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eLife Assessment
This important study presents a significant methodological advance by leveraging previously 
discarded, unmapped DNA sequence reads to estimate pest infestation loads across plant acces-
sions, and map variation in these apparent pest loads to defense genes. The bioinformatics 
approach is compelling, and the results should bear broad implications for phenotype-genotype 
prediction, especially regarding the use of unmapped reads for GWAS.

Abstract Understanding the genomic basis of natural variation in plant pest resistance is an 
important goal in plant science, but it usually requires large and labor-intensive phenotyping exper-
iments. Here, we explored the possibility that non-target reads from plant DNA sequencing can 
serve as phenotyping proxies for addressing such questions. We used data from a whole-genome 
and -epigenome sequencing study of 207 natural lines of field pennycress (Thlaspi arvense) that 
were grown in a common environment and spontaneously colonized by aphids, mildew, and other 
microbes. We found that the numbers of non-target reads assigned to the pest species differed 
between populations, had significant SNP-based heritability, and were associated with climate of 
origin and baseline glucosinolate contents. Specifically, pennycress lines from cold and thermally 
fluctuating habitats, presumably less favorable to aphids, showed higher aphid DNA load, i.e., 
decreased aphid resistance. Genome-wide association analyses identified genetic variants at known 
defense genes but also novel genomic regions associated with variation in aphid and mildew DNA 
load. Moreover, we found several differentially methylated regions associated with pathogen loads, 
in particular differential methylation at transposons and hypomethylation in the promoter of a gene 
involved in stomatal closure, likely induced by pathogens. Our study provides first insights into 
the defense mechanisms of Thlaspi arvense, a rising crop and model species, and demonstrates 
that non-target whole-genome sequencing reads, usually discarded, can be leveraged to estimate 
intensities of plant biotic interactions. With rapidly increasing numbers of large sequencing datasets 
worldwide, this approach should have broad application in fundamental and applied research.

Introduction
Plant pests, such as pathogens and herbivores, can cause major yield losses in crops and often require 
the massive use of pesticides to control their damage. Natural plant populations, on the other hand, 
are constantly exposed to such biotic stressors and their higher genetic diversity often allows these 
populations to become locally adapted. Since many pest species are sensitive to climatic conditions, 
their pressure on plant communities is spatially heterogeneous, maintaining geographically structured 
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genetic variation in plant defenses (Züst et al., 2012; Kerwin et al., 2015). For these reasons, natural 
plant populations are highly suitable to study defense mechanisms and evolution of defenses, and 
also a very useful source of beneficial and resistance alleles for specific pathogens and environmental 
conditions. This genetic variation in defense-related genes can for example be screened through 
genome-wide association (GWA) (Chan et al., 2010; Corwin et al., 2016; Thoen et al., 2017; Hanson 
et al., 2018) or approaches based on known candidate genes (Kerwin et al., 2015).

Many pest species are also highly sensitive to temporal variation in weather conditions. This 
temporal heterogeneity in pathogen pressure can induce plastic responses in plants, involving gene 
expression and epigenetic changes (Jaouannet et al., 2015; Geng et al., 2019; Annacondia et al., 
2021), which may also be studied through stress experiments (Jaouannet et al., 2015; Geng et al., 
2019; Annacondia et al., 2021). Some plastic epigenetic responses can have a transient stability and 
be transmitted to the next generations through inheritance of epigenetic marks (Kinoshita and Seki, 
2014; Espinas et al., 2016; Lämke and Bäurle, 2017; He and Li, 2018). In particular, DNA methyl-
ation has been shown to respond to biotic and abiotic stresses through gene expression regulation 
and transposable elements (TEs) reactivation, and can be inherited across generations (Annacondia 
et al., 2021; Lämke and Bäurle, 2017; Roquis et al., 2021). In plants, DNA methylation can occur 
in the three sequence contexts CG, CHG, and CHH (H being A, T, or C), which differ in their molec-
ular machineries depositing, maintaining, and removing methylation and consequently also in their 

eLife digest The genetic code of organisms is made of DNA, a molecule consisting of long 
sequences of four different base pairs. To gain insights into the organisms’ genetic information, it is 
necessary to establish which base pairs are in its DNA and in what order. This is known as ‘sequencing’, 
and it allows scientists to ‘read out’ the genetic information of an organism.

Technically, sequencing often involves shearing the organisms’ DNA into smaller pieces, so that 
the enzymes that do the sequencing can fully ‘read’ each molecule of DNA. However, when DNA is 
isolated from an organism, for example a plant, not only the DNA from the plant will be obtained. A 
small portion of DNA from other organisms, including viruses, bacteria, fungi and even insects that 
visited the plant will also be isolated and sequenced. These ‘non-target’ DNA fragments are usually 
discarded because they do not match the reference genome of the sequenced plant.

However, the genetic information of these other organisms can provide additional insights into 
the plant. This is particularly true when scientists sequence a large collection of individual plants from 
the same species. In this case, the DNA of other organisms isolated along with each plant’s own DNA 
can tell researchers about differences between the plants, such as whether they are able to resist a 
particular disease or establish symbiosis with a specific fungus.

Galanti et al. wanted to find out more about the genetic background and characteristics of a Euro-
pean plant called the field pennycress, Thlaspi arvense. To do this, they used the fact that plants from 
different regions would acquire different pests depending on their genetic background, and the fact 
that the DNA from different creatures living with the plant would be gathered when the plant DNA 
was collected.

First, Galanti et al. collected pennycress seeds from across Europe and grew them in the same 
environment, and then they let these plants be colonized by pests. Next, the researchers tested 
whether the DNA of pests living on the plants reflected differences in resistance to these pests, and 
whether that could explain why some plants were more or less resistant based on their geographic 
origin and genetic background.

Galanti et al. found that, in general, plants collected in warmer and thermally stable climates, 
where pests usually thrive, had fewer pests in the controlled environment, suggesting that these 
plants had developed resistance to the pests. With this information, the researchers were also able 
to unravel the genetic bases of resistance, finding genetic variants in the plants with pests that were 
close to defense genes.

These results highlight the potential of acquiring important insights from non-target DNA frag-
ments, especially to study plant-pathogen interactions. This could be useful in plant breeding 
programmes.

https://doi.org/10.7554/eLife.95510
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transgenerational stability (Law and Jacobsen, 2010; Zhang et al., 2018). While CG methylation is 
usually more stable across generations, CHH methylation is less stable and more responsive to stress 
and the sensitivity of CHG methylation lies somewhere in between (Law and Jacobsen, 2010; Zhang 
et al., 2018; Liu and He, 2020).

Whether inherited or induced, some strategies of plants for defense against pathogens and 
herbivores include: (i) physical barriers such as reinforced cell walls, leaf protective layers, or closing 
stomata, (ii) production of specialized (secondary) metabolites that reduce palatability or are toxic to 
pests, (iii) oxidative bursts, (iv) the activation of signaling cascades to induce systemic responses, and 
(v) RNA interference mechanisms to silence pathogen genes (Wojtaszek, 1997; War et al., 2012; 
Kant et al., 2015; Melotto et al., 2017; Muhammad et al., 2019). In Brassicaceae, a particularly 
important and diverse class of defense metabolites are glucosinolates, which often show local adap-
tation driven by variation in pests and can also be induced by herbivore and pathogen attacks (Züst 
et al., 2012; Kerwin et al., 2015; Kutyniok and Müller, 2012).

Studying natural variation in plant resistance, along with associated genetic and epigenetic varia-
tion, can identify genes involved in defense and their regulators, including vital genes whose function 
cannot be determined through knockout experiments. Such knowledge, and especially the discovery 
of natural resistance alleles, are crucial sources for the breeding of more pest-resistant crop vari-
eties. Nevertheless, because of the diversity of resistance mechanisms and their often multigenic 
nature, plant defense mechanisms remain difficult to study. In particular, antixenosis (the prevention 
of pathogen settlement) and antibiosis (the repression of pathogen growth and reproduction) require 
extensive and time-consuming phenotyping, based for example on choice (Nalam et al., 2018) or 
settling (Annacondia et al., 2021) assays, and such assays are extremely challenging to perform on 
large collections. On the other hand, there are increasing numbers of large sequencing datasets, 
which may also be used to quantify contaminants or microbiome composition (Sangiovanni et al., 
2019; Roman-Reyna et al., 2020; Gathercole et al., 2021) and thus as proxies for resistance pheno-
typing. In this study we investigated such usage of exogenous reads, i.e., reads not mapping to the 
target reference genome, as a source of information for quantifying herbivore and pathogen abun-
dance in large collections.

We worked with field pennycress (Thlaspi arvense), an annual plant in the Brassicaceae family that 
is increasingly studied as a model species (Geng et al., 2021; Nunn et al., 2022; Hu et al., 2022; 
Troyee et al., 2022; Galanti et al., 2022) and new biofuel and winter cover crop (Dorn et al., 2015; 
Frels et  al., 2019; Chopra et  al., 2019; Zhao et  al., 2021). In a previous study, we investigated 
natural epigenetic variation in a collection of 207 Thlaspi lines from across Europe (Galanti et al., 
2022). Prior to their whole-genome (WGS) and -epigenome sequencing these lines had been grown 
in a common environment, an open glasshouse where the plants were spontaneously colonized by 
aphids and powdery mildew, as well as by other microbes. At the time of sequencing, pathogen 
contamination was still very limited but appeared highly variable, and preliminary analyses showed 
that it resulted in sizeable amounts of non-target reads assigned to the pest species, i.e., contamina-
tion of the DNA samples. Inspired by other recent studies on non-target reads (Sangiovanni et al., 
2019; Roman-Reyna et al., 2020; Gathercole et al., 2021), we asked if there was systematic vari-
ation in the numbers of aphid and pathogen reads among different T. arvense lines, and whether 
these data, together with our whole-genome plant sequencing data, could provide insights into the 
genomic basis of plant resistance variation.

The goals of our study were thus twofold: (i) to contribute to a mechanistic understanding of 
pest resistance in T. arvense, and (ii) to explore whether non-target reads from plant sequencing can 
be used as proxies for studying plant biotic interactions. Considering that we are moving toward 
an increasingly sequencing-prone world, with more and larger datasets being generated for many 
species (Kajiya-Kanegae et al., 2021; Colgan et al., 2022; Habyarimana et al., 2022; Mekbib et al., 
2022; Metheringham et al., 2022; Nocchi et al., 2022; Friis et al., 2024), the use of non-target reads 
has very broad potential.

https://doi.org/10.7554/eLife.95510
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Results
Reads classification and species identification
Starting from our previously published sequencing data (Galanti et al., 2022), the first step of our 
analysis was to separate the WGS reads of each sample into the ~99.5% mapping to the T. arvense 
reference genome (Nunn et al., 2022) and the ~0.5% that did not, hereafter called ‘exogenous reads’ 
(Figure 1A). Initially, we used all mapped reads for calling variants in Thlaspi, but after some difficul-
ties with genome-wide association (GWA) analyses (see below) we suspected that some plant reads 
were false and mapped to the T. arvense genome only because of the high cross-taxa similarity of 
some genomic regions. We therefore remapped all reads to the genomes of the aphid Acyrthosiphon 
pisum, its endosymbiont Buchnera aphidicola and the powdery mildew Blumeria graminis, and found 
that, on average, 7.4% of the reads mapped to both T. arvense and at least one of the pests. We 
removed these ambiguous reads from our analyses and used only the T. arvense target reads, 92.1% 
on average, for variant calling (Figure 1A, Supplementary file 1).

We next attempted a taxonomic classification of the exogenous reads, in multiple steps. First, we 
used MG-RAST (Meyer et al., 2008; Keegan et al., 2016) to assign reads to taxonomic groups based 
on public sequencing databases. Out of the 78% of the exogenous reads that passed the MG-RAST 
quality control (Supplementary file 1) the majority belonged to bacteria and smaller fractions to fungi, 
plants, and animals (Figure 1B and Supplementary file 2). For subsequent group-level analyses, we 
then focused on nine taxonomic groups that occurred consistently within our samples (Figure 1C), 
and that were particularly abundant or relevant: Erysiphales (fungi), Peronosporales (oomycetes), 
Aphididae, and Culicidae (both insects), and five bacterial families.

Visual inspection (Figure 1D) and other sources of information narrowed down the observed aphid 
and mildew species to a few candidates. For aphids we considered A. pisum (indicated by MG-RAST), 
Myzus persicae (visual match, and a generalist attacking Brassicaceae; CABI, 2021) and Brevicoryne 
brassicae (attacks Brassicaceae including Thlaspi; Gabryś and Pawluk, 1999). For powdery mildew 
we considered B. graminis (indicated by MG-RAST), and Erysiphe cruciferarum (attacks Brassica-
ceae; Warwick et al., 2002). To decide among these species, we then used a competitive mapping 
approach (Feuerborn et al., 2020), where the exogenous reads were aligned to a pseudo-reference 
composed of the same DNA sequences from the different candidate species (see Materials and 
methods for details, Supplementary file 3 and 4). The majority (77%) of the aphid reads mapped 
to M. persicae, 18% to B. brassicae, and 5% to A. pisum, while 98% of the mildew reads mapped to 

Table 1. Population differences and SNP-based heritability for different types of exogenous read 
counts.
Population differences were tested with a linear model, SNP-based heritabilities (and their 
confidence intervals) estimated with the R package heritability (Kruijer and White, 2019).

Taxonomic group Data type
Population differences (R2 
and p-value) SNP-based heritability

Myzus persicae Mapping to reference 
genome

0.245 (p=0.029) 0.190 (0.055–0.488)

Buchnera aphidicola Mapping to reference 
genome

0.256 (p=0.016) 0.169 (0.042–0.490)

Buchnera MG-RAST - genus 0.223 (p=0.090) 0.115 (0.016–0.505)

Aphididae MG-RAST - family 0.226 (p=0.082) 0.189 (0.052–0.496)

Culicidae MG-RAST - family 0.166 (p=0.519) 0.183 (0.055–0.465)

Erysiphales MG-RAST - order 0.326 (p<0.001) 0.468 (0.238–0.712)

Peronosporales MG-RAST - family 0.253 (p=0.020) 0.266 (0.096–0.553)

Staphylococcaceae MG-RAST - family 0.390 (p<0.001) 0.301 (0.124–0.567)

Burkholderiaceae MG-RAST - family 0.275 (p=0.005) 0.256 (0.092–0.538)

Mycobacteriaceae MG-RAST - family 0.362 (p<0.001) 0.294 (0.120–0.560)

Pseudomonadaceae MG-RAST - family 0.273 (p=0.006) 0.192 (0.052–0.505)

https://doi.org/10.7554/eLife.95510
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Figure 1. Classification of sequencing reads in T. arvense whole-genome sequencing (WGS) data. (A) Workflow of the analyses, including reads 
classification (orange nodes) into target, ambiguous, and exogenous reads, and downstream analysis (dark blue nodes) (see Materials and methods). 
(B) Fractions of exogenous reads assigned to different taxonomic groups by MG-RAST (Meyer et al., 2008; Keegan et al., 2016). (C) Read counts 
assigned to nine selected groups in our 207 T. arvense samples from different European regions. (D) Aphids and mildew occurring on T. arvense leaves 
during our experiment.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Pest loads in samples with or without pests in the field.

https://doi.org/10.7554/eLife.95510
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E. cruciferarum, with only 2% to the other mildew species (Supplementary file 5). Based on these 
results, we concluded that the plants in our experiment had been attacked by M. persicae and E. 
cruciferarum.

Finally, to compare the power of a large database approach (MG-RAST) vs. using specific refer-
ence genomes, we also remapped all exogenous reads to the M. persicae and B. aphidicola genome 
assemblies (Singh et al., 2021) (https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_001939165.1) 
and used the counts from these two mappings as additional phenotypes, besides the nine taxonomic 
groups selected through MG-RAST (Table 1, Supplementary file 6).

Exogenous read counts are a heritable Thlaspi phenotype
As we had observed that aphid and mildew infections in the glasshouse were not random, but prev-
alent on plants from some origins than others, i.e., possibly reflecting heritable variation in plant 
resistance, we next tested for population differences and SNP-based heritability in pest and micro-
biome read counts. Prior to these analyses, to avoid biases caused by different sequencing depths, 
we corrected the read counts for the total numbers of deduplicated reads in each library and used 
the residuals as unbiased estimates of aphid, mildew, and microbe loads (see Materials and methods).

For most of the nine taxonomic groups, there were significant population effects, with 20–40% 
of the variance in read counts explained, as well as significant SNP-based heritability, typically in the 
range of 0.18–0.30 (Table 1). The highest heritability of 0.47 was for read counts of Erysiphales, indi-
cating particularly strong variation for resistance to mildew. Both SNP-based heritability and popula-
tion differences tended to be stronger for aphid and Buchnera data based on read mapping to the 
reference genomes than for those based on MG-RAST, demonstrating that the former method is more 
informative and thus preferable if high-quality genome assemblies are available.

An alternative explanation for different aphid and mildew loads in the greenhouse could be that 
variation in enemy densities in the field was transmitted to the greenhouse, through maternal carry-
over effects, or even as seed contamination. However, we had recorded aphid and mildew occurrence 
during seed sampling in the field and found no significant differences in the glasshouse between 
the offspring of plants that had been attacked in the field vs. those that had not (Figure 1—figure 
supplement 1).

Aphid and mildew loads correlate with climate of origin and 
glucosinolates content of plants
Having established that our method most likely captured variation in plant resistance, we were inter-
ested in the ecological drivers of this variation. As climate is known to be a major influence on many 
biotic interactions as well as plant defenses (Züst et  al., 2012; Gao et  al., 2019), we correlated 
the observed read counts with the climates of origin of the plants. We found negative correlations 
between aphid read counts and several temperature variables, in particular annual minimum tempera-
ture (Figure 2A). Aphid read counts were also positively correlated with temperature variability, i.e., 
the diurnal and annual ranges of temperature (Figure 2A). In other words, plants from warmer and 
more stable climates had consistently lower levels of aphid infestation in our glasshouse, possibly 
because these plants had evolved greater resistance under such benign climatic conditions where 
aphids thrive. We found similar, although weaker patterns, for the number of Erysiphales reads. The 
other analyzed taxonomic groups showed different and often weaker patterns of correlation with 
climate, except that the read counts of several bacterial groups were positively correlated with annual 
maximum temperature and in particular diurnal temperature range.

Since glucosinolates are major defense metabolites of Brassicaceae, and their variation could thus 
be an explanation for variance in plant resistance, we also tested for correlations between the baseline 
amounts of these metabolites and the frequencies of aphid and mildew reads. Glucosinolate levels 
were measured on the same T. arvense lines in a separate experiment not affected by pests (Supple-
mentary file 7). We found positive correlations of aphid read counts with allyl glucosinolate (sinigrin), 
an aliphatic glucosinolate which is by far the most abundant in the leaves of T. arvense, and a stronger 
negative correlation with benzyl glucosinolates (glucotropaeolin) (Figure 2B). Although the baseline 
levels of benzyl glucosinolates were very low and probably sometimes below the detection level, plant 
lines where benzyl glucosinolate was detected had significantly lower aphid loads in the glasshouse 

https://doi.org/10.7554/eLife.95510
https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_001939165.1
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(Figure 2C). We also detected three indole glucosinolates, but these did not show any significant 
correlations with aphid loads.

GWA identifies peaks near defense genes
To further investigate the genetic basis of variation in aphid, mildew, and microbe loads, we next 
employed GWA and tested for associations between exogenous read counts and biallelic genetic 
variants (SNPs and short INDELs). We corrected for population structure using an isolation by state 
(IBS) matrix and only tested variants with minor allele frequency (MAF)>0.04 (see Materials and 
methods). Initially, we called genetic variants using all reads that mapped to the T. arvense genome 
and found massive peaks in some highly conserved regions of the genome, which had very high 
mapping coverage. We suspected that this might be because some non-Thlaspi reads were very 
similar to these highly conserved regions and, by mapping there, generated false variants only in 
samples containing many non-Thlaspi reads. We therefore identified and removed ambiguous reads 
prior to variant calling, which eliminated the observed massive GWA peaks, indicating that they had 
indeed reflected false associations (Figure 3—figure supplement 1).
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Figure 2. Relationships between climates of origin or glucosinolate levels of plants and the exogenous reads loads. (A) Correlations with bioclimatic 
variables. (B) Correlations with baseline glucosinolate (GS) levels measured in the same pennycress lines in another experiment. All correlations 
in (A) and (B) were done after correction for population structure. Aphid-related read counts are in green, mildew-related in gray, others in black. 
(C) Boxplot of the aphid reads residuals in samples where benzyl GS was detected vs. not. The p-value is based on the Welch’s t-test for unequal 
variances. I3M: indol-3-yl methylGS; 4MOI3M: 4-methoxyindol-3-yl methylGS; 4OHI3M: 1-methoxyindol-3-yl methylGS.
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After excluding the ambiguous reads, we still found significant GWA peaks for Erysiphales but not 
for other types of exogenous reads (excluding isolated, unreliable variants) (Figure 3A, Figure 3—
figure supplements 2 and 3). Nevertheless, when clear peaks were visible, regardless of their signif-
icance, they were usually located close to genes involved in plant defense response. An enrichment 
analysis (Atwell et al., 2010) confirmed that stronger variants were indeed enriched close to these 
defense genes (Supplementary file 8) for some exogenous read counts (Figure 3B, Figure 3—figure 
supplements 2 and 3). For M. persicae load there was a peak in the proximity of Tarvense_01930, 
encoding a predicted pathogenesis-related peptide. The top variant in this peak had a slight but clear 
allelic effect on M. persicae load (Figure 3C). For Erysiphales load we detected a more persistent 
enrichment, with a highly significant peak in Scaffold 1, located in a region with several defense genes, 
including MAJOR LATEX PROTEINS (MLP) and two genes similar to Arabidopsis thaliana SALICYLATE 
METHYLTRANSFERASE 1 (BSMT1) (Figure 3D and E). This region is wide due to ancient TE coloni-
zation, but the top variants are clearly neighboring candidate genes involved in defense (Figure 3E). 
Other significant peaks for Erysiphales load were close to other genes that possibly contribute to 
resistance such as PBL7, involved in signaling and stomatal closure or SRF3, reinforcing cell walls by 
callose deposition.

Aphid and mildew loads correlate with differential methylation at 
genes and transposons
Variation in phenotypes, such as our indirect estimates of pest resistance, may not only be associated 
with DNA sequence but also with epigenetic changes like DNA methylation. This phenotype-associated 
epigenetic variation can include both heritable and plastic components. The whole-genome bisulfite 
sequencing (WGBS) data from our previous study (Galanti et al., 2022) allowed us to also explore 
these questions and to test for associations between DNA methylation variation and pest attack. For 
simplicity, we limited this analysis to M. persicae and Erysiphales loads.

Our analysis had two steps: First we called differentially methylated regions (DMRs) between the 
20 samples with the most and 20 samples with the least M. persicae or Erysiphales loads, and then 
we conducted epigenome-wide association (EWA) analyses on individual positions located within 
these DMRs, using the complete dataset (188 lines - see Materials and methods). This approach 
allowed us to target genomic regions of interest, while strongly reducing the multiple-testing 
problem of millions of cytosines in the whole genome and correcting for population structure. 
Using a relaxed false discovery rate (FDR) of 20%, we identified 162 DMRs for M. persicae load and 
548 DMRs for Erysiphales load (Figure 4—figure supplement 1, Supplementary file 9 and 10). 
The majority of these were in the CG context, especially for M. persicae-related DMRs (Figure 4A, 
Figure 4—figure supplement 1). As observed previously (Galanti et al., 2022), DMRs in CHH were 
generally shorter than in the other sequence contexts (Figure 4—figure supplement 1). Since the 
genome of T. arvense is rich in TEs and intergenic regions, the majority of DMRs were located in 
those features (Figure 4—figure supplement 1). However, the DMR density was higher in proximity 
of genes and particularly in coding sequences (Figure 4A), and even DMRs assigned as intergenic 
(Figure 4A) were often located close to genes or promoters. In accordance with previous studies 
(Geng et al., 2019; Annacondia et al., 2021), most DMRs were hypomethylated in the infested 
samples (higher pathogen load), indicating that genes needed for defense might be activated 
through demethylation.

For a more detailed investigation, we turned to EWA, leveraging the power of the entire Thlaspi 
collection. We tested for associations between M. persicae or Erysiphales loads and the methylation 
at individual cytosines located within the DMRs. As in GWA, we corrected for population structure 
using an IBS matrix. For both types of pest loads, we found associations in the proximity of genes 
and especially within TEs, but no genomic feature was particularly enriched for low p-value associa-
tions (Figure 4—figure supplement 2). M. persicae load was associated with methylation at several 
genomic locations, especially TEs (Figure 4B), but these associations had strongly inflated p-values 
(Figure  4—figure supplement 2). For Erysiphales load the p-value distribution was more well-
behaved, and we found a clear association with hypomethylation of Copia family 202 TEs upstream of 
MAPKK KINASE 20 (MAPKKK20), a gene involved in abscisic acid (ABA) stress response and stomatal 
closure (Figure 4B, C, and D). A coverage analysis confirmed that none of the T. arvense lines carries 
insertions or deletions of the TEs upstream of MAPKKK20.

https://doi.org/10.7554/eLife.95510


 Research article﻿﻿﻿﻿﻿﻿ Evolutionary Biology

Galanti et al. eLife 2024;13:RP95510. DOI: https://doi.org/10.7554/eLife.95510 � 9 of 23

Gene name Gene ID Ortholog Puta�ve func�on Top SNP loca�on

MLP 31 Ta_10442/45/55 AT1G70840 MAJOR LATEX PROTEIN 31 – Defense response 8 / 2kb downstream

MLP 28 Ta_10443/54 AT1G70830 MAJOR LATEX PROTEIN 28 – Defense response 6 / 1kb downstream

MLP 43 Ta_10444 AT1G70890 MAJOR LATEX PROTEIN 43 – Defense response 4kb downstream

MLP 165 Ta_10446 AT1G35260 MAJOR LATEX PROTEIN 165 – Defense response, GS biosynthesis < 1kb downstream

BSMT1 Ta_10447/48 AT3G11480 Salicylate/benzoate methyltransferase – Defense response 0kb

CAR8 Ta_10449/53 AT1G23140 Abscisic acid-ac�vated signaling pathway 0 / 2 kb upstream

TNR2 Ta_13332 AT5G46700 Root and epidermis development 1kb downstream

PBL7 Ta_12648 AT5G02800 Brassinosteroid signalling pathway, stomatal closure. 1 kb upstream

Ta01930 Ta_01930 AT3G50020 Predicted PR (pathogenesis-related) pep�de – Defense response 12 kb downstream

SBT1.7 Ta_01928/29 AT5G67360 Serine protease essen�al for mucilage release from seed coats < 1kb upstream

GH3.1 Ta_05347 AT2G14960 Similar to IAA-amido synthases – Auxine response < 1kb downstream

SRF3 Ta_05348 AT4G03390 SR FAMILY 3 – Cell wall callose deposi�on and stress response 3kb upstream
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Figure 3. Genome-wide association analyses for aphid and mildew loads. We show only the results for M. persicae and MG-RAST Erysiphales read 
counts; for full results see Figure 3—figure supplements 2 and 3. (A) Manhattan plots, annotated with genes potentially affecting aphid/mildew 
colonization. The genome-wide significance (horizontal red line) was calculated based on unlinked variants (Sobota et al., 2015), the blue line 
corresponds to -log(p)=5. (B) Corresponding to the Manhattan plots on the left, enrichment of a priori candidates and expected false discovery rates (as 

Figure 3 continued on next page
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Discussion
Plant pests are a major threat to food safety, causing large yield losses, and new crops such as the 
potential biofuel plant T. arvense must be able to resist pathogen and herbivore attacks. A powerful 
source for obtaining resistant varieties is natural variation in plant defenses, but phenotyping large 
collections can be very time-consuming and error-prone. Here, we describe how an unplanned pest 
infestation in a glasshouse experiment, together with available WGS data, can be used to estimate 
aphid, mildew, and microbial loads, and thus variation in plant resistance. The approach is straightfor-
ward, makes use of WGS data without microbiome-specific DNA extraction, and can in principle be 
applied to many other situations such as field experiments. It is not error-free, but we highlight some 
potential pitfalls, show how to reduce noise, and illustrate its potential to detect associations with 
climatic, genetic, and epigenetic variation.

An important first step in our analyses was the identification and classification of pest-related reads 
in the plant WGS data. We began by classifying all reads as target (only mapping to T. arvense), ambig-
uous (mapping to T. arvense and at the same time to at least one of the pest genomes), or exogenous 
(not mapping to T. arvense) (Figure 1A). We demonstrated the importance of removing ambiguous 
reads prior to variant calling, as this prevented calling false positive variants caused by exogenous 
DNA that also mapped to highly conserved or repetitive sequences in the T. arvense genome. We 
then classified the exogenous reads using MG-RAST (Meyer et al., 2008; Keegan et al., 2016) or 
by confident mapping to specific pest genomes, and selected the 11 most relevant and/or abundant 
taxonomic groups to focus our analyses on. To obtain unbiased pest/microbe loads we also corrected 
the read counts for the total number of deduplicated reads of each sample. A competitive mapping 
approach allowed us to identify the aphid and mildew species that had occurred in our experiment as 
the generalist aphid M. persicae and the powdery mildew E. cruciferarum (Figure 2).

Since we suspected a non-random colonization of pests and microbes in our T. arvense collec-
tion, we tested for population differences as well as SNP-based heritability. We found significant 
population differences for most pest and microbe loads, and often heritabilities above 15%, which 
although low, is still indicative of genetic determination (Thoen et al., 2017). Moreover, Erysiphales 
load had a particularly high heritability of 47% (Table 1). We therefore next asked what could explain 
the observed variation in pest loads in our experiment. As pathogen abundances in the field are 
often determined by climatic conditions, we expected plants originating from climates less favorable 
to aphids to perform worse in our glasshouse, i.e., to have higher pathogen loads. As expected, 
aphid counts were negatively correlated with temperature of origin (particularly minimum tempera-
ture), and positively with temperature variability (mean diurnal range and temperature annual range) 
(Figure 3A), suggesting that plants from colder and more thermally fluctuating climates, which are 
less favorable to aphids, were less well defended and performed worse in our glasshouse. We found 
similar but weaker patterns for Erysiphales load.

As we expected the observed climate-associated variation in pest loads to be at least partially 
explained by variation in chemical defenses, and since in A. thaliana glucosinolates, the main defen-
sive compounds, are known to be geographically structured in response to aphid distributions (Züst 
et al., 2012), we also tested for association of aphid and mildew loads with glucosinolates in our 
collection. In accordance with literature on A. thaliana (Kim and Jander, 2007), we observed a posi-
tive correlation of aphid loads with total glucosinolates as well as with the most abundant glucosino-
late sinigrin (aliphatic glucosinolate), but a negative correlation with benzyl glucosinolate (Figure 3B). 

in Atwell et al., 2010) for increasing significance thresholds. (C) Allelic effects of the red-marked variants in the corresponding Manhattan plots, with 
genotypes on the x-axes and the read count residuals on the y-axes. (D) The candidate genes marked in panel A, their putative functions and distances 
to the top variant of the neighboring peak. Candidates in dark blue are the a priori candidates included in the enrichment analyses and involved in 
defense response (GO:0006952). GS: glucosinolates. (E) Zoom-in for the Manhattan plot of Erysiphales load, around the first peak in Scaffold 1, with 
gene and transposable element (TE) models below, and a priori candidates in blue.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Example of a genome-wide association (GWA) peak caused by ambiguous reads.

Figure supplement 2. Genome-wide association (GWA) results for all exogenous reads.

Figure supplement 3. Genome-wide association (GWA) results for all exogenous reads.

Figure 3 continued
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Figure 4. Differential methylation associated with aphid and mildew loads. (A) Differentially methylated region (DMR) densities in different genomic 
features when comparing the 20 samples with the most vs. the least M. persicae (top) or Erysiphales (bottom) load. CDS: coding sequences. 
(B) Manhattan plots from epigenome-wide association (EWA) analyses based on individual cytosines within DMRs, with sequence contexts in different 
colors and annotation of genes close to low p-value cytosines. The genome-wide Bonferroni significance thresholds (dashed red lines) were calculated 

Figure 4 continued on next page
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These findings suggest that glucosinolate composition, rather than total amount, is important for 
aphid defense, and that while benzyl glucosinolate might have a deterrent effect, sinigrin might on 
the contrary attract M. persicae or act as a stimulant, which would be in accordance with previous 
observations (Klingauf et al., 1972).

To detect genetic variants associated with pest and microbe loads, we then conducted a GWA 
study (GWAS). For aphid (M. persicae) load, we detected only one non-significant peak in Scaffold 5, 
close to a pathogenesis-related coding gene (Figure 3A and D). For Erysiphales load, however, there 
were several significant associations neighboring genes directly involved in defense, mostly members 
of the MLP family, clustered in a large peak on the first arm of Scaffold 1 (Figure 3E). MLP165, the 
closest gene to the most significant variant in the peak, is indirectly involved in glucosinolate biosyn-
thesis in A. thaliana (The Arabidopsis Information Resource (TAIR), 2000), which might explain 
why baseline glucosinolate levels were associated with Erysiphales load (Figure 3B). Further GWA 
peaks for Erysiphales pointed toward other genes indirectly involved in the defense response through 
phytohormone signaling (e.g. CAR8, PBL7, GH3.1) or preventing pathogen access through cell wall 
reinforcement or stomatal closure (SRF3, PBL7) (Figure 3D). Further experiments would be necessary 
to confirm the functionality of these genes.

An important general insight from our GWA analyses was the frequent ambiguity of reads that 
mapped to both pest and host plant genomes. Such ambiguous reads generated false variants 
only present in samples with pest DNA, which resulted in highly significant false associations, and 
it was therefore important to remove these reads before variant calling. Another potential reason 
for sequence similarity between host and pathogens could be defense mechanisms such as RNA 
interference. If T. arvense produces small or micro-RNAs to silence pathogen genes, this would orig-
inate from genomic regions of high similarity between the host and the pathogen, and thus reflect 
a true association. However, a BLAST (Camacho et al., 2009) of the region in which the suspicious 
associations occurred did not reveal any similarity to aphid or mildew genes, but instead to the 
highly conserved ribosomal RNA coding regions. While genetic variants are generally inherited from 
parents and thus reflect evolutionary processes, DNA methylation variants can be heritable but can 
also reflect plastic responses to environmental stresses like herbivores or pathogens. Our data do 
not allow to confidently distinguish between these two sources of DNA methylation variation, and 
thus should be interpreted with caution, especially with regard to the directionality of associations. 
A beneficial DNA methylation variant is expected to be associated with lower pathogen load when 
already present before pathogen arrival, but with higher pathogen load when plastically induced by 
pathogens during the experiment. For both M. persicae and Erysiphales, the majority of DMRs were 
hypomethylated in affected samples, which is in accordance with the loss of methylation observed 
in A. thaliana and T. arvense upon aphid feeding, and in diploid wheat upon powdery mildew infec-
tion (Geng et al., 2019; Annacondia et al., 2021; Troyee et al., 2022), but we also detected hyper-
methylation at several loci. M. persicae load was associated with differential methylation at only 
few genes but several TEs, which is in accordance with the aphid or stress-induced TE reactivation 
observed in A. thaliana (Annacondia et al., 2021; Roquis et al., 2021). Erysiphales load was asso-
ciated with hypomethylated Copia TEs upstream of MAPKKK20, a gene involved in ABA-mediated 
signaling and stomatal closure. Since stomatal closure is a known defense mechanism to block 
pathogen access (Melotto et al., 2017), it is tempting to conclude that hypomethylation of the 
MAPKKK20 promoter might induce its overexpression and consequent stomatal closure, thereby 
preventing mildew access to the leaf blade. Overall, we found associations between pathogen load 
and TE methylation that could potentially act both in cis (e.g. Copia TE methylation in MAPKKK20 
promoter) and in trans, e.g., through transposon reactivation (e.g. LINE, Helitron, and Ty3/Gypsi 

based on the number of DMRs. (C) Candidate genes and transposable elements (TEs) marked in panel B, their putative functions, genomic locations of 
associated DMRs, and whether infested samples were hyper- or hypomethylated. (D) Zoomed-in Manhattan plot for Erysiphales load around the peak 
in Scaffold 4, with gene and TE models given below. The CG methylation in the 20 most and least infested samples was calculated over 50 bp bins (see 
Figure 4—figure supplement 2 for methylation in other contexts).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Lengths and genomic locations of differentially methylated regions (DMRs).

Figure supplement 2. Epigenome-wide association (EWA) enrichment in different genomic features and p-value distributions.

Figure 4 continued
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TEs isolated from genes). Although we cannot confidently distinguish inherited vs. induced DNA 
methylation variants, to our knowledge this is the first coupled GWA-EWA analysis conducted on a 
large natural plant collection.

In summary, our study offers first insights into the defense mechanisms of T. arvense, including 
candidate genes and alleles which may be of interest for breeding efforts in this novel biofuel and 
cover crop. It also provides a proof of principle that exogenous reads from large sequencing efforts, 
usually discarded if not mapping to the target genome, can be leveraged to extract additional infor-
mation about important biotic interactions of the target species, including its antagonists and micro-
biome components. We combined this approach with data from a common environment experiment 
to show that pest and microbiome load were geographically structured, as expected from locally 
adapted traits, and associated with both genetic and DNA methylation variants. In principle, our 
approach can be applied to many other designs. For example, field-collected samples could be used 
to quantify geographic pathogen distributions. With the decreasing cost of sequencing and increasing 
large-scale and single-species sequencing projects (e.g. Kajiya-Kanegae et al., 2021; Colgan et al., 
2022; Habyarimana et al., 2022; Mekbib et al., 2022; Metheringham et al., 2022; Nocchi et al., 
2022; Friis et al., 2024), the number of datasets suitable for such analyses is set to rapidly increase 
in the near future.

Materials and methods
Plant growth and sequencing
The WGS data used in this study were already published in Galanti et al., 2022. Please refer to this 
publication for details on data generation and methods. Briefly, we collected 207 T. arvense accessions 
from 36 European populations in July 2018, and we grew their offspring in a completely randomized 
design, in a glasshouse at the University of Tübingen (48°32'21.3"N, 9°02'04.2"E) between August 
and October 2019. The glasshouse was located in biodiverse surroundings, and insects and pests 
could enter when the windows opened for temperature regulation. A few weeks after germination, 
we noticed aphid and mildew infestations. After 46 days we sampled the third or fourth true leaf of 
each plant and snap-froze it in liquid nitrogen. We extracted DNA using the DNeasy Plant Mini Kit 
(QIAGEN, Hilden, DE), sonicated (Covaris) 300 ng of genomic DNA and used the NEBNext Ultra II 
DNA Library Prep Kit for Illumina (New England Biolabs) to prepare the libraries. Half way through 
the protocol we split the DNA into 1/3 for genomic libraries and 2/3 for bisulfite libraries. For the 
bisulfite conversion we used the EZ-96 DNA Methylation-Gold MagPrep (ZYMO) kit. We sequenced 
paired-end for 150 cycles using Illumina NovaSeq 6000 (Illumina, San Diego, CA, USA) for genomic 
libraries and HiSeq X Ten (Illumina, San Diego, CA, USA) for bisulfite libraries.

Reads mapping and classification
Upon demultiplexing the raw reads, we used cutadapt (Martin, 2011) for quality (minimum quality 
of 20) and adaptor trimming, excluding reads shorter than 35 bp. We used FastQC and MultiQC 
(Andrews, 2010; Ewels et al., 2016) to estimate the duplication rate, and calculated the total dedu-
plicated reads, which we later used for correcting the number of exogenous reads. We then classified 
the reads based on their mapping behavior. First we aligned reads to the T. arvense reference genome 
(Nunn et al., 2022) with BWA-MEM v0.7.17 (Li and Durbin, 2009), excluding multimapping reads 
(-c 1) and marking duplicates with MarkDuplicatesSpark (Van der Auwera et al., 2013; Poplin et al., 
2018). We then mapped all samples again (Li and Durbin, 2009) to the three putative exogenous 
genomes of pea aphid (Acrophyson pisum), the aphid symbiont B. aphidicola and powdery mildew 
(B. graminis), using available resources (https://www.ncbi.nlm.nih.gov/assembly/GCF_005508785.2, 
https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_001939165.1) (Frantzeskakis et  al., 2018). 
After this, we used a custom script to collect all read IDs within a sample mapping to any of the 
three exogenous genomes, and removed any of these reads from the T. arvense alignment bam files. 
We thus removed all ambiguous reads before proceeding with variant calling. To compare coverage 
of specific regions with and without ambiguous reads, we used samtools bedcov (Danecek et al., 
2021). The numbers of reads classified by their mapping behavior are reported in Supplementary 
file 1.

https://doi.org/10.7554/eLife.95510
https://www.ncbi.nlm.nih.gov/assembly/GCF_005508785.2
https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_001939165.1
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Variant calling
For variant calling we used GATK4 v4.1.8.1 (Van der Auwera et  al., 2013; Poplin et  al., 2018), 
following the best practices for germline short variant discovery (https://gatk.broadinstitute.org/hc/​
en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels-) with few adjustments 
for large datasets (Galanti et al., 2022). Briefly, starting from the bam files generated after the removal 
of ambiguous reads, we (i) ran HaplotypeCaller, (ii) combined the resulting GVCF files with Genom-
icsDBImport and GenotypeGVCFs, and (iii) filtered out low-quality variants with VariantFiltration (see 
Galanti et al., 2022 for more details). Finally, we used vcftools v0.1.16 (Danecek et al., 2011) to retain 
biallelic variants with MAF>0.01 and a maximum of 10% missing genotype calls. We imputed these 
missing calls with BEAGLE 5.1 (Browning et al., 2018) to obtain a complete multisample vcf file.

Identification and classification of exogenous reads
To identify exogenous reads, we extracted all unmapped reads from the bam files created aligning 
WGS reads to the T. arvense genome (Nunn et  al., 2022). We selected reads with both mates 
unmapped (SAM flag 12) and excluded supplementary alignments (SAM flag 256 after running Mark-
DuplicatesSpark) with samtools (Danecek et  al., 2021). We then recovered these reads from the 
trimmed fastq files with seqtk subset (https://github.com/lh3/seqtk; Li, 2024) to obtain fastq files 
of unmapped reads only. We used these as input for MG-RAST (Meyer et al., 2008; Keegan et al., 
2016), a web-based tool for phylogenetic analysis of metagenomes.

We ran MG-RAST mostly with default parameters, without assembled reads, excluding derepli-
cated sequences, and dynamically trimming reads with a minimum Phred score of 15 in more than 5 
consecutive bases. We set the ‘sequence screening’ to A. thaliana, the closest relative of T. arvense 
available. We used two different approaches to extract read counts. First, we classified all reads up to 
family level using the web-based Analysis tool from MG-RAST. We used RefSeq as query annotation 
database and filtered reads classified with low confidence using default settings: e-value 5, 60 %-iden-
tity, length 15, and min.abundance of 1 (Supplementary file 2). Out of the hundreds of taxonomic 
groups identified by MG-RAST, we selected only a small subset for follow-up analyses, based on their 
biological relevance, our visual observations and/or abundance: Aphididae, Culicidae, Peronospo-
rales, Staphylocaccaceae, Burkholderiaceae, Mycobacteriaceae, and Pseudomonadaceae (Table 1). 
Additionally, we used a custom Python script to download individual ‘taxonomy’ or ‘sequence_break-
down’ results from MG-RAST API (Paczian et al., 2019) and extracted the counts of the genus Buch-
nera, including bacterial symbionts of many aphid species, and of the order Erysiphales, to quantify 
the observed mildew infection (Table 1). All the code for extracting counts for all families or specific 
taxonomic groups are available on GitHub (https://github.com/junhee-jung/MG-RAST-read-counter, 
copy archived at Jung and Galanti, 2024).

In addition to the nine read groups selected from MG-RAST results, we also performed a highly 
confident mapping of exogenous reads to the M. persicae and B. aphidicola genome assemblies 
(Singh et  al., 2021) (https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_001939165.1), to test 
whether mapping to a high-quality assembly of the exact pathogen has a higher sensitivity than 
MG-RAST. We mapped with BWA-MEM v0.7.17 (Li and Durbin, 2009), using a seed length of 25 bp 
(Robinson et al., 2017) and removing reads with MAPQ<20 and duplicates with MarkDuplicatesSpark 
(Van der Auwera et al., 2013; Poplin et al., 2018). We then counted all reads in the bam files.

Finally, we log transformed all read counts to approximate normality, and corrected for the total 
number of deduplicated reads by extracting residuals from the following linear model, log(read_
count +1)~log(deduplicated_reads), which allowed us to quantify non-Thlaspi loads, correcting for the 
sequencing depth of each sample.

Exogenous reads heritability and species identification
To exclude the possibility that aphid and mildew infestation patterns were carried over from the field, 
through seed contamination or maternal effects, we used aphid and mildew presence/absence data 
collected in the field. We found no difference in aphid or mildew loads between samples with and 
without aphids or mildew on the original parental plant in the field (Figure 1—figure supplement 1). 
Nevertheless, to exclude a possible bias, we excluded one outlier sample with particularly high aphid 
load and aphids observed in the field (Figure 1—figure supplement 1) from the analyses.

https://doi.org/10.7554/eLife.95510
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To test for variation between populations we used a general linear model with population as a 
predictor. To measure SNP-based heritability, i.e., the proportion of variance explained by kinship, we 
used the marker_h2() function from the R package heritability (Kruijer and White, 2019), which uses a 
genetic distance matrix as predictor to compute REML-estimates of the genetic and residual variance. 
We used the same IBS matrix as for GWAS and for the correlations with climatic variables.

Even though MG-RAST classifies reads based on all taxonomic ranks, the accuracy of species identifica-
tion of course strongly depends on the sequences available in the query databases. MG-RAST assigned our 
aphid reads to A. pisum, but this did not fit with our visual observations and with the poor performance of 
this species on Brassicaceae (Prince et al., 2014). We therefore selected three plausible aphid species and 
test which of these had mostly likely attacked our experiment. In addition to A. pisum, we tested two other 
aphid species commonly attacking Brassicaceae: B. brassicae and M. persicae. While not all three species 
have reference genomes available, all mitochondrial genomes are available on NCBI (NCBI, 1988) under 
accession numbers MN232006, NC_011594, and NC_056270. We downloaded these sequences, aligned 
them to each other (Sievers et al., 2011), removed INDELs to retain only SNPs, and combined them into 
a single pseudo-reference fasta file (Supplementary file 3). We then mapped the exogenous reads from 
40 randomly selected samples to this pseudo-reference, allowing for unique mappings only and counted 
the reads mapping to either of the three aphid species. We used the same approach for mildew except 
that we included only two possible species: B. graminis, as suggested by MG-RAST, and E. cruciferarum 
which is known to attack Brassicaceae but was not in the MG-RAST query database and seemed plausible 
from visual inspection (Figure 2B). For the mildew pseudo-reference (Supplementary file 4) we used the 
internal transcribed spacer, which is publicly available for both species on NCBI (NCBI, 1988) under acces-
sion numbers MT644878 and AF031283.

Quantification of glucosinolates
Using seed material collected from the sequenced plants, we conducted a follow-up experiment to 
estimate the glucosinolate contents of all 207 lines in the absence of pathogens. Briefly, we sowed the 
seeds in Petri dishes, stratified them at 4°C in the dark for 2 weeks and transplanted the germinated 
seedlings to individual 9×9 cm2 pots. We grew the plants in a growth chamber with a 14/10 hr light/
dark cycle at 21/17°C and a relative humidity of ~45%. Two weeks after germination the plants were 
vernalized at 4°C for 2 more weeks in order to minimize phenological and developmental differences 
between winter and summer annuals. Ten days after vernalization, we collected the third or fourth true 
leaf and snap-froze it in liquid nitrogen. After freeze-drying, we weighed all samples and extracted 
the material threefold in 80% methanol, adding p-hydroxybenzl glucosinolate (Phytoplan, Heidelberg, 
Germany) as internal standard. After centrifugation, we applied the supernatants onto ion-exchange 
columns with diethylaminoethyl Sephadex A25 (Sigma-Aldrich, St. Louis, MO, USA) in 0.5 M acetic 
acid buffer, pH 5. We added purified sulfatase, converting glucosinolates to desulfo glucosinolates. 
After 1 day, we eluted desulfo glucosinolates in water and analyzed them on a HPLC coupled to a DAD 
detector (HPLC-1200 Series, Agilent Technologies, Inc, Santa Clara, CA, USA) equipped with a Supel-
cosil LC 18 column (3 μm, 150×3 mm, Supelco, Bellefonte, PA, USA). We analyzed the samples with 
a gradient from water to methanol starting at 5% methanol for 6 min and then increased from 5% to 
95% within 13 min with a hold at 95% for 2 min, followed by a column equilibration cycle. We identified 
different glucosinolates based on their retention times and UV spectra in comparison to respective 
standards and an in-house database. We integrated peaks at 229 nm and calculated respective gluco-
sinolate concentrations in relation to the internal standard and sample dry mass, using response factors 
as reported by Agerbirk et al., 2015.

Drivers of exogenous reads variation
To test for associations between glucosinolate variation, as well as climate of origin, and the observed 
pest loads, we extracted average bioclimatic variables for the 25  years predating our experiment 
for our 36 study populations from the Copernicus website (ECMWF, 2020), as described in Galanti 
et al., 2022. We then used the R package lme4qtl (Ziyatdinov et al., 2018) to run mixed models that 
included either bioclimatic variables or glucosinolate contents as explanatory variables, and the exog-
enous read counts as dependent variables, while correcting for population structure with the same IBS 
matrix as in GWA and EWA analyses (see below).

https://doi.org/10.7554/eLife.95510
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GWA analysis
We conducted GWA with mixed models that corrected for population structure with a genetic IBS 
matrix as a random factor, as implemented in GEMMA (Zhou and Stephens, 2012). To obtain the IBS 
matrix we used PLINK v1.90b6.12 (Purcell et al., 2007). Starting from the imputed multisample vcf file 
obtained from variant calling, we pruned variants with LD>0.8 in 50 variants windows, sliding by five. 
To produce the genetic variants used for GWAS, we also started from the imputed multisample vcf file 
from variant calling and filtered out variants with MAF<0.04. As phenotypes we used the number of 
exogenous reads corrected for the total number of deduplicated reads, as described above.

To validate our results and test for overlap with existing gene functional annotations, we performed 
an enrichment analysis of variants neighboring a priori candidate genes as described in Atwell et al., 
2010. Briefly, we attributed a priori candidate status to all variants located within 20 kb from ortho-
logs (Emms and Kelly, 2019) of A. thaliana genes annotated with the GO term ‘defense response’ 
(GO:0006952), including nine genes similar to AtBSMT1 (Supplementary file 8). We then calculated 
enrichment for incremental -log(p) thresholds as the ratio between observed frequency (significant 
a priori candidate/significant variants) and background frequency (total a priori candidate/total vari-
ants), and an upper bound for the FDR (Galanti et al., 2022; Atwell et al., 2010). We further assessed 
the significance of the enrichment through a previously established genome rotation scheme (Nord-
borg et  al., 2005). Briefly, we calculated a null distribution of enrichments by randomly rotating 
the p-values and a priori candidate status of the genetic variants within each chromosome for 1 M 
permutations. We then assessed significance by comparing the observed enrichment at the Bonfer-
roni threshold to the null distribution. The code for these analyses is available on https://github.com/​
Dario-Galanti/multipheno_GWAS/tree/main/gemmaGWAS (copy archived at Galanti, 2024d).

Methylation and DMR calling
For the methylome analyses we used the EpiDiverse toolkit (Nunn et al., 2021), specifically designed 
for large WGBS datasets. We used the WGBS pipeline (https://github.com/EpiDiverse/wgbs; Nunn, 
2022) for read mapping and methylation calling, retained only uniquely mapping reads longer than 
30 bp, and obtained individual-sample bedGraph files for each sequence context. We then called 
DMRs using the DMR pipeline (Nunn et al., 2021), with a minimum coverage of 4×. We compared 
the 20 samples with the most and the least M. persicae and Eriysiphales loads, resulting in two sets of 
DMRs for each sequence context. Since this was only the first step of our methylation analysis, meant 
to identify potential regions of interest, we retained all DMRs with an FDR<20%. To understand the 
genomic preferences of DMRs, we intersected them with genomic features and calculated their densi-
ties in each by dividing their number by the total Mb covered by each genomic feature in the genome.

EWA analysis
Following the DMR calling, we investigated methylation-phenotype relationships in more detail, 
using EWA. We ran EWA similarly to GWA, enabling the ‘-notsnp’ option available in GEMMA (Zhou 
and Stephens, 2012), and correcting for population structure with the same IBS matrix. To exclude 
possible biases, we excluded all samples with a bisulfite non-conversion rate >1 (Galanti et al., 2022), 
which left 188  samples for analysis. To generate the methylation input files we first used custom 
scripts (https://github.com/Dario-Galanti/WGBS_downstream/tree/main/WGBS_simpleworkflow, 
copy archived at Galanti, 2024c; Galanti et  al., 2022) to unite individual-sample bedGraph files 
into unionbed files and retain positions with coverage>3 in at least 95% of the samples and a meth-
ylation difference of at least 5% in at least two samples. We then intersected the unionbed files 
with the DMRs of the corresponding sequence context using bedtools (Quinlan and Hall, 2010) and 
converted unionbed to BIMBAM format as input for GEMMA.

We ran EWA for individual positions within the DMRs and calculated Bonferroni thresholds based 
on the number of DMRs, assuming that cytosines within the same DMR are mostly autocorrelated. 
To observe in which genomic features associations with lower p-values were located, we performed 
enrichment analyses similar to the ones performed for defense a priori candidate genes in GWA 
(Atwell et al., 2010), but based on whole genomic features. Starting from all cytosines used for EWA, 
we calculated the background frequency as the fraction of all cytosines located in each genomic 
feature and then calculated the observed frequency in the same way for -log(p) 0.5 increments, 
with enrichment as the ratio of observed and expected frequencies. All code used for EWA and the 
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enrichment analysis in genomic features is available on https://github.com/Dario-Galanti/EWAS/tree/​
main/gemmaEWAS (copy archived at Galanti, 2024e).
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