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eLife Assessment
This important study presents genome-wide high-resolution chromatin-based 3D genomic inter-
action maps for over 50 diverse human cell types and integrates these data with pediatric obesity 
GWAS. The work provides convincing evidence that multiple pancreatic islet cell types are key 
effector cell types. The authors also perform variant-to-gene mapping to nominate genes underlying 
several GWAS hits. Overall, the results will be of interest to both the fields of 3D genome architec-
ture and pediatric obesity.

Abstract The prevalence of childhood obesity is increasing worldwide, along with the associ-
ated common comorbidities of type 2 diabetes and cardiovascular disease in later life. Motivated 
by evidence for a strong genetic component, our prior genome-wide association study (GWAS) 
efforts for childhood obesity revealed 19 independent signals for the trait; however, the mecha-
nism of action of these loci remains to be elucidated. To molecularly characterize these childhood 
obesity loci, we sought to determine the underlying causal variants and the corresponding effector 
genes within diverse cellular contexts. Integrating childhood obesity GWAS summary statistics with 
our existing 3D genomic datasets for 57 human cell types, consisting of high-resolution promoter-
focused Capture-C/Hi-C, ATAC-seq, and RNA-seq, we applied stratified LD score regression and 
calculated the proportion of genome-wide SNP heritability attributable to cell type-specific features, 
revealing pancreatic alpha cell enrichment as the most statistically significant. Subsequent chromatin 
contact-based fine-mapping was carried out for genome-wide significant childhood obesity loci and 
their linkage disequilibrium proxies to implicate effector genes, yielded the most abundant number 
of candidate variants and target genes at the BDNF, ADCY3, TMEM18, and FTO loci in skeletal 
muscle myotubes and the pancreatic beta-cell line, EndoC-BH1. One novel implicated effector gene, 
ALKAL2 – an inflammation-responsive gene in nerve nociceptors – was observed at the key TMEM18 
locus across multiple immune cell types. Interestingly, this observation was also supported through 
colocalization analysis using expression quantitative trait loci (eQTL) derived from the Genotype-
Tissue Expression (GTEx) dataset, supporting an inflammatory and neurologic component to the 
pathogenesis of childhood obesity. Our comprehensive appraisal of 3D genomic datasets generated 
in a myriad of different cell types provides genomic insights into pediatric obesity pathogenesis.

Introduction
The prevalence of obesity has risen significantly worldwide (NCD Risk Factor Collaboration (NCD-
RisC), 2017), especially among children and adolescents (Bryan et al., 2021). Obesity is associated 
with chronic diseases, such as diabetes, cardiovascular diseases, and certain cancers (GBD 2015 
Obesity Collaborators, 2017; Singh et al., 2013; Wormser et  al., 2011; Lauby-Secretan et  al., 
2016), along with mechanical issues including osteoarthritis and sleep apnea (Fontaine and Barofsky, 
2001).

Modern lifestyle factors, including physical inactivity, excessive caloric intake, and socioeconomic 
inequity, along with disrupted sleep and microbiome, represent environmental risk factors for obesity 
pathogenesis. However, genetics also play a significant role, with the estimated heritability ranging 
from 40% to 70% (Loos and Yeo, 2022; Maes et al., 1997; Elks et al., 2012). Studies show that 
body weight and obesity remain stable from infancy to adulthood (Demerath et al., 2007; Dubois 
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et al., 2007; Wardle et al., 2008; Bouchard, 2009), but variation between individuals does exist 
(Littleton et al., 2020). Genome-wide association studies (GWAS) have improved our understanding 
of the genetic contribution to childhood obesity (Vogelezang et al., 2020; Yaghootkar et al., 2020; 
Couto Alves et al., 2019; Fu et al., 2019; Turcot et al., 2018; Littleton and Grant, 2022). However, 
the functional consequences and molecular mechanisms of identified genetic variants in such GWAS 
efforts are yet to be fully elucidated. Efforts are now being made to predict target effector genes and 
explore potential drug targets using various computational and experimental approaches (Yu et al., 
2022; Avsec et al., 2021; Gazal et al., 2022; Zhou and Troyanskaya, 2015; Nasser et al., 2021), 
which subsequently warrant functional follow-up efforts.

With our extensive datasets generated on a range of different cell types, by combining 3D chro-
matin maps (Hi-C, Capture-C) with matched transcriptome (RNA-seq) and chromatin accessibility data 
(ATAC-seq), we investigated heritability patterns of pediatric obesity-associated variants and their 
gene-regulatory functions in a cell type-specific manner. This approach yielded 94 candidate causal 
variants mapped to their putative effector gene(s) and corresponding cell type(s) setting. In addition, 
using methods comparable to our prior efforts in other disease contexts (Chesi et al., 2019; Su et al., 
2020; Pahl et al., 2021; Cousminer et al., 2021; Vujkovic et al., 2022; Pahl et al., 2022; Su et al., 
2022; Palermo et al., 2023), we also uncovered new variant-to-gene combinations within specific 
novel cellular settings, most notably in immune cell types, which further confirmed the involvement of 
the immune system in the pathogenesis of obesity in the early stages of life.

Results
Enrichment assessment of childhood obesity variants across cell types
To explore the enrichment of childhood obesity GWAS variants across cell types, we carried out 
Partitioned Linkage Disequilibrium Score Regression (LDSR) (Finucane et al., 2015) on all ATAC-seq-
defined OCRs for each cell type. We assessed cell-type-specific enrichment of GWAS signals in four 
main categories of genomic regions (Figure 1A): (1) Total OCRs: open chromatin regions defined 
by ATAC-seq; (2) Promoter OCRs: the subset of OCRs overlapping a gene promoter; (3) cREs: the 
subset of OCRs that form chromatin loops (as determined by Hi-C/Promoter Capture-C) with a gene 
promoter, and are therefore considered putative enhancers or suppressors regulating gene expres-
sion; (4) cREs ±500bases: extended cREs by 500 bases in both directions. The rationale behind this 
approach is that different GWAS variants can influence phenotypes by regulating gene expression 
in a cell-type specific manner through various regulatory mechanisms. For example, they may alter 
enhancer function (cREs category) or affect the binding of a transcription factor at a gene’s promoter 
(Promoter OCRs category).

We observed that 41 of 57 cell types – including 22 metabolic, 21 immune, 7 neural cell types, and 
7 independent cell lines (Supplementary file 1a) – showed at least a degree of directional enrichment 
with the total set of OCRs (Figure 1B – Total OCRs). However, only four cell types – two pancreatic alpha 
and two pancreatic beta cell-based datasets – had statistically significant enrichments (p<0.05). These 
enrichments were less pronounced when focusing on promoter OCRs only (Figure 1B – Promoter 
OCRs). To further limit the LD enrichment assessment to just those OCRs that can putatively regulate 
gene expression via chromatin contacts with gene promoters, we used the putative cREs (Chesi et al., 
2019; Pahl et al., 2021). This reduced the number of cell types showing at least nominal enrichment 
(31 of 57), enlarged the dispersion of enrichment ranges across different cell types, increased the 95% 
confidence intervals (CI) of enrichments, and hence increased the P-value of the resulting regression 
score. cREs from pancreatic alpha cells derived from single-cell ATAC-seq were the only dataset that 
remained statically significant (Figure 1B – putative cREs).

The original reported LDSR method analyzed enrichment in the 500 bp flanking regions of their 
regulatory categories (Finucane et al., 2015). However, when we expanded our analysis to the ± 
500 bp window for our cREs, albeit incorporating more weighted variants into the enrichment (repre-
sented by larger dots in Figure 1B – cREs ± 500 bases), this resulted in a decrease in the number of 
cell types yielding at least nominal enrichment (26 cell types), the enrichment range across cell types, 
the 95% CI, and level of significance. The pancreatic alpha cell observation also dropped below the 
bar for significance with this expanded window definition.

https://doi.org/10.7554/eLife.95411
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Consistency and diversity of childhood obesity proxy variants mapped 
to cREs
Despite the enrichments above only being limited to just a small number of cell types, it is likely 
that individual loci have differing levels of contributions in various cellular contexts and could not be 
detected at the genome wide assessment scale. As such we elected to further explore the candidate 

Figure 1. Partitioned Linkage Disequilibrium Score Regression analysis for open chromatin regions of all cell types. (A) The schematic shows the 
different types of regions defined in our study and 3 different ways overlapping chromatin contact regions – OCRs – gene promoters define cREs. (B) 
Heritability enrichment by LDSC analysis for each cell type. (a) Bar-plot shows the total number of OCRs identified by ATAC-seq for each cell type on 
bulk cells - blue, or on single cells – red; and the portion of OCRs that fall within cREs identified by incorporating Hi-C (green) or by Capture-C (orange). 
4 panels of dot-plots show heritability enrichment by LDSC analysis for each cell type, with standard error whiskers. Dots’ colors correspond to -log10(p-
values), dots with white asterisks are significant P-values <0.05, and dots’ sizes corresponding to the proportion of SNP contribute to heritability. Dash 
line at 1, i.e., no enrichmen. (b) Analysis done on whole OCRs set of each cell type (whiskers colors match with bulk/single cell from bar-plot a); (c) On 
only OCRs that overlapped with promoters (whiskers’ colors match with 623 bulk/single cell from bar-plot a); (d) On the putative cREs of each cell type 
(whiskers’ colors match with Hi-C/Capture-C from bar-plot a); (e) On the same cREs as (c) panel with their genomic positions expanded ±500 bases on 
both sides (whiskers’ colors match with Hi-C/Capture-C from bar-plot a).

https://doi.org/10.7554/eLife.95411
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effector genes that are directly affected by cREs harboring childhood obesity-associated variants by 
systematically mapping the genomic positions of the LD proxies onto each cell type’s cREs. Most 
proxies fall within chromatin contact regions (blue area in Venn diagram Figure 2A) or OCRs (yellow 
area) or open chromatin contact regions (red area), or completely outside (white area) any defined 
region. Only 94 proxies fall within our defined cREs (overlapped area with dotted green border in 

Figure 2. Mapping 771 proxies to the open chromatin regions of each cell type. (A) Venn diagram shows how 771 proxies mapped to the OCRs: · 
Blue area: 758 proxies were located within contact regions of at least one cell type regardless of chromatin state; · Red area: 417 proxies were located 
within contact regions marked as open by overlapping with OCR; · Yellow area: If we only considered open chromatin regions, 178 proxies were 
included; · Dotted green bordered area: To focus on just those variants residing within open chromatin and contacting promoter regions in any cell 
type, we overlapped the genomic positions of these proxies with each cell type’s cRE set, yielding 90 variants (3 from the 99% credible set) directly 
contacting open gene promoters (Supplementary file 1b), with 10 of which located within a promoter of one gene but contacting another different 
gene promoter. There were an additional 4 variants located within gene promoters but in chromatin contact with promoter(s) of nearby transcript(s) of 
the same gene (correspond to 3 cREs illustrations in Figure 1A). · White area: proxies that fall into neither defined region of interest. (B) Bar-plot shows 
number of proxies, cell types and target genes mapped at each locus. (C) The upSet plot shows the degree of overlap across cell types of the variants; 
ranked from the most common variant (red) – rs61888800 from BDNF locus, a well-known 5' untranslated region variant of this gene that is associated 
with anti-depression and therapeutic response (Licinio et al., 2009; Colle et al., 2015) – appeared in 39 cell types, to the group of variants (grey) which 
appeared in only one cell type.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Venn diagrams show intersections and the number of proxies within each locus were mapped in different scenarios as illustrated 
in Figure 1A.

Figure supplement 2. The upSet plot outlines in which cell type(s) each locus appeared.

Figure supplement 3. Examples of 2 variants mapped to only one gene promoter.

Figure supplement 4. Dot-plot with each variant colored by their locus shows the number of genes and cell types each proxy mapped into our cREs.

Figure supplement 5. Bar plots for the number of cell types and number of genes implicated by each variant.

Figure supplement 6. TMEM18 locus: within this locus where there were 45 proxies in LD with the sentinel SNP rs7579427 that mapped to the cREs of 
31 cell types; 35 of these proxies were found exclusively in only one unique cell type (10 in pre-adipocytes only, 9 in adipocytes only, 8 in EndoC-BH1 
only, 2 in hESC-derived hypothalamic neurons only, 2 in natural killer cells only, and 4 in activated regulatory T cells only); however, their target gene 
promoters were also frequently contacted by other different proxies in other cell types.

https://doi.org/10.7554/eLife.95411
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Figure 2A), they clustered at 13 original loci (Supplementary file 1b). Figure 2—figure supplement 
1 outlines the number of signals at each locus included or excluded based on the criteria we defined 
for our regions of interest. The TMEM18 locus yielded the most variants through cREs mapping, with 
46 proxies for the two lead independent variants, rs7579427 and rs62104180. The second most abun-
dant locus was ADCY3, with 21 proxies for lead variant rs4077678 (Figure 2B). The higher number 
of variants at one locus did not correlate with implicating more genes or cell types through mapping. 
The mapping frequency of various variants within a specific locus exhibited substantial differences 
(Figure 2—figure supplement 2).

Inspecting individual variants regardless of their locus, we found that 28 of 94 proxies appeared in 
cREs across multiple cell types, with another 66 observed in just one cell type (Figure 2C). 45 variants 
of these 66 just contacted one gene promoter, such as at the GPR1 and TFAP2B loci (Figure 2—figure 
supplement 3).

Overall, the number of cell types in which a variant was observed in open chromatin correlated with 
the number of genes contacted via chromatin loops (Figure 2—figure supplement 4). However, we 
also observed that some variants found in cREs in multiple cell types were more selective with respect 
to their candidate effector genes (Figure 2—figure supplement 5 - red arrow), or conversely, more 
selective across given cell types but implicated multiple genes (Figure 2—figure supplement 5 - blue 
arrow). Figure 2—figure supplement 6 outlines our observations at the TMEM18 locus – an example 
locus involved in both scenarios.

Implicated genes cluster at loci strongly associated with childhood 
obesity consistently across multiple cell types
Mapping the variants across all the cell types resulted in a total of 111 implicated childhood obesity 
candidate effector genes (Table  1). Among these, 45 genes were specific to just one cell type 
(Figure 3—figure supplement 1), including 13 in myotubes and 7 in natural killer cells. Conversely 
and notably, BDNF appeared across 42 different cell types. Across the metabolic, neural, and 
immune systems and seven other cell lines, there were nine genes consistently implicated in all four 
categories (top panel Figure 3 – red stars, Figure 3—figure supplement 2 ‘all’), while five genes 
were consistently implicated in metabolic, neural, and immune systems (top panel Figure 3 – blue 
stars, Figure 3—figure supplement 2 ‘all_main’). Two genes, ADCY3 and BDNF, had variants both 
at their promoters and contacted variants in cREs via chromatin loops (Figure 3—figure supple-
ment 3).

At the TMEM18 locus on chr 2p25.3, a highly significant human obesity locus that has long been 
associated with both adult and childhood obesity, we observed differing degrees of evidence for 16 
genes, but noted that rs6548240, rs35796073, and rs35142762 consistently contacted the SH3YL1, 
ACP1, and ALKAL2 promoters across multiple cell types (Figure 2C -third and fourth column).

At the chr 2p23 locus, ADCY3 yielded the most contacts (i.e. many proxies contacting the same 
gene via chromatin loops), suggesting this locus acts as a regulatory hub. However, we observed a 
similar composition in cell types for four other genes: DNAJC27, DNAJC27-AS1 (both previously 
implicated in obesity and/or diabetes traits Cherian et  al., 2018), AC013267.1, and SNORD14 
(RF00016). ITSN2, NCOA1, and EFR3B were three genes within this locus that were only implicated 
in immune cell types. NCOA1 encodes a prominent meta-inflammation factor (Rollins et al., 2015) 
known to reduce adipogenesis and shift the energy balance between white and brown fat, and its 
absence known to induce obesity (Mohsen G et al., 2019).

CALCR was the most frequently implicated gene at its locus, supported by 20 cell types across 
all systems. While within the BDNF locus, METTL15 and KIF18A – two non-cell-type-specific genes - 
plus some lncRNA genes, were contacted by childhood obesity-associated proxies within the same 
multiple cell types as BNDF, again suggesting the presence of a regulatory hub.

At the FAIM2 locus on chr 12q13.12, we observed known genes associated with obesity, eating 
patterns, and diabetes-related traits, including ASIC1, AQP2, AQP5, AQP6, RACGAP1, and 
AC025154.2 (AQP5-AS1) along with FAIM2 (Table  1). These genes were harbored within cREs of 
astrocytes, neural progenitors, hypothalamic neurons, and multiple metabolic cell types. Plasmacy-
toid and CD1c+conventional dendritic cells were the only two immune cell types that harbored such 
proxies within their cREs, implicating ASIC1, PRPF40B, RPL35AP28, TMBIM6, and LSM6P2 at the 
FAIM2 locus.

https://doi.org/10.7554/eLife.95411
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Table 1. PubMed-query known functions for 111 genes implicated by obesity variants.

Locus
Implicated 
genes Obesity or related traits Different traits

TNNI3K

LRRIQ3 (NA) Associated with opioid usage [PMID:34728798] 
and MDD [PMID: 31748543]

FPGT
Predict BMI in Korean pop. [PMID: 28674662]

(NA)

FPGT-TNNI3K Associated with MDD [PMID: 31748543]

LRRC53 Associated with high BMI increased risk heart attack [PMID: 
32471361] (NA)

ASTN1 Identified as obesity QTL in rat [PMID: 35729251]
Associated with neurodevelopmental traits 
[PMID: 24381304] and variety of cancers [PMID: 
32945491]

BRINP2 (NA) Associated with neurodevelopmental traits 
[PMID: 34267256]

SEC16B
AL122019.1

(NA)
AL162431.1

TMEM18

FAM110C (NA)
Overexpression induces microtubule aberrancies 
[PMID: 17499476], involved in cell spreading and 
migration [PMID: 19698782]

SH3YL1 Associated with BMI in type 2 diabetes nephropathy [PMID: 
33223406]

Influence on T cell activation [PMID: 31427643], 
involved in different cancer types [PMID: 
26305679,24508479]

ACP1
Associated with early-onset obesity [PMID: 24129437], correlated 
with cardiovascular risks [PMID: 19570551], drive adipocyte 
differentiation via control of pdgfrα signaling [PMID: 33615467]

Associated with bipolar disorder [PMID: 
31830721]

ALKAL2 Associated with childhood BMI [PMID: 33627773] Enhance expression in response to inflammatory 
pain in nociceptors [PMID: 35608912, 35610945]

MYT1L Associated with early-onset obesity [PMID: 24129437] (NA)

AC079779.1

(NA)

AC079779.2

AC079779.3

AC079779.4

LINC01865

AC105393.2

AC105393.1

LINC01874

LINC01875

AC093326.1

AC141930.2

Table 1 continued on next page
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Locus
Implicated 
genes Obesity or related traits Different traits

ADCY3

ITSN2 (NA)
Regulate T-cells function [PMID: 32618424] 
and help the interaction with B-cells [PMID: 
29337666]

NCOA1
Meta-inflammation gene [PMID: 25647480], reduce adipogenesis, 
shift the energy balance between white and brown fat [PMID: 
31133421]

(NA)
ADCY3 Regulate/impair MC4R within energy-regulating melanocortin 

signaling pathway [PMID: 29311635,32955435]

DNAJC27-AS1 Linked to obesity, diabetes traits [PMID: 30131766]

DNAJC27 Linked to obesity, diabetes traits [PMID: 30131766]

EFR3B Associated with T1D [PMID: 21980299], down-regulated in rare 
obesity-related disorder [PMID: 25705109]

WDR43 (NA) Associated with breast cancer [PMID: 27117709]

AC013267.1
(NA)

RF00016

GPR1 GPR1 Increase expression in obese phenotype [PMID: 34174278] (NA)

TFAP2B TFAP2D

(NA)

Involve in embryogenesis [PMID: 12711551]

CALCR

HEPACAM2 Associated with colorectal cancer [PMID: 
29659199, 29973580]

VPS50 Involve in neurodevelopmental disorders and 
defects [PMID: 30828385, 34037727]

MIR653 Involve in different types of cancer [PMID: 
35777307]

MIR489 Promote adipogenesis in mice [PMID: 34004251]

(NA)
CALCR Associated with BMI and control of food-intake [PMID: 34462445, 

34210852, 31955990, 29522093]

TFPI2 (NA) Involved in colorectal cancer [PMID: 35004840, 
34092617, 25902909]

BET1 Involved in triacylglycerol metabolism [PMID: 24423365] Associated with muscular dystrophy [PMID: 
34310943, 34779586]

AC003092.1 (NA) Association with glioblastoma [PMID: 33815468, 
30442884]

AC002076.1 (NA)
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Locus
Implicated 
genes Obesity or related traits Different traits

BDNF

LIN7C Associated in T2D [PMID: 20215397], obesity [PMID: 23044507] Associated with psychopathology [PMID: 
23044507]

BDNF-AS Regulate BDNF and LIN7C expression [PMID: 22960213, 22446693]
(NA)

BDNF Regulate eating behavior and energy balance [PMID: 34556834]

MIR610

(NA)

Involve in different types of cancer [PMID: 
34408418, 29228616, 26885452]

KIF18A Involve in different types of cancer [PMID: 
35591854, 35286090]

METTL15 Associated with childhood obesity [PMID: 31504550] (NA)

AC090124.1

(NA)

Reported to differentially prognostic of 
pancreatic cancer [PMID: 34307375]

ARL14EP Involve in WAGR syndrome [PMID: 36011342, 
31511512]

DCDC1 Involvement with eyes anomalies [PMID: 
34773354, 34703991]

THEM7P Associated with mechanisms underlying inguinal 
hernia [PMID: 34392144]

AL035078.2

(NA)

ELP4

LINC00678

AC023206.1

RN7SKP158

AC104978.1

MIR8068

AC013714.1

AC100773.1

AC090833.1

AC090791.1

AC110056.1

AL035078.2
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Locus
Implicated 
genes Obesity or related traits Different traits

FAIM2

PRPF40B (NA) Splicing regulator involved in T-cell development 
[PMID: 31088860, 34323272]

TMBIM6 Deficiency leads to obesity by increasing Ca2+-dependent insulin 
secretion [PMID: 32394396]

Immune cell function and survival [PMID: 
26470731]

BCDIN3D Associated with obesity, T2D [PMID: 20215397]

(NA)FAIM2 Associated with childhood obesity [PMID: 31504550]

AQP2 Associated with obesity, diabetes [PMID: 33367818]

AQP5 Associated with non-obese diabetes [PMID: 25635992,22320885] Responsible for transporting water, involve in 
Sjogren’s syndrome [PMID: 25635992, 31557796]

AQP6 Down-regulated in retina in diabetes [PMID: 21851171] Associated with renal diseases [PMID: 30654539]

RACGAP1 Involve in diabetes nephropathy [PMID: 35222021]

(NA)
ASIC1 Inhibition increase food intake and decrease energy expenditure 

[PMID: 35894166]

LSM6P2

(NA)

RPL35AP28

LINC02396

LINC02395

AC025154.1

AC025154.2

ADCY9

SLX4 (NA) Associated with blood pressure [PMID: 
30671673]

DNASE1 Associated with obesity hypertension [PMID: 33351325]

(NA)

TRAP1 Involve in global metabolic network, deletion reduce obesity 
incidence [PMID: 25088416]

CREBBP Associated with high adiposity and low cardiometabolic risk [PMID: 
33619380]

ADCY9 Asoociated with BMI, obesity [PMID: 33619380, 23563607]

SRL

(NA)

Involve in cardiac dysfunction [PMID: 22119571]

LINC01569 Associated with cancer and endometriosis 
[PMID: 35341703, 34422671]

TFAP4 Associated with BMI, birth weight, maternal glycemic [PMID: 
35708509] (NA)

AC012676.1 (NA) Involve in hepatocellular carcinoma [PMID: 
35210216]

AC009171.2 (NA)
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The independent ADCY9 and FTO loci are both located on chromosome 16. Genes at the ADCY9 
locus were only implicated in a subset of immune cell types. Interestingly, genes at the FTO locus were 
only implicated in Hi-C datasets (as opposed to Capture C), including 6 metabolic cell types and astro-
cytes. Most genes at the FTO locus were implicated in skeletal myotubes, differentiated osteoblasts, 
and astrocytes, namely FTO and IRX3; while IRX5, CRNDE, and AC106738.1 were also implicated in 
adipocytes and hepatocytes.

The most implicated cell types by two sets of analyses
EndoC-BH1 and myotubes are the two cell types in which we implicated the most effector genes, with 
38 and 42, respectively – Figure 3 side panel. This phenomenon is likely proportional in the case of 
myotubes, given the large number of cREs identified by overlapped Hi-C contact data and ATAC-seq 
open regions (Figure  1A), but not for EndoC-BH1. Albeit harboring an average number of cREs 
compared to other cell types, EndoC-BH1 cells were consistently among the top-ranked heritability 
estimates for the childhood obesity variants resulting from the EGG consortium GWAS (Figure 1) 
and harbored a significant number of implicated genes by the mapping of proxies. Interestingly, the 
pancreatic alpha cell type – shown above to be the most significant for heritability estimate by LDSC 
– revealed only six implicated genes contacted by the defined proxies, namely BDNF and five lncRNA 
genes.

Pathway analysis
Of the 111 implicated genes in total, PubMed query revealed functional studies for 66 genes. The 
remaining were principally lncRNA and miRNA genes with currently undefined functions (Table 1). To 

Locus
Implicated 
genes Obesity or related traits Different traits

FTO

FTO Most extensively studied obesity locus [PMID: 34556834]

(NA)IRX3 Obesogenic effects in adipocytes [PMID: 26760096], brain [PMID: 
24646999], pancreas[93]IRX5

AC018553.1 (NA) Associated with melanoma [PMID: 35611195]

CRNDE Regulator of angiogenesis in obesity-induced diabetes [PMID: 
31863035] (NA)

MMP2 Involve in obesity-relate angiogenesis [PMID: 35919566]

CAPNS2 (NA) Associated with thyroid-related traits [PMID: 
23408906]

AMFR Involve in hepatic lipid metabolism [PMID: 33591966]
(NA)

CETP Involve in monogenic hyperalphalipoproteinemia [PMID: 34878751]

RPGRIP1L Hypomorphism of this ciliary gene linked to morbid obesity [PMID: 
27064284, 30597647, 29657248]

Required for hypothalamic arcuate neuron 
development [PMID: 30728336]

LINC02169 (NA) Associated with occupational exposure to gases/
fumes and mineral dust [PMID: 31152171]

AC007491.1

(NA)

AC018553.2

LINC02140

AC106738.1

AC106738.2

MTND5P34

AC007336.1

MC4R AC090771.1 (NA)
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investigate how our implicated genes could confer obesity risk, we performed several pathway anal-
yses keeping them either separated for each cell type or pooling into the respective metabolic, neural, 
or immune system sets. Figure 4—figure supplement 1 shows simple Gene Ontology (GO) biological 
process terms enrichment results.

Leveraging the availability of our expression data generated via RNA-seq (available for 46 of 57 cell 
types), we performed pathway analysis. Given that our gene sets from the variant-to-gene process 
was stringently mapped, the sparse enrichment from normal direct analyses is not ideal for exploring 
obesity genetic etiology. Thus, we incorporated two methods from the pathfindR package (Ulgen 
et al., 2019) and our customized SPIA (details in Materials and methods, Figure 4—figure supple-
ment 2). The result of 60 enriched KEGG terms is shown in Figure 4A, Supplementary file 1c, with 
13 genes in 14 cell types for pathfindR and 39 enriched KEGG terms shown in Figure 4, Supplemen-
tary file 1d, with 10 genes in 42 cell types for customized SPIA. There were 20 overlapping path-
ways between the two approaches (yellow rows in Supplementary file 1c-d) including many signaling 
pathways such as the GnRH (hsa04912), cAMP (hsa04024), HIF-1 (hsa04066), Glucagon (hsa04922), 
Relaxin (hsa04926), Apelin (hsa04371), and Phospholipase D (hsa04072) signaling pathways. They 

Figure 3. Profiles of 111 implicated genes by 94 proxies through cREs of each cell type. Main panel: Bubble plot show corresponding expression 
level (size) and number of variants (color) target each implicated gene of each cell type. Squares represent genes with variants at their promoters. 
Circles represent genes with variants contacted through chromatin loops. Some genes were implicated by both types, these ‘double implications’ 
are represented as diamond shapes, and were identified across several cell types: two cell types (plasmacytoid dendritic cells and pre-differentiated 
adipocytes) for ADCY3 gene, and five for BDNF (human embryonic stem cells - hESC, differentiated human fetal osteoblast cells - hFOB_Diff, neural 
progenitor cells derived from induced pluripotent stem cells - NPC_iPSC, PANC-1, and NCIH716 cell lines). Genes with expression undetected in our 
arrays are shown as triangles. Top panel: bar-plot shows numbers of cell types each gene was implicated within, color-coded by which systems the cell 
types belong to. Right panel: bar-plot shows numbers of genes implicated by the variants with each cell type.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Bar-plot shows number of genes implicated in how many cell types.

Figure supplement 2. Bar-plot shows number of genes implicated in cell types of each combination of metabolic, immune, neural system and other 
cell lines groups.

Figure supplement 3. Double-implicated genes.

https://doi.org/10.7554/eLife.95411
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Figure 4. KEGG pathways enrichment analysis. (A) The pathfindR method: Focused on ‘leveraging interaction 
information from a protein-protein interaction network (PIN) to identify distinct active subnetworks and then 
perform enrichment analyses on these subnetworks’, thus aiding enriched pathway analyses through the inter-
connection between the genes targeted by obesity variants with key genes driving the pathology of the disease. 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.95411
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were all driven by one or more of these 5 genes: ADCY3, ADCY9, CREBBP, MMP2, and NCOA1. 
Interestingly, we observed the involvement of natural killer cells in nearly all the enriched KEGG terms 
from pathfindR due to the high expression of the two adenylyl cyclase encoded genes, ADCY3 and 
ADCY9, along with CREBBP. The SPIA approach disregarded the aquaporin genes (given they appear 
so frequently in so many pathways that involve cellular channels) but highlighted the central role of 
BDNF which single-handedly drove four signaling pathways: the Ras, Neurotrophin, PI3K-Akt, and 
MAPK signaling pathways. This also revealed the role of TRAP1 in neurodegeneration.

These two approaches did not discount the role of FAIM2 and CALCR. However, their absence 
was mainly due to the content of the current KEGG database. On the other hand, these approaches 
accentuated the role of the MMP2 gene at the FTO locus in skeletal myotubes, given its consistency 
within the GnRH signaling pathway (Figure 4—figure supplement 3), which is in line with previous 
studies linking its expression with obesity (Derosa et al., 2008; Aksoyer Sezgin et al., 2022; Nonino 
et al., 2021).

Supportive evidence by colocalization of target effector genes with 
eQTLs
The GTEx consortium has characterized thousands of eQTLs, albeit in heterogeneous bulk tissues 
(Pejman, 2017). To assess how many observed gene-SNP pairs agreed with our physical variant-to-
gene mapping approach in our multiple separate cellular settings, we performed colocalization anal-
ysis using ColocQuiaL (Chen et al., 2022).

282 genes were reported to be associated with the variants within 13 loci from our variant-to-
genes analysis. We found 114 colocalizations for ten of our loci that had high conditioned posterior 
probabilities (​cond.​PP.​H4.​abf≥0.8), involving 44 genes and 41 tissues among the eQTLs. We extracted 
the posterior probabilities for each SNP within each colocalization and selected the 95% credible set 
as the likely causal variants (complete list in Supplementary file 1e). Despite sensitivity differences 
and varying cellular settings, when compared with our variant-to-gene mapping results, colocalization 
analysis yielded consistent identification for 21 pairs of SNP-gene interactions when considering the 
analyses across all our cell types, composed of 20 SNPs and 7 genes. Details of these SNP-gene pairs 
are shown in Figure 5A and B.

Of these 20 SNPs, 15 were at the ADCY3 locus, in LD with sentinel variant rs4077678, and all 
implicated ADCY3 as the effector gene in 29 cell types – 15 metabolic, 6 immune, 4 neural cell types, 
and 4 independent cell lines (Figure 5C). Indeed, missense mutations have been previously reported 
for this gene in the context of obesity (Grarup et al., 2018; Stergiakouli et al., 2014) while another 
member of this gene family, ADCY5, has also been extensively implicated in metabolic traits (Sinnott-
Armstrong et al., 2021).

Predicting transcription factors (TFs) binding disruption at implicated 
genes contributing to obesity risk
TFs regulate gene expression by binding to DNA motifs at enhancers and silencers, where any disrup-
tion by a SNP can potentially cause dysregulation of a target gene. Thus, we used motifbreakR (R 
package) to predict such possible events at the loci identified by our variant-to-gene mapping. Each 

The result with 60 enriched KEGG terms in the main panel (Supplementary file 1c), shows 13 genes in 14 cell 
types and their scaled expression levels in the lower panel. (B) The modified SPIA: After applying the adjusted 
P-value of 0.05 as the filtering threshold, the analysis yielded 39 enriched KEGG terms (full table at Supplementary 
file 1d) with only 10 genes, but involved up to 42 cell types.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Gene Ontology (GO) biological process terms enrichment.

Figure supplement 2. The additional metrics scheme.

Figure supplement 3. The GnRH signaling pathway: The KEGG graph shows the involvement of ADCY3 and 
MMP2 genes driving the GnRH signaling pathway.

Figure supplement 4. Cluster dendrogram of weighted genes expression of genes from the variant-to-genes 
mapping process into three modules, named by the colors.

Figure 4 continued

https://doi.org/10.7554/eLife.95411
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variant was predicted to disrupt the binding of several different TFs, thus requiring further litera-
ture cross-examination to select the most probable effects. For example, rs7132908 (consistently 
contacting FAIM2 in 25 cell types) was predicted to disrupt the binding of 12 different transcription 
factors. Among them, SREBF1 (Figure 6A) was the only TF that concurred with evidence that it regu-
lates AQP2 and FAIM2 at the same enhancer (Kikuchi et al., 2021). The full prediction list can be 
found in Supplementary file 1f.

To narrow down the list of putative TF binding sites at each variant position, we leveraged the 
ATAC-seq footprint analysis using the RGT suite (Li et  al., 2019). The final set of Motif-Predicted 
Binding Sites (MPBS) within each cell type ATAC-seq footprints was used to overlap with the genomic 
locations of the OCRs, and then overlapped with our obesity variants, resulting in annotated 29 vari-
ants. Mosaic plot in Figure 6B shows the number and proportions of variants predicted by motif-
breakR and/or overlapped with MPBS. Insignificant p-value from Fisher’s exact test indicated the 
independence of the two analyses. Only seven variants were found within the cREs for the same 
TF motifs predicted to be disrupted by motifbreakR (Figure 6C). Figure 6—figure supplement 1 

Figure 5. Colocalization of target effector genes with eQTLs. (A) Venn diagram shows the overlaps between sets of genes yielded by ColocQuiaL 
and the variant-to-gene mapping process. (B) Circos plot of the 10 loci demonstrates the differences in the ranges of associations between the two 
approaches, with long-ranged chromatin contacts between obesity variants and target genes displayed as orange links and short-range eQTLs 
colocalizations as green links. Two SNPs – rs35796073, and rs35142762 within the TMEM18 locus, in linkage disequilibrium with rs7579427 – were 
estimated with high probability (cond.PP.H4=0.78) of colocalizing with the expression of ALKAL2 gene in subcutaneous adipose tissue. These pairs 
of SNP-gene were also identified by our variant-to-gene mapping approach in natural killer cells, plasmacytoid dendritic cells, unstimulated PBMC 
naïve CD4 T cells and astrocytes. The rs7132908 variant at the FAIM2 locus colocalized with the expression of AQP6 in thyroid tissue and with ASIC1 
in prostate tissue, not only with high cond.PP.H4 but also with high individual SNP causal probability (SNP.PP.H4>0.95). rs7132908 was the second 
most consistent observation in our variant-to-gene mapping, namely across 25 different cell types (Figure 2B) and all three systems plus the other 
independent cell lines. The pair of rs7132908-contacting-AQP6 was observed in 15 different cell types - 8 metabolic and 4 neural cell types, and 3 
independent cell lines. The pair of rs7132908-contacting-ASIC1 was observed in 11 different cell types - 8 metabolic and 2 neural cell types, and 
plasmacytoid dendritic cells. The other eQTL signals that overlapped with our variant-to-gene mapping results were: BDNF at the METTL15 locus with 
its promoter physically contacted by rs11030197 in 4 cell types and its expression significantly colocalized (cond.PP.H4=0.82) in tibial artery; ADCY9 at its 
locus with its promoter physically contacted by rs2531995 in natural killer cells and its expression significantly colocalized in skin tissue (‘Skin_Not_Sun_
Exposed_Suprapubic’, cond.PP.H4=0.97). And ADCY3 in the C panel. (C) ColocQuiaL estimated that these SNPs highly colocalize with the expression of 
ADCY3 in 11 different tissues, where the overlapping with the 16 cell types is represented, color-coded by the proxies rs numbers.

https://doi.org/10.7554/eLife.95411
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outlines the seven variants that motifbreakR and ATAC-seq footprint analysis agreed on the TF bind-
ings they might disrupt.

Discussion
Given the challenge of uncovering the underlying molecular mechanisms driving such a multifacto-
rial disease as obesity, our approach leveraging GWAS summary statistics, RNA-seq, ATAC-seq, and 
promoter Capture C / Hi-C offers new insights. This is particularly true as it is becoming increasingly 
evident that multiple effector genes can operate in a temporal fashion at a given locus depending 
on cell state, including at the FTO locus (Sobreira et al., 2021). Our approach offers an opportunity 
to implicate relevant cis-regulatory regions across different cell types contributing to the genetic 
etiology of the disease. By assigning GWAS signals to candidate causal variants and corresponding 
putative effector genes via open chromatin and chromatin contact information, we enhanced the fine-
mapping process with an experimental genomic perspective to yield new insights into the biological 
pathways influencing childhood obesity.

LD score regression is a valuable method that estimates the relationship between linkage disequi-
librium score and the summary statistics of GWAS SNPs to quantify the separate contributions of 
polygenic effects and various confounding factors that produce SNP-based heritability of disease. 
The general positive heritability enrichment across our open chromatin features spanning multiple 
cell types (Figure 1B.a) reinforces the notion that obesity etiology involves many systems in our body.

Figure 6. motifbreakR vs ATAC-seq footprint analysis. (A) Genome view at the FAIM2 locus where rs7132908 is located and can target many genes 
through many chromatin contacts, presented by arcs (different colors for different cell types). rs7132908 was predicted by motifBreakR to disrupt the TF 
SREBF1’s binding site, thus potentially altering the expression of its implicated genes. (B) Mosaic plot shows number of variants that were annotated 
with disrupt-TF-binding affect by motifBreakR, and the proportions that also overlapped with predicted TF footprint from ATAC-seq TF footprint 
analysis. Fisher exact test was performed and produced p-value = 1. (C) Stacked bar plot for all the variants from variant-to-gene analysis, showing 
number of transcription factor binding sites each of the variant can disrupt (predicted by motifbreakR – green), or simply overlap (analyzed by RGT suite 
– purple), or both (blue).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. 7 variants and the corresponding TF motifs.

https://doi.org/10.7554/eLife.95411
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While obesity has long been known to be a risk factor for pancreatitis and pancreatic cancer, the 
significant enrichment of pancreatic alpha and beta cell related 3D genomic features for childhood 
obesity GWAS signals demonstrates the bidirectional relationship between obesity and the pancreas; 
indeed, it is well established that insulin has obesogenic properties. Moreover, the comorbidity of 
obesity and diabetes (either causal or a result of the overlap between SNPs associated with these 
two diseases) is tangible. When focusing on genetic annotation of the cREs only, the association with 
obesity became more diverse across cell types, especially in metabolic cells. Interestingly, the lack 
of enrichment (only 8 of 57 cell types yielded no degree of enrichment) of obesity SNPs heritability 
in open gene promoters (Figure 1B.b) reveals that cRE regions harboring obesity SNPs are more 
involved in gene regulation than disruption, and therefore potentially contributing more weight to the 
manifestation of the disease.

Of course, we should factor in the effective sample sizes of the GWAS efforts that are wide-ranging 
(2000–24,000 – given that the N for each variant is different within a single dataset, thus contributing 
to the weights and p-value of each SNP when the algorithm calculates the genome-wide heritability), 
which could result in noise and negative enrichment observed in the analysis – a methodology limita-
tion of partial linkage regression that has been extensively discussed in the field (Steinsaltz et al., 
2020). Thus, it is crucial to interpret the enrichment (or lack thereof) of disease variants in a certain 
cellular setting with an ad hoc biological context.

From mapping the common proxies of 19 independent sentinel SNPs that were genome-wide 
significantly associated with childhood obesity to putative effector genes through chromatin contacting 
cREs, one striking finding was the several potential ‘hubs’ of putatively core effector genes, whose 
occurrence spread across three human physiological systems. With the data available from so many 
cell types, our approach connected new candidate causal variants to known obesity-related genes and 
new implications of cell modality for previously known associations.

A potential application of this association could be to fine-tune the effect of a drug toward 
controlling appetite. An example of bringing new aspects to the old is for the signal within the FTO 
locus that contacted IRX3 and IRX5: previous studies have suggested these obesogenic effects 
operate in adipocytes (Claussnitzer et al., 2016), brain (Smemo et al., 2014), or pancreas Ragvin 
et al., 2010; here we confirmed this association in adipocytes and uncover the presence of distal 
chromatin contacts in myotubes for the first time.

Besides the above-mentioned genes with known associations with obesity, we discovered newly 
implicated genes. For example, the LRRIQ3 gene at the TNNI3K locus had its open promoter 
contacted by two SNPs, rs1040070 and rs10493544, in NTERA2 cells only. The published studies 
(Johnston et al., 2019; Sanchez-Roige et al., 2021) that associated LRRIQ3 with major depressive 
disorder and opioid usage acknowledged the overlapping promoter of this gene, albeit in the oppo-
site direction, with a run-through transcript of FPGT-TNNI3K – previously shown to be associated with 
BMI in European Graff et al., 2013 and Korean populations (Lee et al., 2017).

It is apparent that not all the implicated genes we report would contribute equally to the suscep-
tibility of obesity pathogenesis. Each locus comprises genes whose functions are obviously related to 
obesity or similar traits like BMI, fat weight, etc., while other genes are not so directly obvious in their 
relation to these traits.

It is encouraging that for implicated genes within these multi-cell-type loci across different physio-
logical systems we could find previous associations to the corresponding cell types or systems. Exam-
ples are the two aforementioned genes at the TMEM18 locus (SH3YL1 and ACP1) (Fernandes et al., 
2019; Blessing et al., 2015; Kobayashi et al., 2014; Choi et al., 2021; Gaynor et al., 2020) with 
the broad spectrum of their functions, HEPACAM2 implicated in the NCIH716 cell line at the CALCR 
locus Wu et al., 2018; Huang et al., 2018, and LRRIQ3 in the NTERA2 cell line at theTNNI3K locus 
(Pleasure and Lee, 1993).

Chronic inflammation is an essential characteristic of obesity pathogenesis. Adipose tissue-resident 
immune cells have been observed, leading to an increased focus in recent years on their potential 
contribution to metabolic dysfunction. On the other hand, neurological or psychological conditions, 
such as stress, induce the secretion of both glucocorticoids (increase motivation for food) and insulin 
(promotes food intake and obesity). Pleasure feeding then reduces activity in the stress-response 
network, reinforcing the feeding habit. It has been shown that voluntary behaviors, stimulated by 
external or internal stressors or pleasurable feelings, memories, and habits, can override the basic 

https://doi.org/10.7554/eLife.95411
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homeostatic controls of energy balance (Dallman, 2010). The potential link between the immune 
system and metabolic disease, and moreover, through the neural system, was tangible in our findings.

Two of the three SNPs which ranked the third most consistent in our variant-to-gene mapping 
(Figure 2C) – rs35796073 and rs35142762 – contacted the ALKAL2 promoter (supported by GTEx 
evidence to colocalize with ALKAL2 expression). The anaplastic lymphoma kinase (encoded by ALK 
gene) is a receptor tyrosine kinase, belongs to the insulin receptor family, and has been reported to 
promote nerve cell growth and differentiation (Iwahara et al., 1997; Motegi et al., 2004). Despite 
ALKAL2 (ALK and LTK ligand 2) being studied principally in the context of immunity, a recent study 
using the EGCUT biobank GWAS identified ALK as a candidate thinness gene and genetic deletion 
showed that its expression in hypothalamic neurons acts as a negative regulator in controlling energy 
expenditure via sympathetic control of adipose tissue lipolysis (Orthofer et  al., 2020). ALKAL2 – 
encoding a high-affinity agonist of ALK/LTK receptors – which has been reported to enhance expres-
sion in response to inflammatory pain in nociceptors (Defaye et al., 2022; Sun et al., 2023) - has 
been recently implicated as a novel candidate gene for childhood BMI by transcriptome-wide asso-
ciation study Yao et al., 2021, and achieved genome-wide significance in a GWAS study contrasting 
persistent healthy thinness with severe early-onset obesity using the STILTS and SCOOP cohorts 
(Riveros-McKay et al., 2019). The finding that overexpression of ALKAL2 could potentiate neuro-
blastoma progression in the absence of ALK mutation (Borenäs et al., 2021) echoes the relationship 
between ADCY3 and MC4R (Siljee et al., 2018), where a peripheral gene, ADCY3, can regulate/
impair the function of a core gene, that is MC4R, within the energy-regulating melanocortin signaling 
pathway (Timshel et al., 2020).

Our approach implicates putative target genes based on a mechanism of regulation for these vari-
ants to alter gene expression – through regulator TF(s) that bind to these contact sites. A potential 
limitation of the predictions from motifbreakR and matching TF motifs to ATAC-seq footprint by the 
RGT toolkit is that they were both based on the position probability matrixes of Jaspar and Hocomoco, 
which come from public motif databases. The ATAC-seq footprint analysis also carries sequence bias 
that can lead to false positive discovery. Thus, our attempt to call such regulators by predicting TF 
binding disruption can only serve as nominations – but warrant further functional follow up.

Another limitation of this work is the diversity in data quality among different samples, since 
different datasets were sampled and collected at different time points, from different patients, using 
different protocols, with libraries sequenced at different depths and qualities, and initially prepro-
cessed with different pipelines and parameters. Thus, it is crucial to keep in mind that the discrepancy 
in data points might have resulted from variations in data quality. Importantly, any association discov-
ered must be validated functionally before effector genes of the genetic variants can be leveraged 
to develop new therapies. Their putative function(s) must be characterized, together with the mecha-
nism whereby the given variant’s alleles differentially affect the expression of the targeted genes. The 
next step is to explore how the target genes affect the trait of interest more directly.

Our results have provided a set of leads for future exploratory experiments in specific cellular 
settings in order to further expand our knowledge of childhood obesity genomics and hence equip us 
with more effective means to overcome the burden of this systematic disease.

Conclusion
Our approach of combining RNA-seq, ATAC-seq, and promoter Capture C/Hi-C datasets with GWAS 
summary statistics offers a systemic view of the multi-cellular nature of childhood obesity, shedding 
light on potential regulatory regions and effector genes. By leveraging physical properties, such as 
open chromatin status and chromatin contacts, we enhanced the fine-mapping process and gained 
new insights into the biological pathways influencing the disease. Although further functional valida-
tion is required, our findings provide valuable leads together with their cellular contexts for future 
research and the development of more effective strategies to address the burden of childhood obesity.

Materials and methods
Data and resource
Datasets used in prior studies are listed in Supplementary file 1a. ATAC-seq, RNA-seq, Hi-C, and 
Capture-C library generation for each cell type is provided in their original published study.

https://doi.org/10.7554/eLife.95411
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Cell lines/types resources
details of each cell type/cell line source were described in their original published study, provided in 
Supplementary file 1a.

Myotubes (Primary Skeletal Muscle Cells, PCS-950–010), MiaPaCa (CRL-1420), Panc-1 (CRL-1469), 
microglia (HMC1, CRL-3304), human fetal osteoblastic (hFOB 1.19, CRL-3602), HepG2 hepatocarci-
noma (HB-8065) and Colorectal adenocarcinoma ascites derived cells (NCIH716, CCL-251) cell lines 
were purchased from American Type Cell Center (ATCC, Manassas, Virginia, USA). EndoC-BH1 were 
purchased from Univercell Biosolutions. Primary Normal Human Astrocytes (NHA) of unknown sex 
were obtained from Lonza as cryopreserved cells. Human embryonic stem cells (ESC H9, WA09) were 
obtained from WiCell Research Institute. Melanocytes isolated from foreskin healthy newborn males, 
were obtained from the Specialized Programs of Research Excellence (SPORE) in Skin Cancer Spec-
imen Resource Core at Yale University. Pancreata from deceased organ donors were obtained by 
Human Pancreas Analysis Program (HPAP) (https://hpap.pmacs.upenn.edu), a Human Islet Research 
Network consortium. All were authenticated by the source and confirmed to be mycoplasma negative.

The rest of the cell types were isolated from samples, obtained from consented human donors, 
maintained and expanded within corresponding laboratories. Cell identities were verified based on 
observed global expression variation, marker genes by PCR and immunofluorescence microscopy.

This study also includes human adipocytes and pre-adipocytes from P. Seale’s lab, hepatocytes 
from P. Titchnell’s lab, trabecular meshwork cells from J. O’Brien’s lab, which will be described in detail 
in separate manuscripts currently in preparation.

ATAC-seq preprocessing and peaks calling
The detailed configurations and technical details for each data set are provided in the original studies. 
In brief, open chromatin regions were called using ENCODE ATAC-seq pipeline as previously described 
in each study the published data provided. In brief, reads were aligned to the hg19 or hg38 genome 
using bowtie2; duplicates were removed, alignments from all replicates were pooled, and narrow 
peaks were called using MACS2. A region was considered open if it overlapped at least 1 bp with 
ATAC-seq peak. We lifted all coordinates from hg19 to hg38 to ensure consistency between datasets.

Promoter Capture-C pre-processing and interaction calling
in brief, paired-end reads were pre-processed using HICUP pipeline (Wingett et  al., 2015) with 
bowtie2 as aligner and hg19 for reference genome. Significant promoters’ interactions were called 
using unique read pairs from all baits promoter in the reference by CHICAGO (Cairns et al., 2016) 
pipeline. In addition to analysis of individual fragments (1frag), we also binned four fragments to 
improve long-distance sensitivity in interactions calling (Su et al., 2021). Interactions with CHICAGO 
score >5 in either 1-fragment or 4-fragment resolution were considered significant. These interac-
tions were output as ibed format (similar to BEDPE format) in which each line represents one physical 
contact between fragments. Interactions from both resolutions were merged and their genomic coor-
dinates were lifted from hg19 to hg38.

Hi-C pre-processing and interaction calling
We follow the pipeline as a recent study described (Su et al., 2022). Paired-end reads from each repli-
cate were pre-processed using the HICUP pipeline v0.7.4 (Wingett et al., 2015), aligned by bowtie2 
with hg38 as the reference genome. The alignments files were parsed to pairtools v0.3.0 to process 
and pairix v0.3.7 to index and compress, then converted to Hi-C matrix binary ​format.​cool by cooler 
v0.8.11 at multiple resolutions (500 bp, 1, 2, 4, 10, 40, 500kbp and 1Mbp) and normalized with ICE 
method (Imakaev et al., 2012). The matrices from different replicates were merged at each resolution 
using cooler. Mustache v1.0.1 Roayaei et al., 2020 and Fit-Hi-C2 v2.0.7 (Kaul et al., 2020) were used 
to call significant intra-chromosomal interaction loops from merged replicates matrices at three resolu-
tions 1 kb, 2 kb, and 4 kb, with significance threshold at q-value <0.1 and FDR <1 × 10−6, respectively. 
The identified interaction loops were merged between both tools at each resolution. Lastly, interaction 
loops from all three resolutions were merged with preference for smaller resolution if overlapped.

https://doi.org/10.7554/eLife.95411
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Definition of cis-regulatory elements (cREs)
We intersected ATAC-seq open chromatin regions (OCRs) of each cell type with chromatin confor-
mation capture data determined by Hi-C/Capture-C of the same cell type, and with promoters 
–1,500/+500 bp of TSS, which were referenced by GENCODE v30.

Childhood obesity GWAS summary statistics
Data on childhood obesity from the EGG consortium was downloaded from https://www.egg-con-
sortium.org/. We used 8,566,179 European ancestry variants (consisting of 8,613 cases and 12,696 
controls in stage I; of 921  cases and 1930 controls in stage II), representing  ~55% of the total 
15,504,218 variants observed across all ancestries in the original study (Bradfield et al., 2019). The 
sumstats file was reformatted by ​munge_​sumstats.​py to standardize with the weighted variants from 
HapMap v3 within the LDSC baseline, which reduced the variants to 1,217,311 (7.8% of total).

Cell type specific partitioned heritability
We used LDSC (http://www.github.com/bulik/ldsc) v.1.0.1 (Finucane et al., 2015) with --h2 flag to 
estimate SNP-based heritability of childhood obesity within 4 defined sets of input genomic regions: 
(1) OCRs, (2) OCRs at gene promoters, (3) cREs, and (4) cREs with an expanded window of ± 500 bp. 
The baseline model LD scores, plink filesets, allele frequencies and variants weights files for the Euro-
pean 1000 genomes project phase 3 in hg38 were downloaded from the provided link (https://alkes-
group.broadinstitute.org/LDSCORE/GRCh38/). The cREs of each cell type were used to create the 
annotation, which in turn were used to compute annotation-specific LD scores for each cell types cREs 
set.

Genetic loci included in variant-to-genes mapping
19 sentinel signals that achieved genome-wide significance in the trans-ancestral meta-analysis study 
(Bradfield et al., 2019) were leveraged for our analyses. Proxies for each sentinel SNP were queried 
using TopLD Huang et al., 2022 and LDlinkR tool (Myers et al., 2020) with the GRCh38 Genome 
assembly, 1000 Genomes phase 3 v5 variant set, European population, and LD threshold of r2 >0.8, 
which resulted in 771 proxies, including the 21 SNPs from the 99% credible set of the original study 
(Supplementary file 1g).

RNA-seq preprocessing and expression profiling
The detailed configurations, steps, and technical details for each data set are provided in the original 
studies. In brief, read fragments from fastq files were mapped to genome assembly hg19 or hg38 
using STAR, independently for each replicate and condition. We used GENCODE annotation files for 
feature annotation and htseq-count for raw read count calculation at each feature. Read counts were 
transformed into TPM (transcript per million) and normalized internally between replicates/conditions 
in each individual study. For comparative measurements, we transformed all the expression values 
into 0–100 scale.

Differential analysis and clustering of correlated genes
Normalized transcripts per million (TPM) of all measured genes in 46 of 57 cell types was used to 
perform differential analysis using DEseq2 package (Love et al., 2014), where cell type and system 
(immune, metabolic, neural and other) were used as variables for the modeling contrast. Because 
many of the genes we gathered from the variant-to-gene mapping were lowly expressed in corre-
sponding cell types or others, causing relatively high levels of variability, we used apeglm method for 
effect size (logarithmic fold change estimates) shrinkage Zhu et al., 2019 to alleviate this phenom-
enon during the genes ranking. Weighted correlation network analysis (WGCNA) package (Lang-
felder and Horvath, 2008) was used to cluster genes from the variant-to-genes mapping process. 
WGCNA network construction power was chosen based on the analysis of scale-free topology for 
soft-thresholding. blockwiseModules with a power of 10 were used to create the correlation network 
and cluster genes into 3 modules of similarly expressed genes (Figure 4—figure supplement 4). The 
assigned colors were used to identify the gene modules: turquoise, grey, and blue.

https://doi.org/10.7554/eLife.95411
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Pathways enrichment analyses
We performed three analyses on the set of genes from the variant-to-genes mapping process:

Gene set over-representation analysis (ORA) was performed using clusterProfiler package Wu 
et al., 2021 to identify GO biology process terms (​org.​Hs.​eg.​db databese) enriched within our genes 
set in each cell type. A relaxed p-value cutoff was set at 0.1, and the minimum including genes was set 
at 2 to ensure the capture of all possible enriched terms. An adjusted p-value of 0.05 was later used 
to filter the significant terms.

Active-subnetwork-oriented gene set enrichment analysis
We used the pathfindR package Ulgen et al., 2019 to identify active subnetworks in protein-protein 
interaction networks from Biogrid, KEGG, STRING, GeneMania, and IntAct databases, using the list of 
genes from the variant-to-genes mapping process. Then we provided the statistic from the differen-
tial expression analysis for pathfindR to perform enrichment analyses on the identified subnetworks, 
discovering enriched KEGG pathways.

Customized signaling pathway impact analysis (SPIA)
The original method, proposed by Tarca in 2009 in SPIA package (Tarca et al., 2009), incorporates 
ORA with the adjacency matrix to measure the importance of genes within each pathway – genes that 
are connected to more other genes are likely more important than the downstream end-point genes. 
This pathway-topology approach measures the actual perturbation on a given pathway under a given 
condition and given differential effect size. We added more metrics to improve this method: (a) the 
score of gene impact among networks, (b) the neighborhood of genes that measure the importance 
of a gene based on its downstream effects, (c) the betweenness puts weight on the genes that act as 
a gateway for the network flow. The combination of metrics produces two ways of evidence – pertur-
bance and enrichment – for each pathway similar to SPIA. Normal inverse cumulative distribution 
function was used to combine the p-values of this evidence, then Bonferroni and FDR correction was 
applied (Figure 4—figure supplement 2).

GWAS-eQTL colocalization
The summary statistics for the European ancestry subset from the EGG consortium GWAS for child-
hood obesity was used. Common variants (MAF  ≥ 0.01) from the 1000 Genomes Project v3 samples 
were used as a reference panel. We used non-overlapped genomic windows of  ±250,000 bases 
extended in both directions from the median genomic position of each of 19 sentinel loci as input. 
We used ColocQuiaL Chen et al., 2022 to test genome-wide colocalization of all possible variants 
included in each inputted window against GTEx v.8 eQTLs associations for all 49 tissues available from 
https://www.​gtexportal.​org/​home/​datasets. A conditional posterior probability of colocalization of 
0.8 or greater was imposed.

ATAC-seq transcription factor footprint analysis with RGT toolkit
Bam files of mapped reads from replicates and samples were merged for each cell type. The merged 
bam files were then used for footprinting by RGT-HINT with parameters: --atac-seq, –paired-end, 
–organism = hg38. If bam files were generated on hg19, we performed lift-over using ​CrossMap.​
py bam and ​hg19ToHg38.​over.​chain.​gz file. We then used RGT-MOTIFANALYSIS matching to scan 
each footprint for possible transcription binding sites from HOCOMOCO and JASPAR databases for 
human only with parameter --filter ‘species:sapiens;database:hocomoco,jaspar_vertebrates’. Param-
eter –rand-proportion 10 was used to generate random putative binding sites with sizes ten times 
larger than the input footprints. After performing motif matching, we evaluated which transcription 
factors were more likely to occur in those footprints than in background regions (generated by the 
previous command) using RGT-MOTIFANALYSIS enrichment with the same filtered databases and 
default parameters. Output included all the Motif-Predicted Binding Sites (MPBS) that occurred within 
the identified footprints in each cell type. We overlapped these sites with the loci of our obesity 
variants.

Prediction of variant’s effect on transcription factor binding
Genomic positions (0-based coordinates) and allele alternatives of each proxy (from SNPlocs.Hsapiens.
dbSNP155.GRCh38 package with matching reference sequence from BSgenome package) were used 

https://doi.org/10.7554/eLife.95411
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to scan all position frequency matrix databases (from MotifDb package) for potential transcription 
factor binding disruptive effects. The motifbreakR function from motifBreakR package was used, with 
filterp = TRUE and setting a p-value threshold = 0.0005, information content methods method='ic' 
with even background probabilities of the four nucleotides bkg = c(A=0.25, C=0.25, G=0.25, T=0.25) 
and BPPARAM = BiocParallel::SerialParam() to allow serial evaluation.
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Romberg N, Grant SF, 
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using promoter-focused 
Capture-C in disease-
relevant immune cell types
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GSE174658

NCBI Gene Expression 
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Chesi A, Romberg 
N, Johnson M, Lu S, 
Manduchi E, Leonard 
M, Wells AD, Grant 
SF

2020 Promoter capture-C of 
primary human T Follicular 
Helper (TFH) cells and 
naive CD4-positive helper T 
cells from tonsils of healthy 
volunteers
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arrayexpress/​studies/​
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Manduchi E, Johnson 
M, Chesi A, Wells AD, 
Grant SF, Romberg N, 
Lu S, Hodge K

2020 ATAC-seq of primary 
human T Follicular Helper 
(TFH) cells and naive CD4-
positive helper T cells from 
tonsils of healthy volunteers

https://www.​ebi.​
ac.​uk/​biostudies/​
arrayexpress/​studies/​
E-​MTAB-​6617

EMBL-EBI ArrayExpress, 
E-MTAB-6617

Romberg N, Johnson 
M, Grant SF, Le Coz 
C, Manduchi E, Wells 
AD

2019 Gene expression of primary 
human T Follicular Helper 
(TFH) cells and naive CD4-
positive helper T cells from 
tonsils of healthy volunteers

https://www.​ebi.​
ac.​uk/​biostudies/​
arrayexpress/​studies/​
E-​MTAB-​6637

EMBL-EBI ArrayExpress, 
E-MTAB-6637

Pahl MC, Sharma P, 
Wells AD

2024 Chromatin conformation 
dynamics during CD4+ T 
cell activation implicates 
2 autoimmune disease-
associated genes and 
regulatory elements

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE230346

NCBI Gene Expression 
Omnibus, GSE230346

Wells AD, Su C, 
Manduchi E, Chesi A, 
Leonard M, Grant SF, 
Hodge K, Johnson M

2019 Promoter capture-C of 
primary HepG2 cells

https://www.​ebi.​
ac.​uk/​biostudies/​
arrayexpress/​studies/​
E-​MTAB-​7144

EMBL-EBI ArrayExpress, 
E-MTAB-7144

Leonard M, Grant SF, 
Johnson M, Wells AD, 
Manduchi E

2019 ATAC-seq of HepG2 cells https://www.​ebi.​
ac.​uk/​biostudies/​
arrayexpress/​studies/​
E-​MTAB-​7543

EMBL-EBI ArrayExpress, 
E-MTAB-7543

Caliskan M, Brown 
CD

2019 Genetic and Epigenetic 
Fine Mapping of Complex 
Trait Associated Loci in the 
Human Liver

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE128072

NCBI Gene Expression 
Omnibus, GSE128072

Conery M, Pippin JA, 
Pahl MC, Grant SF

2024 Bioinformatics and single-
cell CRISPRi-based screen 
reveals effector genes and 
implicates multi-tissue 
etiology for BMD

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE261284

NCBI Gene Expression 
Omnibus, GSE261284

Chesi A, Grant SA, 
Manduchi E, Wells 
AD, Johnson M, 
Hankenson K, Wagley 
Y

2019 Capture-C of primary 
human mesenchymal 
stem cells (MSC)-derived 
osteoblasts from healthy 
donors (differentiated with 
BPM2)

https://www.​ebi.​
ac.​uk/​biostudies/​
arrayexpress/​studies/​
E-​MTAB-​6862

EMBL-EBI ArrayExpress, 
E-MTAB-6862

Chesi A, Grant 
SF, Johnson M, 
Hankenson K, Wells 
AD, Wagley Y, 
Manduchi E

2019 ATAC-seq of primary 
mesenchymal stem cell 
(MSC)-derived osteoblasts 
(differentiated with BMP2) 
from 4 human donors

https://www.​ebi.​
ac.​uk/​biostudies/​
arrayexpress/​studies/​
E-​MTAB-​6834

EMBL-EBI ArrayExpress, 
E-MTAB-6834

Chesi A, Manduchi E, 
Grant SF, Johnson M, 
Hankenson K, Wells 
AD, Wagley Y

2019 RNA-seq of primary 
mesenchymal stem cells 
-derived osteoblasts 
(differentiated with BMP2) 
from 3 human donors

https://www.​ebi.​
ac.​uk/​biostudies/​
arrayexpress/​studies/​
E-​MTAB-​6835

EMBL-EBI ArrayExpress, 
E-MTAB-6835

Su C, Pippin J, 
Kaestner K, Grant SF, 
Wells A

2022 3D chromatin organizations 
of human pancreatic cells 
reveal cell-type specific 
regulatory architectures of 
diabetes risk

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE188311

NCBI Gene Expression 
Omnibus, GSE188311

Su C, Pippin J, 
Kaestner K, Grant SF, 
Wells A

2022 Single cell RNAseq and 
scATACseq data of Human 
pancreatic islets

https://​hpap.​pmacs.​
upenn.​edu

Data portal of The Human 
Pancreas Analysis Program, 
PANC-DB
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Ackermann AM, 
Wang Z, Schug J, Naji 
A, Kaestner KH

2015 Integration of ATAC-seq 
and RNA-seq Identifies 
Human Alpha Cell and Beta 
Cell Signature Genes

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE76268

NCBI Gene Expression 
Omnibus, GSE76268

Littleton SH, Grant SF, 
Trang KB, Chesi A

2024 Variant-to-function analysis 
of the childhood obesity 
chr12q13 locus implicates 
rs7132908 as a causal 
variant within the 3' UTR of 
FAIM2

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE241691

NCBI Gene Expression 
Omnibus, GSE241691

Pahl MC, Grant SF 2021 Cis-regulatory architecture 
of human ESC-derived 
hypothalamic neuron 
differentiation aids in 
variant-to-gene mapping of 
relevant common complex 
traits

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE152098

NCBI Gene Expression 
Omnibus, GSE152098

Su C, Grant SF 2022 Promoter Capture-C of 
iPSC-derived NPCs and 
neurons

https://www.​ebi.​
ac.​uk/​biostudies/​
arrayexpress/​studies/​
E-​MTAB-​9159

EMBL-EBI ArrayExpress, 
E-MTAB-9159

Su C, Grant SF 2022 ATAC-seq of iPSC-derived 
NPCs and neurons

https://www.​ebi.​
ac.​uk/​biostudies/​
arrayexpress/​studies/​
E-​MTAB-​9087

EMBL-EBI ArrayExpress, 
E-MTAB-9087

Su C, Grant SF 2022 RNA-seq of iPSC-derived 
NPCs and neurons 
from CHOPWT10 and 
CHOPWT14 cell lines

https://www.​ebi.​
ac.​uk/​biostudies/​
arrayexpress/​studies/​
E-​MTAB-​9085

EMBL-EBI ArrayExpress, 
E-MTAB-9085

Johnson M, Grant SF 2021 Identification of 22 
novel susceptibility loci 
associated with testicular 
germ cell tumors

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE175368

NCBI Gene Expression 
Omnibus, GSE175368
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