
ionic conductances, cell biophysics, cell morphologies, and cell definitions that incorporate them can 
be serialized in separate files and ‘included’ in other models (e.g. morphologies https://docs.neuroml.​
org/Userdocs/ImportingMorphologyFiles.html#neuroml2). Such reuse of model components speeds 
model construction and prototyping irrespective of the simulation engine used.

The defined structure of each model element and the relationships between them inform users of 
exactly how model elements are to be created and combined. This encourages the construction of 
well-structured models, reduces errors and redundancy, and ensures that FAIR principles are firmly 
embedded in NeuroML models and the ecosystem of tools. As we will see in the following sections, 
NeuroML’s formal structure also enables features such as model validation prior to simulation, trans-
lation into simulation specific formats, and the use of NeuroML as a common language of exchange 
between different tools.

NeuroML supports a large ecosystem of software tools that cover all 
stages of the model life cycle
Model building and the generation of scientific knowledge from simulation and analysis of models is 
a multi-step, iterative process requiring an array of software tools. NeuroML supports all stages of the 
model development life cycle (Figure 1), by providing a single model description format that interacts 
with a myriad of tools throughout the process. Researchers typically assemble ad-hoc sets of scripts, 
applications, and processes to help them in their investigations. In the absence of standardization, they 
must work with the specific model formats and APIs that each tool they use requires, and somehow 
convert model descriptions when using multiple applications in a toolchain. NeuroML addresses this 
issue by providing a common language for the use and exchange of models and their components 
between different simulation engines and modeling tools. The NeuroML ecosystem includes a large 
collection of software tools, both developed and maintained by the main NeuroML contributors (the 
‘core NeuroML tools and libraries:’ jNeuroML, pyNeuroML, APIs) and those external applications that 
have added NeuroML support (Figures 3 and 4a, Tables 3 and 4).

The core NeuroML tools and libraries include APIs in several programming languages—Python, 
Java, C++, and MATLAB. These tools provide critical functionality to allow users to interact with 
NeuroML components and build models. Using these, researchers can build models from scratch, 
or read, modify, analyze, visualize, and simulate existing NeuroML models on supported simulation 

Core components

gateHHtauInf gateKS HHExpLinearRate

HHExpLinearVariable HHExpRate HHExpVariable

HHSigmoidRate HHSigmoidVariable ionChannel

ionChannelHH ionChannelKS ionChannelPassive

ionChannelVShift KSState KSTransition

open State q10ConductanceScaling q10ExpTemp

q10Fixed reverse Transition sub Gate

tauInfTransition vHalfTransition closedState

Table 1 continued
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platforms. Furthermore, developers can also use the core tools, libraries, and APIs to support NeuroML 
in their own applications.

The simulation platforms e.g. EDEN (Panagiotou et  al., 2022), NEURON (Hines and Carne-
vale, 1997), along with other independently developed tools, form the next layer of the software 
ecosystem—providing extra functionality such as interactive model construction (e.g. neuroConstruct 
Gleeson et al., 2007), NetPyNE (Dura-Bernal et al., 2019), additional visualization (e.g. OSB Gleeson 
et al., 2019b), analysis (e.g. NeuroML-DB Birgiolas et al., 2023), data-driven validation (e.g. SciUnit 
Gerkin et al., 2019), and archival/sharing (e.g. OSB, NeuroML-DB). Indeed, OSB and NeuroML-DB 
are prime examples of how advanced neuroinformatics resources can be built on top of standards 
such as NeuroML.

Table 2. Index of standard NeuroMLv2 ComponentTypes (continued).

ComponentTypes related to synapses

alphaCurrentSynapse alphaSynapse blockingPlasticSynapse

doubleSynapse expOneSynapse expThreeSynapse

expTwoSynapse gap Junction gradedSynapse

linearGradedSynapse silentSynapse stdpSynapse

tsodyksMarkramDepFacMechanism tsodyksMarkramDepMechanism voltageConcDepBlockMechanism

ComponentTypes related to inputs

compoundInput compoundInputDL poissonFiringSynapse

pulseGenerator pulseGeneratorDL rampGenerator

rampGeneratorDL sineGenerator sineGeneratorDL

spike spikeArray spike Generator

spikeGeneratorPoisson spikeGeneratorRandom spikeGeneratorRefPoisson

timedSynapticInput transientPoissonFiringSynapse voltage Clamp

voltageClampTriple

ComponentTypes related to networks

connection connectionWD continuous Connection

continuousConnectionInstance continuousConnectionInstanceW continuous Projection

electrical Connection electricalConnectionInstance electricalConnectionInstanceW

electrical Projection explicit Connection explicitInput

input inputList inputW

instance location network

networkWithTemperature population population List

projection rectangularExtent region

synaptic Connection synapticConnectionWD

ComponentTypes related to model simulation

Display EventOutputFile EventSelection

Line OutputColumn OutputFile

Simulation

ComponentTypes related to PyNN

alphaCondSynapse alphaCurrSynapse EIF_cond_alpha_isfa_ista

EIF_cond_exp_isfa_ista expCondSynapse expCurrSynapse

HH_cond_exp IF_cond_alpha IF_cond_exp

IF_curr_alpha IF_curr_exp SpikeSourcePoisson
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Figure 2. NeuroML is a modular, hierarchical format that supports multi-scale modeling. Elements in NeuroML 
are formally defined, independent, self-contained building blocks with hierarchical relationships between them. 
(a) Models of ionic conductances can be defined as a composition of gates, each with specific voltage (and 
potentially [Ca2+]) dependence that controls the conductance. (b) Morphologically detailed neuronal models 
specify the 3D structure of the cells, along with passive electrical properties, and reference ion channels that 
confer membrane conductances. (c) Network models contain populations of these cells connected via synaptic 
projections. (d) A truncated illustration of the main categories of the NeuroMLv2 standard elements and their 
hierarchies. The standard includes commonly used model elements/building blocks that have been pre-defined 
for users: Cells: neuronal models ranging from simple spiking point neurons to biophysically detailed cells with 
multi-compartmental morphologies and active membrane conductances; Synapses and ionic conductance 
models: commonly used chemical and electrical synapse models (gap junctions), and multiple representations for 

Figure 2 continued on next page
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Table 5 lists interactive, step-by-step guides in the NeuroML documentation, which can be followed 
to learn the fundamental NeuroML concepts, as well as illustrate how NeuroML-compliant tools can 
be used to achieve specific tasks across the model development life cycle. In the following sections, 
we discuss the specific functionality available at each stage of model development.

Creating NeuroML models
The structured declarative elements of NeuroMLv2, when combined with a procedural scripting 
language such as Python, provide a powerful and yet intuitive ‘building block’ approach to model 
construction. For this reason, Python is now the recommended language for interacting with NeuroML 
(Figure 4), although XML remains the primary serialization language for the format (i.e. for saving to 
disk and depositing in model repositories (Figure 5)). Python has emerged as a key programming 
language in science, including many areas of neuroscience (Muller et  al., 2015). A Python-based 
NeuroML ecosystem ensures that users can take advantage of Python’s features, and also use pack-
ages from the wider Python ecosystem in their work (e.g. Numpy (Harris et al., 2020), Matplotlib 
Hunter, 2007). pyNeuroML, the Python interface for working with NeuroML, is built on top of the 
Python NeuroML API, libNeuroML (Vella et al., 2014; Sinha, 2023; Figure 4).

As illustrated in Figure 5, Python can be used to combine different NeuroML components into 
a model. NeuroML supports several pathways for the creation of new models. Modelers may use 
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Figure 3. NeuroML compliant tools and their relation to the model life cycle. The inner circle shows the core 
NeuroML tools and libraries that are maintained by the NeuroML developers. These provide the functionality to 
read, modify, or create new NeuroML models, as well as to validate, analyze, visualize and simulate the models. 
The outermost layer shows NeuroML-compliant tools that have been developed independently to allow various 
interactions with NeuroML models. These complement the core tools by facilitating model creation, validation, 
visualization, simulation, fitting/optimization, sharing, and reuse. Further information on each of the tools shown 
here can be found in Tables 3 and 4.

ionic conductances; Inputs: to drive cell and network activity, e.g., current or voltage clamp, spiking background 
inputs; Networks: of populations (containing any of the aforementioned cell types), and projections. The full list of 
standard NeuroML elements can be found in Tables 1 and 2.

Figure 2 continued
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Figure 4. The core NeuroML software stack, and an example NeuroML model created using the Python NeuroML 
tools. (a) The core NeuroML software stack consists of Java (blue) and Python (orange) based applications/libraries, 
and the LEMS model ComponentType definitions (green), wrapped up in a single package, pyNeuroML. Each of 
these modules can be used independently or the whole stack can be obtained by installing pyNeuroML with the 
default Python package manager, Pip: pip install pyneuroml. (b) An example of how to create a simple NeuroML 
model is shown, using the NeuroMLv2 Python API (libNeuroML) to describe a model consisting of a population 
of 10 integrate and fire point neurons (IafTauCell) in a network. The IafTauCell, Network, Population, and 
NeuroMLDocument model ComponentTypes are provided by the NeuroMLv2 standard. The underlying dynamics 
of the model are hidden from the user, being specified in the LEMS ComponentType definitions of the elements 
(see Methods). The simulator-independent NeuroML model description can be simulated on any of the supported 
simulation engines. (c) Extensible Markup Language (XML) serialization of the NeuroMLv2 model description 
shows the correspondence between the Python object model and the XML serialization.

https://doi.org/10.7554/eLife.95135
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elements included in the NeuroML standard, re-use user-defined NeuroML model elements from other 
models, or define completely new model elements using LEMS (Figure 5) (see section on extending 
NeuroML below). It is common for models to use a combination of these strategies, e.g., Gurnani 
and Silver, 2021; Kriener et al., 2022; Cayco-Gajic et al., 2017, highlighting the flexibility provided 
by the modular design of NeuroML. NeuroML APIs support all of these workflows. The Python tools 
also include many additional higher-level utilities to speed up model construction, such as factory 
functions, type hints, and convenience functions for building complex multi-compartmental neuron 
models (Figure 6).

For the construction of complex 3D circuit models, or for users who are not experienced with 
Python, a range of NeuroML-compliant online and standalone applications with graphical user inter-
faces are available. These include NetPyNE’s interactive web interface (Dura-Bernal et  al., 2019) 
(which is available on the latest version of OSB (https://v2.opensourcebrain.org)) and neuroConstruct 
(Gleeson et al., 2007) which can export models directly into NeuroML and LEMS. These applications 
can be used to build and simulate new NeuroML models without requiring programming. Thus, users 
can take advantage of the individual features provided by these applications to generate NeuroML-
compliant models and model elements.

Validating NeuroML models
Ensuring a model is ‘valid’ can have different meanings at different stages of the life cycle—from 
checking whether the source files are in the correct format, to ensuring the model reproduces a signif-
icant feature of its biological counterpart. NeuroML’s hierarchical, well-defined structure allows users 
to check their model descriptions for correctness at multiple levels (Figure 7), in a manner similar to 

Table 3. NeuroML software core tools and libraries, with a description of their scope, the main programming language they use (or 
other interaction means, e.g. Command Line Interface (CLI)), and links for more information.

Tool Language/interface Description URL

pyNeuroML Python/CLI
Recommended Python library for NeuroML; provides 
pynml, primary command line tool for NeuroML

https://docs.neuroml.org/
Userdocs/Software/pyNeuroML.
html

libNeuroML Python Python API for NeuroML

https://docs.neuroml.org/
Userdocs/Software/libNeuroML.
html

NeuroMLlite Python
High level library for creating NeuroML network models 
(beta)

https://docs.neuroml.org/
Userdocs/Software/NeuroMLlite.
html

PyLEMS Python/CLI Python API and simulator for LEMS
https://docs.neuroml.org/
Userdocs/Software/pyLEMS.html

jLEMS Java/CLI Java API for LEMS and reference simulator
https://docs.neuroml.org/
Userdocs/Software/jLEMS.html

org.neuroml.model Java Java API for NeuroML, DOI:10.5281/zenodo.5783290
https://github.com/NeuroML/
org.neuroml.model/

org.neuroml.export Java
Java API for translating NeuroML into different formats such 
as NEURON, DOI:10.5281/zenodo.1346272

https://github.com/NeuroML/
org.neuroml.export

org.neuroml.import Java
Java API for importing formats into LEMS and NeuroML, 
DOI:10.5281/zenodo.5783295

https://github.com/NeuroML/
org.neuroml.import

jNeuroML Java/CLI
Wraps jLEMS and all export/import packages and provides 
the jnml tool, DOI:10.5281/zenodo.593108

https://docs.neuroml.org/
Userdocs/Software/jNeuroML.
html

NeuroML-C++ C++ C++ API for NeuroML

https://docs.neuroml.org/
Userdocs/Software/NeuroML_
API.html

NeuroML Toolbox MATLAB MATLAB NeuroML Toolbox
https://docs.neuroml.org/
Userdocs/Software/MatLab.html

https://doi.org/10.7554/eLife.95135
https://v2.opensourcebrain.org
https://docs.neuroml.org/Userdocs/Software/pyNeuroML.html
https://docs.neuroml.org/Userdocs/Software/pyNeuroML.html
https://docs.neuroml.org/Userdocs/Software/pyNeuroML.html
https://docs.neuroml.org/Userdocs/Software/libNeuroML.html
https://docs.neuroml.org/Userdocs/Software/libNeuroML.html
https://docs.neuroml.org/Userdocs/Software/libNeuroML.html
https://docs.neuroml.org/Userdocs/Software/NeuroMLlite.html
https://docs.neuroml.org/Userdocs/Software/NeuroMLlite.html
https://docs.neuroml.org/Userdocs/Software/NeuroMLlite.html
https://docs.neuroml.org/Userdocs/Software/pyLEMS.html
https://docs.neuroml.org/Userdocs/Software/pyLEMS.html
https://docs.neuroml.org/Userdocs/Software/jLEMS.html
https://docs.neuroml.org/Userdocs/Software/jLEMS.html
https://doi.org/10.5281/zenodo.5783290
https://github.com/NeuroML/org.neuroml.model/
https://github.com/NeuroML/org.neuroml.model/
https://doi.org/10.5281/zenodo.1346272
https://github.com/NeuroML/org.neuroml.export
https://github.com/NeuroML/org.neuroml.export
https://doi.org/10.5281/zenodo.5783295
https://github.com/NeuroML/org.neuroml.import
https://github.com/NeuroML/org.neuroml.import
https://doi.org/10.5281/zenodo.593108
https://docs.neuroml.org/Userdocs/Software/jNeuroML.html
https://docs.neuroml.org/Userdocs/Software/jNeuroML.html
https://docs.neuroml.org/Userdocs/Software/jNeuroML.html
https://docs.neuroml.org/Userdocs/Software/NeuroML_API.html
https://docs.neuroml.org/Userdocs/Software/NeuroML_API.html
https://docs.neuroml.org/Userdocs/Software/NeuroML_API.html
https://docs.neuroml.org/Userdocs/Software/MatLab.html
https://docs.neuroml.org/Userdocs/Software/MatLab.html
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Table 4. Tools in the wi main programming language they use (or other interaction means, e.g. through a web browser, Graphical 
User Interface (GUI) or Command Line Interface (CLI)), and links for more information.

Tool Language/interface Description URL

Simulation engines

NEURON Python/Hoc/CLI/GUI
Empirically-based simulations of 
neurons and networks of neurons

https://docs.neuroml.org/Userdocs/
Software/Tools/NEURON.html

NetPyNE Python/web

Package to facilitate the 
development, parallel simulation, 
analysis, and optimization of 
biological neuronal networks using 
the NEURON simulator. Also has a 
graphical web interface, NetPyNE-UI

https://docs.neuroml.org/Userdocs/
Software/Tools/NetPyNE.html

EDEN NeuroML NeuroML-based neural simulator
https://docs.neuroml.org/Userdocs/
Software/Tools/EDEN.html

MOOSE Python

The Multiscale Object-Oriented 
Simulation Environment is the 
base and numerical core for large, 
detailed multi-scale simulations that 
span computational neuroscience 
and systems biology. Based on a 
reimplementation of the GENESIS 
2 core.

https://docs.neuroml.org/Userdocs/
Software/Tools/MOOSE.html

PyNN Python

A simulator-independent language 
for building neuronal network 
models

https://docs.neuroml.org/Userdocs/
Software/Tools/PyNN.html

NEST Python/SLI

Simulator for spiking neural network 
models focusing on dynamics, size, 
and structure of neural systems

https://docs.neuroml.org/Userdocs/
Software/Tools/NEST.html

Brian2 Python
Easy to learn and use simulator for 
spiking neural networks

https://docs.neuroml.org/Userdocs/
Software/Tools/Brian.html

Arbor Python
A multi-compartment neuron 
simulation library

https://docs.neuroml.org/Userdocs/
Software/Tools/Arbor.html

N2A Java/GUI
Language and IDE for writing and 
simulating models

https://docs.neuroml.org/Userdocs/
Software/Tools/N2A.html

Databases

OSB Web

Resource for sharing and 
collaboratively developing 
computational models of neural 
systems https://www.opensourcebrain.org/

NeuroML-DB Web
NeuroML database of cell and 
channel models https://neuroml-db.org/

Other tools

OMV Python
Open Source Brain Model Validation 
framework

https://github.com/
OpenSourceBrain/osb-model-
validation

SciUnit Python Data driven unit testing framework https://github.com/scidash/sciunit

BluePyOpt Python
Blue Brain Python Optimization 
Library https://bluepyopt.readthedocs.io/

NeuroTune Python
Package for fitting/optimization  
of NeuroML models

https://github.com/NeuralEnsemble/
neurotune

PyElectro Python Electrophysiology analysis package
https://github.com/NeuralEnsemble/
pyelectro

https://doi.org/10.7554/eLife.95135
https://docs.neuroml.org/Userdocs/Software/Tools/NEURON.html
https://docs.neuroml.org/Userdocs/Software/Tools/NEURON.html
https://docs.neuroml.org/Userdocs/Software/Tools/NetPyNE.html
https://docs.neuroml.org/Userdocs/Software/Tools/NetPyNE.html
https://docs.neuroml.org/Userdocs/Software/Tools/EDEN.html
https://docs.neuroml.org/Userdocs/Software/Tools/EDEN.html
https://docs.neuroml.org/Userdocs/Software/Tools/MOOSE.html
https://docs.neuroml.org/Userdocs/Software/Tools/MOOSE.html
https://docs.neuroml.org/Userdocs/Software/Tools/PyNN.html
https://docs.neuroml.org/Userdocs/Software/Tools/PyNN.html
https://docs.neuroml.org/Userdocs/Software/Tools/NEST.html
https://docs.neuroml.org/Userdocs/Software/Tools/NEST.html
https://docs.neuroml.org/Userdocs/Software/Tools/Brian.html
https://docs.neuroml.org/Userdocs/Software/Tools/Brian.html
https://docs.neuroml.org/Userdocs/Software/Tools/Arbor.html
https://docs.neuroml.org/Userdocs/Software/Tools/Arbor.html
https://docs.neuroml.org/Userdocs/Software/Tools/N2A.html
https://docs.neuroml.org/Userdocs/Software/Tools/N2A.html
https://www.opensourcebrain.org/
https://neuroml-db.org/
https://github.com/OpenSourceBrain/osb-model-validation
https://github.com/OpenSourceBrain/osb-model-validation
https://github.com/OpenSourceBrain/osb-model-validation
https://github.com/scidash/sciunit
https://bluepyopt.readthedocs.io/
https://github.com/NeuralEnsemble/neurotune
https://github.com/NeuralEnsemble/neurotune
https://github.com/NeuralEnsemble/pyelectro
https://github.com/NeuralEnsemble/pyelectro
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multi-level testing in software development. Importantly, most of the validation tests in NeuroML are 
run on the models’ NeuroML descriptions prior to simulation.

A first level of validation checks the structure of individual model elements against their formal 
specifications contained in the NeuroML standard. The standard includes information on the param-
eters of each model element, restrictions on parameter values, their allowed units, their cardinality, 
and the location of the model element in the model hierarchy—i.e., parent/children relationships. A 
second level of validation includes a suite of semantic and logical checks. For example, at this level, 
a model of a multi-compartmental cell can be checked to ensure that all segments referenced in 
segment groups (e.g. the group of dendritic segments) have been defined, and only defined once 
with unique identifiers. A list of validation tests currently included in the NeuroML core tools can be 
found in Table 6. These can be run against NeuroML files at the command line or programmatically 
in Python (Figure 6).

A key advantage of using the NeuroML2/LEMS framework is that dimensions and units are inbuilt 
into LEMS descriptions. This enables automated conversions of units, unit checking, together with the 
validation of equations. Any expressions in models which are dimensionally inconsistent will be high-
lighted at this stage. Note that LEMS handles unit conversions internally—modelers have flexibility in 
how they enter the units of parameter values (e.g. specifying conductance density in ‍S/m2‍ or ‍mS/cm2‍) in 
the NeuroML files, with the underlying LEMS definitions ensuring that a consistent set of dimensions 
are used in model equations (Cannon et al., 2014). LEMS then takes care of mapping the entered 
units to the target simulator’s preferred units. This makes model definition, inspection, use, extension, 
and translation easier and less error-prone.

Once the set of NeuroML files are validated, the model can be simulated, and checks can be made 
to test whether execution produces consistent results (e.g. firing rate of neurons in a given popula-
tion) across multiple simulators (or versions of the same simulator). For this, the OSB Model Validation 
(OMV) framework has been developed (Gleeson et al., 2019b). This framework can automatically 
check that the output (e.g. spike times) of a NeuroML model running on a given simulator is within an 
allowed tolerance of the expected value. OMV has been applied to NeuroML models that have been 
shared on OSB, to test consistent behavior of models as the models themselves, and all supported 

Table 5. Step-by-step guides for using NeuroML illustrating the various stages of the model 
development life cycle.
These include Introductory guides aimed at teaching the fundamental NeuroML concepts, 
Advanced guides illustrating specific modeling workflows, and Walkthrough guides discussing the 
steps required for converting models to NeuroML. An updated list is available at http://neuroml.org/
gettingstarted.

Link Description Model life cycle stages

Introductory guides

Guide 1
Create and simulate a simple regular spiking Izhikevich neuron in 
NeuroML Create, Validate, Simulate

Guide 2
Create a network of two synaptically connected populations of 
Izhikevich neurons Create, Validate, Visualize, Simulate

Guide 3 Build and simulate a single compartment Hodgkin-Huxley neuron Create, Validate, Visualize, Simulate

Guide 4 Create and simulate a multi compartment hippocampal OLM neuron Create, Validate, Visualize, Simulate

Advanced guides

Guide 5 Create novel NeuroML models from components on NeuroML-DB Reuse, Create, Validate, Simulate

Guide 6 Optimize/fit NeuroML models to experimental data Create, Validate, Simulate, Fit

Guide 7 Extend NeuroML by creating a novel model type in LEMS Create, Simulate

Walkthroughs

Guide 8
Guide to converting cell models to NeuroML and sharing them on 
Open Source Brain Create, Validate, Simulate, Share

Guide 9 Conversion of Ray et al., 2020
Create, Validate, Visualize, Simulate, 
Share

https://doi.org/10.7554/eLife.95135
http://neuroml.org/gettingstarted
http://neuroml.org/gettingstarted
https://docs.neuroml.org/Userdocs/NML2_examples/SingleNeuron.html
https://docs.neuroml.org/Userdocs/IzhikevichNetworkExample.html
https://docs.neuroml.org/Userdocs/SingleCompartmentHHExample.html
https://docs.neuroml.org/Userdocs/MultiCompartmentOLMexample.html
https://docs.neuroml.org/Userdocs/NML2_examples/NeuroML-DB.html
https://docs.neuroml.org/Userdocs/OptimisingNeuroMLModels.html
https://docs.neuroml.org/Userdocs/ExtendingNeuroMLv2.html#example-lorenz-model-for-cellular-convection
https://docs.neuroml.org/Userdocs/CreatingNeuroMLModels.html#converting-cell-models-to-neuroml-and-sharing-them-on-open-source-brain
https://docs.neuroml.org/Userdocs/Walkthroughs/RayEtAl2020/RayEtAl2020.html#userdocs-walkthroughs-rayetal2020
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simulators, are updated. This has proven to be a valuable process for ensuring uniform usage and 
interpretation of NeuroML across the ecosystem of supporting tools.

A final level of validation concerns checking whether the model elements have emergent features 
that are in line with experimentally observed behavior of the biological equivalents. NeuronUnit 
(Gerkin et al., 2019), a SciUnit (Omar et al., 2014) package for data-driven unit testing and validation 
of neuronal and ion channel models, is also fully NeuroML compliant, and also supports automated 
validation of NeuroML models shared on NeuroML-DB and OSB.

Visualizing/analyzing NeuroML models
Multiple visualization, inspection, and analysis tools are available in the NeuroML software ecosystem. 
Since NeuroML models have a fixed, well-defined structure, NeuroML libraries can extract all informa-
tion from their descriptions. This information can be used by modelers and their programs/tools to run 
automated programmatic analyses on models.

pyNeuroML includes a range of ready-made inspection utilities for users (Figure 6) that can be used 
via Python scripts, interactive Jupyter Notebooks, and command line tools. Examining the structure of 
cell and network models with 2D and 3D views is important for manual validation and to compare them 
to their biological counterparts. Graphical views of cell model morphology and the 3-dimensional 
network layout (Figure 8), population and connectivity matrices/graphs at different levels (Figure 9), 
and model summaries can all be generated (Figure 10). In addition to these inspection functions, a 

NeuroML/LEMS serialization (XML)

NeuroML core software

Simulator specific 
export modules

Execute in native
simulators

Generate helper
scripts

Expanded LEMS
description

Build NeuroML 
core Components

Reuse existing
Components

tools

4) Generated simulator scripts

NEURON Brian2

1) NeuroML reference simulators

jNeuroML PyLEMS

NetPyNE MOOSE

3) Simulators import NeuroML

2) Native NeuroML simulators

EDEN

5) Other standardized formats

SBMLSONATAPyNN

User defined
Components in LEMS

pyNeuroML

Figure 5. Workflow showing how to create and simulate NeuroML models using Python. The Python API can be 
used to create models which may include elements built from scratch from the NeuroML standard, re-use elements 
from previously created models, or create new components based on novel model definitions expressed in LEMS 
(red). The generated model elements are saved in the default XML-based serialization (blue). The NeuroML core 
tools and libraries (orange) include modules to import model descriptions expressed in the XML serialization, 
and support multiple options for how simulators can execute these models (green). These include: (1) execution 
of the NeuroML models by reference simulators; (2) execution by other independently developed simulators that 
natively support NeuroML, such as EDEN; (3) generation of Python ‘import scripts’ which allow NeuroML models 
to be imported (and converted to internal formats) by simulators which support this; (4) fully expanding the LEMS 
description of the models, which can be mapped to generated simulator specific scripts for target simulators; (5) 
mapping to other standardized formats in neuroscience and systems biology.

https://doi.org/10.7554/eLife.95135
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Create (using Python API)

from neuroml import *

# Create a container document
doc = NeuroMLDocument(id="network0")

# Add single exponential synapse model
syn0 = doc.add("ExpOneSynapse", id="syn0", gbase="65nS", erev="0mV", tau_decay="3ms")

# Reuse existing ion channel model
doc.add("IncludeType", href="Na_chan.channel.nml")

# Create a cell with 3D morphology using the Cell ComponentType
cell = doc.add("Cell", id="olm", neuro_lex_id="NLXCELL:091206") # Hippocampal CA1 OLM cell
cell.set_init_memb_potential("-67mV")
cell.set_resistivity("0.15 kohm_cm")
cell.add_channel_density(doc, cd_id="na_all", cond_density="10 mS_per_cm2",

ion_channel="Na_chan", ion_chan_def_file="Na.channel.nml",
erev="50mV", ion="na")

cell.add_unbranched_segment_group("soma_group")
soma_0 = cell.add_segment(prox=[0, 0, 0, 10], dist=[0, 10, 0, 10], name="Seg0_soma_0",

group_id="soma_group", seg_type="soma")

API examples Command line usage examples

Validate
validate_neuroml2("file.nml") > pynml "file.nml" -validate
doc.validate(recursive=True)

Inspect and visualize
element.info()

>)cod(yrammus pynml-summary "file.nml"
>)cod(gnp_ot_2lmn pynml -png "file.nml"
>)cod(gvs_ot_2lmn pynml -svg "file.nml"
>)cod(hparglmn_etareneg pynml "file.nml" -graph
> pynml "file.nml" -matrix 1
>)llec(D2_tolp pynml-plotmorph "cell.nml"

plot_interactive_3d(cell) > pynml-plotmorph -interactive3d "cell.nml"
plot_interactive_3d(network) > pynml-plotmorph -interactive3d "net.nml"

> pynml-channelanalysis "channel.nml"
plot_channel_densities(cell) > pynml-plotchan "cell.nml"

Simulate
run_lems_with_jneuroml("sim.xml") > pynml "sim.xml"
run_lems_with_jneuroml_neuron("sim.xml") > pynml "sim.xml" -neuron -run
run_lems_with_jneuroml_netpyne("sim.xml") > pynml "sim.xml" -netpyne -run
run_on_nsg("jneuroml_neuron", "sim.xml")
. . .

Share and archive
create_combine_archive("sim.xml") > pynml-archive "neuron.cell.nml"

Figure 6. PyNeuroML provides Python functions and command line utilities supporting all stages of the model life 
cycle.

https://doi.org/10.7554/eLife.95135
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variety of utilities for the inspection of NeuroML descriptions of electrophysiological properties of 
membrane conductances and their spatial distribution over the neuronal membrane are also provided 
(Figure 10).

The graphical applications included in the NeuroML ecosystem (e.g. neuroConstruct, NeuroML-DB, 
OSB (v1 [https://v1.opensourcebrain.org] and v2), NetPyNE, and Arbor-GUI) also provide many of 
their own analysis and visualization functions. OSBv1, for example, supports automated 3D visual-
ization of networks and cell morphologies, network connectivity graphs and metrics, and advanced 
model inspection features (Gleeson et  al., 2019b; Figure  8b). On OSBv2, NetPyNE provides 
advanced graphical plotting and analysis facilities (Figure 8c). A complete JupyterLab (https://jupyter.​
org/) interface is also included in OSBv2 for Python scripting, allowing interactive notebooks to be 
created and shared, mixing scripting and graphical elements, including those generated by pyNeu-
roML. NeuroML-DB also provides information on electrophysiology, morphology, and the simulation 
aspects of neuronal models (Birgiolas et al., 2023; Figure 10a). In general, any NeuroML-compliant 
application can be used to inspect and analyze elements of NeuroML models, each having their own 
distinct advantages.

Simulating NeuroML models
Users can simulate NeuroML models using a number of simulation engines without making any 
changes to their models. This is because the NeuroML/LEMS descriptions of the models are simulator 
independent and can be translated to simulator specific formats. pyNeuroML facilitates access to all 
available simulation options, both from the command line and using function calls in Python scripts 
when using the Python API (Figure 6).

Simulation engines can be classified into five broad categories (Figure 5):

1.	 reference NeuroML/LEMS simulators.
2.	 independently developed simulators that natively support NeuroML.

Model description

NeuroML validity checks
Does the model include all required model elements?

Are all necessary model element attributes/parameters set?
Are all model elements correctly ordered?

Do all parameters use correct physiological units?

Additional/logical checks
Do model elements correctly reference each other?
Are synapses/connections/projections correctly defined?
Are multi-compartmental cell morphologies valid?

LEMS checks

Model simulation

Are all model elements mappable to simulation back-ends?

OMV checks
Does the model produce the same results on all simulators? 

Behavioral checks (SciUnit)
Do the simulation results match experimental data?

Are all of the units and dimensions consistent?

Figure 7. NeuroML model development incorporates multi-level validation of models. Checks are performed on 
the model descriptions (blue) before simulation using validation at both the NeuroML and LEMS levels (green). 
After the models are simulated (yellow), further checks can be run to ensure the output is in line with expected 
behavior (brown). The OSB Model Validation (OMV) framework can be used to ensure consistent behavior across 
simulators, and comparisons can be made of model activity to their biological equivalents using SciUnit.

https://doi.org/10.7554/eLife.95135
https://v1.opensourcebrain.org
https://jupyter.org/
https://jupyter.org/
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3.	 simulators that import/translate NeuroML to their own internal formats.
4.	 simulators that are supported through generation of simulator-specific scripts by the core 

NeuroML tools.
5.	 export to other standardized formats which may allow simulation/analysis in other packages.

Each simulation engine supports a different set of features that NeuroML users can take advan-
tage of (Table 7). For example, the reference NeuroML and LEMS simulators, jNeuroML, jLEMS, and 
PyLEMS, can simulate all LEMS models and most NeuroML models. They cannot, however, simulate 

Table 6. Listing of validation tests run by NeuroML.

Test Description

Schema tests

Check names
Check that names of all elements, attributes, parameters match those 
provided in the schema

Check types Check that the types of all included elements

Check values Check that values follow given restrictions

Check inclusion Check that required elements are included

Check cardinality Check the number of elements

Check hierarchy
Check that child/children elements are included in the correct parent 
elements

Check sequence order Check that child/children elements are included in the correct order

Additional tests

Check top level ids Check that top level (root) elements have unique ids

Check Network level ids Check that child/children of the Network element have unique ids

Check Cell Segment ids Check that all Segments in a Cell have unique ids

Check single Segment without parent Check that only one Segment is without parents (the soma Segment)

Check SegmentGroup ids Check that all SegmentGroups in a Cell have unique ids

Check Member segment ids exist Check that Segments referred to in SegmentGroup Members exist

Check SegmentGroup definition Check that SegmentGroups being referenced are defined

Check SegmentGroup definition order Check that SegmentGroups are defined before being referenced

Check included SegmentGroups
Check that SegmentGroups referenced by Include elements of other 
SegmentGroups exist

Check numberInternalDivisions

Check that SegmentGroups define numberInternalDivisions (used by 
simulators to discretize un-branched branches into compartments for 
simulation)

Check included model files Check that model files included by other files exist

Check Population component Check that a component id provided to a Population exists

Check ion channel exists Check that an ion channel used to define a ChannelDensity element exists

Check concentration model species Check that the species used in ConcentrationModel elements are defined

Check Population size
Check that the size attribute of a PopulationList matches the number of 
defined Instances

Check Projection component Check that Populations used in the Projection elements exist

Check Connection Segment Check that the Segment used in Connection elements exist

Check Connection pre/post cells
Check that the pre- and post-synaptic cells used in Connection elements 
exist and are correctly specified

Check Synapse Check that the Synapse component used in a Projection element exists

Check root id Check that the root Segment in a Cell morphology has id 0

https://doi.org/10.7554/eLife.95135
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Figure 8. Visualization of detailed neuronal morphology of neurons and networks together with their functional 
properties (results from model simulation) enabled by NeuroML. (a) Interactive 3-D (VisPy (Campagnola, 2023) 
based) visualization of an olfactory bulb network with detailed mitral and granule cells (Migliore et al., 2014), 
generated using pyNeuroML. (b) Visualization of an inhibition stabilized network based on Sadeh et al., 2017 
using Open Source Brain (OSB) version 1 (Gleeson et al., 2019b). (c) Visualization of 3D network of simplified 
multi-compartmental cortical neurons (from Traub et al., 2005, imported as NeuroML Gleeson, 2019a) and 
simulated spiking activity using NetPyNE’s GUI (Dura-Bernal et al., 2019), which is embedded in OSB version 2.

https://doi.org/10.7554/eLife.95135
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multi-compartmental models, and users should opt for a simulator that does, e.g., NEURON (Hines 
and Carnevale, 1997) or EDEN (Panagiotou et al., 2022).

Another criteria that is relevant when choosing a simulation engine is the efficiency of simulation. 
Simulation engines implement different computing techniques—e.g., NetPyNE, Arbor, and EDEN 
support parallel execution on clusters and super computers via MPI—to enable simulation of large-
scale models. Thus, for efficient large-scale simulation, users may prefer one of these simulation 
engines.

The preferred programming language for working with NeuroML is Python (Muller et al., 2015). 
A Python-based ecosystem ensures that automated simulation of models can easily be carried out 
either using scripts, or the command line tools. Utilities to enable the execution of simulations on 
dedicated supercomputing resources, such as the Neuroscience Gateway (NSG) (Sivagnanam, 2013; 

Figure 9. Analysis and visualization of network connectivity from NeuroML model descriptions prior to simulation. 
Network connectivity schematic (a) and connectivity matrix (b) for a half scale implementation of the human layer 
2/3 cortical network model (Yao et al., 2022) generated using pyNeuroML.

Table 7. Features supported by NeuroML in different simulation engines.
Note: the simulators themselves may support more features, but these have not been mapped onto by the NeuroML tools. 
Abstract cell models: abstract cell models included in the NeuroML standard (see Table 1). Single compartmental cells: neuronal 
models that include a single compartment (these engines do not support multi-compartmental cells). Multiple compartmental cells: 
neuronal models that include multiple compartments. Conductance-based models: models that support ionic conductances. Parallel 
execution: engines that support parallel execution using MPI/GPUs. Y: full support; N: no support; L: limited support in NeuroML 
toolchain.

Tool
Abstract cell 
models

Single compartment 
cells

Multiple compartment 
cells

Conductance-based 
models

Parallel 
execution

jNeuroML/pyNeuroML Y Y N Y N

NEURON Y Y Y Y N

NetPyNE Y Y Y Y Y

EDEN Y Y Y Y Y

MOOSE Y Y L Y N

PyNN Y Y L L Y

NEST Y Y N N Y

Brian2 Y Y Y Y L

Arbor L Y Y L Y

https://doi.org/10.7554/eLife.95135
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Figure 10. Examples of visualizing biophysical properties of a NeuroML model neuron. (a) Electrophysiological 
properties generated by the NeuroML-DB web-based platform (Birgiolas et al., 2023). (Plots show four 
superimposed voltage traces in the top panel and corresponding current injection traces below). (b) Example 
plots of steady states of activation (na_channel na_m inf) and inactivation (na_channel na_h inf) variables and their 
time courses (na_channel na_m tau and na_channel na_h tau) for the Na channel from the classic Hodgkin Huxley 
model (Hodgkin and Huxley, 1952). (c) The distribution of the peak conductances for the Ih channel over a layer 
5 Pyramidal cell (Hay et al., 2011). Both (b) and (c) were generated using the analysis features in pyNeuroML, and 
similar functionality is also available in OSBv1 (Gleeson et al., 2019b).

https://doi.org/10.7554/eLife.95135
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http://www.nsgportal.org/) are also available within the ecosystem. OSBv1 takes advantage of these 
to support the submission of NeuroML model simulation jobs using the NEURON simulator on NSG. 
NetPyNE also includes parallel execution of simulations, batch processing, and parameter explora-
tion features, and its deployment on OSBv2 allows users to easily access these features on a scal-
able, cloud-based platform. Finally, the JupyterLab environment on OSBv2 contains all of the core 
NeuroML tools and various simulation engines as pre-installed software packages, ready to use.

Optimizing NeuroML models
Development of biologically detailed models of brain function requires that components and emer-
gent properties match the behavior of the corresponding biology as closely as possible. Thus, fitting 
neurons and networks to experimental data is a critical step in the model life cycle (Rossant et al., 
2011; Druckmann et  al., 2007). pyNeuroML promotes data-driven modeling by providing func-
tions to fit and optimize NeuroML models against experimental data. It includes the NeuroMLTuner 
module (https://pyneuroml.readthedocs.io/en/development/pyneuroml.tune.html), which builds on 
the Neurotune package (https://github.com/NeuralEnsemble/neurotune; Vella and Gleeson, 2023) 
for tuning and optimizing NeuroML models against data using evolutionary computation techniques. 
This module allows users to select a set of weighted features from their data to calculate the fitness 
of populations of candidate models. In each generation, the fittest models are found and mutated to 
create the next generation of models, until a set of models that best exhibit the selected data features 
are isolated (see Guide 6 in Table 5) (https://docs.neuroml.org/Userdocs/OptimisingNeuroMLModels.​
html).

The NeuroML ecosystem includes multiple tools that also provide model fitting features. The Blue 
Brain Python Optimisation Library (BluePyOpt) (Van Geit et al., 2016), an extensible framework for 
data-driven model parameter optimization, supports exporting optimized models to NeuroML files 
(https://github.com/BlueBrain/BluePyOpt/blob/master/examples/neuroml/neuroml.ipynb). Similar 
to pyNeuroML, NetPyNE also uses the inspyred Python package (https://github.com/aarongarrett/​
inspyred; Sinha and Garrett, 2024) to provide evolutionary computation-based model optimization 
features (Dura-Bernal et al., 2019).

Sharing NeuroML models
The NeuroML ecosystem includes the advanced web-based model sharing platforms NeuroML-DB 
(Birgiolas et al., 2023; https://neuroml-db.org) and OSB (Gleeson et al., 2019b). These resources 
have been designed specifically for the dissemination of models and model elements standardized 
in NeuroML. The OSB platform also supports visualization, analysis, simulation, and development of 
NeuroML models. Researchers can create shared, collaborative NeuroML projects on it and can take 
advantage of the in-built automated visualization and analysis pipelines to explore and re-use models 
and their components. Whereas version 1 (OSBv1) focused on providing an interactive 3D interface 
for running pre-existing NeuroML models (e.g. sourced from linked GitHub repositories) (Gleeson 
et al., 2019b), OSBv2 provides cloud-based workspaces for researchers to construct NeuroML-based 
computational models as well as analyze, and compare them to, the experimental data on which they 
are based, thus facilitating data-driven computational modeling. Table  8 provides a list of stable, 
well-tested NeuroML compliant models from brain regions including the neocortex, cerebellum, and 
hippocampus, which have been shared on OSB.

NeuroML-DB aims to promote the uptake of standardized NeuroML models by providing a conve-
nient location for archiving and exploration. It includes advanced database search functions, including 
ontology-based search (Birgiolas et al., 2015), coupled with pre-computed analyses on models’ elec-
trophysiological and morphological properties, as well as an indication of the relative speed of execu-
tion of different models.

NeuroML’s modular nature ensures that models and their components can be easily shared with 
others through standard code sharing resources. The simplest way of sharing NeuroML models and 
components is to make their Python descriptions or their XML serializations available through these 
resources. Indeed, it is straightforward to make Python descriptions or the XML serializations available 
via different file, code (GitHub, GitLab), model sharing (ModelDB Migliore et al., 2003; McDougal 
et al., 2017), and archival (Zenodo, Open Science Framework) platforms, just like any other code/data 
produced in scientific investigations. Complex models with many components, spanning multiple files, 
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Table 8. Listing of NeuroML models and example repositories.

Model Description URL

Neocortex

Billeh et al., 2020

Morphologically detailed and point neuron 
models based on electrophysiological recordings 
from visual cortex neurons

https://github.com/OpenSourceBrain/
AllenInstituteNeuroML

Brunel, 2000
Spiking network illustrating balance between 
excitation and inhibition https://github.com/OpenSourceBrain/Brunel2000

Hay et al., 2011
Layer 5 pyramidal cell model constrained by 
somatic and dendritic recordings

https://github.com/OpenSourceBrain/
L5bPyrCellHayEtAl2011

Izhikevich, 2004
Spiking neuron model reproducing wide range of 
neuronal activity

https://github.com/OpenSourceBrain/
IzhikevichModel

Markram et al., 2015
Cell models from Neocortical Microcircuit of Blue 
Brain Project

https://github.com/OpenSourceBrain/
BlueBrainProjectShowcase

Pospischil et al., 2008
HH-based models for different classes of cortical 
and thalamic neurons

https://github.com/OpenSourceBrain/
PospischilEtAl2008

Potjans and Diesmann, 2014
Microcircuit model of sensory cortex with 8 
populations across 4 layers

https://github.com/OpenSourceBrain/
PotjansDiesmann2014

Dura-Bernal et al., 2017 Model of mouse primary motor cortex (M1)
https://github.com/OpenSourceBrain/
M1NetworkModel

Sadeh et al., 2017
Point neuron model of Inhibition Stabilized 
Network

https://github.com/OpenSourceBrain/
SadehEtAl2017-InhibitionStabilizedNetworks

Smith et al., 2013
Layer 2/3 cell model used to investigate dendritic 
spikes

https://github.com/OpenSourceBrain/
SmithEtAl2013-L23DendriticSpikes

Traub et al., 2005
Single column network model containing 14 cell 
populations from cortex and thalamus

https://github.com/OpenSourceBrain/
Thalamocortical

Bahl et al., 2012
A set of reduced models of layer 5 pyramidal 
neurons

https://github.com/OpenSourceBrain/
BahlEtAl2012_ReducedL5PyrCell

Wilson and Cowan, 1972

A classic rate-based model describing the 
dynamics and interactions between the excitatory 
and inhibitory populations of neurons

https://github.com/OpenSourceBrain/
WilsonCowan

Garcia Del Molino et al., 2017

Rate-based model showing paradoxical response 
reversal of top-down modulation in cortical 
circuits with three interneuron types

https://github.com/OpenSourceBrain/del-
Molino2017

Mejias et al., 2016

A rate-based model simulating the dynamics of a 
cortical laminar structure across multiple scales: 
intralaminar, interlaminar, interareal and whole 
cortex

https://github.com/OpenSourceBrain/
MejiasEtAl2016

Cerebellum

Maex and Schutter, 1998 Cerebellar granule cell
https://github.com/OpenSourceBrain/
GranuleCell

Cayco-Gajic et al., 2017 Cerebellar granule cell layer network
https://github.com/SilverLabUCL/MF-GC-
network-backprop-public

Maex and Schutter, 1998 3D Cerebellar granule cell layer network
https://github.com/OpenSourceBrain/
GranCellLayer

Solinas et al., 2007 Cerebellar Golgi cell model
https://github.com/OpenSourceBrain/
SolinasEtAl-GolgiCell

Vervaeke et al., 2010
Electrically connected cerebellar Golgi cell 
network model

https://github.com/OpenSourceBrain/
VervaekeEtAl-GolgiCellNetwork

Hippocampus

Bezaire et al., 2016 Full scale network model of CA1 region of 
hippocampus

https://github.com/mbezaire/ca1
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Model Description URL

Ferguson et al., 2013
Parvalbumin-positive interneuron from CA1, 
based on Izhikevich cell model

https://github.com/OpenSourceBrain/
FergusonEtAl2013-PVFastFiringCell

Ferguson et al., 2014
Pyramidal cell from CA1, based on Izhikevich cell 
model

https://github.com/OpenSourceBrain/
FergusonEtAl2014-CA1PyrCell

Migliore et al., 2005
Multi-compartmental model of pyramidal cell 
from CA1 region of hippocampus

https://github.com/OpenSourceBrain/
CA1PyramidalCell

Pinsky and Rinzel, 1994 Simplified model of CA3 pyramidal cell
https://github.com/OpenSourceBrain/
PinskyRinzelModel

Wang and Buzsáki, 1996
Hippocampal interneuronal network model 
exhibiting gamma oscillations

https://github.com/OpenSourceBrain/
WangBuzsaki1996

Olfactory bulb

Migliore et al., 2014
Large-scale 3D olfactory bulb network with 
detailed mitral cells and granule cells

https://github.com/OpenSourceBrain/
MiglioreEtAl14_OlfactoryBulb3D

Invertebrate

Hodgkin and Huxley, 1952
Classic investigation of the ionic basis of the 
action potential

https://github.com/openworm/hodgkin_huxley_
tutorial

FitzHugh, 1961 Simplified form of Hodgkin Huxley model
https://github.com/OpenSourceBrain/FitzHugh-
Nagumo

Prinz et al., 2004
Pyloric network of the lobster stomatogastric 
ganglion system

https://github.com/OpenSourceBrain/
PyloricNetwork

Boyle and Cohen, 2008 Model of body wall muscle from C. elegans https://github.com/openworm/muscle_model

Gleeson et al., 2018
A multiscale framework for modeling the nervous 
system of C. elegans https://github.com/openworm/c302

General

Morris and Lecar, 1981
Two dimensional reduced neuron model with 
calcium and potassium conductances

https://github.com/OpenSourceBrain/
MorrisLecarModel

Hindmarsh and Rose, 1984

A simplified point cell model which captures 
complex firing patterns of single neurons, such as 
periodic and chaotic bursting

https://github.com/OpenSourceBrain/
HindmarshRose1984

Showcases

NEST Showcase Examples of interactions with simulator NEST
https://github.com/OpenSourceBrain/
NESTShowcase

PyNN Showcase
Examples of interactions between NeuroML and 
PyNN

https://github.com/OpenSourceBrain/
PyNNShowcase

NetPyNE Showcase
Examples of interactions between NeuroML and 
NetPyNE

https://github.com/OpenSourceBrain/
NetPyNEShowcase

SBML Showcase
Examples of interactions between NeuroML and 
SBML

https://github.com/OpenSourceBrain/
SBMLShowcase

Brian Showcase
Examples of interactions between NeuroML and 
Brian

https://github.com/OpenSourceBrain/
BrianShowcase

MOOSE Showcase
Examples of interactions between NeuroML and 
MOOSE

https://github.com/OpenSourceBrain/
MOOSEShowcase

Arbor Showcase
Examples of interactions between NeuroML and 
Arbor

https://github.com/OpenSourceBrain/
ArborShowcase

EDEN Showcase
Examples of interactions between NeuroML and 
EDEN

https://github.com/OpenSourceBrain/
EDENShowcase

The Virtual Brain Showcase Examples of interactions between NeuroML and 
TVB

https://github.com/OpenSourceBrain/
TheVirtualBrainShowcase
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such as networks and neuronal models that reference multiple cell and ionic conductance definitions, 
can also be exported into a COMBINE zip archive (Bergmann et al., 2014), a zip file that includes 
metadata about its contents. pyNeuroML includes functions to easily create COMBINE archives from 
NeuroML models and simulations (Figure 6).

OSB is designed so that researchers can share their code on their chosen platform (e.g. GitHub), 
while retaining full control over write access to their repositories. Afterwards, a page for the model 
can be created on OSB which lists the latest files present there, with links to OSB visualization/anal-
ysis/simulation features which can use the standardized files found in the resource.

NeuroML supports the embedding of structured ontological information in model descriptions 
(Neal et al., 2019). Models can include NeuroLex (now InterLex) (Larson and Martone, 2013) identi-
fiers for their components (e.g. neuro_lex_id in Figure 6). This links model components to their biolog-
ical counterparts and makes them more transparent, findable, and reusable. For example, different 
types of neurons and brain regions have unique ontological ids. A user can use these ids to search for 
relevant model components on NeuroML-DB. More general information to maintain provenance can 
also be included in NeuroML models (https://docs.neuroml.org/Userdocs/Provenance.html).

Reusing NeuroML models
NeuroML models, once openly shared, become community resources that are accessible to all. 
Researchers can use models shared on NeuroML-DB and OSB without restrictions. Guide 5 in Table 5 
provides an example of finding NeuroML-based model components using the API of NeuroML-DB, 
and creating novel models incorporating these elements.

In addition to these platforms, other experimental data and model dissemination platforms also 
provide standardized NeuroML versions of relevant models to promote uptake and reuse. For example, ​
NeuroMorpho.​org (Ascoli et  al., 2007) includes a tool to download NeuroML compliant versions 
of its cellular reconstructions (https://github.com/NeuroML/Cvapp-NeuroMorpho.org, https://docs.​
neuroml.org/Userdocs/Software/Tools/SWC.html). NeuroML versions of models released by organiza-
tions such as the Blue Brain Project (Markram et al., 2015) (whole cell models as well as ion channel 
models from Channelpedia Ranjan et al., 2011), the Allen Institute for Brain Science (Billeh et al., 
2020), and the OpenWorm project (Gleeson et al., 2018) are also openly available for reuse (Table 8).

NeuroML can also interact with other standards to further promote model re-use. Whereas NeuroML 
is a declarative standard, PyNN (Davison et al., 2008) is a procedural standard with a Python API for 
creating network models that can be simulated on multiple simulators. NeuroML models which are 
within the scope of PyNN can be converted to the PyNN format, and vice-versa. Similarly, NeuroML 
also interacts with SONATA (Dai et al., 2020) data format by supporting the two way conversion 
of the network structures of NeuroML models into SONATA. In standards not specific to neurosci-
ence, models from the well established SBML standard (Hucka et al., 2003) can be converted to 
LEMS (Cannon et al., 2014), for inclusion in neuroscience-related modeling pipelines, and a subset 
of NeuroML/LEMS models can be exported to SBML, which allows use with simulators and anal-
ysis packages compliant to this standard, e.g., Tellurium (Choi et al., 2018). Simulation execution 
details of NeuroML/LEMS models can also be exported to Simulation Experiment Description Markup 
Language (SED-ML) (Waltemath et al., 2011), allowing advanced resources such as Biosimulators 
(Shaikh et al., 2022) (https://biosimulators.org) to feature NeuroML models.

Model Description URL

NEURON Showcase
Examples of interactions between NeuroML and 
NEURON

https://github.com/OpenSourceBrain/
NEURONShowcase

neuroConstruct Showcase Examples of neuroConstruct projects
https://github.com/OpenSourceBrain/
neuroConstructShowcase

NeuroMorpho.Org
Examples of reconstructions from NeuroMorpho.
Org

https://github.com/OpenSourceBrain/
NeuroMorpho

Janelia MouseLight
Janelia MouseLight project neuronal 
reconstructions

https://github.com/OpenSourceBrain/
MouseLightShowcase
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NeuroML is extensible
While the standard NeuroML elements (Tables 1 and 2) provide a broad range of curated model types 
for simulation-based investigations, NeuroML can be extended (using LEMS) to incorporate novel 
model elements and types when they are not (yet) available in the standard.

LEMS is a general purpose model specification language for creating fully machine readable defini-
tions of the structure and behavior of model elements (Cannon et al., 2014). The dynamics of NeuroML 
elements are described in LEMS. The hierarchical nature of LEMS means that new elements can build 
on pre-existing elements of the modular NeuroML framework. For example, a novel ionic conduc-
tance element can extend the ‘ionChannelHH’ element, which in turn extends ‘baseIonChannel.’ Thus, 
the new element will be known to the NeuroML elements as depending on an external voltage and 
producing a conductance, properties that are inherited from ‘baseIonChannel.’ Other elements, such 
as a cell, can incorporate this new type without needing any other information about its internal 
workings.

LEMS (and, therefore, NeuroML) element definitions (called ‘ComponentTypes’) specify the dynam-
ical behavior of the model element in terms of a list of yet to be set parameters. Once the generic 
model behavior is defined, modelers only need to fill in the appropriate values of the required param-
eters (e.g. conductance density, reversal potential, etc.) to create new instances (called ‘Compo-
nents’) of the element (see Methods for more details). Users can, therefore create arbitrary, reusable 
model elements in LEMS, which can be treated the same way as the standard model elements (for an 
example see Guide 7 in Table 5).

Another major advantage of NeuroML’s use of the LEMS language is its translatability. Since LEMS 
is fully machine readable, its primitives (e.g. state variables and their dynamics, expressed as ordinary 
differential equations) can be readily mapped into other languages. As a result, simulator specific 
code (Blundell et  al., 2018) can be generated from NeuroML models and their LEMS extensions 
(Figure 5), allowing NeuroML to remain simulator-independent while supporting multiple simulation 
engines.

Newly created elements that may be of interest to the wider research community can be submitted 
to the NeuroML Editorial Board for inclusion into the standard. The standard, therefore, evolves as 
new model elements are added and improved versions of the standard and associated software tool 
chain are regularly released to the community.

NeuroML is a global open community initiative
NeuroML is a global open community standard that is used and maintained collectively by a diverse 
set of stakeholders. The NeuroML Scientific Committee (https://docs.neuroml.org/NeuroMLOrg/​
ScientificCommittee.html) and the elected NeuroML Editorial Board (https://docs.neuroml.org/​
NeuroMLOrg/Board.html) oversee the standard, the core tools, and the initiative. This ensures that 
NeuroML supports the myriad of use cases generated by a multi-disciplinary computational modeling 
community.

NeuroML is an endorsed INCF (Abrams et al., 2022) community standard (Martone and Das, 
2019) and is one of the main standards of the international COMBINE initiative (Hucka et  al., 
2015), which supports the development of other standards in computational biology as well (e.g. 
SBML (Hucka et al., 2003) and CellML Lloyd et al., 2004). Participation in these organizations 
guarantees that NeuroML follows current best practices in standardization, and remains linked to 
and interoperable with other standards wherever possible. The NeuroML community also partic-
ipates in training and outreach activities such as Google Summer of Code (https://docs.neuroml.​
org/NeuroMLOrg/OutreachTraining.html), tutorials, and internships under these and other 
organizations.

The NeuroML community maintains public open communication channels to ensure that all 
community members can easily participate in troubleshooting, discussions, and development activ-
ities. A public mailing list (https://lists.sourceforge.net/lists/listinfo/neuroml-technology) is used for 
asynchronous communication and announcements while open chat channels on Gitter (now Matrix/
Element (#/#​NeuroML_​community:​gitter.​im)) provide immediate access to the NeuroML community. 
All software repositories hosted on GitHub also have issue trackers for software specific queries. A 
community Code of Conduct (https://docs.neuroml.org/NeuroMLOrg/CoC.html) sets the standards 
of communication and behavior expected on all community channels.

https://doi.org/10.7554/eLife.95135
https://docs.neuroml.org/NeuroMLOrg/ScientificCommittee.html
https://docs.neuroml.org/NeuroMLOrg/ScientificCommittee.html
https://docs.neuroml.org/NeuroMLOrg/Board.html
https://docs.neuroml.org/NeuroMLOrg/Board.html
https://docs.neuroml.org/NeuroMLOrg/OutreachTraining.html
https://docs.neuroml.org/NeuroMLOrg/OutreachTraining.html
https://lists.sourceforge.net/lists/listinfo/neuroml-technology
https://docs.neuroml.org/NeuroMLOrg/CoC.html


 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Sinha, Gleeson et al. eLife 2024;13:RP95135. DOI: https://doi.org/10.7554/eLife.95135 � 26 of 44

A crucial aim of NeuroML is to enable Open Science and ensure models in computational neuro-
science are FAIR. To this end, all development and discussions related to NeuroML are done publicly. 
The schema, all core software tools, and relevant resources such as documentation are made freely 
available under suitable Free/Open Source Software (FOSS) licenses on public platforms. Everyone 
can, therefore, use, modify, study, and share all NeuroML artifacts without restriction. Users and devel-
opers are encouraged to contribute modifications and improvements to the schema and core tools 
and to participate in the general maintenance and release process.

Discussion
NeuroMLv2 has matured into a widely adopted community standard for computational neurosci-
ence. Its modular, hierarchical structure can define a wide range of neuronal and circuit model types 
including simplified representations and those with a high degree of biological detail. The standard-
ized, machine readable format of the NeuroMLv2/LEMS framework provides a flexible, common 
language for communicating between a wide range of tools and simulators used to create, validate, 
visualize, analyze, simulate, share, and reuse models. By enabling this interoperability, NeuroMLv2 
has spawned a large ecosystem of interacting tools that cover all stages of the model development 
life cycle, bringing greater coherence to a previously fragmented landscape. Moreover, the modular 
nature of the model components and hierarchical structure conferred by NeuroMLv2, combined with 
the flexibility of coding in Python, has created a powerful ‘building block’ approach for constructing 
standardized models from scratch.

NeuroML has, therefore, evolved from a standardized archiving format into a mature language 
that supports an ecosystem of tools for the creation and execution of models that support the FAIR 
principles and promote open, transparent, and reproducible science.

Evolution of NeuroML and emergence of the NeuroMLv2 tool 
ecosystem
NeuroML was conceived (Goddard et al., 2001) and developed (Gleeson et al., 2010) as a declar-
ative XML-based framework for defining biophysical models of neurons and networks in a standard-
ized form in order to compare model properties across simulators and to promote transparency and 
reuse. NeuroML version 1 achieved these aims and was mainly used to archive and visualize existing 
models (Gleeson et al., 2010). Building on this, the subsequent development of the NeuroMLv2/
LEMS framework provided a way to describe models as a hierarchical set of components with dimen-
sional parameters and state variables, so that their structure and dynamics are fully machine readable 
(Cannon et al., 2014). This enabled models to be losslessly mapped to other representations, greatly 
promoting interoperability between tools through read-write and automated code generation (Blun-
dell et al., 2018). As NeuroMLv2 matured and became a community standard recognized by the INCF 
with a formal governance structure, an increasingly wide range of models and modeling tools have 
been developed or modified to be NeuroMLv2 compliant (Tables 8, 3 and 4). The core tools, main-
tained directly by the NeuroML developers (Figure 4), provide functionality to read, modify, or create 
new NeuroML models, as well as to analyze and visualize, and simulate the models. Furthermore, 
there are now a larger number of tools that have been developed by other members of the commu-
nity (Figure 3) including a neuronal simulator designed specifically for NeuroMLv2 (Panagiotou et al., 
2022). The emergence of an ecosystem of NeuroMLv2 compliant tools enables modelers to build tool 
chains that span the model life cycle and build and reuse standardized models.

NeuroML and other standards in computational neuroscience
Several other standards and formats exist to support computational modeling of neuronal systems. 
Whereas NeuroML is a modular, declarative simulator independent standard for biophysical neuronal 
modeling, PyNN (Davison et al., 2008) and SONATA (Dai et al., 2020) provide a procedural Python-
based simulator independent API and a framework for efficiently handling large-scale network simula-
tions, respectively. Even though there is some overlap in the functionality provided by these standards, 
they each target distinct use cases and have their own goals and features. The teams developing these 
standards work in concert to ensure that they remain interoperable with each other, frequently sharing 
methods and techniques (Dai et al., 2020). This allows researchers to use their standard of choice and 
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easily combine with another if the need arises. PyNN and SONATA are, therefore, integral parts of the 
wider NeuroML ecosystem.

Why using NeuroML and Python promotes the construction of FAIR 
models
The modular and hierarchical structure of NeuroMLv2, when combined with Python, provides a 
powerful combination of structured declarative elements and flexible procedural approaches that 
enables a ‘Lego-like’ building block approach for constructing biologically detailed models (Cayco-
Gajic et al., 2017; Billings et al., 2014; Kriener et al., 2022; Gurnani and Silver, 2021). This has 
been advanced by the development of pyNeuroML, which provides a single installable package 
offering direct access to a range of functionality for handling NeuroML models (Figure  6). More-
over, the web-based documentation of NeuroMLv2, with multiple Python scripts illustrating the usage 
of the language and associated tools (Table 5), has recently been updated and expanded (https://​
docs.neuroml.org). This provides a central resource for both new and experienced users of NeuroML 
supporting its use in model building. As the examples of this resource illustrate, building models 
using NeuroMLv2 is efficient and intuitive, as the model components are pre-made and how they fit 
together specified. The structured format allows APIs like libNeuroML to incorporate features such as 
auto-completion and inline validation of model parameters and structure as scripts are being devel-
oped. In addition, automated multi-stage model validation ensures the code, equations and internal 
structure are validated against the NeuroML schema minimizing human errors and model simulations 
outputs are within acceptable bounds (Figure 7). The NeuroMLv2 ecosystem also provides convenient 
ways to visualize and inspect the inner structure of models. pyNeuroML provides Python functions 
and corresponding command line utilities to view neuronal morphology (Figure 8), neuronal electro-
physiology (Figure 10), circuit connectivity and schematics (Figure 9). In addition, custom analysis 
pipelines and advanced neuroinformatics resources can easily be built using the APIs. For example, 
loading a NeuroML model of a neuron into OSB enables visualization of the morphology and the 
spatial distribution of ionic conductance over the membrane as well as inspection of the conductance 
state variables, while the connectivity and synaptic weight matrices can be automatically displayed for 
circuit models (Figure 8; Gleeson et al., 2019b). Such features of OSB, which are made possible by 
the structured format of NeuroMLv2, promote model transparency, reproducibility, and sharing. By 
enabling the development and sharing of well tested and transparent models the wider NeuroMLv2 
ecosystem promotes Open Science.

Limitations of NeuroML and current work
A limitation of any standardized framework is that there will always be models and model elements 
that fall outside the current scope of the standard. Although NeuroML suffers from this limitation, the 
underlying LEMS-based framework provides a flexible route to develop a wide range of new types 
of physio-chemical models (Cannon et al., 2014). This is relatively straightforward if the new model 
component, such as a synaptic plasticity mechanism, fits within the existing hierarchical structure of 
NeuroMLv2 as the new type of synaptic element can build on an existing base synapse type which 
specifies the relevant input and outputs (e.g. local voltage and synaptic current). For more radical 
shifts in model types (e.g. neuronal morphologies that grow during learning) that do not fit neatly into 
the current NeuroMLv2 schema, structural changes to the language would be required. This route 
is more involved as the pros and cons of changes to the structure of NeuroMLv2 would need to be 
considered by the Scientific Committee and, if approved, implemented by the Editorial Board.

Whereas the current scope of NeuroMLv2 encompasses models of spiking neurons and networks 
at different levels of biological detail, plans are in place to extend its scope to include more abstract, 
rate-based models of neuronal populations (e.g. see Wilson and Cowan, 1972; Mejias et al., 2016 
in Table 8). Additionally, work is under way to extend current support for SBML (Hucka et al., 2003) 
based descriptions of chemical signaling pathways (Cannon et al., 2014), to enable better biochem-
ical descriptions of sub-cellular activity in neurons and synapses.

There is a growing interest in the field for the efficient generation and serialization of large-scale 
network models, containing numbers of neurons closer to their biological equivalents (Markram et al., 
2015; Billeh et al., 2020; Einevoll et al., 2019). While a multitude of applications in the NeuroML 
ecosystem support large-scale model generation (e.g. NetPyNE, neuroConstruct, PyNN), the default 
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serialization of NeuroML (XML) is inefficient for reading/writing/storing such extensive descriptions. 
NeuroML does have an internal format for serializing in the binary format HDF5 (see Methods), but 
has also recently added support for export of models to the SONATA data format (Dai et al., 2020) 
allowing efficient serialization of large-scale models. Even though individual instances of large-scale 
models are useful, the ability to generate families of these for multiple simulation runs and more 
particularly a way to encapsulate, examine and reuse templates for network models, is also required. 
A prototype package, NeuroMLlite (https://github.com/NeuroML/NeuroMLlite), has been developed 
which allows these concise network templates to be described and multiple instances of networks to 
be generated, and facilitates interaction with simulation platforms and efficient serialization formats.

As discoveries and insights in neuroscience inform machine learning and visa versa, there is an 
increasing need to develop a common framework for describing both biological and artificial neural 
networks. Model Description Format (MDF) has been developed to address this (Gleeson et  al., 
2023). This initiative has developed a standardized format, along with a Python API, which allows 
the specification of artificial neural networks (e.g. Convolutional Neural Networks, Recurrent Neural 
Networks) and biological neurons using the same underlying entities. Support for mapping MDF to/
from NeuroMLv2/LEMS has been included from the start. This work will enable deeper integration of 
computational neuroscience and ‘brain-inspired’ networks in Artificial Intelligence (AI).

Conclusion and vision for the future
NeuroMLv2 is already a mature community standard that provides a framework for standardizing 
biologically detailed neuronal network models. By providing a stable, common framework defining 
the essential entities required for biologically detailed neuronal modeling, NeuroML has spawned an 
ecosystem of tools that span all stages of the model development life cycle. In the short term, we 
envision the functionality of NeuroML to expand further and for new online resources that encourage 
the construction of FAIR models using pyNeuroML to be taken up by the community. The NeuroML 
development team are also beginning to explore how to combine NeuroML-based circuit models with 
musculo-skeletal simulations to enable models of the neural control of behavior. In the longer term, 
developing seamless interfaces between NeuroML and other domain specific standards will enable 
the development of more holistic models of the neural control of body systems across a wide range of 
organisms, as well as greater exchange of models and insights between computational neuroscience 
and AI.

Materials and methods
NeuroMLv2 is formally specified by the NeuroMLv2 XML schema, which defines the allowed structure 
of XML files which comply to the standard, and the LEMS ComponentType definitions, which define 
the internal state variables of the underlying elements, providing a machine-readable specification of 
the time evolution of model components. The specification is backed up by a suite of software tools 
that support the model life cycle and the accompanying usage and development documentation.

We illustrate the key parts of this framework using the HindmarshRose cell model (Hindmarsh and 
Rose, 1984; Figure 11), which as an abstract point neuron model, serves as an appropriate simple 
NeuroMLv2 ComponentType.

The NeuroML XML Schema
We begin with the NeuroMLv2 standard. The standard consists of two parts, each serving different 
functions:

1.	 the NeuroMLv2 XML schema
2.	 corresponding LEMS component type definitions

The NeuroMLv2 schema is a language independent data model that constrains the structure of a 
NeuroMLv2 model description. The NeuroML schema is formally described as an XML Schema docu-
ment (https://neuroml.org/schema/neuroml2) in the XML Schema Definition (XSD) format, a recom-
mendation of the World Wide Web Consortium (W3C) (https://www.w3.org/TR/xmlschema-1/). An 
XML document that claims to conform to a particular schema can be validated against the schema. All 
NeuroMLv2 model descriptions can, therefore, be validated against the NeuroMLv2 schema.
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The basic building blocks of an XSD schema are ‘simple’ or ‘complex’ types and their ‘attributes.’ 
All types are created as ‘extensions’ or ‘restrictions’ of other types. Complex types may contain other 
types and attributes whereas simple types may not. Figure 12 shows some example types defined 
in the NeuroMLv2 schema. For example, the Nml2Quantity_none simple type restricts the in-built 
‘string’ type using a regular expression ‘pattern’ that limits what string values it can contain. The type 
is Nml2Quantity_none is to be used for unit-less quantities (e.g. 3, 6.7, –1.1e-5) and the restriction 
pattern for translates to ‘a string that may start with a hyphen (negative sign), followed by any number 
of numerical characters (potentially containing a decimal point) and a string containing capital or 
small ‘e’ (to specify the exponent).’ The restriction pattern for the Nml2Quantity_voltage type is 
similar, but must be followed by a ‘V’ or ‘mV.’ In this way, the restriction ensures that a value of type 
‘Nml2Quantity_voltage’ represents a physical voltage quantity with units ‘V’ (volt) or ‘mV’ (millivolt). 
Furthermore, a NeuroMLv2 model description that uses a voltage value that does not match this 
pattern, for example ‘0.5 s,’ will be invalid.

The example of a complex type in Figure 12 is the HindmarshRose1984Cell type that extends 
the BaseCellMembPotCap complex type (the base type for any cell producing a membrane potential 

a. NeuroML model description serialization

<neuroml xmlns="http://www.neuroml.org/schema/neuroml2"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.neuroml.org/schema/neuroml2
https://raw.github.com/NeuroML/NeuroML2/development/Schemas/NeuroML2/NeuroML_v2.3.xsd"
id="HindmarshRoseNeuron">

<hindmarshRose1984Cell id="hr_regular_bursting" C="28.57142857pF" a="1.0" b="3.0"
c="-3.0" d="5.0" s="4.0" x1="-1.3" r="0.002" x0="-1.1" y0="-9" z0="1.0"
v_scaling="1.0mV"/>

<pulseGenerator id="pulseGen_0" delay="0s" duration="1000s" amplitude="5nA"/>

<network id="HRNet">
<population id="HRPop0" component="hr_regular_bursting" size="1"/>
<explicitInput target="HRPop0[0]" input="pulseGen_0" destination="synapses"/>

</network>
</neuroml>

b.

Figure 11. Example model description of a HindmarshRose1984Cell NeuroML component. (a) XML serialization of 
the model description containing the main hindmarshRose1984Cell element with a set of parameters which result 
in regular bursting. A current clamp stimulus is applied using a pulseGenerator, and a population of one cell is 
added with this in a network. This XML can be validated against the NeuroML Schema. (b) Membrane potentials 
generated from a simulation of the model in (a). The LEMS simulation file to execute this is shown in Figure 15. 
The code used in this example is available here: https://github.com/OpenSourceBrain/HindmarshRose1984/tree/
master/NeuroML2/examples.

https://doi.org/10.7554/eLife.95135
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v with a capacitance parameter C), and defines new ‘required’ (compulsory) attributes. These attri-
butes are of simple types—these are all unit-less quantities apart from v_scaling, which has dimen-
sion voltage. Note that inherited attributes are not re-listed in the complex type definition—the 
compulsory capacitance attribute, C, is inherited here from BaseCellMembPotCap.

The NeuroMLv2 schema serves multiple critical functions. A variety of tools and libraries support 
the validation of files against XSD schema definitions. Therefore, the NeuroMLv2 schema enables 
the validation of model descriptions—model structure, parameters, parameter values and their units, 
cardinality, element positioning in the model hierarchy (level 1 validation in Figure 7)—prior to simu-
lation. XSD schema definitions, as language independent data models, also allow the generation of 
APIs in different languages. More information on how APIs in different languages are generated using 
the NeuroMLv2 XSD schema definition is provided in later sections.

The NeuroMLv2 XSD schema is also released and maintained as a versioned artifact, similar to 
the software packages. The current version is 2.3, and can be found in the NeuroML2 repository on 
GitHub (https://github.com/NeuroML/NeuroML2/tree/master/Schemas/NeuroML2).

LEMS ComponentType definitions
The second part of the NeuroMLv2 standard consists of the corresponding LEMS ComponentType 
definitions. Whereas the XSD Schema describes the structure of a NeuroMLv2 model description, the 
LEMS ComponentType definitions formally describe the dynamics of the model elements.

<xs:simpleType name="Nml2Quantity_none"> <!-- For dimensionless parameters -->
<xs:restriction base="xs:string">

<xs:pattern value="-?([0-9]*(\.[0-9]+)?)([eE]-?[0-9]+)?"/>
</xs:restriction>

</xs:simpleType>

<xs:simpleType name="Nml2Quantity_voltage"> <!-- For params with dimension voltage -->
<xs:restriction base="xs:string">

<xs:pattern value="-?([0-9]*(\.[0-9]+)?)([eE]-?[0-9]+)?[\s]*(V|mV)"/>
</xs:restriction>

</xs:simpleType>

<xs:complexType name="HindmarshRose1984Cell">
<xs:annotation>

<xs:documentation>The Hindmarsh Rose model is a simplified point cell model which
captures complex firing patterns of single neurons, such as
periodic and chaotic bursting...

</xs:documentation>
</xs:annotation>
<xs:complexContent>

<xs:extension base="BaseCellMembPotCap">
<xs:attribute name="a" type="Nml2Quantity_none" use="required"/>
<xs:attribute name="b" type="Nml2Quantity_none" use="required"/>
<xs:attribute name="c" type="Nml2Quantity_none" use="required"/>
<xs:attribute name="d" type="Nml2Quantity_none" use="required"/>
<xs:attribute name="s" type="Nml2Quantity_none" use="required"/>
<xs:attribute name="x1" type="Nml2Quantity_none" use="required"/>
<xs:attribute name="r" type="Nml2Quantity_none" use="required"/>
<xs:attribute name="x0" type="Nml2Quantity_none" use="required"/>
<xs:attribute name="y0" type="Nml2Quantity_none" use="required"/>
<xs:attribute name="z0" type="Nml2Quantity_none" use="required"/>
<xs:attribute name="v_scaling" type="Nml2Quantity_voltage" use="required"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>

Figure 12. Type definitions taken from the NeuroMLv2 schema (https://github.com/NeuroML/NeuroML2/
blob/master/Schemas/NeuroML2/NeuroML_v2.3.1.xsd) which describes the structure of NeuroMLv2 elements. 
Top: ‘simple’ types may not include other elements or attributes. Here, the Nml2Quantity_none and 
Nml2Quantity_voltage types define restrictions on the default string type to limit what strings can be used 
as valid values for attributes of these types. Bottom: example of a ‘complex’ type, the HindmarshRose cell model 
(Hindmarsh and Rose, 1984), that can also include other elements of other types, and extend other types.
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LEMS (Cannon et al., 2014) is a domain independent general purpose machine-readable language 
for describing models and their simulations. A complete description of LEMS is provided in Cannon 
et al., 2014 and in our documentation (https://docs.neuroml.org/Userdocs/LEMSSchema.html). Here, 
we limit ourselves to a short summary necessary for understanding the NeuroMLv2 ComponentType 
definitions.

LEMS allows the definition of new model types called ComponentTypes. These are formal descrip-
tions of how a generic model element of that type behaves (the ‘dynamics’), independent of the 
specific set of parameters in any instance. To describe the dynamics, such descriptions must list any 
necessary parameters that are required, as well as the time-varying state variables. The dimensions 
of these parameters and state variables must be specified, and any expressions involving them must 
be dimensionally consistent. An instance of such a generic model is termed a Component and can 
be instantiated from a ComponentType by providing the necessary parameters. One can think of 
ComponentTypes as user defined data types similar to ‘classes’ in many programming languages and 
Components as ‘objects’ of these types with particular sets of parameters. Types in LEMS can also 
extend other types, enabling the construction of a hierarchical library of types. In addition, since LEMS 
is designed for model simulation, ComponentType definitions also include other simulation-related 
features such as Exposures, specifying quantities that may be accessed/recorded by users.

For model elements included in the NeuroML standard, there is a one-to-one mapping between 
types specified in the NeuroML XSD schema and LEMS ComponentTypes, with the same parameters 
specified in each. The addition of new model elements to the NeuroML standard, therefore, requires 
the addition of new type definitions to both the XSD schema and the LEMS definitions. New user 
defined ComponentTypes, nevertheless, can be defined in LEMS and used freely in models, and 
these do not need to be added to the standard before use. The only limitation here is that new user 
defined ComponentTypes cannot be validated against the NeuroML schema since their type defini-
tions will not be included there.

Figure  13 shows the ComponentType definition for the HindmarshRose1984Cell model 
element. Here, the HindmarshRose1984Cell ComponentType extends baseCellMembPotCap 
and inherits its elements. The ComponentType includes parameters that users must provide when 
creating a new instance (component): ‍a, b, c, d, r, v, x1, v_scaling‍.

Other parameters, ‍x0‍, ‍y0‍, and ‍z0‍ are used to initialize the three state variables of the model, ‍x, y, z‍. 
x is the proxy for the membrane potential of the cell used in the original formulation of the model 
(Hindmarsh and Rose, 1984) and is here scaled by a factor ‍v_scaled‍ to expose a more physiological 
value for the membrane potential of the cell in StateVariable ‍v‍. A Constant, ‍MSEC‍, is defined 
to hold the value of ‍1 ms‍ for use in the ComponentType. Next, an Attachment enables the addition 
of entities that would provide external inputs to the ComponentType. Here, synapses are Attach-
ments of the type basePointCurrent and provide synaptic current input to this ComponentType.

The Dynamics block lists the mathematical formalism required to simulate the ComponentType. 
By default, variables defined in the Dynamics block are private, i.e., they are not visible outside the 
ComponentType. To make these visible to other ComponentTypes and to allow users to record 
them, they must be connected to Exposures. Exposures for this ComponentType include the three 
state variables and also the internal derived variables, which while not used by other components, 
are useful in inspecting the ComponentType and its dynamics. An extra exposure, ‍spiking‍, is added 
to allow other NeuroML components access to the spiking state of the cell that will be determined in 
the Dynamics block.

StateVariable definitions are followed by DerivedVariables, variables whose values depend 
on other variables but are not time derivatives (which are handled separately in TimeDerivative 
blocks (below)). The total synaptic current, ‍iSyn‍, is a summation of all the synaptic currents, ‍i‍ received 
by the synapses that may be attached on to this ComponentType. The synapse[*]/i value of the 
select field tells LEMS to collect all the i exposures from any synapses Attachments, and the add 
value of the reduce field tells LEMS to sum the multiple values. As noted, ‍x‍ is a scaled version of the 
membrane potential variable, ‍v‍. This is followed by the three derived variables, ‍phi‍, ‍chi‍, ‍rho‍ where:

	﻿‍ phi = y − ax3 + bx2
‍� (1)

	﻿‍ chi = c − dx2 − y‍� (2)
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	﻿‍ rho = s(x − x1) − z‍� (3)

The total membrane potential of the cell, ‍iMemb‍, is calculated as the sum of the capacitive current 
and the synaptic current:

	﻿‍
iMemb = C(v_scaling(phi − z))

MSEC
+ iSyn

‍�
(4)

<ComponentType name="hindmarshRose1984Cell" extends="baseCellMembPotCap" description="The Hindmarsh Rose
model">
<Parameter name="a" dimension="none" description="cubic term in x nullcline"/>
<Parameter name="b" dimension="none" description="quadratic term in x nullcline"/>
<Parameter name="c" dimension="none" description="constant term in y nullcline"/>
<Parameter name="d" dimension="none" description="quadratic term in y nullcline"/>
<Parameter name="r" dimension="none" description="timescale separation between slow and fast subsystem (r

greater than 0; r much less than 1)"/>
<Parameter name="s" dimension="none" description="related to adaptation"/>
<Parameter name="x1" dimension="none" description="related to the system s resting potential"/>
<Parameter name="v_scaling" dimension="voltage" description="scaling of x for physiological membrane

potential"/>

<!-- Initial Conditions -->
<Parameter name="x0" dimension="none"/>
<Parameter name="y0" dimension="none"/>
<Parameter name="z0" dimension="none"/>

<Constant name="MSEC" dimension="time" value="1ms"/>

<Attachments name="synapses" type="basePointCurrent"/>

<Exposure name="x" dimension="none"/>
<Exposure name="y" dimension="none"/>
<Exposure name="z" dimension="none"/>
<Exposure name="phi" dimension="none"/>
<Exposure name="chi" dimension="none"/>
<Exposure name="rho" dimension="none"/>
<Exposure name="spiking" dimension="none"/>
<Dynamics>

<StateVariable name="v" dimension="voltage" exposure="v"/>
<StateVariable name="y" dimension="none" exposure="y"/>
<StateVariable name="z" dimension="none" exposure="z"/>
<StateVariable name="spiking" dimension="none" exposure="spiking"/>

<DerivedVariable name="iSyn" dimension="current" exposure="iSyn" select="synapses[*]/i" reduce="add" />
<DerivedVariable name="x" dimension="none" exposure="x" value="v / v_scaling"/>
<DerivedVariable name="phi" dimension="none" exposure="phi" value="y - a * x^3 + b * x^2"/>
<DerivedVariable name="chi" dimension="none" exposure="chi" value="c - d * x^2 - y"/>
<DerivedVariable name="rho" dimension="none" exposure="rho" value="s * ( x - x1 ) - z"/>
<DerivedVariable name="iMemb" dimension="current" exposure="iMemb"

value="(C * (v_scaling * (phi - z) / MSEC)) + iSyn"/>

<TimeDerivative variable="v" value="iMemb/C"/>
<TimeDerivative variable="y" value="chi / MSEC"/>
<TimeDerivative variable="z" value="r * rho / MSEC"/>

<OnStart>
<StateAssignment variable="v" value="x0 * v_scaling"/>
<StateAssignment variable="y" value="y0"/>
<StateAssignment variable="z" value="z0"/>

</OnStart>
<OnCondition test="v .gt. 0 .and. spiking .lt. 0.5">

<StateAssignment variable="spiking" value="1"/>
<EventOut port="spike"/>

</OnCondition>
<OnCondition test="v .lt. 0">

<StateAssignment variable="spiking" value="0"/>
</OnCondition>

</Dynamics>
</ComponentType>

Figure 13. LEMS ComponentType definition of the HindmarshRose cell model (Hindmarsh and Rose, 1984, 
https://github.com/NeuroML/NeuroML2/blob/master/NeuroML2CoreTypes/Cells.xml).

https://doi.org/10.7554/eLife.95135
https://github.com/NeuroML/NeuroML2/blob/master/NeuroML2CoreTypes/Cells.xml
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‍v, y, z‍ are TimeDerivatives, with the ‘value’ representing the rate of change of each variable:

	﻿‍ dv/dt = iMemb/C‍� (5)

	﻿‍ dy/dt = chi/MSEC‍� (6)

	﻿‍ dz/dt = (r × rho)/MSEC‍� (7)

The final few blocks set the initial state of the component (OnStart),

	﻿‍ v = x0 × v_scaling‍� (8)

	﻿‍ y = y0‍� (9)

	﻿‍ z = z0‍� (10)

and define conditional expressions to set the spiking state of the cell:

	﻿‍

spiking =





1 if (v > 0) ∧ (spiking < 0.5)

0 if (v < 0)
‍�

(11)

Both the XSD schema and the LEMS ComponentType definitions enable model validation. 
However, despite some overlap, they support different types of validation. Whereas the XSD schema 
allows for the validation of model descriptions (e.g. the XML files), the LEMS ComponentType defini-
tions enable validation of model instances, i.e., the ‘runnable’ instances of models that are constructed 
once components have been created by instantiating ComponentTypes with the necessary parame-
ters, and various attachments created between source and target components. A model description 
may be used to create many different model instances for simulation. Indeed, it is common practice to 
run models that include stochasticity with different seeds for random number generators to verify the 
robustness of simulation results. Thus, the validation of dimensions and units that LEMS carries out is 
done only after a runnable instance of a model has been created.

The LEMS ComponentType definitions for NeuroMLv2 are also maintained as versioned files that 
are updated along with the XSD schema. These can also be seen in the NeuroMLv2 GitHub repos-
itory (https://github.com/NeuroML/NeuroML2/tree/master/NeuroML2CoreTypes). An index of the 
ComponentTypes included in version 2.3 of the NeuroML standard, with links to online documenta-
tion, is also provided in Tables 1 and 2.

NeuroML APIs
The NeuroMLv2 software stack relies on the NeuroML APIs that provide functionality to read, write, 
validate, and inspect NeuroML models. The APIs are programmatically generated from the machine 
readable XSD schema, thus ensuring that the class for defining a specific NeuroML element in a given 
language (e.g. Java) has the correct set of fields with the appropriate type (e.g. float or string) corre-
sponding to the allowed parameters in the corresponding NeuroML element. NeuroMLv2 currently 
provides APIs in numerous languages—Python (libNeuroML which is generated via generateDS 
(http://www.davekuhlman.org/generateDS.html)), Java (​org.​neuroml.​model via JAXB XJC (https://​
javaee.github.io/jaxb-v2/)), C++ (NeuroML_CPP via XSD (https://www.codesynthesis.com/products/​
xsd/)) and MATLAB (NeuroMLToolbox which accesses the Java API from MATLAB), and APIs for 
other languages can also be easily generated as required. LEMS is also supported by a similar set of 
APIs—PyLEMS in Python, and jLEMS in Java—and since a NeuroMLv2 model description is a set of 
LEMS Components, the LEMS APIs also support them (e.g. the hindmarshRose1984Cell example 
in Figure 11 could be loaded by jLEMS and treated as a LEMS Component).

Figure 14 shows the use of the NeuroML Python API to describe a model with one HindmarshRose 
cell. In Python, the instances of ComponentTypes, their Components, are represented as Python 
objects. The hr0 Python variable stores the created HindmarshRose1984Cell component/object. 
This is added to a Population pop0 in the Network net. The network also includes a PulseGen-
erator with amplitude 5 nA as an ExplicitInput that is targeted at the cell in the population. The 
model description is serialized to XML (Figure 11) and validated. Note that as the standard conven-
tion for classes in Python is to use capitalized names, HindmarshRose1984Cell is used in Python 
but is serialized as <hindmarshRose1984Cell>in the XML. Users can either share the Python script 

https://doi.org/10.7554/eLife.95135
https://github.com/NeuroML/NeuroML2/tree/master/NeuroML2CoreTypes
http://www.davekuhlman.org/generateDS.html
https://javaee.github.io/jaxb-v2/
https://javaee.github.io/jaxb-v2/
https://www.codesynthesis.com/products/xsd/
https://www.codesynthesis.com/products/xsd/
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itself or share the XML serialization. Any valid XML serialization can be also loaded into a Python 
object model and modified.

XML is the default serialization of NeuroML and all existing APIs can read and write the format (and 
it should be seen as a minimal requirement for new APIs to support XML). There is, however, an alter-
native HDF5 (https://www.hdfgroup.org/solutions/hdf5) based serialization of NeuroML files which is 
supported by both libNeuroML and the Java API, ​org.​neuroml.​model (https://docs.neuroml.org/User-
docs/HDF5.html). This format is based on an efficient representation of cell positions and connectivity 
data as HDF5 data sets which can be serialized in compact binary format and loaded into memory 
for optimized access (e.g. as numpy arrays in libNeuroML). This reduces the size of the saved files for 
large-scale networks and speeds up loading/writing models eliminating the need to parse/generate 
large text files containing XML. Models serialized in this format can be loaded and transformed to 
simulator code in the same way as XML-based models by the Java and Python APIs.

Simulating NeuroML models
The model description shown in Figure 11 contains no information about how it is to be simulated, 
or on the dynamics of each model component. Providing this simulation information and linking in 
the ComponentType definition requires creating a LEMS file to fully specify the simulation. Figure 15 
shows the use of utilities included in the Python pyNeuroML package to describe a LEMS simulation 
of the HindmarshRose model defined in Figure 11. The LEMSSimulation object includes simulation 
specific information such as the duration of the simulation, the integration time step, and the seed 
value. It also allows the specification of files for the storage of data recorded from the simulation. In 
this example, we record the membrane potential, ‍v‍, of our cell in its population, HRPop0[0]. Similar 
to the NeuroMLv2 model description, the simulation object can also be serialized to XML for storage 
and sharing (Figure 15, bottom).

As noted previously, NeuroML/LEMS model and simulation descriptions are machine readable and 
simulator independent and can be simulated by simulation engines using a multitude of strategies 
(Figure 5).

The first category of tools consists of the reference NeuroML and LEMS simulation engines. These 
work directly with NeuroML and LEMS as their base descriptions of modeling entities and do not 

Create a new HindmarshRose cell component with parameters for regular spiking

nml_doc = component_factory("NeuroMLDocument", id="HindmarshRoseNeuron")
hr0 = nml_doc.add("HindmarshRose1984Cell", id="hr_regular", a="1.0", b="3.0", c="-3.0", d="5.0",

s="4.0", x1="-1.3", r="0.002", x0="-1.1", y0="-9", z0="1.0", C="28.57142857pF",
v_scaling="35.0mV")

net = nml_doc.add("Network", id="HRNet", validate=False)

Create a population of cells (1 cell)

pop0 = net.add("Population", id="HRPop0", component=hr0.id, size=1)

Add external stimuli to the population

pg = nml_doc.add("PulseGenerator", id="pulseGen_%i" % 0, delay="0s", duration="1000s",
amplitude="5nA")

exp_input = net.add("ExplicitInput", target="%s[%i]" % (pop0.id, 0), input=pg.id,
destination="synapses")

Save (serialize) the model to a file

nml_file = hindmarshrose1984_single_cell_network.nml
writers.NeuroMLWriter.write(nml_doc, nml_file)

Validate the model

validate_neuroml2(nml_file)

Figure 14. Example model description of a HindmarshRose1984Cell NeuroML component in Python using 
parameters for regular bursting. This script generates the XML in Figure 11. The code used in this example is 
available here: https://github.com/OpenSourceBrain/HindmarshRose1984/tree/master/NeuroML2/examples.

https://doi.org/10.7554/eLife.95135
https://www.hdfgroup.org/solutions/hdf5
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have their own specific formats. They are maintained by the NeuroML Editorial Board—jLEMS, jNeu-
roML, and PyLEMS (Figure 4). jLEMS serves as the reference implementation for the LEMS language 
and as such it can simulate any model described in LEMS (not necessarily from neuroscience). When 
coupled with the LEMS definitions of NeuroML standard entity structure/dynamics, it can simulate 
most NeuroML models, though it does not currently support multi-compartmental neurons. jNeu-
roML bundles the NeuroML standard LEMS definitions, jLEMS, and other functionality into a single 
package for ease of installation/usage. There is also a pure Python implementation of a LEMS inter-
preter, PyLEMS, which can be used in a similar way to jLEMS. The pyNeuroML package encapsulates 
all of these tools to give easy access (at both command line and in Python) to all of their functionality 
(Figure 6).

The second category consists of other simulators which support NeuroML natively. The EDEN 
simulator is an independently developed tool that was designed from its inception to read NeuroML 
and LEMS models for efficient, parallel simulation (Panagiotou et al., 2022).

The third category involves simulators which have their own internal formats and include methods 
to translate NeuroMLv2/LEMS models to their own formats. Examples include NetPyNE (Dura-Bernal 
et al., 2019), MOOSE (Ray and Bhalla, 2008), and N2A (Rothganger et al., 2014).

The fourth category comprises tools for which the NeuroML tools generate simulator specific scripts. 
The simulation engines then execute these scripts, similar to how they would execute handwritten 

Create a simulation of the model

simulation_id = "example-single-hindmarshrose1984cell-sim"
simulation = LEMSSimulation(sim_id=simulation_id, duration=1.4e3, dt=0.0025, simulation_seed=123)
simulation.assign_simulation_target(net.id)
simulation.include_neuroml2_file(nml_file)

Record membrane potential to an output file

simulation.create_output_file("output0", "%s.v.dat" % simulation_id)
simulation.add_column_to_output_file("output0", HRPop0[0] , HRPop0[0]/v )

Save the simulation to file and run it in jNeuroML/jLEMS

lems_simulation_file = simulation.save_to_file()
pynml.run_lems_with_jneuroml(lems_simulation_file, max_memory="2G", nogui=True, plot=False)

LEMS simulation description serialization

<Lems>
<!-- Specify which component to run -->
<Target component="example-single-hindmarshrose1984cell-sim"/>

<!-- Include core NeuroML2 ComponentType definitions -->
<Include file="Cells.xml"/>
<Include file="Networks.xml"/>
<Include file="Simulation.xml"/>

<Include file="hindmarshrose1984_single_cell_network.nml"/>

<Simulation id="example-single-hindmarshrose1984cell-sim" length="1400.0ms" step="0.0025ms"
target="HRNet" seed="123"> <!-- Note seed: ensures same random numbers used every run
-->
<OutputFile id="output0" fileName="example-single-hindmarshrose1984cell-sim.v.dat">

<OutputColumn id="HRPop0[0]" quantity="HRPop0[0]/v"/>
</OutputFile>

</Simulation>
</Lems>

Figure 15. An example simulation of the HindmarshRose model description shown in Figure 14 with the 
LEMS serialization shown at the bottom. The code used in this example is available here: https://github.com/
OpenSourceBrain/HindmarshRose1984/tree/master/NeuroML2/examples.

https://doi.org/10.7554/eLife.95135
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user scripts. These include NEURON (Hines and Carnevale, 1997) for which the NeuroML tools 
generate scripts in Python and the simulator’s hoc and NMODL formats and the Brian simulator (Stim-
berg et al., 2019) which uses Python scripts.

The final category consists of export options to standardized formats in neuroscience and the wider 
computational biology field, which enable interaction with simulators and applications supporting 
those formats. These include the PyNN package (Davison et al., 2008), which can be run in either 
NEURON, NEST (Gewaltig and Diesmann, 2007) or Brian, the SONATA data format (Dai et al., 2020) 
and the SBML standard (Hucka et al., 2003) (see Reusing NeuroML models for more details).

Having multiple strategies in place for supporting NeuroML gives more freedom to simulator devel-
opers to choose how much they wish to be involved with implementing and supporting NeuroML 
functionality in their applications, while maximizing the options available for end users.

The primary tool for simulating NeuroML/LEMS models via different engines is jNeuroML, which 
is included in pyNeuroML. jNeuroML supports all simulator engine categories (Figure 5). It includes 
jLEMS for simulation of LEMS and single compartmental NeuroML models. It can also pass simula-
tions to the EDEN simulator (Panagiotou et al., 2022) for direct simulation. Using the ​org.​neuroml.​
export library (https://github.com/NeuroML/org.neuroml.export), jNeuroML can also generate import 
scripts for simulators (e.g. NetPyNE Dura-Bernal et al., 2019) or convert NeuroML/LEMS models to 
simulator specific formats (e.g. NEURON Hines and Carnevale, 1997). Supporting a new simulation 
engine that requires translation of NeuroML/LEMS into another format can be done by adding a 
new ‘writer’ to the ​org.​neuroml.​export library. Finally, jNeuroML also includes the ​org.​neuroml.​import 
(https://github.com/NeuroML/jNeuroML) library that converts from other formats (e.g. SBML Hucka 
et al., 2003) to LEMS for combination with NeuroML models.

It is important to note though that not all NeuroML models can be exported to/are supported by 
each of these target simulators (Table 7). This depends on the capabilities of the simulator in ques-
tion (whether it supports networks, or morphologically detailed cells) and pyNeuroML/jNeuroML will 
provide feedback if a feature of the model is not supported in a chosen environment.

All NeuroML and LEMS software packages are made available under FOSS licenses. The source 
code for all NeuroML packages and the standard can be obtained from the NeuroML GitHub orga-
nization (https://github.com/NeuroML). The NeuroML Python API (https://github.com/NeuralEn-
semble/libNeuroML) was developed in collaboration with the NeuralEnsemble initiative (https://​
github.com/NeuralEnsemble/), which also maintains other commonly used Python packages such as 
PyNN (Davison et al., 2008), Neo (Garcia et al., 2014) and Elephant (Denker, 2018). LEMS packages 
are available from the LEMS GitHub organization (https://github.com/LEMS).

To ensure replication and reproduction of studies, it is important to note the exact versions of 
software used in studies. For NeuroML and LEMS packages, archives of each release along with cita-
tions are published on Zenodo (https://zenodo.org) to enable researchers to cite them in their work 
(Gleeson, 2021; Gleeson, 2024a; Gleeson et al., 2019b; Gleeson, 2024b; Sinha, 2024).

Documentation
A standard and its accompanying software ecosystem must be supported by comprehensive docu-
mentation if it is to be of use to the research community. The primary NeuroML documentation for 
users that accompanies this paper has been consolidated into a JupyterBook (Executable Books 
Community, 2020) at https://docs.neuroml.org. This includes explanations of NeuroML and compu-
tational modeling concepts, interactive tutorials with varying levels of complexity, information about 
tools and what functions they provide to support different stages of the model life cycle. The Jupy-
terBook framework supports ‘executable’ documentation through the inclusion of interactive Jupyter 
notebooks which may be run in the users’ web browser on free services such as OSBv2, ​Binder.​org 
(https://mybinder.org/) and Google Colab (https://colab.research.google.com/). Finally, the machine 
readable nature of the schema and LEMS also enables the automated generation of human readable 
documentation for the standard and low level APIs (Figure 16) along with their examples (https://​
docs.neuroml.org/Userdocs/Schemas/Cells.html#hindmarshrose1984cell). In addition, the individual 
NeuroML software packages each have their own individual documentation (e.g. pyNeuroML (https://​
pyneuroml.readthedocs.io/en/stable/,) libNeuroML (https://libneuroml.readthedocs.io/en/stable/)).

As with the rest of the NeuroML ecosystem, the documentation is hosted on GitHub (https://​
github.com/NeuroML/Documentation), licensed under a FOSS license, and community contributions 
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Figure 16. Documentation for the HindmarshRose1984Cell NeuroMLv2 ComponentType generated from the 
XSD schema and LEMS definitions on the NeuroML documentation website showing its dynamics (https://docs.
neuroml.org/Userdocs/Schemas/Cells.html#hindmarshrose1984cell). More information about the ComponentType 
can be obtained from the tabs provided.
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to it are welcomed. A PDF version of the documentation can also be downloaded for offline use 
(https://docs.neuroml.org/_static/files/neuroml-documentation.pdf).

Maintenance of the Schema and core software
The NeuroML Scientific Committee (https://docs.neuroml.org/NeuroMLOrg/ScientificCommittee.​
html) and the elected NeuroML Editorial Board (https://docs.neuroml.org/NeuroMLOrg/Board.html) 
oversee the standard, the core tools, and the initiative. The Scientific Committee sets the scientific 
focus of the NeuroML initiative. It ensures that the standard represents the state of the art—that it 
can encapsulate the latest knowledge in neuronal anatomy and physiology in their corresponding 
model components. The Scientific Committee also defines the governance structure of the initiative 
and works with the wider scientific community to gather feedback on NeuroML and promote its use. 
The Editorial Board manages the day-to-day development and maintenance of LEMS, the NeuroML 
schema, the core software tools, and critical resources such as the documentation. The Editorial Board 
works with simulator developers in the extended ecosystem to help make tools NeuroML compliant 
by testing reference implementations and answering technical queries about NeuroML and the core 
software tools.
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NeuroML core libraries can be found at https://github.com/neuroml (copy archived at Gleeson and 
Sinha , 2024). Tables 3 and 4 provide links to the software packages and their source code reposito-
ries include DOI information for each software release.
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