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Abstract Errors in stimulus estimation reveal how stimulus representation changes during cogni-
tive processes. Repulsive bias and minimum variance observed near cardinal axes are well-known 
error patterns typically associated with visual orientation perception. Recent experiments suggest 
that these errors continuously evolve during working memory, posing a challenge that neither static 
sensory models nor traditional memory models can address. Here, we demonstrate that these 
evolving errors, maintaining characteristic shapes, require network interaction between two distinct 
modules. Each module fulfills efficient sensory encoding and memory maintenance, which cannot be 
achieved simultaneously in a single-module network. The sensory module exhibits heterogeneous 
tuning with strong inhibitory modulation reflecting natural orientation statistics. While the memory 
module, operating alone, supports homogeneous representation via continuous attractor dynamics, 
the fully connected network forms discrete attractors with moderate drift speed and nonuniform 
diffusion processes. Together, our work underscores the significance of sensory-memory interaction 
in continuously shaping stimulus representation during working memory.

eLife assessment
This important computational study provides new insights into how neural dynamics may lead to 
time-evolving behavioral errors as observed in certain working-memory tasks. By combining ideas 
from efficient coding and attractor neural networks, the authors construct a two-module network 
model to capture the sensory-memory interactions and the distributed nature of working memory 
representations. They provide convincing evidence supporting that their two-module network, 
although none of the alternative circuit structures they considered can account for error patterns 
reported in orientation-estimation tasks with delays.

Introduction
The brain does not faithfully represent external stimuli. Even for low-level features like orientation, 
spatial frequency, or color of visual stimuli, their internal representations are thought to be modi-
fied by a range of cognitive processes, including perception, memory, and decision (Geisler, 2008; 
Webster, 2015; Bays et al., 2022). Experimental studies quantified such modification by analyzing 
behavior data or decoding neural activities. For instance, biases of errors, the systematic deviation 
from the original stimuli, observed in estimation tasks have been used as indirect evidence to infer 
changes in the internal representations of stimuli (Wei and Stocker, 2017).
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One important source of biases is adaptation to environmental statistics, such as the nonuniform 
stimulus distribution found in nature or the limited range in specific settings. Cardinal repulsion, which 
refers to the systematic shift away from the horizontal and vertical orientations observed in many 
perceptual tasks, is one of the examples (de Gardelle et al., 2010). Theoretical works suggest that 
such a bias pattern reflects the prevalence of the cardinal orientations in natural scenes (Girshick et al., 
2011). Similarly, the variance of errors for orientation stimuli was found to be inversely proportional 
to the stimulus statistics, minimum at cardinal and maximum at oblique orientations (van Bergen 
et al., 2015). It was postulated that the dependence of biases and variance of errors on natural statis-
tics results from sensory encoding optimized to enhance precision around the most common stimuli 
(Ganguli and Simoncelli, 2014; Wei and Stocker, 2015; Wei and Stocker, 2017).

On the other hand, there is a growing body of evidence indicating that error patterns are not solely 
influenced by sensory encoding but are also shaped by memory processes. In delayed estimation 
tasks, where participants are presented with stimuli followed by a delay period during which they 
rely on their working memory for estimation, it has been observed that representations of orien-
tation or color stimuli undergo gradual and continuous modifications throughout the delay period 
(Panichello et al., 2019; Bae, 2021; Gu et al., 2023). Such dynamic error patterns are inconsistent 
with sensory encoding models, most of which only establish a static relationship between stimuli and 
internal representations.

Traditional working memory models are not suitable either. Most of them are constructed to faith-
fully maintain information about stimuli during the delay period, and thus, the memory representation 
has a similar geometry as that of the stimuli (Wang, 2001; Khona and Fiete, 2022). For continuous 
stimuli such as orientation, location, direction, or color, all stimuli are equally maintained in ring-like 
memory activities, predicting no biases (Zhang, 1996; Compte et al., 2000; Burak and Fiete, 2009).

How can we explain error patterns in working memory tasks that are similar to those observed in 
perception tasks? Here, we claim that not a single-module but a two-module network with recursive 
interaction is required. Each module has a distinct role – sensory encoding and memory maintenance. 
To illustrate this, we use orientation stimuli and examine how their representations change during the 
delayed estimation tasks. We employ two approaches to find solutions for generating correct error 
patterns. The first extends previously suggested sensory encoding models, while the second modifies 
low-dimensional memory models based on attractor dynamics. These approaches are integrated into 
the network models, which link network connectivity to neuronal tuning properties and behavioral 
error patterns and reveal the attractor dynamics through low-dimensional projection. Our results show 
that the sensory-memory interacting networks outperform single-module networks with better control 
over the shapes and evolution of dynamic error patterns. Furthermore, our network models empha-
size the importance of inhibitory tuning in sensory circuits for generating correct error patterns under 
typical associative learning of natural statistics. Finally, we provide testable predictions regarding the 
effect of perturbations in sensory-memory interactions on error patterns in delayed estimation tasks.

Results
Low-dimensional attractor models
In natural images, cardinal orientations are the most prevalent (Figure 1A). Error patterns in estima-
tion tasks show dependence on such natural statistics, such as biases away from cardinal orientations 
where the variance of errors is nonetheless minimal (Figure 1B and C). In delayed estimation tasks, 
such a bias pattern is consolidated in time (Figure 1B). Also, experimental data suggested that esti-
mation errors increase with a longer delay (Wimmer et  al., 2014; Schneegans and Bays, 2018), 
while the precision is still highest at cardinal orientations (van den Berg et al., 2012; Bays, 2014; van 
Bergen et al., 2015). Thus, we assumed that the variance of errors increases as keeping its character-
istic shape (Figure 1C). To explain these errors across orientations and over time, we first explored the 
underlying working memory mechanism. We considered low-dimensional attractor models with input 
noise that describe the drift and diffusion of the memory states. Here, we show that two prominent 
classes of previously suggested models are inconsistent with experimental observations and examine 
what modification to the models is required.

The most widely accepted model for working memory of orientation stimuli has continuous attractor 
dynamics, which assumes that all orientations are equally encoded and maintained (Figure 1D–F). 

https://doi.org/10.7554/eLife.95160
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Each attractor corresponds to the memory state for different stimuli and forms a continuous ring 
following the geometry of orientation stimuli. The dynamics along continuous attractors are concep-
tually represented as movement along a flat energy landscape (Figure 1D). Without external input, 
there is no systematic shift of mean activity, i.e., no drift during the delay period (Figure 1E). Also, 
under the assumption of equal influence of noise for all orientations, the variance of errors is spatially 
flat with constant diffusion along the ring, while the overall magnitude increases over time due to the 
accumulation of noise (Figure 1F).

While such continuous attractor models have been considered suitable for memory storage of 
continuous stimuli, they cannot capture drift dynamics observed during the delay period. Instead, 
discrete attractor models with uneven energy landscapes have been suggested with the energy 
wells corresponding to discrete attractors (Figure 1G–I). As evolution toward a few discrete attrac-
tors creates drift dynamics, the bias increases during the delay (Figure 1H). Also, discrete attractor 
models naturally produce nonuniform variance patterns. Even with constant noise along the ring, vari-
ance becomes minimum/maximum at the attractors/repellers due to the drift dynamics (Figure 1I). 
However, discrete attractor models with constant noise yield inconsistent results when inferring the 
locus of attractors from the bias and variance patterns observed in the data. Cardinal orientations 
should be the repeller to account for cardinal repulsion. In contrast, the minimum variance observed 
at the cardinal orientations suggests they should be the attractors.
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Figure 1. Error patterns of orientation stimuli in delayed estimation tasks and low-dimensional attractor models. (A–C) Characteristic patterns of natural 
statistics of orientation stimuli ‍θ‍ (A), bias (B), and standard deviation (SD; C) during the delay period observed experimentally. Cardinal orientations 
are predominant in natural images (A). Bias and SD increase during the delay period, keeping patterns of repulsive bias (B) and minimum variance 
(C) around cardinal orientations. These characteristic patterns are visualized using trigonometric functions, and the range is normalized by their 
maximum values. Red vertical lines correspond to representative cardinal and oblique orientations, and with a periodicity of the error patterns, we only 
show the gray-shaded range in the remaining panels. (D–L) Comparison of different attractor models. (D–F) Continuous attractors with constant noise. 
Energy potential is flat (D), resulting in no bias (E) and uniform SD with uniform noise (F). (G–L) Discrete attractors with constant (G–I) and nonuniform 
noise (J–L). The discrete attractor models have potential hills and wells at cardinal and oblique orientations, respectively (G, J). While the bias patterns 
depend only on the energy landscape (H, K), SD representing variability also depends on noise (I, L). For the correct SD pattern (L), uneven noise with 
its maxima at the obliques (J) is required. Bias and SD patterns in the attractor models were obtained by running one-dimensional drift-diffusion models 
(see Methods).
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How can such inconsistency be resolved? One possible solution is discrete attractor models 
with nonuniform noise amplitude (Figure 1J). Let’s consider that attractors are formed at oblique 
orientations to generate correct bias patterns (Figure  1K). Additionally, we assumed that noise 
has the highest amplitude at the obliques. When the difference in the noise amplitude is large 
enough to overcome the attraction toward the obliques, the models can produce correct variance 
patterns, maximum at the obliques and minimum at cardinal orientations (Figure 1L). In sum, unlike 
two prominent memory models, continuous attractors or discrete attractors with constant noise, 
discrete attractors with maximum noise at the obliques could reproduce experimentally observed 
error patterns of orientation stimuli. Note that these attractor models often simplify the full network 
dynamics. Namely, the drift and diffusion terms are derived by projecting network dynamics onto 
low-dimensional memory states (Burak and Fiete, 2012; Darshan and Rivkind, 2022). Thus, it is still 
in question whether there exist memory networks that can implement attractor dynamics with correct 
drift and diffusion terms.
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Figure 2. Extension of Bayesian sensory models. (A) Schematics of extension to memory processing. We adapted 
the previous Bayesian models (Wei and Stocker, 2015) for sensory encoding where ‍θ‍ and ‍̂θ‍ are the input and 
output of sensory modules, respectively. We added a memory module where it maintains ‍̂θ‍ with the addition of 
memory noise ‍ξ‍. The output of the memory module, ‍̂θ + ξ‍, is fed back to the sensory module as the input for 
the next iteration. (B) Illustration of the first iteration of sensory-memory interaction. Prior distribution follows the 
natural statistics (top), resulting in a sharper likelihood function near cardinal orientations (middle). Combining 
prior and likelihood functions leads to the posterior distribution of decoded ‍̂θ‍ (light colors at the bottom), which is 
broadened with the addition of memory noise (dark colors at the bottom). Different curves correspond to different 
initial ‍θ‍. (C) Bias (top) and SD (bottom) patterns obtained from decoded ‍̂θ‍ for the first, second, and third iterations.
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Bayesian sensory model and extension
Before exploring full memory network models, we note that previous theoretical works for sensory 
processing suggested that Bayesian inference with efficient coding could generate the repulsive bias 
and the lowest variance at cardinal orientations (Wei and Stocker, 2015; Wei and Stocker, 2017). 
Efficient coding theory suggests the sensory system should enhance the sensitivity around more 
common stimuli. For orientation stimuli, precision should be highest around cardinal directions, which 
could be achieved by sharpening the likelihood functions. Equipped with Bayesian optimal readout, 
such a sensory system could reproduce correct error patterns observed in perceptual tasks for various 
visual stimuli, including orientations (Figure 2).

However, such models only account for the relationship between external and perceived stimuli 
during sensory processing, resulting in static error patterns. Here, we extended the framework so 
that the system can maintain information about the stimulus after its offset while bias and variance 
of errors grow in time (Figure 2A). We added a memory stage to Bayesian sensory models such that 
the memory stage receives the output of the sensory stage and returns it as the input after the main-
tenance. For instance, let’s denote the external orientation stimulus given during the stimulus period 
as ‍θ1‍. The sensory stage receives ‍θ1‍ as input and generates the perceived orientation, ‍̂θ1‍, which varies 
from trial to trial with sensory noise (Figure 2B). Through the memory stage, ‍̂θ1‍ is returned as the input 
to the sensory stage for the next iteration with the addition of memory noise ‍ξ1‍.

Such a recursive process mimics interactions between sensory and memory systems where the 
sensory system implements efficient coding and Bayesian inference, and the memory system faith-
fully maintains information. As the recursive process iterates, the distribution of the internal repre-
sentation of orientation broadens due to the accumulation of noise from the sensory and memory 
systems. This leads to an increase in bias and variance at each step while keeping their characteristic 
shapes (Figure  2C). Thus, recurrent interaction between sensory and memory systems during the 
delay period, each of which meets different demands, successfully reproduces correct error patterns 
observed in memory tasks.

Network models with sensory and memory modules
Next, we construct network models capturing the sensory-memory interactions formalized under 
the Bayesian framework. We consider two-module networks where each module corresponds to the 
sensory and memory systems. To generate orientation selectivity, both modules have a columnar archi-
tecture where neurons in each column have a similar preference for orientation (Figure 3A). However, 
their connectivity structures are different (Figure 3B). The memory module in isolation resembles the 
traditional ring attractor network with a strong and homogeneous recurrent connection. This enables 
the memory module in isolation to maintain information about all orientations equally during the delay 
period (Figure 3B–F, right). Conversely, the recurrent connectivity strengths in the sensory module are 
relatively weak, such that without connection to the memory module, the activities during the delay 
period decay back to the baseline levels (Figure 3B, left). Furthermore, the connectivity strengths 
across columns are heterogeneous, particularly stronger at the obliques. As a result, the tuning curves 
near cardinal orientations can be sharper and denser, consistent with experimental observations 
showing a larger number of cardinally tuned neurons (Li et al., 2003; Shen et al., 2014) and their 
narrower tuning (Li et al., 2003; Kreile et al., 2011; Figure 3C–F, left). Different response activities of 
the two modules in isolation are demonstrated in their response manifolds as more dispersed repre-
sentations around cardinal orientations in the sensory module, compared to the ring-like geometry of 
the memory module (Figure 3F).

For sensory-memory interacting networks, we connected the two modules with intermodule 
connections set to be stronger between neurons with similar orientation selectivity (Figure  4A). 
Activity profiles in both modules follow that of the sensory module – heterogeneous with narrower 
and denser tuning curves around cardinal orientations, leading to higher sensitivity (Figure 4B). Such 
activity pattern is maintained even during the delay period when recurrent connections in the memory 
module support activities of both sensory and memory modules (Figure 4B, right). Note that while 
sensory activities convey stimulus information during the delay period, their overall firing rates are 
much lower than those during the stimulus period with weak interconnection strengths. Such low 
firing rates may lead to both positive and negative evidence of sustained activity in early sensory areas 
(Leavitt et al., 2017).

https://doi.org/10.7554/eLife.95160
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Figure 3. Network models of sensory and memory circuits in isolation, implementing efficient coding and ring 
attractor dynamics, respectively. (A) Schematics of columnar architecture for orientation selectivity. Neurons in the 
same column have similar preferred orientations, and recurrent connections are a combination of local excitation 
and global inhibition, represented as triangles and circles, respectively. (B–F) Connectivity and tuning properties 
of the sensory network (left column) and memory network (right column). (B) Example connectivity strengths. We 
indexed neurons by ‍ψ‍ ranging uniformly from 0° to 180°. The connectivity strengths depend only on ‍ψ‍’s of the 
presynaptic and postsynaptic neurons. Each curve shows the connectivity strengths from presynaptic neuron ‍ψ‍ to 
an example postsynaptic neuron. Unlike the homogeneous connectivity in the memory network (right), the sensory 
connectivity is heterogeneous, and its degree is denoted by ‍α‍. (C) Heterogeneous tuning curves for different 
stimulus ‍θ‍ in the sensory network in the stimulus period (left) and homogeneous ones in the memory network 
in the delay period (right). The memory network can sustain persistent activity in isolation, while the sensory 
network cannot. (D) Histograms of the preferred orientations. We measured the maximum of the tuning curve of 
each neuron, denoted as ‍̃θ ‍ (Methods). The heterogeneous sensory network has more cardinally tuned neurons. 
(E) Widths of tuning curves measured at the half maximum of the tuning curves (Methods). The sensory tuning 
curves sharpen around cardinal orientations. Each neuron is labeled with its index ‍ψ‍ as in (B). (F) Neural manifolds 
projected onto the first two principal components of activities during the stimulus period (left) and during the 
delay period (right). The neural manifold of the sensory network resembles a curved ellipsoid, while the manifold 
corresponding to the homogeneous memory network is a perfect ring.
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When the internal representation of the orientation stimulus is read from the memory module 
using a population vector decoder mimicking Bayesian optimal readout (Fischer, 2010), the sensory-
memory interacting network exhibits repulsive bias and minimum variance at cardinal orientations, 
inheriting from efficient sensory coding (Figure 4C and D). Similar error patterns were observed when 
decoded from activities of the sensory module (Figure 4—figure supplement 1). Such bias increases 
during the delay period with increasing asymmetry of tuning widths despite lower firing rates than 
the stimulus period (Figure 4—figure supplement 2). At the same time, errors gradually increase 
due to noise accumulation in time, as in typical memory networks (Compte et al., 2000; Burak and 
Fiete, 2012). Note that the variance of errors is negligible during stimulus presentation when the 
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Figure 4. Network model with interacting sensory and memory modules generates correct error patterns in delayed estimation tasks. (A) Schematic 
of two-module architecture. The sensory and memory modules are connected via feedforward and feedback connectivity to form a closed loop. The 
sensory module receives external input with orientation ‍θ‍ while internal representation is decoded from the memory module, denoted as ‍̂θ‍. (B) Tuning 
curves of sensory (upper panels) and memory (lower panels) modules at the end of the stimulus epoch (i.e. the beginning of the delay epoch; left 
panels) and during the delay period (right panels). Note that while both modules can sustain persistent activity in the delay period, the firing rates of the 
sensory module are significantly lower than those in the stimulus period (upper right). (C–E) Bias (C), standard deviation (SD; D), and Fisher information 
(FI; E) patterns. Error patterns evaluated at 1, 2.5, and 4 s into the delay are consistent with the characteristic patterns observed experimentally in 
delayed estimation tasks (Figure 1A–C). However, the low SD right after the stimulus offset in (D) deviates from error patterns seen in perception 
tasks (see Discussion). While FI decays due to noise accumulation, it is largest around cardinal orientations, corresponding to a smaller discrimination 
threshold (E). In (C) and (D), shaded areas mark the ±s.e.m. of 1000 realizations.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Bias (A) and SD (B) patterns decoded from activities of sensory module.

Figure supplement 2. Dynamics of bias and tuning properties of sensory-memory interacting network models.

https://doi.org/10.7554/eLife.95160
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external input overwhelms internal noise, which may not fully account for the variability observed 
during perception tasks (see Discussion). We obtained Fisher information measuring sensitivity at each 
orientation from the neural responses (see Methods). Opposite to the variance of errors, Fisher infor-
mation is highest at cardinal orientations, while it decreases during the delay period (Figure 4E). Thus, 
the sensory-memory interacting network model that mechanistically embodies the extension of the 
Bayesian sensory model correctly reproduces the error patterns observed in delayed estimation tasks.

Analysis of low-dimensional memory states
To further understand the mechanisms of generating the correct error patterns in sensory-memory 
interacting networks, we analyzed the network dynamics during the delay period. For this, we identi-
fied the low-dimensional manifold that has slow dynamics during the delay period, which corresponds 
to the memory states (Figure 5A). We projected the dynamics along this manifold to obtain the drift 
and diffusion terms (Figure  5A–C; Figure  5—figure supplement 1). The drift term shows similar 
patterns to cardinal repulsion (Figure 5B and E). Integrating this drift for orientation yields the energy 
function, which is minimum at the obliques (Figure 5D). This suggests that the network implements 
discrete attractor dynamics with attractors formed at the obliques. The diffusion term is also uneven – 
the noise amplitude is maximum at the obliques so that despite attraction toward them, the variance 
of errors can be maximum (Figure 5C and F). Note that while we use Poisson noise in all units to repli-
cate neuronal spike variability, the pattern of noise coefficients remains unchanged even with constant 
Gaussian noise (Figure 5—figure supplement 2). This lower variance near cardinal orientations arises 
from more dispersed representations of stimuli, as the noise coefficient is inversely proportional to 
the distance between stimulus representations (Equation 21). Thus, the nonuniform characteristics 

Figure 5. Low-dimensional dynamics along memory manifold and their dependence on heterogeneity degrees in the sensory module. (A) Low-
dimensional projection along the memory states. Left panel: The memory manifold projected to the first two principal components (PCs) associated 
with the vector fields. Right panel: Example drift-diffusion trajectories along the memory manifold starting at ‍θ = 112.5◦‍. (B, C) Velocity (B) and noise 
coefficients (C) corresponding to drift and diffusion processes. Different gray scales represent different heterogeneity degrees in the sensory module, 
‍α‍, in Figure 3B. The velocity with which the remembered orientation drifts to the obliques in a noise-free network (B). A larger noise coefficient around 
the obliques overcomes the underlying drift dynamics and causes the standard deviation pattern to reach its maxima at the obliques (C). (D) Equivalent 
one-dimensional energy potential derived from the velocity in (B). (E, F) Example bias (E) and standard deviation (F) patterns at 4 s into the delay. The 
shaded areas mark the ±s.e.m. of 1000 realizations.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Comparison between bias and standard deviation (SD) patterns of the full network model (orangish) and low-dimensional 
projection (bluish curves).

Figure supplement 2. Standard deviation (SD) pattern remains consistent under different noise types.

https://doi.org/10.7554/eLife.95160
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of both drift and diffusion processes stem from the heterogeneous connections within the sensory 
module and align with the solution identified in low-dimensional memory models (Figure 1J–L).

Next, we examined how heterogeneity of connectivity in the sensory module affects the dynamics 
along the memory states. The magnitude of heterogeneity is denoted as α, and larger α represents a 
larger asymmetry of connectivity strengths at cardinal and oblique orientations (Figure 3B, left). When 
α increases, the asymmetry of drift and energy levels becomes more prominent, leading to a more 
rapid increase in bias (Figure 5B, D, and E). The diffusion term is also more asymmetric, compen-
sating for stronger attraction to the obliques (Figure 5C). Thus, for larger α, the variability of errors is 
still higher at the obliques (Figure 5F). Another important parameter influencing error patterns is the 
intermodal connectivity strengths (Figure 6). Similar to the effect of increasing α, increases in feedfor-
ward or feedback strengths cause the energy levels to become more asymmetrical (Figure 6A and E), 
leading to a larger bias (Figure 6B and F). Conversely, the noise coefficient is less affected (Figure 6C 
and G), and the variance of errors decreases as the drift force becomes stronger (Figure 6D and H). 
Note that bias and variance patterns depend on the product of feedforward and feedback connec-
tions, denoted as γ, such that for a fixed γ, the error patterns remain similar (Figure 6I and J). In sum, 
the bias and variability of errors are determined by the degree of heterogeneity in the sensory module 
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Figure 6. Error patterns and low-dimensional dynamics for different intermodal connectivity strengths. (A–J) Low-dimensional dynamics and error 
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comparing low-dimensional dynamics at cardinal and oblique orientations for changing Jb and heterogeneity degree, ‍α‍. Increasing both feedforward 
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(α) and intermodal connectivity strengths (γ) as both α and γ affect the asymmetry of drift term similarly, 
while the asymmetry of diffusion term is more strongly influenced by α (Figure 6K and L).

Importance of heterogeneously tuned inhibition
We showed that network models realizing sensory-memory interactions reproduce correct error 
patterns, where each module has a different connectivity structure. Previous work suggested that such 
a heterogeneous connection of the sensory system may arise from experience-dependent synaptic 
modification (Olshausen and Field, 1996; Zylberberg et al., 2011). For example, typical Hebbian 
learning is thought to potentiate connectivity strengths between neurons whose preferred stimuli are 
more frequently encountered. For orientations, cardinal directions are predominant in natural scenes. 
Thus, if experience-dependent learning occurs mainly at the excitatory synapses, the excitatory 
connections near cardinal orientations become stronger in the sensory module. This is opposite to the 
previously discussed case where the sensory module has the strongest connection at the obliques. 
With the strongest excitatory connections at cardinal orientations, the error patterns are reversed, 
resulting in cardinal attraction instead of repulsion, and the lowest variance occurs at the obliques.

Inhibitory synaptic connections can also be modified through learning (Vogels et al., 2013; Khan 
et al., 2018; Larisch et al., 2021). Here, we considered that experience-dependent learning exists 
in both excitatory and inhibitory pathways and similarly shapes their connectivity (Figure 7A). We 
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The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Relationship between drift speed and memory loss in two-module (A–C) and one-module (D–F) networks.

Figure supplement 2. Error patterns in sensory networks with long intrinsic time constants.
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assumed that excitatory and inhibitory connections are segregated and stronger near cardinal orienta-
tions (Figure 7B). We modulated the heterogeneity degree of both excitatory and inhibitory connec-
tions, denoted as α and β, respectively (Figure 7B–D). The ratio between α and β determines the 
direction and magnitude of bias and variance patterns (Figure 7C and D). For relatively larger α, 
the network shows cardinal attraction and minimum variance of errors at the obliques (Figure 7E). 
Reversely, for relatively larger β with stronger modulation in inhibitory connections, the network repro-
duced cardinal repulsion and minimum variance of errors at cardinal orientations, consistent with 
experiments (Figure 7F). With a larger difference between α and β, such patterns of bias and variance 
are potentiated and minimum Fisher information across orientations decreases, corresponding to 
memory loss (Figure 7C and D; Figure 7—figure supplement 1). Thus, this emphasizes the important 
role of heterogeneously tuned inhibition in shaping the sensory response for higher precision at 
cardinal orientations and enabling the sensory-memory interacting network to generate correct error 
patterns.

Comparison to alternative circuit structures
So far, we have shown the sufficiency of sensory-memory interacting networks with different connec-
tivity structures featuring heterogeneous-homogeneous recurrent connections within each module. 
Here, we explore whether such architecture is necessary by comparing its performance with alter-
native circuit structures for sensory-memory interactions. One candidate mechanism involves having 
the heterogeneous sensory network maintain memory with a long intrinsic time constant, similar to 
having autapses (Seung et al., 2000). However, this model fails to replicate the evolution of error 
patterns during the delay period as a long intrinsic time constant slows down the overall dynamics, 
thus hindering the evolution of error patterns (Figure 7—figure supplement 2). Alternatively, we 
focused on a two-module network with variations in connectivity structure. We assumed that sensory 
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and memory modules still serve their distinctive functions, namely, sensory encoding and memory 
maintenance, with weak/strong recurrent connections in sensory/memory modules. On the other 
hand, the heterogeneity of connections in other circuits might differ as homogeneous-homogeneous, 
homogeneous-heterogeneous, and heterogeneous-heterogeneous connections for sensory-memory 
modules.

Circuits with homogeneous connections in both sensory and memory modules are similar to 
previous continuous attractor models for working memory, such that the energy landscape and noise 
amplitude are uniform for all orientations (Figure 1D–F). Such architecture is not suitable as it gener-
ates no bias in errors and flat variance patterns. This leaves the latter two types of configurations, which 
require heterogeneous connections within the memory module. With a strong recurrent connection 
within the memory module, its heterogeneous activity pattern dominates overall activities in sensory-
memory interacting networks, which makes it analogous to an isolated memory module. Thus, we 
examined the property of the memory module alone, which can maintain memory while generating 
heterogeneous responses without connection to the sensory module (Figure 8).

To generate the correct bias pattern, we assumed that excitatory and inhibitory pathways in the 
memory module are stronger near cardinal orientations, as we previously considered for the sensory 
module in the sensory-memory interacting network (Figure 8A and B). However, memory circuits with 
heterogeneous connections have problems in maintaining the information and reproducing correct 
error patterns (Figure 8C–E). First, memory circuits alone require fine-tuning of heterogeneity whose 
range generating a moderate drift speed is at least one order of magnitude smaller than that of 
the two-module network (Figure 8C and D). Deviation from this range results in a fast drift toward 
oblique orientations, leading to rapid loss of information during the delay period (Figure 7—figure 
supplement 1). Second, despite the correct bias direction, the variance pattern is reversed such that 
the variance of errors is minimal at the oblique orientations (Figure 8E). Varying the heterogeneity 
in excitatory and inhibitory connections shows that such rapid drift and reversed error patterns are 
prevalent across different parameters (Figure 8C and D).

To understand why a heterogeneous memory circuit alone fails to reproduce correct error 
patterns, we compared its low-dimensional dynamics along the memory states to that of the 
sensory-memory interacting networks. For the network with a similar range of bias and variance 
on average, we compared their energy landscape and noise amplitude, which vary similarly in both 
networks with minimum energy level and maximum noise at the oblique orientations (Figure 9A–F). 
However, the energy difference between cardinal and oblique orientations in a single memory circuit 
model is bigger than that in a sensory-memory interacting network (Figure 9C, left in Figure 9G, 
H). In contrast, the difference in noise amplitude is smaller (Figure 9D–F, right in Figure 9G, H). 
The attraction at the obliques is much stronger, leading to the correct bias patterns, but too rapid 
an increase. Also, smaller differences in noise amplitude cannot overcome strong drift dynamics, 
leading to the minimum variance of errors at the obliques and reversed variance patterns. Even for 
different types or levels of noise, such as Gaussian noise with varying amplitude, distinctive error 
patterns in one-module and two-module networks are maintained (Figure 9—figure supplement 
1).

For an intuitive understanding of how connectivity heterogeneity affects the degrees of asymmetry 
in drift and diffusion differently in one-module and two-module networks, consider a simple case 
where only the excitatory connection exhibits heterogeneity, the degree of which is denoted by α. 
For memory maintenance, the overall recurrent connections need to be strong enough to overcome 
intrinsic decay, simplified to w=1. In the one-module network, α in the memory module causes devi-
ations from perfect tuning, creating potential differences at cardinal and oblique orientations as 1±α. 
In the two-module network, with w=1 fulfilled by the memory module, α in the sensory module acts 
as a perturbation. The effect of α is modulated by the intermodal connectivity strengths, denoted by 
γ, and potential differences at cardinal and oblique orientations can be represented as 1±γα. Thus, 
while a relatively large α leads to too fast drift in the one-module network, the drift speed in the two-
module network could remain modest with small γ<1. Conversely, even with small γ, the asymmetry 
of noise coefficients can be large enough to produce correct variance patterns because the noise 
coefficient is more strongly influenced by α in the two-module network (Figure 6). In sum, compared 
to a heterogeneous memory circuit alone, interactions between heterogeneous sensory and homo-
geneous memory modules are advantageous due to an additional degree of freedom, intermodal 

https://doi.org/10.7554/eLife.95160
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connectivity strengths, which allows better control of energy and noise difference at cardinal and 
oblique orientations.

Discussion
While higher association areas have long been considered as a locus of working memory (Roussy 
et al., 2021; Mejías and Wang, 2022), recent human studies found memory signals in early sensory 
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Figure 9. Comparison of low-dimensional dynamics between two-module and one-module network models. (A, B) Bias and standard deviation (SD) 
patterns of two-module (A) and one-module (B) networks, adapted from Figure 7F and Figure 8E, respectively. The averages of bias and SD over 
different ‍θ‍ at 4 s into the delay are similar in the two networks. (C–F) Low-dimensional dynamics of two-module (black) and one-module (red) networks. 
In both networks, the energy potential (C), the distance between stimulus representation, ‍∥ s̄′

(
θ
)
∥‍ and its inverse determining noise coefficients 

(D, E; Equation 21), and the noise coefficients (F) exhibit similar profiles. However, the two-module network has a shallower potential (C) but larger 
heterogeneity in ‍∥ s̄′

(
θ
)
∥‍ and the noise coefficient profile (D–F). These differences make it possible for the SD to become smaller around cardinal 

orientations in the two-module network (right in A), while drift dynamics overwhelm and the SD pattern is opposite to that of the noise coefficient in 
the one-module network (right in B). (G, H) Potential difference (left) and index of noise coefficients (right) comparing low-dimensional dynamics at the 
cardinal and oblique orientations in two-module (G) and one-module (H) networks. The two-module network shows a smaller potential difference and 
more heterogeneous noise coefficients over a broad range of heterogeneity (see the color bars in G and H).

The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. Error patterns remain unchanged under different levels of noise.
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areas, prompting a re-evaluation of their role in working memory (Xu, 2020; Adam et al., 2022). 
Our work extends the traditional memory models (Wang, 2001; Khona and Fiete, 2022) with novel 
insights into the significance of stimulus-specific sensory areas. We showed how sensory-memory 
interactions can elucidate changes in the internal representation of orientation stimuli and their behav-
ioral readout during memory tasks. The observed error patterns suggest that the network meets two 
demands simultaneously: efficient encoding that reflects natural statistics and memory maintenance 
for successful retrieval of stimuli after a delay. Achieving both demands for orientation stimuli conflicts 
in a one-module network. Efficient encoding necessitates asymmetrical connections, resulting in 
inconsistent bias and variance patterns and overly rapid drift in the one-module network unless fine-
tuned. In contrast, connecting sensory and memory modules can generate error patterns correctly 
and with less need for fine-tuning heterogeneity for slow drift. Efficient coding of natural statistics 
in the sensory module underscores the role of inhibitory plasticity. Low-dimensional projection onto 
memory states reveals that drift and diffusion processes governing working memory dynamics closely 
resemble the bias and variance patterns derived under Bayesian sensory models. It also elucidates 
how the magnitudes of bias and variance change depending on the heterogeneity of sensory connec-
tions and intermodal connectivity strengths.

Our model makes testable predictions to differentiate two-module and one-module networks using 
perturbation, such as transcranial magnetic stimulation (TMS). Many studies have found that during 
the delay period, TMS can intervene with the feedforward signal from sensory areas through which 
working memory is consolidated (van de Ven et al., 2012) (but see Adam et al., 2022, for mixed 
effects of TMS and related debate). Under such perturbations, the ability to maintain information in 
the memory module will not be affected due to strong recurrent connections in both two-module and 
one-module networks. However, we expect different effects on bias patterns — in the two-module 
network, the bias will stop systematically drifting toward the obliques, reducing systematic repulsion 
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standard deviation (B) patterns when we assumed that transcranial magnetic stimulation (TMS) is applied to 
interrupt the feedforward signal from 2.5 s into the delay. Shaded areas mark the ±s.e.m. of 1000 realizations. 
(C, D) Evolution of bias with example cue orientation at ‍θ = 18◦‍ (C) and the tuning width indices in the memory 
network (WI; C) representing the asymmetry of tuning widths at cardinal and oblique orientations (Methods). 
Two vertical dashed lines mark the end of the stimulus epoch and the beginning of TMS disruption, respectively. 
Solid and dashed curves correspond to with and without perturbations, respectively. Both bias (C) and WI (D) stop 
increasing when TMS is on (C, D).
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(Figure  10). This accompanies the nonincreasing heterogeneity of tuning curves after the disrup-
tion, marked by their tuning width indices (see Methods). In contrast, in the one-module network, 
perturbation does not incur changes in error patterns as memory activities are less dependent on the 
sensory module during the delay period. Thus, perturbation studies can be used to reveal the role 
of the sensory module in shaping the error patterns during working memory. Note that our model 
cannot predict the effects of distractors during working memory, as such effects do not experimen-
tally lead to changes in error patterns (Rademaker et al., 2019). The effect of distractors and direct 
intervention in the intermodule connections may differ due to potential differences in the encoding 
of distractors compared to task-relevant stimuli. More advanced models are required to compre-
hensively understand the influence of distractors and the processing of ongoing visual stimuli or the 
storage of multiple stimuli.

Our work suggests biologically plausible network mechanisms for the previously postulated effi-
cient coding and Bayesian inference principles, relating network connectivity to tuning properties and 
error patterns. Previous normative explanations for systematic bias observed in perception tasks also 
suggested possible neural substrates for efficient coding, such as asymmetrical gain, width, or density 
of tuning curves across stimulus features (Ganguli and Simoncelli, 2014; Wei and Stocker, 2015). 
Our work narrowed the mechanism to denser and narrower tuning curves at cardinal orientations, 
consistent with neurophysiological recordings in the visual cortex (Li et al., 2003; Kreile et al., 2011; 
Shen et al., 2014). We implemented a population vector decoder reflecting neuronal preferred orien-
tations, which approximates Bayesian optimal readout (Fischer, 2010). Compared to a previous work 
adapting efficient coding theories with static tuning curves to account for error patterns in working 
memory tasks (Taylor and Bays, 2018), our extension to memory processes demonstrated how neural 
activities and behavior readout change dynamically during the delay period. Notably, recent work 
combined dynamic change of signal amplitude with static tuning curves to capture different time 
courses of estimation precision during sensory encoding and memory maintenance (Tomić and Bays, 
2023). Our network models embody such phenomenological models as the networks exhibit changes 
in overall firing rates after the stimulus offset.

Like our study, a few recent studies have employed attractor dynamics to explain dynamic error 
patterns observed for visual color memory (Panichello et al., 2019; Pollock and Jazayeri, 2020; Eissa 
and Kilpatrick, 2023). Behavior studies showed attractive bias and minimum variance around the prev-
alent colors, which one-module discrete attractor models could reproduce. However, these models 
cannot be generalized to other visual stimuli, such as orientations, spatial locations, or directions, of 
which the responses show repulsive bias away from the common stimuli (Wei and Stocker, 2017). 
Also, a one-module network storing color memory requires fine-tuned heterogeneity for moderate 
drift speed. While the desired low-dimensional manifold and drift dynamics can be engineered in the 
one-module network (Pollock and Jazayeri, 2020), its biological mechanism needs further investi-
gation. The two-module network considered in our study also requires fine-tuning of homogeneity 
in the memory module and heterogeneity in the sensory module. However, the condition of asym-
metrical connections in the sensory module is less stringent as they have a weaker influence on the 
entire dynamics than those in the memory module. Fine-tuning of homogeneous connections in the 
memory module can be mediated through activity-dependent plasticity, such as short-term facilitation 
(Itskov et al., 2011; Hansel and Mato, 2013; Seeholzer et al., 2019) or long-term plasticity (Renart 
et al., 2003; Gu and Lim, 2022). Also, recent work showed that continuous attractors formed under 
unstructured, heterogeneous connections are robust against synaptic perturbations (Darshan and 
Rivkind, 2022). Thus, the two-module networks can control the drift speed better with possible addi-
tional mechanisms that promote homogeneous memory states. It needs further exploration whether 
they can be generalized to other stimuli like color, possibly involving additional categorical structures 
(Hardman et al., 2017; Pratte et al., 2017).

Our current study is limited to the dynamic evolution of memory representation for a single orien-
tation stimulus and its associated error patterns, which does not capture nuanced error patterns in 
broader experimental settings (Hahn and Wei, 2024). For instance, while shorter stimulus presen-
tations with no explicit delay led to larger biases experimentally, our current model, which starts 
activities from a flat baseline, shows an increase in bias throughout the stimulus presentation (de 
Gardelle et al., 2010). Additionally, the error variance during stimulus presentation is almost negli-
gible compared to that during the delay period, as the external input overwhelms the internal noise. 

https://doi.org/10.7554/eLife.95160
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These mismatches during stimulus presentation have minimal impact on activities during the delay 
period when the internal dynamics dominate. Nonetheless, the model needs further refinement to 
accurately reproduce activities during stimulus presentation, possibly by incorporating more biologi-
cally plausible baseline activities. Also, a recent Bayesian perception model suggested different types 
of noise like external noise or variations in loss functions that adjust tolerance to small errors may help 
explain various error patterns observed across different modalities (Hahn and Wei, 2024). Even for 
memories involving multiple items, noise can be critical in determining error patterns, as encoding 
more items might cause higher noise for each individual item (Chunharas et al., 2022).

The modularity structure in the brain is thought to be advantageous for fast adaptation to changing 
environments (Simon, 1995; Cole et al., 2013; Frankland and Greene, 2020). Recent works showed 
that recurrent neural networks trained for multiple cognitive tasks form clustered neural activities and 
modular dynamic motifs to repurpose shared functions for flexible computation (Yang et al., 2019; 
Driscoll et al., 2022). Resonant with these computational findings, an fMRI study showed that shared 
representation across distinct visual stimuli emerges during the delay period (Kwak and Curtis, 2022). 
Although our work focuses on a single task, it highlights the necessity of having dedicated sensory 
and memory modules, and a memory module with ring geometry can be repurposed for various visual 
stimuli such as motion, spatial location, and color. It is reminiscent of the flexible working memory 
model, which proposes connections between multiple sensory modules and a control module (Bouch-
acourt and Buschman, 2019). However, a key distinction lies in the role of the control module. Unlike 
the flexible working memory model that loses memory without sensory-control interactions, our 
work suggests that the memory module can independently maintain memory, while interaction with 
the sensory module continuously shapes the internal representation, potentially consolidating prior 
beliefs regarding natural statistics. The sensory-memory interaction and network architecture derived 
from dynamic changes of single stimulus representation can be a cornerstone for future studies in 
more complex conditions, such as under the stream of visual inputs (Xu, 2020; Adam et al., 2022) or 
with high or noisy memory loads (Bays et al., 2022).

Methods
Low-dimensional attractor models
To illustrate error patterns in different low-dimensional attractor models shown in Figure 1, we consid-
ered a one-dimensional stochastic differential equation given as

	﻿‍ dθt = µ
(
θt
)

dt + σ
(
θt
)

dWt,‍� (1)

where ‍θt‍ and ‍Wt‍ are orientation and standard Brownian motion at time t, respectively. We assumed 
that the drift and noise coefficients μ and σ only depend on ‍θt‍, where ‍σ =

√
2D‍ with diffusion coeffi-

cient ‍D‍.
For continuous attractor models in Figure 1D–F, μ and σ were set to be constant as ‍µ = 0‍ and 

‍σ = 2◦‍. For discrete attractor models in Figure 1G–L, we assumed that the energy function ‍U
(
θt
)
‍ is 

proportional to ‍cos
(
4θt

)
‍ (Figure 1G and J) so that the drift term ‍µ

(
θt
)

= sin
(
4θt

)
‍ with ‍µ

(
θt
)

= − dU
dθt ‍ 

. In these attractor models, the constant noise in Figure 1G–I is ‍σ = 2◦‍ and the nonuniform noise in 
Figure 1J–L is ‍σ = 2◦

(
1 − cos

(
4θt

))
‍. The biases and standard deviation (SD) of errors were plotted at 

T=1, 2, and 3 with 50,000 iterations. For the numerical simulation, dt =0.01.

Bayesian sensory models and extension
In Figure 2, we first constructed the sensory inference process, which receives orientation input ‍θ‍, 
forms a corresponding noisy sensory representation ‍m‍ given ‍θ‍, and then infers ‍̂θ‍ as an estimate of the 
input orientation from the encoded representation ‍m‍. This inference is made in a Bayesian manner 
based on likelihood function ‍p

(
m|θ

)
‍ and orientation prior ‍q

(
θ
)
‍.

To construct ‍p
(
m|θ

)
,‍ we followed the procedure given in Wei and Stocker, 2015, and the summary 

is as follows. We started from the sensory space of ‍̃θ‍ where both discriminability and Fisher informa-

tion 
‍
J
(
θ̃
)
‍
 are uniform, and all likelihood functions 

‍
p
(

m|θ̃
)
‍
 are homogeneous von Mises functions. And 

since ‍J
(
θ
)
∝

(
q
(
θ
))2

‍ under the efficient coding condition, the sensory space of ‍̃θ‍ and the stimulus 
space of ‍θ‍ can be mapped by forward and backward mappings ‍F

(
θ
)
‍ and ‍F −1(θ̃)‍, where ‍F

(
θ
)
‍ is the 
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cumulative distribution function of prior ‍q
(
θ
)
‍. Thus, likelihood functions ‍p

(
m|θ

)
‍ can be obtained by 

taking homogeneous von Mises likelihoods in the sensory space and transforming them back to the 
stimulus space using ‍F −1‍. To sum up the upper half of the procedural diagram in Figure 2A, the 
sensory module receives ‍θ‍, encodes it in ‍m‍ following ‍p

(
m|θ

)
‍, and decodes ‍̂θ‍ using likelihood functions 

and prior ‍q
(
θ
)
‍.

As an extension to include a memory process, the decoded ‍̂θ‍ is passed on to the memory module, 
where ‍̂θ‍ is maintained with the addition of memory noise ‍ξ‍. The output of the memory module, ‍̂θ + ξ‍, 
is fed back to the sensory module as the new input. This completes one iteration of sensory-memory 
interaction. The whole process is then repeated recursively, resulting in increased biases and standard 
deviations in the ‍θ‍ statistics at subsequent iterations (call them ‍θi‍ for the input of iteration ‍i‍).

For Figure  2B and C, we set the von Mises sensory-space likelihoods to be 

‍
p
(

m|θ̃
)
∝ exp

(
κmcos

(
m − θ̃

))
‍
, with ‍κm = 250‍. These likelihood functions are transformed by 

‍
F −1

(
θ̃
)

=
{´

q
(
θ
)}−1

‍
, where ‍q

(
θ
)

= 3 + cos
(
4θ

)
‍. Each internal representation ‍m‍ is sampled from 

‍p
(
m|θ

)
‍, after which ‍̂θ‍ is estimated as the mean of the posterior ‍p

(
θ|m

)
q
(
θ
)
‍. With the parameters 

chosen above, the inferred samples of ‍̂θ‍ after the first sensory iteration have a circular standard devi-

ation of ‍σθ ≈ 1.3◦‍ at cardinal orientations. To have comparable memory and sensory noise levels, we 

set the memory noise as 
‍
ξ ∼ N

(
0,
(
1.3◦

)2
)
‍
 which is added on top of the sensory outputs. Thus, the 

memory outputs of the first iteration ‍θ1 = θ̂1 + ξ‍ have a standard deviation of 1.84o at the cardinals. 
The first three iterations’ memory output statistics are plotted in Figure 2C, i.e., bias(‍θ1‍), bias(‍θ2‍), 
bias(‍θ3‍), and SD(‍θ1‍), SD(‍θ2‍), SD(‍θ3‍). The statistics were computed from 10,000 iterations of the simu-
lation. The magnitude of biases and standard deviations vary for different sensory or memory noise 
levels, while the overall patterns and the increasing temporal trend are unchanged (not shown).

Firing rate models
For network models, we considered sensory circuits with heterogeneous connections (Figure  3), 
memory circuits with homogeneous connections (Figure 3) and heterogeneous connections (Figures 8 
and 9), and sensory-memory interacting circuits (Figures 4–7, 9, and 10). In all cases, the activities 
of neurons are described by their firing rates and synaptic states, denoted by ‍r‍ and ‍s‍. For columnar 
structure encoding orientation stimuli, we indexed the neurons by uniformly assigning them indices 

‍ψi =
(

i−1
)

N × 180◦‍ for ‍i‍ from 1 to ‍N ‍, where ‍N ‍ is the number of neurons in each population. For sensory 
or memory networks alone, the dynamics of neuron ‍i‍ are described by the following equations:

	﻿‍

ri
k = fk


∑

j
Wij

k sj
k + Ii

ext,k




τ ṡi
k = −si

k + ri
k + ξi

k ‍�

(2)

where the superscripts ‍i‍ and ‍j‍ are the neuronal indices, and the subscript ‍k‍ is either ‍s‍ or ‍m‍, repre-
senting sensory or memory circuits. For the sensory-memory interacting network, the dynamics are 
given as

	﻿‍

rs = fs
(
Wsss + Wbsb + Iext,s

)

rm = fm
(
Wmsm + Wfsf + Iext,m

)

τ ṡk = −sk + rs + ξk, for k = s or f

τ ṡl = −sl + rm + ξl, for l = m or b

,

‍�

(3)

where activities and synaptic inputs are represented in the vector and matrix multiplication form, 
shown in bold cases. The additional subscripts ‍f ‍ and ‍b‍ represent feedforward and backward connec-
tions between sensory and memory modules.

In both Equations 2 and 3, ‍s
(
t
)
‍ is the low pass filtered ‍r

(
t
)
‍ with synaptic time constant ‍τ ‍ and 

with the addition of ‍ξ‍ approximating Poisson noise. We modeled ‍ξ‍ as the Gaussian process with 

covariance 
‍

⟨
ξi (t

)
ξj (t′

)⟩
= ri (t

)
δijδ

(
t − t′

)
‍
, following Burak and Fiete, 2012. We assumed that the 

rate dynamics are relatively fast such that ‍r
(
t
)
‍ equals the input current-output rate transfer function f. 
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The input current is the sum of external input ‍Iext‍ and the synaptic currents from other neurons in the 
network, which are the postsynaptic states ‍sj‍ weighted by synaptic strengths ‍Wij‍. The transfer function 
f has the Naka-Rushton form (Wilson, 1999) given as

	﻿‍
f
(
x
)

= fmax

(
x − T

)q

wq +
(
x − T

)q ·
[
x − T

]
+ ,

‍�
(4)

where ‍
[
·
]

+‍ denotes the linear rectification function. The transfer functions differ in the sensory and 
memory modules, denoted as ‍fs‍ and ‍fm‍, respectively.

Synaptic inputs in network models
Note that for all network models, we only considered excitatory neurons under the assumption that 
the inhibitory synaptic pathways have relatively fast dynamics. Thus, recurrent connectivity strengths, 
‍Ws‍ and ‍Wm‍, within sensory and memory modules, reflect summed excitation and inhibition, and thus, 
can have either positive or negative signs. On the other hand, we assumed that intermodal interac-
tions, ‍Wf ‍ and ‍Wb‍, are dominantly excitatory and, thus, can be only positive.

All ‍W ‍’s can be defined using neuronal indices of post- and presynaptic neurons as

	﻿‍
Wij = 1

N
J
(
ψi,ψj

)
.
‍�

(5)

For ‍Ws‍ without segregating excitation and inhibition in Figures 3–6, ‍N ‍ is the population size of 
sensory module, ‍Ns‍, and ‍Js‍ is the sum of a constant global inhibition and a short-range excitatory 
connection as

	﻿‍ Js
(
ψi,ψj

)
= −JI,s + JE,s

(
1 − αcos4ψi

)
e
−

(
ψi − ψj

)2

λ2
E,s ,‍�

(6)

where ‍α > 0‍ represents the heterogeneity degree of excitatory connectivity, and ‍λE‍ is the width of 
local excitatory connections.

When we segregated excitation and inhibition and considered the heterogeneity of inhibitory 
connection in Figures 7–10, Equation 6 is replaced with

	﻿‍ Js
(
ψi,ψj

)
= −JI,s

(
1 + βcos4ψi

)
e
−

(
ψi − ψj

)2

λ2
I,s + JE,s

(
1 + αcos4ψi

)
e
−

(
ψi − ψj

)2

λ2
E,s ,‍�

(7)

where ‍β > 0‍ is the degree of heterogeneity of inhibitory connections. Note the signs of modulation 
change in Equations 6 and 7 such that when only excitation is modulated in Equation 6, the connec-
tivity strengths near the obliques are strong. In contrast, when excitation and inhibition are both 
modulated in Equation 7, the connectivity strengths near cardinal orientations are strong.

For the memory module, ‍N ‍ is the population size of the memory module, ‍Nm‍ in Equation 5. 
Without heterogeneity in Figures 3–7 and 10, ‍Jm‍ is defined as

	﻿‍ Jm
(
ψi,ψj

)
= −JI,me

−

(
ψi − ψj

)2

λ2
I,m + JE,me

−

(
ψi − ψj

)2

λ2
E,m .‍�

(8)

In contrast, for the one-module network model in Figure 8, the connectivity of the memory module 
is heterogeneous, as in the sensory module in Equation 1, and is defined as

	﻿‍ Jm
(
ψi,ψj

)
= −JI,m

(
1 + β cos 4ψi

)
e
−

(
ψi − ψj

)2

λ2
I,m + JE,m

(
1 + α cos 4ψi

)
e
−

(
ψi − ψj

)2

λ2
E,m .‍�

(9)

The feedforward and feedback connectivity are similarly defined as

https://doi.org/10.7554/eLife.95160
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	﻿‍

Wij
f = 1

Ns
Jfe

−
(
ψmi−ψsj

)2/λ2
f

Wij
b = 1

Nm
Jbe−

(
ψsi−ψmj

)2/λ2
b .

‍�

(10)

Note the connectivity strength is normalized by the size of the presynaptic population so that the 
total synaptic current remains the same for different population sizes.

For the external inputs with orientation ‍θ‍, ‍Iext,s‍ in the sensory module is modeled as

	﻿‍
Ii
ext,s

(
θ
)

= C
(

1 − 2ε + 2εe−
(
ψi−θ

)2/λ2
ext,s

)
,
‍� (11)

where ‍ε ∈
(
0, 0.5

]
‍ determines the stimulus tuning of the input, ‍λext,s‍ determines the width, and ‍C‍ 

describes the contrast (Hansel and Sompolinsky, 1998).
For the memory network not connected to the sensory module in Figures 3 and 8, we assumed 

stimulus-specific input as

	﻿‍
Ii
ext, m

(
θ
)

= 1
2
(
cos

(
2
(
ψi − θ

))
+ 1

)
+ Ic,m,

‍�
(12)

where ‍Ic,m‍ is a constant background input. When the memory module receives the inputs from the 
sensory population in Figures 4–7 and 10, we assumed ‍I

i
ext, m

(
θ
)
‍ is constant as ‍Ic,m‍.

Analysis of network activities
We used population vector decoding to extract the internal representation of orientation and quan-
tified how such representation deviated from the original stimulus. We also examined how tuning 
properties and Fisher information change during the delay period.

Note that while we indexed neurons uniformly with ‍ψi‍ between 0° and 180°, the maximum of the 
tuning curve of neuron ‍ψi‍ can change dynamically and differ from ‍ψi‍. We defined the preferred feature 
(PF) of neuron ‍i‍ as the maximum of its tuning curve when the tuning curve reaches a steady state in 
the presence of external input. For numerical estimation, we set the stimulus-present encoding epoch 
to 5 s to obtain the steady states of tuning curves. The tuning width is given as the full width at half 
maximum (FWHM) of the tuning curve. To estimate PF and FWHM, we did a cubic spline interpolation 
to increase the number of sample orientations to 1000. The tuning width index (WI) is given as

	﻿‍
WI =

FWHM
(
ψ = 45◦

)
− FWHM

(
ψ = 0◦

)

FWHM
(
ψ = 45◦

)
+ FWHM

(
ψ = 0◦

) .
‍�

(13)

To estimate the internal representation of orientation in the network models, denoted as ‍̂θ‍, we 
utilized the population vector decoder (Georgopoulos et al., 1986)

	﻿‍

θ̂(t) = 1
2

Arg




N∑
j=1

exp
{

2irj (t
)∼
θ j

}
/

N∑
j=1

rj


 ,

‍�
(14)

where ‍N ‍ denotes the number of neurons and ‍θ̃j‍ denotes the PF of neuron ‍j‍. The orientation is always 
decoded from the memory network tuning curves ‍rm

(
t
)
‍ except for Figure 10A. The estimation bias 

‍
b
(
θ, t

)
= E

[
θ̂
(
t
)]

− θ
‍
. Since the bias is typically small enough, we computed the estimation standard 

deviation (SD) as the SD of bias using linear statistics. The SD index is defined as

	﻿‍
SD index =

SD
(
θ = 45◦

)
− SD

(
θ = 0◦

)

SD
(
θ = 45◦

)
+ SD

(
θ = 0◦

) .
‍�

(15)

The Fisher information (FI) is estimated by assuming that the probability density function ‍p
(
r | θ

)
‍ 

is Gaussian as

	﻿‍
p
(

ri
m|θ

)
= 1√

2πσi
(
θ
) e

(
ri

m
(
θ
)
− E

[
ri

m
(
θ
)])2

2σ2
i
(
θ
)

,
‍�

(16)
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where 
‍
σ2

i
(
θ
)

= Var
(

ri
m
(
θ
))

‍
 denotes the variance of the firing rate of memory neuron ‍i.‍ Thus, we can 

estimate the FI of memory neuron ‍i‍ based on the empirical mean and variance of the firing rate at 
time ‍t‍ as

	﻿‍
FI

(
ψi, t

)
=

(
∂E

[
ri

m
(
θ, t

)]
/∂θ

)2

σ2
i
(
θ, t

) ,
‍�

(17)

and the total FI is the summation of the FI of all memory neurons, given as 
‍
FI

(
t
)

=
∑

i
FI

(
ψi, t

)
‍
.

Drift and diffusivity in network models
Although the modulation breaks the continuity of the ring attractor and forms two discrete attrac-
tors at the obliques, there is still a one-dimensional trajectory ‍̄s

(
θ
)
‍ to which the noise-free dynamics 

quickly converge. We can linearize the system in the vicinity of this trajectory if the noise is small 
(Burak and Fiete, 2012). Note that the dynamics of the synaptic variables in Equation 3 can be put 
into the following form:

	﻿‍ τ ṡ = −s + ϕ
(
Ws + h

)
+ ξ,‍� (18)

and by linearizing around the stable trajectory ‍s = s̄‍, we get

	﻿‍ τ δ̇s = Kδs + ξ,‍� (19)

where we have ignored the zeroth- and higher-order terms. The drift velocity ‍µ
(
θ
)
‍ is estimated by 

projecting the noise-free dynamics along the normalized right eigenvector u of K with the largest real 
part of the eigenvalue

	﻿‍
µ
(
θ
)

= 1
τ ∥ s̄′

(
θ
)
∥

uT (
θ
) [

−s̄
(
θ
)

+ ϕ
(
Ws̄

(
θ
)

+ h
(
θ
))]

.
‍�

(20)

The coefficient of diffusion can be obtained in the same way

	﻿‍

2D
(
θ
)

= 1(
τ ∥ s̄′

(
θ
)
∥
)2

∑
i

u2
i
(
θ
)
ϕi


∑

j
Wijs̄j

(
θ
)

+ hi


 .

‍�
(21)

The noise coefficient is given as ‍σ =
√

2D‍. Hence, we have reduced the high-dimensional dynamics 
to a simple one-dimensional stochastic differential equation as in Equation 1 as

	﻿‍ dθ = µ
(
θ
)

dt + σ
(
θ
)

dWt,‍�

and the potential ‍U
(
θ
)
‍ is obtained by the relation ‍

dU
dθ = −µ

(
θ
)
‍. To quantitatively measure the hetero-

geneity of noise coefficient across different orientations, we define the noise coefficient index as 
follows:

	﻿‍
Noise Coef.index =

σ
(
θ = 45◦

)
− σ

(
θ = 0◦

)

σ
(
θ = 45◦

)
+ σ

(
θ = 0◦

) .
‍�

(22)

Network parameters and simulations
Unless otherwise specified, ‍Ns = Nm = 300‍, ‍τ = 10 ms‍. The connectivity parameters are 

‍JE,s = 0.6, JI,s = 0.35, JE,m = 1, JI,m = 0.17, Jf = 0.1, Jb = 0.25,λE,s = 0.36π,λI,s = 1.1π,λE,m = 0.2π,‍ 
‍λI,m = 0.6π,λf = λb = 0.17π‍. For the external input, we set ‍C = 4, ε = 0.2‍, and ‍λext,s = 0.3π‍. For the 
modulation of the sensory network, unless otherwise specified, we set ‍α = 0.04‍ when only the excit-
atory plasticity is considered, and ‍α = 0.03,β = 0.08‍ when the inhibitory plasticity is added. As for the 
modulation of the single-layer memory network, we set ‍α = 5 × 10−4,β = 2.4 × 10−3

‍. For the transfer 
function, ‍fmax = 100, T = 0.1, q = 2, w = 6‍ for sensory ‍fs‍, and ‍fmax = 100, T = 0.1, q = 1.5, w = 6.6‍ for 
memory ‍fm‍.
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We uniformly sampled 50 cue orientations in ‍
[
0◦, 180◦

]
‍. The visual cue lasts for 0.5 s except for the 

estimation of the PFs. In the grid parameter search figures, the delay epochs last for 1 s. In Figure 3, 
we set ‍α = 0.07‍. In Figure 5A, the manifold corresponds to the synaptic variables at 4 s into the delay 
with ‍α = 0.05‍. We uniformly sampled 100 cue orientations for the manifold.

To compute the drift velocity and noise coefficient in Figures 5, 6, and 9, we use the stable trajec-
tory ‍̄s

(
θ
)
‍ at 1 s into the delay to ensure the fast transient dynamics induced by stimulus offset fully 

decays. The stable trajectory is parameterized by the 50 cue orientations to numerically compute 

‍̄s
′ (
θ
)

.‍
All simulations of ordinary or stochastic differential equations of the network models were done 

using the Euler method with ‍dt = 1ms‍. We checked that similar results hold for smaller ‍dt‍. Example bias 
and standard deviation patterns were estimated from 1000 independent realizations. The Fisher infor-
mation patterns were estimated from 3000 independent realizations. The grid search of maximum 
bias at ‍θ = 22.5◦‍ and standard deviation index were computed from 3000 realizations.

All simulations were run in MATLAB. The code is available at GitHub (copy archived at Yang, 
2024).
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