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eLife Assessment
This important study introduces a biologically constrained model of telencephalic area of 
adult zebrafish to highlight the significance of precisely balanced memory networks in olfactory 
processing. The authors provide compelling evidence that their model performs better in multiple 
situations (for e.g. in terms of network stability and shaping the geometry of representations), 
compared to traditional attractor networks and persistent activity. The work supports recent studies 
reporting functional E/I subnetworks in several sensory cortexes, and will be of interest to both theo-
retical and experimental neuroscientists studying network dynamics based on structured excitatory 
and inhibitory interactions.

Abstract Biological memory networks are thought to store information by experience-dependent 
changes in the synaptic connectivity between assemblies of neurons. Recent models suggest 
that these assemblies contain both excitatory and inhibitory neurons (E/I assemblies), resulting in 
co-tuning and precise balance of excitation and inhibition. To understand computational conse-
quences of E/I assemblies under biologically realistic constraints we built a spiking network model 
based on experimental data from telencephalic area Dp of adult zebrafish, a precisely balanced 
recurrent network homologous to piriform cortex. We found that E/I assemblies stabilized firing rate 
distributions compared to networks with excitatory assemblies and global inhibition. Unlike classical 
memory models, networks with E/I assemblies did not show discrete attractor dynamics. Rather, 
responses to learned inputs were locally constrained onto manifolds that ‘focused’ activity into 
neuronal subspaces. The covariance structure of these manifolds supported pattern classification 
when information was retrieved from selected neuronal subsets. Networks with E/I assemblies there-
fore transformed the geometry of neuronal coding space, resulting in continuous representations 
that reflected both relatedness of inputs and an individual’s experience. Such continuous represen-
tations enable fast pattern classification, can support continual learning, and may provide a basis for 
higher-order learning and cognitive computations.

Introduction
Autoassociative memory establishes internal representations of specific inputs that may serve as a 
basis for higher brain functions including classification and prediction. Representation learning in 
autoassociative memory networks is thought to involve experience-dependent synaptic plasticity 
and potentially other mechanisms that enhance connectivity among assemblies of excitatory neurons 
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(Hebb, 1949; Ko et al., 2011; Miehl et al., 2023; Ryan et al., 2015). Classical theories proposed 
that assemblies define discrete attractor states and map related inputs onto a common stable output 
pattern. Hence, neuronal assemblies are thought to encode internal representations, or memories, 
that classify inputs relative to previous experience via attractor dynamics (Amit and Tsodyks, 1991; 
Goldman-Rakic, 1995; Hopfield, 1982; Kohonen, 1984; Lagzi and Rotter, 2015; Mazzucato et al., 
2015). However, brain areas with memory functions such as the hippocampus or neocortex often 
exhibit dynamics that is atypical of attractor networks including irregular firing patterns, transient 
responses to inputs, and high trial-to-trial variability (Iurilli and Datta, 2017; Renart et al., 2010; 
Shadlen and Newsome, 1994).

Irregular, fluctuation-driven firing reminiscent of cortical activity emerges in recurrent networks 
when neurons receive strong excitatory (E) and inhibitory (I) synaptic input (Brunel, 2000; Shadlen 
and Newsome, 1994; van Vreeswijk and Sompolinsky, 1996). In such ‘balanced state’ networks, 
enhanced connectivity among assemblies of E neurons is prone to generate runaway activity unless 
matched I connectivity establishes co-tuning of E and I inputs in individual neurons. The resulting state 
of ‘precise’ synaptic balance stabilizes firing rates because inhomogeneities in excitation across the 
population or temporal variations in excitation are tracked by correlated inhibition (Hennequin et al., 
2017; Hennequin et al., 2014; Lagzi and Fairhall, 2024; Rost et al., 2018; Vogels et al., 2011). E/I 
co-tuning has been observed experimentally in cortical brain areas (Bhatia et al., 2019; Froemke 
et al., 2007; Okun and Lampl, 2008; Rupprecht and Friedrich, 2018; Wehr and Zador, 2003) and 
emerged in simulations that included spike-timing-dependent plasticity at I synapses (Lagzi et al., 
2021; Litwin-Kumar and Doiron, 2014; Vogels et al., 2011; Zenke et al., 2015). In simulations, E/I 
co-tuning can be established by including I neurons in assemblies, resulting in ‘E/I assemblies’ where 
I neurons track activity of E neurons (Barron et al., 2017; Eckmann et al., 2024; Lagzi and Fairhall, 
2024; Mackwood et al., 2021). Exploring the structural basis of E/I co-tuning in biological networks 
is challenging because it requires the dense reconstruction of large neuronal circuits at synaptic reso-
lution (Friedrich and Wanner, 2021).

Modeling studies started to investigate effects of E/I assemblies on network dynamics (Chenkov 
et al., 2017; Mackwood et al., 2021; Sadeh and Clopath, 2020a; Schulz et al., 2021) but the impact 
on neuronal computations in the brain remains unclear. Balanced state networks can exhibit a broad 
range of dynamical behaviors, including chaotic firing, transient responses, and stable states (Festa 
et al., 2014; Hennequin et al., 2014; Litwin-Kumar and Doiron, 2012; Murphy and Miller, 2009; 
Roudi and Latham, 2007), implying that computational consequences of E/I assemblies depend on 
network parameters. We therefore examined effects of E/I assemblies on autoassociative memory in a 
spiking network model that was constrained by experimental data from telencephalic area Dp of adult 
zebrafish, which is homologous to mammalian piriform cortex (Mueller et al., 2011).

Dp and piriform cortex receive direct input from mitral cells in the olfactory bulb (OB) and have 
been proposed to function as autoassociative memory networks (Haberly, 2001; Wilson and Sullivan, 
2011). Consistent with this hypothesis, manipulations of neuronal activity in piriform cortex affected 
olfactory memory (Meissner-Bernard et al., 2019; Sacco and Sacchetti, 2010). In both brain areas, 
odors evoke temporally structured, spatially distributed activity patterns (Blazing and Franks, 2020; 
Stettler and Axel, 2009; Yaksi et al., 2009) that are dominated by synaptic inputs from recurrent 
connections (Franks et  al., 2011; Rupprecht and Friedrich, 2018) and modified by experience 
(Chapuis and Wilson, 2011; Frank et al., 2019; Jacobson et al., 2018; Pashkovski et al., 2020). 
Whole-cell voltage clamp recordings revealed that neurons in posterior Dp (pDp) received large E and 
I synaptic inputs during odor responses. These inputs were co-tuned in odor space and correlated on 
fast timescales, demonstrating that pDp enters a transient state of precise synaptic balance during 
odor stimulation (Rupprecht and Friedrich, 2018).

We found that network models of pDp with assemblies but without E/I co-tuning generated 
persistent attractor dynamics and exhibited a biologically unrealistic broadening of the firing rate 
distribution. Introducing E/I assemblies established E/I co-tuning, stabilized the firing rate distribution, 
and abolished persistent attractor states. In networks with E/I assemblies, population activity was 
locally constrained onto manifolds that represented learned and related inputs by ‘focusing’ activity 
into neuronal subspaces. The covariance structure of manifolds supported pattern classification when 
information was retrieved from selected neuronal subsets. Furthermore, the continuity of the olfactory 
coding space provided a metric representing the similarity of inputs to learned stimuli. These results 
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show that autoassociative memory networks constrained by biological data operate in a balanced 
regime where information is contained in the geometry of neural manifolds. Predictions derived from 
these analyses may be tested experimentally by measurements of neuronal population activity in 
zebrafish.

Results
A spiking network model based on pDp
To analyze memory-related computational functions of E/I assemblies under biologically realistic 
constraints we built a spiking neural network model, pDpsim, based on experimental data from pDp 
(Figure 1A; Blumhagen et al., 2011; Rupprecht and Friedrich, 2018; Yaksi et al., 2009). pDpsim 
comprised 4000 E neurons and 1000 I neurons, consistent with the estimated total number of 4000–
10,000 neurons in adult zebrafish pDp (unpublished observations). The network received afferent 
input from 1500 mitral cells in the OB with a mean spontaneous firing rate of 6 Hz (Friedrich and 
Laurent, 2004; Friedrich and Laurent, 2001; Tabor and Friedrich, 2008). Odors were modeled by 
increasing the firing rates of 10% of mitral cells to a mean of 15 Hz and decreasing the firing rates of 
5% of mitral cells to a mean of 2 Hz (Methods, Figure 1B, Friedrich and Laurent, 2004; Friedrich and 
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Figure 1. Spiking network model of pDp. (A) Schematic of pDpsim. OB, olfactory bulb; E, excitatory; I, inhibitory neurons. (B) Spike raster of a random 
subset of 50 mitral cells in the OB representing 2 odors (O1 and O2). During odor stimulation, firing rates of 10% of mitral cells were increased and 
firing rates of 5% of mitral cells were decreased (baseline rate, 6 Hz). (C) Spike raster of random subsets of 50 E and I neurons in response to 2 odors. 
(D) Representative membrane potential trace (top) and excitatory (EPSC, black) and inhibitory (IPSC, red) currents (bottom) in one excitatory neuron 
in response to two odors. Purple trace shows net current (EPSC + IPSC). (E) Odor-evoked inhibitory (red) and excitatory (black and blue) currents as 
measured in a hypothetical voltage clamp experiment (conductance multiplied by 70 mV, the absolute difference between holding potential and 
reversal potential; Rupprecht and Friedrich, 2018). Representative example of one network, averaged across neurons and odors. (F–H) Measured 
values of the observables used to match pDpsim to experimental data. Each dot represents one network (average over 10 odors); n = 20 networks. 
Pink shading shows the experimentally observed range of values. (F) Baseline and odor-evoked population firing rate. (G) Left: gOE is the synaptic 
conductance in E neurons contributed by afferents from the OB during odor stimulation. Middle: gsyn is the total odor-evoked synaptic conductance. 
Right: % recurrent input quantifies the percentage of E input contributed by recurrent connections during odor stimulation. (H) Correlation coefficient 
between odor-evoked activity patterns in pDpsim. The dotted line indicates the mean correlation between odor patterns in the OB.
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Laurent, 2001). As a result, the mean activity increased only slightly while the variance of firing rates 
across the mitral cell population increased approximately sevenfold, consistent with experimental 
observations (Friedrich and Laurent, 2004; Wanner and Friedrich, 2020).

pDpsim consisted of sparsely connected integrate-and-fire neurons with conductance-based 
synapses (connection probability  ≤5%, Methods). Model parameters were taken from the litera-
ture when available and otherwise determined to reproduce measured observables (Figure 1F–H; 
Methods). The mean firing rate was <0.1 Hz in the absence of stimulation and increased to ~1 Hz 
during odor presentation (Figure 1C, F; Blumhagen et al., 2011; Rupprecht et al., 2021; Rupprecht 
and Friedrich, 2018). Population activity was odor-specific and activity patterns evoked by uncor-
related OB inputs remained uncorrelated in pDpsim (Figure  1H; Yaksi et  al., 2009). The synaptic 
conductance during odor presentation substantially exceeded the resting conductance and inputs 
from other E neurons (recurrent inputs) contributed  >80% of the excitatory synaptic conductance 
(Figure 1G). Hence, pDpsim entered a balanced state during odor stimulation (Figure 1D, E) with 
recurrent input dominating over afferent input, as observed in pDp (Rupprecht and Friedrich, 2018). 
Shuffling spike times of inhibitory neurons resulted in runaway activity with a probability of 0.79 ± 
0.20, demonstrating that activity was inhibition-stabilized (Sadeh and Clopath, 2020b; Tsodyks 
et  al., 1997). These results were robust against parameter variations (Methods). pDpsim therefore 
reproduced key features of pDp.

Co-tuning and stability of networks with E/I assemblies
To create networks with defined neuronal assemblies we rewired a small subset of the connections in 
randomly connected (rand) networks. An assembly was generated by identifying the 100 E neurons 
that received the most connections from the mitral cells activated by a given odor and increasing the 
probability of connections between these E neurons by a factor of α (Figure 2A and Figure 2—figure 
supplement 1A). The number of E input connections per neuron was maintained by randomly elim-
inating connections from neurons outside the assembly. We thus refer to an odor as ‘learned’ when 
a network contains a corresponding assembly, and as ‘novel’ when no such assembly is present. In 
each network, we created 15 assemblies representing memories of uncorrelated odors. As a result, 
~30% of E neurons were part of an assembly, with few neurons participating in multiple assemblies. 
Odor-evoked activity within assemblies was higher than the population mean and increased with α 
(Figure 2B). When α reached a critical value of ~6, networks became unstable and generated runaway 
activity (Figure 2B).

We first set α to 5, then uniformly scaled I-to-E connection weights by a factor of χ until E population 
firing rates in response to learned odors matched the corresponding firing rates in rand networks, that 
is, 1 Hz (‘Scaled I’ networks; Figure 2A, C, D, F). Under these conditions, activity within assemblies 
was amplified substantially in comparison to the corresponding neurons in rand networks (pseudo-
assembly) whereas activity outside assemblies was substantially reduced (Figure 2E, G; Figure 2—
figure supplement 2). Hence, non-specific scaling of inhibition resulted in a large and biologically 
unrealistic divergence of firing rates (Figure  2—figure supplement 2) that nearly exhausted the 
dynamic range of individual neurons in the population, indicating that homeostatic global inhibition 
is insufficient to maintain a stable firing rate distribution. We further observed that neurons within 
activated assemblies produced regular spike trains (Figure 2—figure supplement 2), indicating that 
the balanced regime was no longer maintained.

In rand networks, correlations between E and I synaptic conductances in individual neurons were 
slightly above zero (Figure 2H), presumably because of stochastic inhomogeneities in the connectivity 
(Pehlevan and Sompolinsky, 2014). In Scaled I networks, correlations remained near zero, indicating 
that E assemblies by themselves did not enhance E/I co-tuning (Figure 2H). Scaled I networks with 
structured E but random I connectivity can therefore not account for the stability, synaptic balance, 
and E/I co-tuning observed experimentally (Rupprecht and Friedrich, 2018).

We next created structured networks with more precise E/I balance by including I neurons within 
assemblies. We first selected the 25 I neurons that received the largest number of connections from 
the 100 E neurons of an assembly. The connectivity between these two sets of neurons was then 
enhanced by two procedures to generate E/I assemblies: (1) in ‘Tuned I’ networks, the probability of 
I-to-E connections was increased by a factor β while E-to-I connections remained unchanged. (2) In 
‘Tuned E+I’ networks, the probability of I-to-E connections was increased by β and the probability of 

https://doi.org/10.7554/eLife.96303


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Meissner-Bernard et al. eLife 2024;14:RP96303. DOI: https://doi.org/10.7554/eLife.96303 � 5 of 26

balanced

A C

(pEI,Assembly/pEI,rand)

B

1.40

1.22

1.04

1.00χ

1 3 9

18

11

4

1

γ

β

1

2

3

SD
SD 

gE (nS)

gI
 (n

S
)

1 neuron,10 odors

cells activated 
by learned odor

assembly (A)

increased
connectivity

(w
IE

,s
ca

le
d/w

IE
,ra

nd
)

1.0

1.2

1.4

1.6
SD

ba
l./S

D
co

un
te

r-b
al

.

D

G H

(α = 5)

Scaled I
E assemblies 

(Scaled I)
E/I assemblies 
(Tuned I or E+I) Tuned I Tuned E+I��

Ran
d 

Sca
led

 I 

Tun
ed

 I 

Tun
ed

 E+I 
0.0

0.5

1.0

1.5

2.0

Fi
rin

g 
ra

te
 (H

z)

Novel
Learned

0
0

OB pDp

(pEE,Assembly/pEE,rand)

counter- 

balanced

(p
IE

,A
ss

em
bl

y/p
IE

,ra
nd

)

dense 
connectivity

1 3 5 7
0

10

20

30

40

50

M
ea

n 
fir

in
g 

ra
te

 (H
z)

M
ea

n 
fir

in
g 

ra
te

 (H
z)

 

Assembly I
all I
all E

Assembly E

I

E Tuned I Tuned E+IRand

C
or

re
la

tio
n

0
10
20
30

M
ea

n 
fir

in
g

ra
te

 (H
z)

 

0
10
20
30

0
10
20
30

0

1

Ti
m

e

Time

odor

Time Time
0.5 s 0.5 s 0.5 s

odor (learned)odor (learned)

0.
5 

s

Time Time Time

Assembly

non-Assembly

F

EA-drivenχ

E

E  I

α

OB pDp

β γ

α
E

 IE

 N
eu

ro
n 

nu
m

be
r

O2
1

50

O1

2 s
Time

Scaled I

0
10
20
30

Time
0.5 s

odor (learned)

Time

0.0

0.2

0.4

0.6

C
or

re
la

tio
n 

gE
, g

I

Ran
d

Sca
led

 I

Tun
ed

 I

Tun
ed

 E+I
0

2

4

6

8

10

Am
pl

ifi
ca

tio
n

Sca
led

 I 

Tun
ed

 I 

Tun
ed

 E+I 

Assembly°

non-Assembly

° °

°

^

Tuned E+IScaled I

1

50
Time

O2O1

Ran
d

Sca
led

 I

Tun
ed

 I

Tun
ed

 E+I

°

° ° °

^

^ ^

^
^ ^ ^ ^^

Tuned I

1

50
Time

O2O1

adjust parameters until rate equals 1 Hz

Figure 2. Networks with neuronal assemblies (memories). (A) Schematic of assemblies. Each assembly contains the 100 E neurons that are most 
densely connected to the mitral cells activated by a given odor. Connection probability between these E neurons is increased by a factor α. In Scaled I 
networks, weights of all I-to-E synapses are increased by a factor χ. In Tuned networks, the 25 I neurons that are most densely connected to the 100 E 
neurons are included in each assembly. In Tuned I networks, the probability of I-to-E connections within the assembly is increased by a factor β. In Tuned 
E+I networks, probabilities of I-to-E and E-to-I connectivity within the assembly are increased by factors β and γ, respectively. n = 20 networks with 15 
assemblies each were simulated for each group. (B) Firing rates averaged over all E or I neurons (full lines) and over all assembly neurons (dashed lines) 
as a function of α (mean ± SD across 20 networks). (C) Mean E neuron firing rates of Scaled (left) and Tuned (right) networks in response to learned odors 
as a function of connection strength and probability, respectively. Squares depict parameters used in following figures unless stated otherwise. (D) Spike 
raster plots showing responses of 50 E neurons to 2 odors (O1: novel odor; O2: learned odor) in a Scaled I and the corresponding Tuned networks (same 
neurons and odors in the corresponding rand network are shown in Figure 1C). (E) Top: Mean firing rates in response to learned odors as a function of 
time, averaged across assembly or non-assembly neurons. Bottom: Mean correlation between activity patterns evoked by a learned odor at different 
time points during odor presentation. Correlation coefficients were calculated between pairs of activity vectors composed of the mean firing rates of 
E neurons in 100 ms time bins. Activity vectors were taken from the same or different trials, except for the diagonal, where only patterns from different 
trials were considered. The pink bar indicates odor presentation. (F) Mean firing rate in response to learned odors or novel odors. Each data point 
represents one network–odor pair (n = 20 networks, 10 odors). (G) Amplification within and outside assemblies, calculated as the ratio between the 
mean firing rates in response to learned odors averaged over the same populations of neurons in a given structured network (Scaled I, Tuned I, or Tuned 
E+I) and the corresponding rand network. Each data point represents one network–odor pair. (H) Quantification of co-tuning by the correlation between 
time-averaged E and I conductances in response to different odors, average across neurons. Each data point corresponds to one network (n = 20). Mean 
± SD. (I) Quantification of co-tuning by the ratio of dispersion of joint conductances along balanced and counter-balanced axes (inset; Methods; n = 20 
networks). 

The online version of this article includes the following figure supplement(s) for figure 2:

Figure 2 continued on next page
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E-to-I connections was increased by γ (Figure 2A; Figure 2—figure supplement 1B). As for ‘Scaled I’ 
networks, β and γ were adjusted to obtain mean population firing rates of ~1 Hz in response to learned 
odors (Figure 2C, D, F). The other observables used to constrain the rand networks remained unaf-
fected (Figure 2—figure supplement 1C, D, E). Activity of networks with E assemblies could not be 
stabilized around 1 Hz by increasing connectivity from subsets of I neurons receiving dense input from 
activated mitral cells (Figure 2—figure supplement 1G, H; Sadeh and Clopath, 2020a).

In Tuned networks, correlations between E and I conductances in individual neurons were signifi-
cantly higher than in rand or Scaled I networks (Figure  2H). To further analyze E/I co-tuning we 
projected synaptic conductances of each neuron onto a line representing the E/I ratio expected in 
a balanced network (balanced axis) and onto an orthogonal line (‘counter-balanced axis’; Figure 2I, 
inset, Methods). The ratio between the standard deviations (SDs) along these axes has been used 
previously to quantify E/I co-tuning in experimental studies (Rupprecht and Friedrich, 2018). This 
ratio was close to 1 in rand and Scaled I networks but significantly higher in Tuned I and Tuned E+I 
networks (Figure 2I). Hence, Tuned networks exhibited significant co-tuning along the balanced axis, 
as observed in pDp (Rupprecht and Friedrich, 2018).

In Tuned networks, activity within assemblies was higher than the mean activity but substantially 
lower and more irregular than in Scaled I networks (Figure 2E, G; Figure 2—figure supplement 2). 
Unlike in Scaled I networks, mean firing rates evoked by novel odors were indistinguishable from 
those evoked by learned odors and from mean firing rates in rand networks (Figure 2F, Figure 2—
figure supplement 1F). Hence, E/I co-tuning prevented excessive amplification of activity in assem-
blies without affecting global network activity, consistent with experimental observations in Dp and 
piriform cortex (Chapuis and Wilson, 2011; Frank et al., 2019).

Effects of E/I assemblies on attractor dynamics
We next explored effects of assemblies on network dynamics. In rand networks, firing rates increased 
after stimulus onset and rapidly returned to a low baseline after stimulus offset (Figure 2E). Correla-
tions between activity patterns evoked by the same odor at different time points and in different 
trials were positive but substantially lower than unity, indicating high variability (Figure  2E and 
Figure 2—figure supplement 2D). Hence, rand networks showed transient and variable responses to 
input patterns, consistent with the typical behavior of generic balanced state networks (Shadlen and 
Newsome, 1994; van Vreeswijk and Sompolinsky, 1996). Scaled I networks responded to learned 
odors with persistent firing of assembly neurons and high pattern correlations across trials and time, 
implying attractor dynamics (Hopfield, 1982; Khona and Fiete, 2022), whereas Tuned networks 
exhibited transient responses and modest pattern correlations similar to rand networks (Figure 2E). 
Hence, Tuned networks did not exhibit stable attractor states, presumably because precise synaptic 
balance prevented strong recurrent amplification within E/I assemblies.

In classical memory networks, attractor dynamics drives pattern completion, the retrieval of the 
whole memory from noisy or corrupted versions of the learned input. We therefore tested whether 
networks with E/I assemblies performed pattern completion using two different approaches. In 
computational studies, pattern completion is often assessed by testing whether targeted partial stim-
ulation of an assembly can activate the assembly as a whole (Sadeh and Clopath, 2021; Vogels et al., 
2011). Stimulating subsets of E neurons in an assembly during baseline activity recruited the entire 
assembly in all structured pDpsim networks (Scaled and Tuned) without a significant increase in the 
overall population activity (Figure 3—figure supplement 1A).

During partial assembly stimulation, most pDpsim neurons do not receive any input, which is unlikely 
to happen during odor presentation. Therefore, we also assessed pattern completion with more real-
istic variations of inputs, building on experimental studies in the olfactory system and hippocampus 
(Wilson and Sullivan, 2011; Yassa and Stark, 2011). We morphed a novel odor into a learned odor 
(Figure 3A), or a learned odor into another learned odor (Figure 3—figure supplement 1B), and 
quantified the similarity between morphed and learned odors by the Pearson correlation of the 
OB activity patterns (input correlation). We then compared input correlations to the corresponding 

Figure supplement 1. Structured networks reproduce key features of pDp.

Figure supplement 2. Structured networks: additional results.

Figure 2 continued
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pattern correlations among E neurons in pDpsim (output correlation). In rand networks, output correla-
tions increased linearly with input correlations but did not exceed them (Figure 3B, Figure 3—figure 
supplement 1B), consistent with the absence of pattern completion in generic random networks 
(Babadi and Sompolinsky, 2014; Marr, 1969; Schaffer et al., 2018; Wiechert et al., 2010). Scaled I 
networks, in contrast, showed typical signatures of pattern completion: output correlations increased 
abruptly as a morphed odor approached a learned odor and eventually exceeded the corresponding 
input correlations (Figure 3B, Figure 3—figure supplement 1B). In Tuned networks, output correla-
tions were higher than in rand networks but remained lower than input correlations and did not 
increase steeply near the learned odor (Figure  3B, Figure  3—figure supplement 1B). Hence, 
networks with E/I assemblies did not show signatures of pattern completion in response to naturalistic 
stimuli, consistent with the absence of strong recurrent amplification within assemblies.

To further understand the effect of E/I assemblies on network dynamics we examined the synaptic 
currents underlying the modest amplification of activity in assemblies of Tuned networks that occurred 
as a learned odor was approached (Figure 3C). We measured the relative contribution of synaptic 
inputs from afferent and recurrent sources received by assembly and non-assembly neurons. In rand 
networks, activity in pseudo-assembly neurons increased linearly as the corresponding odor was 
approached (Figure 3C). This linear increase in activity can be attributed entirely to an increase in 

A B C

Correlation to L (OB)
C

or
re

la
tio

n 
to

 R
ef

 (D
p)

Reference 
pattern: N

Reference 
pattern: L

    
 co

mple
tio

n

of 
pa

tte
rn 

L

0.00 0.25 0.50 0.75
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75
0

10

20

Fi
rin

g 
ra

te
 (A

., 
H

z)

N L

“Pseudo-
Assembly” N

Assembly L

morph

Correlation to L (OB)

N Lmorph

Rand

Scaled I
Tuned E+I
Tuned I

activ. cellsodor N

all cells

%
 a

ct
iv

at
ed

 
m

itr
al

 c
el

ls
N Lmorph

activ. cellsodor L

N: novel
L: learned

0.00 0.25 0.50 0.75
0

50

100

Correlation to L (OB)

D E

0.00 0.25 0.50 0.75
30

40

50

60

Correlation to L (OB)

Af
fe

re
nt

 E
 c

ur
re

nt
 (p

A)

0.00 0.25 0.50 0.75

0

50

100

Correlation to L (OB)

N
et

 re
cu

rre
nt

 c
ur

re
nt

 (p
A)

assembly L

non-
assembly

assembly L

N Lmorph N Lmorph

non-
assembly

F

0.00 0.25 0.50 0.75
0

50

100

Correlation to L (OB)

 │
R

ec
ur

re
nt

 c
ur

re
nt

│ (
pA

) assembly L 

inhibitory

N Lmorph

excitatory

Figure 3. Changes of output activity to gradual modifications of inputs. (A) Morphing of a novel odor N into a learned odor L. Morphed odors were 
generated by gradually changing the fractions of activated mitral cells defining odors N or L. The x-axis indicates the similarity of a morphed odor to 
odor L, here quantified by the correlation between the olfactory bulb (OB) activity patterns representing the morphed and the learned odors (same 
x-axis in all panels). (B) Pearson correlation between activity patterns evoked by a morphed odor and a learned odor in pDpsim as a function of the 
corresponding correlations in the OB (full line). The dashed line shows the correlation to the novel odor instead of the learned odor. A signature 
of pattern completion is a steep increase in the correlation between activity patterns representing a morphed and a learned odor in pDpsim, often 
exceeding the OB input correlation (gray shaded area). (C) Firing rates in response to morphed odors averaged across assembly neurons (learned 
odor, full line) or pseudo-assembly neurons (novel odor, dashed line) as a function of similarity between the presented odor and learned odor L (see 
A). (D) Excitatory input from the OB averaged over assembly neurons or non-assembly neurons. (E) Sum of inhibitory and excitatory currents evoked 
by other pDpsim neurons (recurrent input), averaged over assembly or non-assembly neurons. (F) Absolute inhibitory and excitatory recurrent currents 
averaged over assembly neurons. (B–F) Averages over eight networks.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Pattern completion: additional results.
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afferent input (Figure  3D) because the net recurrent input remained constant due to E/I balance 
(Figure 3E). In Scaled networks, assembly firing rates increased massively as the learned odor was 
approached (Figure 3C), reflecting a large increase in recurrent excitation (Figure 3D–F, Figure 3—
figure supplement 1C). In Tuned networks, in contrast, assembly firing rates increased only modestly 
due to a slightly larger increase in E than I currents near the learned odor (Figure 3D–F, Figure 3—
figure supplement 1C). Hence, the modest amplification by assemblies of Tuned networks involves 
an ‘imperfect’ synaptic balance.

Geometry of activity patterns in networks with E/I assemblies
We next examined how E/I assemblies transform the geometry of neuronal representations, that is 
their organization in a state space where each axis represents the activity of one neuron or one pattern 
of neural covariance (Chung and Abbott, 2021; Gallego et al., 2017; Langdon et al., 2023). To 
address this general question, we created an odor subspace and examined its transformation by 
pDpsim. The subspace consisted of a set of OB activity patterns representing four uncorrelated pure 
odors and mixtures of these pure odors. Pure odors were assigned to the corners of a square and 
mixtures were generated by selecting active mitral cells from each of the pure odors with probabilities 
depending on the relative distances from the corners (Figure 4A, Methods). Correlations between OB 
activity patterns representing pure odors and mixtures decreased approximately linearly as a function 
of distance in the subspace (Figure 4B). The odor subspace therefore represented a hypothetical 
olfactory environment with four odor sources at the corners of a square arena and concentration 
gradients within the arena. Locations in the odor subspace were visualized by the color code depicted 
in Figure 4A.

To examine how pDpsim transforms this odor subspace we projected time-averaged activity patterns 
onto the first two principal components (PCs). As expected, the distribution of OB activity patterns 
in PC space closely reflected the square geometry of the subspace (Figure 4C). This geometry was 
largely preserved in the output of rand networks, consistent with the notion that random networks 
tend to maintain similarity relationships between input patterns (Figure 4D; Babadi and Sompolinsky, 
2014; Marr, 1969; Schaffer et al., 2018). We next examined outputs of Scaled or Tuned networks 
containing 15 assemblies, two of which were aligned with pure odors (Figure 4—figure supplement 
1A). The four odors delineating the odor subspace therefore consisted of two learned and two novel 
odors. In Scaled I networks, odor inputs were discretely distributed between three locations in state 
space representing the two learned odors and residual odors, consistent with the expected discrete 
attractor states (Figure 4D, E). Tuned networks, in contrast, generated continuous representations of 
the odor subspace (Figure 4D). The geometry of these representations was distorted in the vicinity 
of learned odors, which were more distant from most mixtures than novel odors. These geometric 
transformations were less obvious when activity patterns of Tuned networks were projected onto the 
first two PCs extracted from rand networks (Figure 4—figure supplement 1B). Hence, E/I assemblies 
introduced local curvature into the coding space that partially separated learned from novel odors 
without disrupting the continuity of the subspace representation.

The curvature of the activity manifold in Tuned networks suggests that E/I assemblies confine 
population activity along specific dimensions of the state space. To test this hypothesis, we first quan-
tified the dimensionality of odor-evoked activity by the participation ratio, a measure that depends on 
the eigenvalue distribution of the pairwise neural covariance matrix (Altan et al., 2021) (Methods). As 
expected, dimensionality was highest in rand networks and very low in Scaled I networks, reflecting 
the discrete attractor states (Figure 4F). In Tuned networks, dimensionality was high compared to 
Scaled I networks but lower than in rand networks (Figure 4F). The same trend was observed when 
we sampled data from a limited number of neurons to mimic experimental conditions and when we 
used other measures of dimensionality (Figure  4—figure supplement 1C–E). Furthermore, when 
restraining the analysis to activity evoked by novel odors and related mixtures, dimensionality was 
similar between rand and Tuned networks (Figure 4F). These observations support the hypothesis 
that E/I assemblies locally constrain neuronal activity onto lower-dimensional subspaces (manifolds), 
consistent with recent findings showing effects of specific circuit motifs on the dimensionality of neural 
activity (Dahmen et al., 2023; Recanatesi et al., 2019).

We further tested this hypothesis by examining the local geometry of activity patterns around 
representations of learned and novel odors. If E/I assemblies locally confine activity onto manifolds, 

https://doi.org/10.7554/eLife.96303
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Figure 4. Geometry of odor representations in pDpsim. (A) Odor subspace delineated by two learned (L, M) and two novel (N, O) pure odors at the 
vertices of a virtual square. Pixels within the square represent odor mixtures. (B) Left: Pearson correlations between olfactory bulb (OB) activity patterns 
defining pure odors. Right: Correlation between one pure odor (L; top left vertex) and all other odors. The odor from one vertex gradually morphs into 
the odor from another vertex. (C) Projection of activity patterns in the OB onto the first two principal components (PCs). Colors represent patterns in 
the odor subspace as shown in (A, D). Projection of activity patterns in pDpsim in response to the odor subspace onto the first two PCs. Representative 
examples of different pDp networks. (E) Density plot showing distribution of data points and demonstrating clustering at distinct locations in PC space 
for Scaled I networks. (F) Quantification of dimensionality of neural activity by the participation ratio: activity evoked by novel odors and related mixtures 
(left), activity evoked by learned odors and related mixtures (center), and activity evoked by all stimuli (right). Each data point represents one network 
(n = 8, mean ± SD); dotted line represents the participation ratio of OB activity. (G) Variance along the first 40 PCs extracted from activity patterns in 

Figure 4 continued on next page
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small changes of input patterns should modify output patterns along preferred dimensions near repre-
sentations of learned but not novel odors. To test this prediction, we selected sets of input patterns 
including each pure odor and the seven most closely related mixtures. We then quantified the vari-
ance of the projections of their corresponding output patterns onto the first 40 PCs (Figure 4G). In 
Tuned networks, this variance decreased only slightly as a function of PC rank for activity patterns 
related to novel odors, indicating that patterns varied similarly in all directions. For patterns related to 
learned odors, in contrast, the variance was substantially higher in the direction of the first few PCs, 
implying variation along preferred dimensions. In addition, we measured the distribution of angles 
between edges connecting activity patterns representing pure odors and their corresponding related 
mixtures in PC space (Figure 4H, inset; Methods; Schoonover et al., 2021). Angles were narrowly 
distributed around 1  rad in rand networks but smaller in the vicinity of learned patterns in Tuned 
networks (Figure 4H).

Activity may be constrained non-isotropically by amplification along a subset of dimensions, by 
inhibition along other dimensions, or both. E neurons participating in E/I assemblies had large load-
ings on the first two PCs (Figure 4—figure supplement 1F, G) and responded to learned odors with 
increased firing rates as compared to the mean rates in Tuned E+I and rand networks. Firing rates 
of the remaining neurons, in contrast, were slightly lower than the corresponding mean rates in rand 
networks. Consistent with these observations, the variance of activity projected onto the first few PCs 
was higher in Tuned E+I than in rand networks (Figure 4G) while the variance along higher-order PCs 
was lower (Figure 4G, inset). These observations indicate that local activity manifolds are delineated 
both by amplification of activity along preferred directions and by suppression of activity along other 
dimensions.

To obtain first insights into network mechanisms underlying effects of E/I assemblies on manifold 
geometry we simulated additional networks. Equalizing biophysical parameters of E and I neurons 
had little impact on network behavior (Figure 4—figure supplement 2; Methods), indicating that 
observed effects do not depend on specific biophysical differences between E and I neurons. We next 
explored the hypothesis that the modest amplification of activity within E/I assemblies contributes to 
the geometry of neural manifolds in pDpsim. First, we adjusted the number of I-to-E connections (β) 
within assemblies of Tuned E+I networks to prevent amplification of activity within assemblies during 
presentation of learned odors (Tuned[adjust], Figure  4—figure supplement 3A–E). In contrast to 
Tuned E+I networks with control parameters, we observed neither a curvature of activity manifolds in 
PC space nor an asymmetry of the Malalanobis distance (dM; another signature of Tuned networks, see 
below) in these modified networks (Figure 4—figure supplement 3F–H). Second, we reduced recur-
rent amplification in assemblies of Scaled I networks by decreasing α and χ (Scaled[adjust], Figure 4—
figure supplement 3A–E). This resulted in distorted activity manifolds and an asymmetric increase 
in dM, similar to observations in Tuned networks (Figure 4—figure supplement 3F–H; see below). 
Third, we artificially amplified activity in pseudo-assemblies of rand networks through concentration-
dependent modifications of excitability instead of connectivity changes (Figure 4—figure supple-
ment 3A). This manipulation increased the mean population activity as compared to control rand 
networks, but it also induced geometric modifications similar to Tuned networks, although the mani-
fold curvature in PC space appeared less pronounced (Figure 4—figure supplement 3B–H). Hence, 
different manipulations had consistent effects on manifold geometry despite different effects on mean 
firing rates: signatures of manifold geometry observed in Tuned networks were mimicked by manipu-
lations producing a modest, input-dependent amplification of firing rates in (pseudo-)assemblies but 
abolished by manipulations that suppressed this amplification. These results indicate that the modest 

different networks. Insets: Variance along PCs 200–400. (H) Angles between edges connecting a pure odor response and related versions thereof (inset). 
The analysis was performed using the first 400 PCs, which explained >75% of the variance in all networks. n = 168 angles per pure odor in each of 8 
networks (Methods). Similar results were obtained in the full-dimensional space.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Transformations and dimensionality of activity patterns: additional results.

Figure supplement 2. Geometry and dynamics in a simple model with equal parameters for excitation and inhibition.

Figure supplement 3. Manipulating amplification within assemblies.

Figure 4 continued
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amplification of activity within assemblies contributes to the geometry of odor representations in 
pDpsim. However, further analyses are required to explore potential contributions of other processes 
and to understand the underlying mechanisms in more detail.

Pattern classification by networks with E/I assemblies
The lack of discrete attractor states raises the question how transformations of activity patterns by 
Tuned networks affect pattern classification. To quantify the association between an activity pattern 
and a class of patterns representing a given odor we computed the Mahalanobis distance (dM). This 
measure quantifies the distance between the pattern and the class center, taking into account covaria-
tion of neuronal activity within the class. In bidirectional comparisons between patterns from different 
classes, the mean dM may be asymmetric if neural covariance differs between classes. We first quanti-
fied dM between representations of pure odors based on activity patterns across 80 E neurons drawn 
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Figure 5. Distance relationships and classification of odor representations. (A) Odor-evoked activity patterns used as class distributions and vectors 
(B) or training and test sets (C). Same odor subspace as in Figure 4. (B) Top: Schematic illustration of Mahalanobis distance dM. Bottom: dM between one 
activity vector (v) and reference classes (Q) in rand and Tuned E+I networks. dM was computed based on the activity patterns of 80 E neurons drawn from 
the four (pseudo-) assemblies. Average of 50 draws. Note that dM between patterns related to a learned odor and non-matching reference classes was 
higher in Tuned E+I networks. (C) Pattern classification probability quantified by quadratic discriminant analysis (QDA). PTarget quantifies the probability 
that an activity pattern from the test set (odor mixtures, see A) is assigned to a target class from the training set (pure or closely related odor; see 
A). Left: Classification probability as a function of the similarity (Pearson correlation) between the test and target odors in the olfactory bulb (OB) (input 
patterns). Note enhanced classification probability for patterns evoked by odors similar to learned odors in Tuned E+I networks. Right: Classification 
probability for patterns similar to the training set (see A). Each data point represents one network (n = 8, mean ± SD; Wilcoxon signed-rank test, 
**: p < 0.01). (D) The odor subspace of Figure 4 was subdivided in classes reflecting different concentrations of one of the pure odors (Methods). 
Odor concentration is defined here as the percentage of the 150 mitral cells representing a given odor that are activated. (E) The concentration of a 
given odor was regressed against the mean firing rates of a subset of neurons (Methods). Mean square error (squared difference between the actual 
concentration and the estimated concentration). (F) Accuracy of a linear support vector machine (SVM) in predicting the concentration of a novel (left) or 
learned odor (right) in a mixture. Each data point represents one network (n = 8, mean ± SD).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Further analyses of pattern distances: uncorrelated odors.

Figure supplement 2. Classification of odor representations (template matching).

https://doi.org/10.7554/eLife.96303
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from the corresponding (pseudo-) assemblies. dM was asymmetrically increased in Tuned E+I networks 
as compared to rand networks. Large increases were observed for distances between patterns related 
to learned odors and reference classes representing novel odors (Figure 5A, B). In the other direc-
tion, increases in dM were smaller. Moreover, distances between patterns related to novel odors were 
almost unchanged (Figure 5B). Further analyses showed that increases in dM in Tuned E+I networks 
involved both increases in the Euclidean distance between class centers and non-isotropic scaling of 
intra-class variability (Figure 5—figure supplement 1). The geometric transformation of odor repre-
sentations by E/I assemblies therefore particularly enhanced the discriminability of patterns repre-
senting learned odors.

To further analyze pattern classification, we performed multi-class quadratic discriminant analysis 
(QDA), an extension of linear discriminant analysis for classes with unequal covariances. Using QDA, 
we determined the probabilities that an activity pattern evoked by a mixture is classified as being 
a member of each of four classes representing the pure odors, thus mimicking a four-way forced 
choice odor classification task. The four classes were defined by the distributions of activity patterns 
evoked by the pure and closely related odors. We then examined the classification probability of 
patterns evoked by mixtures with respect to a given class as a function of the similarity between the 
mixture and the corresponding pure odor (target) in the OB. As expected, the classification proba-
bility increased with similarity. Furthermore, in Tuned E+I networks, the classification probability of 
mixtures similar to a pure odor was significantly higher when the pure odor was learned (Figure 5C). 
Hence, E/I assemblies facilitated the classification of inputs related to learned patterns. Pattern clas-
sification by QDA could not be applied to outputs of Scaled networks because intra-class variability 
was too low (Methods).

E/I assemblies also improved pattern classification when activity patterns were classified based 
on correlations to template vectors representing the four odor classes (Methods; Figure 5—figure 
supplement 2). This analysis further revealed hysteresis effects in Scaled but not in Tuned networks 
that impaired pattern classification (Figure 5—figure supplement 2).

When neuronal subsets were randomly drawn not from assemblies but from the entire population, 
dM was generally lower (Figure  5B). These results indicate that assembly neurons convey higher-
than-average information about learned odors. Together, these observations imply that pDpsim did 
not function as a categorical classifier but nonetheless supported the classification of learned odors, 
particularly when the readout focused on assembly neurons. Conceivably, classification may be further 
enhanced by optimizing the readout strategy, for example, by a learning-based approach. However, 
modeling biologically realistic readout mechanisms requires further experimental insights into the 
underlying circuitry.

Additional computational properties of networks with E/I assemblies
E/I assemblies may not only support discrete classification but also other tasks. We hypothesized that 
continuous manifolds provide a distance metric to quantitatively evaluate the relatedness between 
an input and other stimuli. The geometric modifications induced by E/I assemblies may specifically 
provide a metric to evaluate distances between a new sensory input and previously learned stimuli. To 
explore these hypotheses, we first used multilinear regression to predict the concentration of a pure 
odor in subspace mixtures (Figure 4A) based on population activity. Highest prediction errors were 
observed for Scaled I networks, presumably because their discontinuous outputs poorly represent 
gradual concentration differences (Figure  5D, E). Lowest errors were observed for concentration 
estimates of learned odors in Tuned networks. We further trained support vector machines to esti-
mate the concentrations of pure odors in the subspace mixtures and again found highest accuracy 
for learned odors in Tuned networks (Figure 5F). These results show that networks with E/I assem-
blies enable the quantitative analysis of selected stimulus components in the presence of distractors, 
presumably due to the geometric properties of the underlying neural manifold.

We next examined whether E/I assemblies can stabilize activity when multiple memories are succes-
sively added into a network, as in a continual learning process. In the absence of precise E/I balance, 
the divergence of firing rates and, thus, the risk of network instability are expected to increase as 
assemblies accumulate. Tuned networks may be more resistant against these risks, particularly when 
assemblies overlap, because activity is controlled more precisely within each additional assembly. To 
test this hypothesis, we examined responses of Tuned E+I and Scaled I networks to an additional odor 

https://doi.org/10.7554/eLife.96303
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subspace where four of the six pairwise correlations between the pure odors were clearly positive 
(range, 0.27–0.44; Figure 6A). We then compared networks with 15 randomly created assemblies to 
networks with two additional assemblies representing two of the correlated pure odors. These two 
additional assemblies had, on average, 16% of neurons in common due to the similarity of the odors. 
In Tuned networks, introducing additional overlapping assemblies selectively increased the discrimin-
ability of the corresponding odor representations in PC space (Figure 6B, C), as observed for uncor-
related assemblies (Figure 4D), but population firing rates remained almost unchanged (Figure 6B, 
C). In Scaled I networks, in contrast, creating two additional memories resulted in a convergence of 
the corresponding representations in PC space and in a substantial increase in firing rates, particularly 
in response to the learned and related odors (Figure 6C). These observations are consistent with 
the assumption that precise balance in E/I assemblies protects networks against instabilities during 
continual learning, even when memories overlap. We further observed that, in this regime of higher 
pattern similarity, dM was again increased upon learning, particularly between learned odors and refer-
ence classes representing other odors (Figure 6—figure supplement 1). E/I assemblies therefore 
consistently increased dM in a directional manner under different conditions.

Discussion
A precisely balanced memory network constrained by pDp
Autoassociative memory networks map inputs onto output patterns representing learned informa-
tion. Classical models proposed this mapping to be accomplished by discrete attractor states that 
are defined by assemblies of E neurons and stabilized by global homeostatic inhibition. However, as 
seen in Scaled I networks, global inhibition is insufficient to maintain a stable, biologically plausible 
firing rate distribution. This problem can be overcome by including I neurons in assemblies, which 
leads to more precise synaptic balance. To explore network behavior in this regime under biologically 
relevant conditions we built a spiking network model constrained by experimental data from pDp. 
The resulting Tuned networks reproduced additional experimental observations that were not used as 
constraints including irregular firing patterns, lower output than input correlations, and the absence 
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Figure 6. Representation of correlated patterns and resilience against additional memories. (A) Subspace delineated by four positively correlated odors 
(see Methods). Top: Correlations between pure odors. Bottom: Projection of olfactory bulb (OB) activity patterns onto the first two principal components 
(PCs). (B) Firing rates (top) and PC projection of output activity of a Tuned E+I network with 15 E/I assemblies that did not represent any of the four pure 
odors of the subspace. (C) Firing rates (top) and PC projection of output activity (bottom) after creation of two additional assemblies representing two 
of the pure odors (Y and Z). Left: Tuned E+I network. Right: Scaled I network. Note that in the Scaled I network, but not in the Tuned E+I network, firing 
rates evoked by newly learned odors were increased and patterns evoked by these odors were not well separated in PC space.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Further analyses of pattern distances: correlated odors.
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of persistent activity. Hence, pDpsim recapitulated characteristic properties of a biological memory 
network with precise synaptic balance.

Neuronal dynamics and representations in precisely balanced memory 
networks
Simulated networks with global inhibition showed attractor dynamics and pattern completion, consis-
tent with classical attractor memory. However, the distribution of firing rates broadened as connec-
tion density within assemblies increased, resulting in unrealistically high (low) rates inside (outside) 
assemblies and, consequently, in a loss of synaptic balance. Hence, global inhibition was insufficient to 
stabilize population activity. In networks with E/I assemblies, in contrast, firing rates remained within 
a realistic range and the balanced state was maintained. Such Tuned networks showed no discrete 
attractor states but transformed the geometry of the coding space by confining activity to continuous 
manifolds near representations of learned inputs. This observation is consistent with the hypothesis 
that E/I co-tuning decreases the probability of multistable attractor states as compared to balanced 
networks with global inhibition or lateral inhibition between assemblies (Boerlin et al., 2013; Henne-
quin et al., 2018; Wu and Zenke, 2021).

Geometric transformations in Tuned networks may be considered as intermediate between two 
extremes: (1) geometry-preserving transformations as, for example, performed by many random 
networks (Babadi and Sompolinsky, 2014; Marr, 1969; Schaffer et al., 2018), and (2) discrete maps 
as, for example, generated by discrete attractor networks (Freeman and Skarda, 1985; Hopfield, 
1982; Khona and Fiete, 2022; Figure  7). We found that transformations became more discrete 
map-like when amplification within assemblies was increased and precision of synaptic balance was 
reduced. Likewise, decreasing amplification in assemblies of Scaled networks changed transforma-
tions toward the intermediate behavior, albeit with broader firing rate distributions than in Tuned 
networks (Figure 4—figure supplement 3B). These observations indicate that a modest amplification 
of activity within assemblies contributes to geometric modifications of activity manifolds in Tuned 
networks, but other factors such as structured inhibition may also contribute. Hence, further analyses 
are required to obtain a deeper mechanistic understanding of manifold geometry in networks with 
E/I assemblies. Nonetheless, our results suggest that precise synaptic balance may generally favor 
intermediate over discrete transformations because this regime tends to linearize the relationship 

Locally defined 
manifolds

Discrete
attractor states

Preservation of 
geometry

A B C

Figure 7. Schematic of geometric transformations. (A) Randomly connected networks tend to preserve the 
geometry of coding space. Such networks can support neuronal computations, for example, by projecting activity 
patterns in a higher-dimensional coding space for pattern classification. (B) We found that balanced networks 
with E/I assemblies transform the geometry of representations by locally restricting activity onto manifolds. 
These networks stored information about learned inputs while preserving continuity of the coding space. Such 
a geometry may support fast classification, continual learning and cognitive computations. Note that the true 
manifold geometry cannot be visualized appropriately in 2D because activity was ‘focused’ in different subsets 
of dimensions at different locations of coding space. As a consequence, the dimensionality of activity remained 
substantial. (C) Neuronal assemblies without precise balance established discrete attractor states, as observed in 
memory networks that store information as discrete items. Networks establishing locally defined activity manifolds 
(B) may thus be considered as intermediates between networks generating continuous representations without 
memories (A) and classical memory networks with discrete attractor dynamics (C).

https://doi.org/10.7554/eLife.96303
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between the mean input and output firing rates of neuronal populations (Baker et al., 2020; Denève 
and Machens, 2016).

E/I assemblies increased variability of population activity along preferred directions of state space 
and reduced its dimensionality in comparison to rand networks. Nonetheless, dimensionality remained 
high compared to Scaled networks with discrete attractor states. These observations indicate that 
geometric transformations in Tuned networks involved (1) a modest amplification of activity in one or 
a few directions aligned to the assembly, and (2) a modest reduction of activity in other directions. E/I 
assemblies therefore created a local curvature of coding space that ‘focused’ activity in a subset of 
dimensions and, thus, stored information in the geometry of coding space.

As E/I assemblies were small relative to the total size of the E neuron population, stored informa-
tion may be represented predominantly by small neuronal subsets. Consistent with this hypothesis, 
dM was increased and the classification of learned inputs by QDA was enhanced when activity was 
read out from subsets of assembly neurons as compared to random neuronal subsets. Moreover, 
signatures of pattern completion were found in the activity of assemblies but not in global pattern 
correlations. The retrieval of information from networks with small E/I assemblies therefore depends 
on the selection of informative neurons for readout. Unlike in networks with global attractor states, 
signatures of memory storage may thus be difficult to detect experimentally without specific knowl-
edge of assembly memberships.

Computational functions of networks with E/I assemblies
In theory, precisely balanced networks with E/I assemblies may support pattern classification despite 
high variability of spike trains and the absence of discrete attractor states (Denève and Machens, 
2016). Indeed, we found in Tuned E+I networks that input patterns were classified successfully by 
generic classifiers, particularly relative to learned inputs. Analyses based on the Mahalanobis distance 
dM indicate that classification of learned inputs was enhanced by two effects: (1) local manifolds repre-
senting learned odors became more distant from representations of other odors due to a modest 
increase in firing rates within E/I assemblies, and (2) the concomitant increase in variability was not 
isotropic, remaining sufficiently low in directions that separated novel from learned patterns. Hence, 
information contained in the geometry of coding space can be retrieved by readout mechanisms 
aligned to activity manifolds. Efficient readout mechanisms may thus integrate activity primarily from 
assembly neurons, as mimicked in our QDA-based pattern classification. This notion is consistent with 
the finding that the integrated activity of E/I assemblies can be highly informative despite variable 
firing of individual neurons (Boerlin et al., 2013; Denève et al., 2017; Denève and Machens, 2016). 
It will thus be interesting to explore how the readout of information from local manifolds could be 
further optimized.

Networks with E/I assemblies may also perform computations other than pattern classification. A 
toy model of continual learning indicates that precise balance can stabilize firing rate distributions 
when new memories are added, helping to prevent catastrophic failures. Furthermore, we found that 
continuous manifolds in Tuned networks support metric analyses, for example, to determine the relat-
edness of a (potentially complex) input to previously learned stimuli. Such tasks are not supported 
by discrete attractor states because information about gradual differences between inputs is lost by 
pattern completion. E/I assemblies can thus enhance the quantitative analysis of relevant information 
through changes in manifold geometry.

Conceivably, E/I assemblies may have further consequences for neuronal computation. Unlike 
discrete attractor networks, Tuned networks do not exhibit persistent activity, suggesting that they 
mediate fast computations rather than short-term memory functions. Fast classification may, for 
example, be important to interpret dynamical sensory inputs on a moment-to-moment basis. More-
over, the representation of learned inputs by small neuronal subsets, rather than global activity states, 
raises the possibility that multiple inputs can be classified simultaneously. Generally, the absence of 
discrete attractor states indicates that information is not stored in the form of distinct items. Rather, 
E/I assemblies cause geometric modifications of a continuous coding space that result in an overrep-
resentation of learned (relevant) inputs at the expense of other stimuli. These pattern transformations 
may thus contribute to different classification and learning processes by re-formatting and extracting 
relevant information for further processing by distributed networks. Such a function would be loosely 
related to computations within layers of artificial neuronal networks and consistent with the notion 

https://doi.org/10.7554/eLife.96303
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that piriform cortex is embedded in a larger network comprising multiple telencephalic brain areas 
(Haberly, 2001).

Balanced state networks with E/I assemblies as models for olfactory 
cortex
Piriform cortex and Dp have been proposed to function as attractor-based memory networks for 
odors. Consistent with this hypothesis, pattern completion and its modulation by learning has been 
observed in piriform cortex of rodents (Barnes et al., 2008; Chapuis and Wilson, 2011). However, 
odor-evoked firing patterns in piriform cortex and Dp are typically irregular, variable, transient and 
less reproducible than in the OB even after learning (Jacobson et al., 2018; Pashkovski et al., 2020; 
Schoonover et al., 2021; Yaksi et al., 2009), indicating that activity does not converge onto stable 
attractor states. Balanced networks with E/I assemblies, in contrast, are generally consistent with 
these experimental observations. Alternative models for pattern classification in the balanced state 
include networks endowed with short-term plasticity, which respond to stimuli with an initial ampli-
fication phase followed by a tonic inhibition-stabilized state (Wu and Zenke, 2021), or mechanisms 
related to ‘balanced amplification’, which typically generate pronounced activity transients (Ahma-
dian and Miller, 2021; Murphy and Miller, 2009). However, it has not been explored whether these 
models can be adapted to reproduce characteristic features of Dp or piriform cortex.

Our results generate predictions to test the hypothesis that E/I assemblies establish local mani-
folds in Dp: (1) odor-evoked population activity should be constrained onto manifolds, particularly in 
response to learned odors. (2) Learning should increase the magnitude and asymmetry of dM between 
odor representations. (3) Activity evoked by learned and related odors should exhibit lower dimen-
sionality and more directional variability than activity evoked by novel odors. (4) Careful manipulations 
of inhibition may unmask assemblies by increasing amplification. These predictions may be addressed 
experimentally by large-scale measurements of odor-evoked activity after learning. The direct 
detection of E/I assemblies will ultimately require dense reconstructions of large neuronal networks 
at synaptic resolution. Given the small size of Dp, this challenge may be addressed in zebrafish by 
connectomics approaches based on volume electron microscopy (Denk et al., 2012; Friedrich and 
Wanner, 2021; Kornfeld and Denk, 2018).

The hypothesis that memory networks contain E/I assemblies and operate in a state of precise 
synaptic balance can be derived from the basic assumptions that (1) synaptic plasticity establishes 
assemblies and (2) that firing rate distributions remain stable as network structure is modified by expe-
rience (Barron et al., 2017; Hennequin et al., 2017). Hence, Tuned networks based on Dp may also 
reproduce features of other recurrently connected brain areas such as hippocampus and neocortex, 
which also operate in a balanced state (Renart et al., 2010; Sadeh and Clopath, 2020b; Shadlen and 
Newsome, 1994; Znamenskiy et al., 2024). Future experiments may therefore explore representa-
tions of learned information by local manifolds also in cortical brain areas.

Methods
Key resources table 

Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Software, algorithm Matlab Mathworks
https://ch.mathworks.com 
(RRID:SCR_001622)

pDp spiking network model
pDpsim consisted of 4000 excitatory (E) and 1000 inhibitory (I) neurons which were modeled as adap-
tive leaky integrate-and-fire units with conductance-based synapses of strength ‍w‍.

A spike emitted at time t by the presynaptic neuron y from population Y triggered an increase in 
the conductance ‍gYx‍ in the postsynaptic neuron ‍x‍, connected to y with strength wyx:

	﻿‍
τsyn,Y

dgYx
dt

= −gYx + τsyn,Y
∑

y
wyxδ

(
t − tspike,y

)
‍�

(1)

https://doi.org/10.7554/eLife.96303
https://ch.mathworks.com
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The synaptic time constant ‍τsyn,Y ‍ was set to 10 ms for inhibitory synapses and 30 ms for excitatory 
synapses, except for the simple model were ‍τsyn,Y ‍ was 10 ms for both synapses.

Neuron ‍x‍ from population X received synaptic inputs from the OB as well as from the different local 
neuronal populations P. Its membrane potential ‍Vx‍ evolved according to:

	﻿‍
grest,X τX

dVx
dt

= grest,X
(
Erest,X − Vx

)
+ gOBx

(
Eexc − Vx

)
+
∑

P
gPx

(
EP − Vx

)
− zx

‍�
(2)

When the membrane potential reached a threshold Vth, the neuron emitted a spike and its 
membrane potential was reset to ‍Erest‍ and clamped to this value during a refractory period τref.

Excitatory neurons were endowed with adaptation with the following dynamics (Brette and 
Gerstner, 2005):

	﻿‍
τa

dz
dt

= a
(
Vx − Erest,E

)
− z, with z → z + b after each spike

‍�
(3)

In inhibitory neurons, ‍z‍ was set to 0 for simplicity.
The neuronal parameters of the model are summarized in Table 1. The values of the membrane 

time constant ‍τX‍, the resting conductance ‍grest‍ and resting potential Erest of excitatory neurons, and the 
inhibitory and excitatory reversal potential Einh and Eexc are in the range of experimentally measured 

Table 1. Values of the neuronal parameters.
The superscripts indicate the reference where the experimental measurements can be found.

Neuronal parameters Symbol

Value

Excitatory neuron Inhibitory neuron Simple model

Membrane time constant ‍τX ‍ 85 ms*,† 50 ms† 68 ms

Resting conductance ‍grest‍ 1.35 nS* 0.9 nS 1.1 nS

Resting potential ‍Erest‍ –60 mV*,† –65 mV –62 mV

Excitatory reversal potential ‍Eexc‍ 0 mV* 0 mV 0 mV

Inhibitory reversal potential ‍Einh‍ –70 mV* –70 mV –70 mV

Spiking threshold ‍Vth‍ –38 mV* –45 mV –41 mV

Reset potential ‍Erest‍ –60 mV –65 mV –62 mV

Refractory period ‍τref ‍ 8 ms 8 ms 8 ms

Adaptation time constant ‍τa‍ 40 ms / 20 ms

Subthreshold adaptation ‍a‍ 1 nS / 0.5 nS

Spike-triggered adaptation ‍b‍ 10 pA / 5 pA

*Rupprecht and Friedrich, 2018.
†Blumhagen et al., 2011.

Table 2. Values of the connectivity parameters of different networks {probability pYX and synaptic 
strength ‍w‍YX in pS}.
In Figures 3–5, 2 of the 5 networks from each structure were simulated. In the simple model, each 
neuron received the same number of inputs from each population.

Network structure OB → E OB → I E → E E → I I → E I → I

A (n = 5) {0.02, 128} {0.01, 68} {0.05, 128} {0.04, 68} {0.05, 480} {0.04, 250}

B (n = 5) {0.02, 128} {0.01, 66} {0.05, 128} {0.04, 66} {0.05, 450} {0.04, 210}

C (n = 5) {0.02, 128} {0.01, 68} {0.05, 108} {0.02, 80} {0.05, 520} {0.02, 310}

D (n = 5) {0.03, 95} {0.02, 42} {0.05, 128} {0.04, 58} {0.05, 590} {0.04, 270}

Simple (n = 5) {0.03, 160} {0.03, 160} {0.025, 370} {0.025, 370} {0.1, 1010} {0.1, 1010}

https://doi.org/10.7554/eLife.96303
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values (Rupprecht and Friedrich, 2018; Blumhagen et al., 2011). The remaining parameters were 
then fitted to fulfill two conditions (derived from unpublished experimental observations): (1) the 
neuron should not generate action potentials in response to a step current injection of duration 500 
ms and amplitude 15 pA, and (2) the mean firing rate should be on the order of tens of Hz when the 
amplitude of the step current is 100 pA. Furthermore, the firing rates of inhibitory neurons should 
be higher than the firing rates of excitatory neurons, as observed experimentally (unpublished data).

To verify that the behavior of pDpsim was robust, we simulated 20 networks with different connec-
tion probabilities pYX and synaptic strengths wYX (Table 2). The connections between neurons were 
drawn from a Bernoulli distribution with a predefined pYX ≤ 0.05. As a consequence, each neuron 
received the same number of input connections. Care was also taken to ensure that the variation in the 
number of output connections across neurons was low in pDpsim: connections of a presynaptic neuron 
y to postsynaptic neurons x were randomly deleted when their total number exceeded the average 
number of output connections by ≥5%, or added when they were lower by ≥5%.

The connection strengths wYX were then fitted to reproduce experimental observations in pDp (five 
observables in total, see below and Figure 1). For this purpose, a lower and an upper bound for wYX 
were set such that the amplitudes of single EPSPs and IPSPs were in the biologically plausible range 
of 0.2–2 mV. wOE was then further constrained to maintain the odor-evoked, time-averaged gOE in the 
range of experimental values (Rupprecht and Friedrich, 2018). Once wOE was fixed, the lower bound 
of wEE was increased to obtain a network rate >10 Hz in the absence of inhibition. A grid search was 
then used to refine the remaining wYX.

OB input
Each pDpsim neuron received external input from the OB, which consisted of 1500 mitral cells sponta-
neously active at 6 Hz. Odors were simulated by increasing the firing rate of 150 randomly selected 
mitral cells. Firing rates of these ‘activated’ mitral cells were drawn from a discrete uniform distribution 
ranging from 8 to 32 Hz and their onset latencies were drawn from a discrete uniform distribution 
ranging from 0 to 200 ms. An additional 75 randomly selected mitral cells were inhibited. Firing rates 
and latencies of these neurons were drawn from discrete uniform distributions ranging from 0 to 5 Hz 
and from 0 to 200 ms, respectively. After odor onset, firing rates decreased exponentially with a time 
constant of 1, 2, or 4 s (equally distributed). Spikes were then generated from a Poisson distribution, 
and this process was repeated to create trial-to-trial variability. As all odors had almost identical firing 
patterns, the total OB input did not vary much across odors. In Figures 1–3, the odor set consisted of 
10 novel and/or 10 learned odors, all of which were uncorrelated (pattern correlations close to zero). 
Odors were presented for 2 s and separated by 1 s of baseline activity.

Table 3. Percentage of mitral cells out of the 150 mitral cells defining one pure odor (top left corner) 
that are activated in mixtures.
Percentages may be interpreted as relative odor concentration. Values given here are for 
uncorrelated pure odors.

100 90 80 70 60 50 40 30 20 10 0

90 90 80 70 60 50 40 30 15 5 0

80 80 70 60 50 40 35 25 15 5 0

70 70 60 50 50 35 30 20 15 5 0

60 60 50 50 40 30 25 20 15 5 0

50 50 40 35 30 25 25 15 10 5 0

40 40 35 30 25 25 15 10 10 5 0

30 30 25 20 20 15 10 10 5 5 0

20 15 15 15 15 10 10 5 5 5 0

10 5 5 5 5 5 5 5 5 0 0

0 0 0 0 0 0 0 0 0 0 0

https://doi.org/10.7554/eLife.96303
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Olfactory subspaces comprised 121 OB activity patterns. Each pattern was represented by a pixel 
in a 11 × 11 square. The pixel at each vertex corresponded to one pure odor with 150 activated and 
75 inhibited mitral cells as described above, and the remaining pixels corresponded to mixtures. 
When pure odors were correlated (Figure 6), adjacent pure odors shared half of their activated and 
half of their inhibited mitral cells. We generated eight different trajectories within the square, each 
visiting all possible virtual odor locations for 1  s. Each trajectory thus consisted of 121  s of odor 
presentation, and trajectories were separated by 2  s of baseline activity. The dataset for analysis 
therefore comprised 968 activity patterns (8 trajectories × 121 odors). The total number of activated 
and inhibited cells at each location in the virtual square remained within the range of 150 ± 10% and 
75 ± 10%, respectively. The fraction of activated and inhibited mitral cells from a given pure odor 
(its concentration) decreased with the distance from the corresponding vertex as shown in Table 3. 
At each location within the square and for each trajectory, mitral cells that remained activated in the 
mixture were randomly selected from the pool of C mitral cells with the shortest latencies from each 
pure odor. C decreased with the distance from the vertex as shown in Table 4. The firing rate of each 
selected mitral cell varied ±1 Hz around its rate in response to the pure odor. The identity, but not the 
firing rate, of the activated mitral cells therefore changed gradually within the odor subspace. This 
procedure reflects the experimental observation that responses of zebrafish mitral cells to binary odor 
mixtures often resemble responses to one of the pure components (Tabor et al., 2004).

Assemblies
Unless noted otherwise, Scaled and Tuned networks contained 15 assembles (memories). An assembly 
representing a given odor contained the 100 E neurons that received the highest density of inputs 
from the corresponding active mitral cells. Hence, the size of assemblies was substantially smaller than 
the total population, consistent with the observation that only a minority of neurons in Dp or piriform 
cortex are activated during odor stimulation (Miura et al., 2012; Stettler and Axel, 2009; Yaksi et al., 
2009) and upregulate cfos during olfactory learning (Meissner-Bernard et al., 2019). We then rewired 
assembly neurons: additional connections were created between assembly neurons, and a matching 
number of existing connections between non-assembly and assembly neurons were eliminated. The 
number of input connections per neuron therefore remained unchanged. A new connection between 

Table 4. Percentage of activated cells available for selection for uncorrelated pure odors.
C is obtained by multiplying the values by 1.5.

100 100 100 90 80 70 60 50 40 30 0

100 100 100 90 80 70 60 50 35 25 0

100 100 90 60 70 60 55 45 35 25 0

90 90 80 70 70 55 50 40 35 25 0

80 80 70 70 60 50 45 40 35 25 0

70 70 60 55 50 45 45 35 30 25 0

60 60 55 50 45 45 35 30 30 25 0

50 50 45 40 40 35 30 30 25 25 0

40 35 35 35 35 30 30 25 25 25 0

30 25 25 25 25 25 25 25 25 0 0

0 0 0 0 0 0 0 0 0 0 0

Table 5. Parameters of structured networks.

Figures 2–6 Figure 4—figure supplement 3 (mean)

Scaled I α = 5, χ = 1.4 Scaled[adjust]: α = 3.7, χ = 1.07

Tuned I α = 5, β = 18 /

Tuned E+I α = 5, β = 4, γ = 3 Tuned[adjust]: α = 5, β = 11.5, γ = 3

https://doi.org/10.7554/eLife.96303
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two assembly neurons doubled the synaptic strength wEE if it added to an existing connection. As a 
result of this rewiring, the connection probability within the assembly increased by a factor α relative 
to the baseline connection probability.

In Scaled I networks, wIE was increased globally by a constant factor χ. In Tuned networks, connec-
tions were modified between the 100 E neurons of an assembly and the 25 I neurons that were most 
densely connected to these E neurons, using the same procedure as for E-to-E connections. In Tuned 
I networks, only I-to-E connections were rewired, while in Tuned E+I networks, both I-to-E and E-to-I 
connections were rewired (Table 5). Whenever possible, parameters α, β, γ, and χ that generated 
networks with less than 15% change in population firing rates compared to the corresponding rand 
network were selected. In Figure 6, two additional assemblies were created in Scaled I or Tuned 
networks without adjusting any parameters.

Observables
All variables were measured in the E population and time-averaged over the first 1.5 s of odor presen-
tations, unless otherwise stated.

1.	 The firing rate is the number of spikes in a time interval T divided by T.
2.	 gOE is the mean conductance change in E neurons triggered by spikes from the OB.
3.	 gsyn is the total synaptic conductance change due to odor stimulation, calculated as the sum 

of gOE, gEE, and gIE. gEE and gIE are the conductance changes contributed by E and I synapses, 
respectively.

4.	 The percentage of recurrent input quantifies the average contribution of the recurrent excita-
tory input to the total excitatory input in E neurons. It was defined for each excitatory neuron as 
the ratio of the time-averaged gEE to the time-averaged total excitatory conductance (gEE  + gOE) 
multiplied by 100. In (2,3,4), the time-averaged E and I synaptic conductances during the 500 
ms before odor presentation were subtracted from the E and I conductances measured during 
odor presentation for each neuron.

5.	 In addition, we required the Pearson correlation between activity patterns to be close to zero 
in response to uncorrelated inputs. The Pearson correlation between pairs of activity vectors 
composed of the firing rate of E neurons was averaged over all possible odor pairs.

Co-tuning
Co-tuning was quantified by two different procedures: (1) For each neuron, we calculated the Pearson 
correlation between the time-averaged E and I conductances in response to 10 learned odors. (2) As 
described in Rupprecht and Friedrich, 2018, we projected observed pairs of E and I conductances 
onto a ‘balanced’ and ‘counter-balanced’ axis. The balanced axis was obtained by fitting a linear model 
without constant to the E and I conductances of 4000×10 neuron-learned odor pairs. The resulting 
model was a constant I/E ratio (~1.2) that defined a membrane potential close to spike threshold. The 
counter-balanced axis was orthogonal to the balanced axis. For each neuron, synaptic conductances 
were projected onto these axes and their dispersions quantified by the standard deviations.

Characterization of population activity in state space
Principal component analysis (PCA) was applied to the OB activity patterns of the odor subspace or to 
the corresponding activity patterns across E neurons in pDpsim (8 × 121 = 968 patterns, each averaged 
over 1 s).

The participation ratio (PR) provides an estimate of the maximal number of principal components 

(PCs) required to recapitulate the observed neuronal activity. It is defined as 
‍
PR =

(∑
i λi

)2
(∑

i λ
2
i
)

‍
, where ‍λi‍ 

are the eigenvalues obtained from PCA (variance along each PC).
For angular analyses, we projected activity patterns onto the first 400 PCs, which was the number 

of PCs required to explain at least 75% of the variance in all networks. We measured the angle ‍θ‍ 
between the edges connecting the pattern ‍p‍ evoked by a pure odor to two patterns ‍sy‍ and ‍sz.‍‍sy‍ and 
‍sz‍ were patterns evoked by 2 out of the 7 odors that were most similar to the pure odor (168 angles in 

total). ‍θ‍ was defined as 
‍
θyz = cos−1

( (
sz−p

)
·
(

sy−p
)

∥sz−p∥∥sy−p∥

)
‍
 . This metric is sensitive to non-uniform expansion 

and other non-linear transformations.
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The Mahalanobis distance dM is defined as ‍dM
(
v, Q

)
=
√(

v − µ
)T S−1

(
v − µ

)
‍, where ‍v‍ is a vector 

representing an activity pattern, and ‍Q‍ a reference class consisting of a distribution of activity patterns 
with mean µ and covariance matrix ‍S‍.

Classification: Four-way forced choice task
To assess the assignment of odor-evoked patterns to representations of pure odors in the odor 
subspace, we used quadratic discriminant analysis (QDA), a non-linear classifier that takes into account 
the separation and covariance patterns of different classes (Ghojogh and Crowley, 2019). The training 
set consisted of the population response to multiple trials of each of the four pure odors, averaged 
over the first and second half of the 1 s odor presentation. To increase the number of training data in 
each of the four odor classes, the training set also included population response to odors that were 
closely related to the pure odor (Pearson correlation between OB response patterns >0.6). Analyses 
were performed using subsets of 80 neurons (similar results were obtained using 50–100 neurons). 
These neurons were randomly selected (50 iterations) either from the (pseudo-) assemblies repre-
senting the pure odors (400 E neurons; pseudo-assemblies in rand networks and for novel odors) 
or from the entire population of E neurons. We verified that the data came from a Gaussian mixture 
model. The trained classifier was then applied to activity patterns evoked by the remaining odors of 
the subspace (test set; correlation with pure odors <0.6). Each pattern x from the test set was assigned 
to the class k that maximized the discriminant function.

‍δk
(
x
)

= − 1
2 log

��Sk
��− 1

2
(
x − µk

)T S−1
k

(
x − µk

)
+ logπk‍, where ‍Sk‍ is the neuronal covariance matrix of 

each odor class k and ‍πk‍ is the prior probability of class k. This discriminant function is closely related 
to dM. The subsampling of neurons ensured the invertibility of ‍Sk‍ in Tuned and rand networks. In 
Scaled networks, ‍Sk‍ is low-rank and therefore not invertible, and QDA cannot be applied.

Template matching (Figure 5—figure supplement 2) was performed in a similar way except that 
each test pattern x was assigned to the class k that maximized the correlation between pattern x and 
a randomly selected pattern in each class (10 iterations).

Classification: Odor concentration
As mentioned above, an odor is represented by 150 activated mitral cells, a subset of which remain 
activated in mixtures. We define the percentage of remaining activated cells as the concentration of 
the odor. We performed multiple linear regression to predict the concentration of a given odor based 
on the firing rate of 80 E neurons averaged over the first second of odor presentation. As for QDA, 
these 80 neurons were randomly selected (50 iterations) from the (pseudo-) assemblies representing 
the pure odors (400 E neurons; pseudo-assemblies in rand networks and for novel odors). We included 
four or eight trials to equilibrate the number of population responses across the different concentra-
tions (n = 352).

Using the Matlab function fitcecoc, we also trained a linear support vector machine model to 
assess the accuracy of different networks in predicting the concentration of an odor in a mixture. 
Mixtures were divided into six different concentration classes, with 15% increments (see Figure 5D). 
We included two to six trials to equilibrate the number of population responses within the different 
classes. The dataset consisted of 162 population responses of 80 randomly selected neurons (20 itera-
tions) and was randomly partitioned in training and testing set (twofold cross-validation, 20 iterations).

Simulations
Simulations were performed using Matlab and Python. Differential equations were solved using the 
forward Euler method and an integration time step of dt = 0.1 ms.
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