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Abstract Experimental detection of residues critical for protein–protein interactions (PPI) is a 
time-consuming, costly, and labor-intensive process. Hence, high-throughput PPI-hot spot prediction 
methods have been developed, but they have been validated using relatively small datasets, which 
may compromise their predictive reliability. Here, we introduce PPI-hotspotID, a novel method for 
identifying PPI-hot spots using the free protein structure, and validated it on the largest collection 
of experimentally confirmed PPI-hot spots to date. We explored the possibility of detecting PPI-
hot spots using (i) FTMap in the PPI mode, which identifies hot spots on protein–protein interfaces 
from the free protein structure, and (ii) the interface residues predicted by AlphaFold-Multimer. 
PPI-hotspotID yielded better performance than FTMap and SPOTONE, a webserver for predicting 
PPI-hot spots given the protein sequence. When combined with the AlphaFold-Multimer-predicted 
interface residues, PPI-hotspotID yielded better performance than either method alone. Furthermore, 
we experimentally verified several PPI-hotspotID-predicted PPI-hot spots of eukaryotic elongation 
factor 2. Notably, PPI-hotspotID can reveal PPI-hot spots not obvious from complex structures, 
including those in indirect contact with binding partners. PPI-hotspotID serves as a valuable tool 
for understanding PPI mechanisms and aiding drug design. It is available as a web server (https://​
ppihotspotid.limlab.dnsalias.org/) and open-source code (https://github.com/wrigjz/ppihotspotid/).

eLife assessment
The article presents a machine-learning method to predict protein hotspot residues. The validation is 
incomplete, along with the misinterpretation of the results with other current methods like FTMap.

Introduction
Protein–protein interactions (PPIs) play a crucial role in cellular physiology, and their dysregulation is 
associated with various diseases (David et al., 2012) such as cancer (Nero et al., 2014), infectious 
diseases, and neurodegenerative diseases (Blazer and Neubig, 2009). Identifying residues critical 
for PPIs (termed PPI-hot spots) is important for elucidating protein function and designing targeted 
biomedical interventions (Cukuroglu et  al., 2014; Rosell and Fernández-Recio, 2018). Conven-
tionally, PPI-hot spots are defined as residues whose mutations to alanine cause ≥2 kcal/mol drop 
in the protein binding free energy (Clackson and Wells, 1995; Bogan and Thorn, 1998; DeLano, 
2002; Li et al., 2004; Keskin et al., 2005; Moreira et al., 2007). However, this definition, based on 
measuring the binding free energy change upon mutation to alanine, limits the number of experi-
mentally determined PPI-hot spots. Hence, PPI-hot spots have been more broadly defined to include 
residues whose mutations, not necessarily to alanine, significantly impair/disrupt PPIs (Fischer et al., 
2003; Chen et al., 2022), as detected by experimental methods such as coimmunoprecipitation and 
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yeast two-hybrid screening. As each mutant must be purified and analyzed separately, experimental 
detection of PPI-hot spots is time-consuming, costly, and labor-intensive.

To enable large-scale detection of PPI-hot spots, high-throughput PPI-hot spot prediction methods 
have been developed. They generally fall into two categories (Rosário‐Ferreira et  al., 2022): (1) 
methods that compute the binding energy/free energy difference between the wild-type protein and 
a mutant using classical force fields or empirical scoring functions (Moreira et al., 2007; Massova and 
Kollman, 1999; Huo et al., 2002; Guerois et al., 2002; Kortemme and Baker, 2002; González-Ruiz 
and Gohlke, 2006; Grosdidier and Fernández-Recio, 2008; Yogurtcu et al., 2008; Barlow et al., 
2018; Ibarra et al., 2019). (2) Methods that employ classifiers such as nearest neighbor, support vector 
machines, decision trees, Bayesian/neural networks, random forest, and ensemble machine-learning 
models using various features including conservation, secondary structure, solvent-accessible surface 
area (SASA), and atom density (Rosário‐Ferreira et al., 2022; Darnell et al., 2007; Cho et al., 2009; 
Assi et al., 2010; Xia et al., 2010; Lise et al., 2011; Wang et al., 2012; Ye et al., 2014; Munteanu 
et al., 2015; Melo et al., 2016; Moreira et al., 2017; Qiao et al., 2018; Sitani et al., 2021; Ovek 
et al., 2022). Most of the PPI-hot spot prediction methods rely on the protein complex structure and 
some are accessible via webservers; for example, Hotpoint (Tuncbag et al., 2010), KFC2 (Zhu and 
Mitchell, 2011), PredHS (Deng et al., 2014), and PredHS2 (Wang et al., 2018a). Fewer methods 
use only the free protein structure (Higa and Tozzi, 2009; Zerbe et al., 2012; Ozbek et al., 2013; 
Agrawal et al., 2014; Kozakov et al., 2015) or sequence (Qiao et al., 2018; Ofran and Rost, 2007; 
Chen et al., 2013; Nguyen et al., 2013; Huang and Zhang, 2016; Hu et al., 2017; Jiang et al., 
2017; Liu et al., 2018; Preto and Moreira, 2020; Yao et al., 2022), and SPOTONE (hot SPOTs ON 
protein complexes with Extremely randomized trees) is available as a web server. SPOTONE (Preto 
and Moreira, 2020) predicts PPI-hot spots from the protein sequence using residue-specific features 
such as atom type, amino acid (aa) properties, secondary structure propensity, and mass-associated 
values to train an ensemble of extremely randomized trees.

The PPI-hot spot prediction methods have mostly been trained, validated, and tested on data from 
the Alanine Scanning Energetics database (ASEdb) (Thorn and Bogan, 2001) and/or the Structural 
Kinetic and Energetic database of Mutant Protein Interactions (SKEMPI) 2.0 database (Jankauskaite 
et al., 2019). However, antibody–antigen interactions have different sequence and structural charac-
teristics compared to non-antibody PPIs (Wang et al., 2018b). Therefore, our focus is exclusively on 
non-antibody proteins in this study. The ASEdb contains 96 PPI-hot spots from 26 proteins. SKEMPI 
2.0, which includes single-point mutations not necessarily to alanine that decrease the protein binding 
free energy by ≥2 kcal/mol, has 343 PPI-hot spots from 117 distinct proteins, 40 of which overlap with 
ASEdb. Altogether, ASEdb and SKEMPI contain 399 distinct PPI-hot spots in 132 proteins. To increase 
this number of distinct PPI-hot spots, we have expanded the definition of PPI-hot spots to include 
mutations in UniProtKB (UniProt Consortium, 2018) that have been manually curated as significantly 
impairing/disrupting PPIs (Chen et al., 2022). This expanded definition led to the creation of the PPI-
HotspotDB database, which contains 4039 experimentally determined PPI-hot spots in 1893 proteins. 
To calibrate PPI-hot spot prediction methods using the free protein structure, a benchmark was derived 
from PPI-HotspotDB (Chen et al., 2022). This benchmark called PPI-Hotspot+PDBBM contains nonre-
dundant proteins with free structures and known PPI-hot spots. The proteins in PPI-Hotspot+PDBBM 
share  <60% sequence identity, which has been shown to be a reasonable threshold for grouping 
domains with similar functions (Chen et al., 2022).

Our aim is to develop a method for identifying PPI-hot spots in non-antibody proteins using free 
protein structures. First, we updated the PPI-Hotspot+PDBBM benchmark and constructed a dataset 
comprising 158 nonredundant proteins with free structures harboring 414 experimentally known PPI-
hot spots and 504 PPI-nonhot spots (see ‘Materials and methods’). Using this dataset, we applied 
an automatic machine-learning framework that automates the machine-learning pipeline to detect 
PPI-hot spots using the aa type as well as structural, energetic, and evolutionary features of each 
residue in a protein. The resulting prediction model, named PPI-hotspotID, identifies PPI-hot spots 
using an ensemble of classifiers and only four residue features (conservation, aa type, SASA, and 
gas-phase energy, ΔGgas). We explored the possibility of detecting PPI-hot spots using the FTMap 
server in the PPI mode, which identifies hot spots on protein–protein interfaces from free protein 
structures (Kozakov et al., 2015). These hot spots are identified by consensus sites − regions that 
bind multiple probe clusters (Zerbe et al., 2012; Kozakov et al., 2015; Kozakov et al., 2011). Such 
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regions are deemed to be important for any interaction involving that region of the target, indepen-
dent of partner protein (Zerbe et al., 2012). PPI-hot spots were identified as residues in van der Waals 
(vdW) contact with probe ligands within the largest consensus site containing the most probe clusters. 
We also explored the possibility of detecting PPI-hot spots using the interface residues predicted 
by AlphaFold-Multimer (Evans et al., 2021), which has been shown to outperform current docking 
methods in predicting protein–protein complexes. Finally, we illustrated the utility of PPI-hotspotID by 
applying it to detect PPI-hot spots of eukaryotic elongation factor 2 (eEF2), a translation factor essen-
tial for peptide elongation, and experimentally verified the predictions.

Results
Evaluating the performance of PPI-hot spot detection methods
The goal of PPI-hotspotID is to detect true PPI-hot spots rather than true PPI-nonhot spots in proteins. 
Hence, we assessed the performance of PPI-hotspotID by computing the sensitivity/recall (the fraction 
of true PPI-hot spots correctly identified),

	﻿‍
Sensitivity = TP

TP + FN ‍�
(1)

the fraction of predicted PPI-hot spots that are true PPI-hot spots; that is,

	﻿‍
Precision = TP

TP + FP‍�
(2)

and the F1-score, which combines recall and precision:

	﻿‍
F1 =

2 ×
(
sensitivity × precision

)
(
sensitivity + precision

) = 2TP
2TP + FP + FN ‍�

(3)

Since our dataset also contains true PPI-nonhot spots, we calculated the specificity (the fraction of 
true PPI-nonhot spots correctly identified):

	﻿‍
Specificity = TN

TN + FP‍�
(4)

In Equations 1–4, TP (true positives) or TN (true negatives) is the number of correctly predicted 
PPI-hot spots or PPI-nonhot spots, and FP (false positives) or FN (false negatives) is the number of 
wrongly predicted PPI-hot spots or PPI-nonhot spots.

Performance of PPI-hotspotID vs. FTMap and SPOTONE
We compared the performance of PPI-hotspotID, FTMap (Kozakov et  al., 2015), and SPOTONE 
(Preto and Moreira, 2020) using a dataset containing 414 true PPI-hot spots and 504 nonhot spots. 
Source data 1 lists the UniProt codes of the PPI-hot spot-containing protein and its binding partner, 
the PDB code(s) and chain of the free protein structure, the UniProt and PDB numbering of the PPI-
hot spot, the wild-type→mutant residue, the corresponding protein binding free energy change and 
source given by the PubMed reference number, and the PPI-hotspotID assignment, where P indicates 
PPI-hot spot and N indicates nonhot spot. Source data 2 lists the UniProt codes of the PPI-hot spot-
containing protein A and binding partner protein B, the PDB code-chain and length of the free and 
bound protein A structures, the PDB code-chain of the bound protein B structure, the sequence iden-
tity between free and bound protein A structures, and the PPI-hot spots of protein A. Note that the 
414 true PPI-hot spots represent only 2% of the total number of residues (21,722) in the 158 proteins.

Given the free protein structure, PPI-hotspotID and SPOTONE (Preto and Moreira, 2020) predict 
PPI-hot spots based on a probability threshold (>0.5). FTMap, in the PPI mode, detects PPI-hot 
spots as consensus sites/regions on the protein surface that bind multiple probe clusters (Kozakov 
et al., 2011). Residues in vdW contact with probe molecules within the largest consensus site were 
compared with PPI-hotspotID/SPOTONE predictions. Residues not classified as PPI-hot spots by each 
method were considered as PPI-nonhot spots. Table 1 summarizes the results for our dataset, with the 
F1 score in parentheses representing the mean validation F1 score. Compared to FTMap/SPOTONE, 

https://doi.org/10.7554/eLife.96643
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PPI-hotspotID detected a much higher fraction of true positives (0.67 vs. 0.07/0.10) and achieved a 
significantly higher F1 score (0.71 vs. 0.13/0.17).

To elucidate the differences between the PPI-hot spots predicted by PPI-hotspotID and those by 
FTMap or SPOTONE, we compared their respective true-positive predictions. The Venn diagram in 
Table 1 shows a substantial overlap in true positives between FTMap or SPOTONE and PPI-hotspotID: 
FTMap shared 23/30 true positives with PPI-hotspotID, whereas SPOTONE shared 34/40 with PPI-
hotspotID, but only 3 with FTMap. Only three true positives were predicted by all three methods. 
PPI-hotspotID identified many true positives that were not detected by FTMap or SPOTONE probably 
because it employed aspects not considered by FTMap or SPOTONE such as the gas-phase energy, 
ΔGgas (see ‘Discussion’). Furthermore, SPOTONE defined true negatives as residues whose mutation 
to alanine led to protein binding free energy changes (ΔΔGbind) of ≤2.0 kcal/mol, whereas we defined 
true negatives as residues whose alanine/nonalanine mutations resulted in negligible protein binding 
free energy changes (ΔΔGbind < 0.5 kcal/mol) or did not perturb PPIs in immunoprecipitation or GST 
pull-down assays (see ‘Materials and methods’).

Interface vs. noninterface PPI-hot spots
We can estimate the fraction of PPI-hot spots at the protein interface for 74 of the 158 nonredundant 
proteins in our dataset with complex structures. These 74 proteins harboring 243 true PPI-hot spots 
form 78 PPI pairs. Using the UniProt codes of each protein and its binding partner, we identified all 
complex structures in the PDB. Based on the complex structures of each PPI pair, we classified a PPI-
hot spot as an interface one if it formed hydrogen bonds or vdW contacts with the partner protein 
(Laskowski et al., 2018); otherwise, it was deemed a noninterface PPI-hot spot. Among the 243 true 
PPI-hot spots, 67 (27.6%) lacked such contacts across the protein interface. For these 74 proteins, 
PPI-hotspotID predicted 240 PPI-hot spots, out of which 43 (18%) are noninterface PPI-hot spots, 
SPOTONE identified only five noninterface PPI-hot spots, whereas FTMap did not predict any. For 
example, the complex structure of interleukin-4 bound to interleukin-4 receptor subunitα (PDB: 1IAR) 
(Hage et al., 1999) in Figure 1 revealed three interface PPI-hot spots (E13, R92, and N93) and two 
noninterface ones (K127 and Y128). Based on the free structure of interleukin-4 (PDB: 1BBN) (Powers 
et al., 1992), PPI-hotspotID identified all five true positives, SPOTONE detected an interfacial PPI-hot 
spot (N93), whereas FTMap failed to identify any true positives.

Performance of AlphaFold-Multimer, PPI-hotspotID and their 
combination in predicting PPI-hot spots
To assess the possibility of detecting PPI-hot spots using the interface residues predicted by AlphaFold-
Multimer (Evans et al., 2021) as PPI-hot spots when complex structures are unavailable, we focused on 
48 ‘unsolved’ AB complex structures involving 47 proteins in the PPI-Hotspot+PDBBM(1.1), as one of the 

Table 1. Performance of the PPI-hotspotID vs. FTMap and SPOTONE.

Method
PPI-
hotspotID FTMap SPOTONE

TP 278 30 40

‍ ‍

FN 136 384 374

TN 417 487 481

FP 87 17 23

Sensitivity 0.67 0.07 0.10

Precision 0.76 0.64 0.64

F1 0.71 (0.66)* 0.13 0.17

Specificity 0.83 0.97 0.95

Each method was tested using the same dataset comprising 414 experimentally known PPI-hot spots (TP + FN) and 504 PPI-nonhot spots (TN + FP).
TP = true positive; FP = false positive; TN = true negative; FN = false negative.
*The F1 score in parentheses corresponds to the validation F1 score.

https://doi.org/10.7554/eLife.96643
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proteins, human neurotrophin (UniProtID P20783, PDB 1nt30A) interacted with two different proteins 
(UniProtID Q16288 and P17643). These 48 unsolved complex structures contain 90 PPI-hot spots and 
45 nonhot spots. We employed the protein A structure sequence from the PPI-Hotspot+PDBBM(1.1) 
and the entire protein B sequence from UniProtKB (UniProt Consortium, 2018) as inputs for the 
AlphaFold-Multimer module in ColabFold (Mirdita et al., 2022). This generated model structures for 
each AB complex. Interface residues were defined based on the AMBER-relaxed model structure with 
the highest pTM score using a cutoff distance of 5 Å reflecting residues in close contact. Interface 
residues were predicted as PPI-hot spots and noninterface residues as nonhot spots.

In identifying PPI-hot spots using PPI-hotspotID, we first excluded 90 true PPI-hot spots and 45 
nonhot spots belonging to 47 proteins lacking complex PDB structures from our dataset. We then 
used an automatic machine-learning framework to train an ensemble of machine-learning models 
using four features (kC, aa residue type, SASAi, and ΔGi

gas) on the true PPI-hot spots and nonhot spots 
in the remaining 111 proteins in our dataset. The final ensemble model was used to identify PPI-hot 
spots in the 47 proteins lacking complex structures in our dataset. The resulting sensitivity (0.58) 
and F1 score (0.66) in Table 2 were lower than those in Table 1 using the full dataset. Nevertheless, 
they were greater than those achieved using AlphaFold-Multimer-predicted interface residues as PPI-
hot spots (0.41 and 0.54). When we combined the PPI-hotspotID-predicted PPI-hot spots with the 
AlphaFold-Multimer-predicted interface residues, the resulting sensitivity (0.70) and F1 values (0.72) 
were higher than those obtained by each method alone. This indicates that PPI-hotspotID can identify 
true PPI-hot spots that reside outside the protein–protein interface.

Experimental verification of PPI-hotspotID’s predictions in human eEF2
We experimentally verified predictions made by PPI-hotspotID by using it to detect the PPI-hot spots 
of eEF2, an essential translation factor that hydrolyzes GTP to catalyze peptide elongation. Binding of 

Figure 1. Interface vs. noninterface PPI-hot spots. (Top left) The X-ray structure (PDB: 1IAR) of interleukin-4 (gray) in complex with interleukin-4 receptor 
subunit alpha (wheat) with five PPI-hot spots; interface PPI-hot spots (E13, R92, and N93) are in blue and the noninterface ones (K127 and Y128) are 
in green. The PPI-hot spot numberings are based on the interleukin-4 free structure (PDB: 1BBN). The correct predictions of PPI-hotspotID (top right), 
FTMap (bottom left), and SPOTONE (bottom right) are mapped to the corresponding residues of the complex structure.

https://doi.org/10.7554/eLife.96643
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cytoplasmic polyadenylation element-binding protein-2 (CPEB2) to eEF2 may interfere with conforma-
tional changes of eEF2 on ribosomes, thereby affecting the efficiency of eEF2-mediated GTP hydro-
lysis, and slowing down translation of hypoxia-inducible factor (HIF)–1α mRNA (Chen and Huang, 
2012). No eEF2-CPEB2 complex structure has been solved, but a 5 Å electron microscopy structure 
of eEF2 (PDB 4v6x-A) (Anger et al., 2013) is available. Using the CPEB2 N-terminus for a yeast two-
hybrid screen, a positive clone containing the eEF2 residues 717–803 had been identified and subse-
quent co-IP assay revealed a CPEB2-binding domain comprising eEF2 residues 743–817 (Chen and 
Huang, 2012). Thus, we focused on this domain, which shares ≤20% sequence identity with the 158 
nonredundant proteins in our dataset, in predicting PPI-hot spots. Based on the free eEF2 structure 
(PDB 4v6x-A) (Anger et al., 2013), PPI-hotspotID predicted F794 as the PPI-hot spot with the highest 
probability of 0.67. So, we chose to test F794 and seven other predicted PPI-hot spots (L763, R767, 
G768, G778, T779, R801, A808) that were >12 Å from F794, as well as four predicted PPI-nonhot 
spots (E773, P789, V790, Q807).

To validate PPI-hotspotID’s predictions, we mutated the aforementioned predicted PPI-hot spots 
and PPI-nonhot spots in mouse eEF2 (meEF2), which shares 99% sequence identity with human eEF2. 
The generated eEF2 mutants (L763A, 766AAA768, E773Q, 778AAA780, 789AA790, F794A, R801A, Q807E, 
A808S, and D815A), along with wild-type eEF2 and negative control (enhanced green fluorescent 
protein [EGFP]), were then screened for interaction with CPEB2 by co-immunoprecipitation (co-
IP). This assay identified F794 as a critical eEF2 residue for binding to CPEB2. To confirm the initial 
screening result, we selected three mutants (778AAA780, F794A, and D815A designated as mut1, mut2, 
and mut3) for further analysis (Figure 2a). The interaction of wild-type and mutant eEF2 with CPEB2 
was analyzed again by reciprocal co-IP. The results in Figure 2b show that the F794A mutation (mut2) 
abolished binding to CPEB2.

Next, we investigated whether disrupting the association between CPEB2 and eEF2 affects HIF-1α 
expression in vivo. Because eEF2 is an essential and abundant translational factor, its ectopic expres-
sion alone was insufficient to override the function of endogenous eEF2. Thus, we tested the F794A 
mutant under knockdown of endogenous eEF2 condition. HeLa cells were transfected with plasmids 
lacking (siCtrl) or containing a short hairpin sequence for human eEF2 (siheEF2) and subjected to 
puromycin selection. Both shRNA sequences, specifically knocking down human but not mouse eEF2, 
decreased endogenous eEF2 after 4  days (Figure  2c). HeLa cells were then transfected with the 
siheEF2 and flag-meEF2 (wild-type, mut2, or mut3) plasmids and subjected to puromycin and G418 
selection for 4 days. Cells that survived were incubated with S35-methionine/cysteine to metabolically 
label synthesized proteins. The expression of the F794A or D815A mutant did not affect general 
protein synthesis (Figure 2d). However, the level of HIF-1α, but not CPEB2 or β-actin, was selec-
tively increased in HeLa cells reconstituted with the F794A mutant (Figure  2e). Figure  2—figure 

Table 2. Performance of AlphaFold-Multimer, PPI-hotspotID, and their combination for 48 ‘unsolved’ 
complex structures.

Method AlphaFold2-Multimer PPI-hotspotID AlphaFold2-Multimer+PPI-hotspotID

TP 37 52 63

FN 53 38 27

TN 35 29 24

FP 10 16 21

Sensitivity 0.41 0.58 0.70

Precision 0.79 0.77 0.75

F1 0.54 0.66* 0.72

Specificity 0.78 0.64 0.53

Each method was tested using the same dataset comprising 90 experimentally known PPI-hot spots (TP+FN) and 
45 PPI-nonhot spots (TN+FP) in 48 protein complexes with no known structures.
TP = true positive; FP = false positive; TN = true negative; FN = false negative.
*No validation F1 score is provided since AutoGluon was used to train an ensemble of machine-learning models 
on a dataset that excludes the 48 ‘unsolved’ complex structures (see text).

https://doi.org/10.7554/eLife.96643
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Figure 2. Evaluation of the predicted CPEB2-interacting amino acid residues in eEF2. (a) Salient features of mouse eEF2, showing the various domains 
and the mutated amino acids in domain V. mut 1, G778A, T779A, and P780A; mut 2, F794A; mut 3, D815A. (b) Reciprocal co-immunoprecipitation (co-IP). 
The 293T cells expressing myc-CPEB2 along with wt or mutant flag-eEF2 or control GFP were harvested and then precipitated with flag or myc IgG. The 
precipitated substances were used for western blotting with myc and flag antibodies. IP, immunoprecipitation; IB, immunoblotting; IgG H.C., IgG heavy 
chain. (c) HeLa cells transfected with the plasmid expressing shRNA against human eEF2 (siheEF2) were harvested after 4-day puromycin selection for 
western blotting. HeLa cells transfected with the eEF2 knockdown plasmid along with flag-tagged wt or mutant mouse eEF2 after 4-day selection with 
puromycin and G418 were used for (d) S35 -met/cys-labeling of synthesized proteins or (e) western blotting with the denoted antibodies. The normalized 
HIF-1α protein level (HIF-1α/β-actin signal) was calculated and expressed as mean ± SEM from three independent experiments. Two-tailed Student’s 
t-test, *<0.05.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Containing uncropped images of the membranes for Figure 2b, c and e and phosphoimager file for Figure 2d.

Source data 2. Containing the original files of the full raw unedited blots.

Figure 2 continued on next page

https://doi.org/10.7554/eLife.96643
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supplement 1 shows full-length gels and blots in Figure 2, and Figure 2—source data 1 shows the 
uncropped immunoblot images, and Figure 2—source data 2 contains raw unedited blots. Thus, the 
eEF2 F794A mutation influences the translation of CPEB2-targeted HIF-1α mRNA without affecting 
general translation function.

Discussion
Identifying PPI-hot spots is challenging especially when the complex structure is lacking. A key hurdle 
is the lack of experimental data on PPI-hot spots, which hampers the training of accurate machine-
learning models for their prediction. Here, we introduced two novel elements that have helped to 
identify PPI-hot spots using the unbound structure. First, we have constructed a dataset comprising 
414 experimentally known PPI-hot spots and 504 nonhot spots, and carefully checked that PPI-hot 
spots have no mutations resulting in ΔΔGbind < 0.5 kcal/mol, whereas nonhot spots have no mutations 
resulting in ΔΔGbind ≥ 0.5 kcal/mol or impact binding in immunoprecipitation or GST pull-down assays 
(see ‘Materials and methods’). In contrast, SPOTONE (Preto and Moreira, 2020) employed nonhot 
spots defined as residues that upon alanine mutation resulted in ΔΔGbind < 2.0 kcal/mol. Notably, 
previous PPI-hot spot prediction methods did not employ PPI-hot spots whose mutations have been 
curated to significantly impair/disrupt PPIs in UniProtKB (see ‘Introduction’). Second, we introduced 
novel features derived from unbound protein structures such as the gas-phase energy of the target 
protein relative to its unfolded state. The importance test results indicated the gas-phase energy as 
an important feature. This finding can be rationalized by considering how PPI-hot spots make signif-

icant contributions to the overall binding free 
energy, ΔGbind. PPI-hot spots can enhance favor-
able enthalpic contributions to the ΔGbind through 
hydrogen bonds or vdW contacts across the 
protein’s interface. This makes them energetically 
unstable in the absence of the protein’s binding 
partner and solvent; hence, the gas-phase energy 
was found to be an important input feature. Alter-
natively, PPI-hot spots can counteract unfavorable 
entropic loss upon protein binding by maintaining 
an optimal binding scaffold; hence, they are ener-
getically stable.

Methods that rely on complex structures 
generally predict residues that make multiple 
contacts across the protein–protein interface as 
PPI-hot spots. Some of these methods assume 
that PPI-hot spots are exclusively located at the 
interface and aim to spot them among the inter-
face residues (Wang et  al., 2018a). In contrast, 
PPI-hotspotID leverages evolutionary conserva-
tion, residue type, and stability principles based 
on the free protein structure to detect PPI-hot 
spots, including those lacking direct contact with 
the partner protein. Such noninterface PPI-hot 
spots may serve to maintain an optimal scaf-
fold for protein binding and are not uncommon: 
from our analysis of the 243 true PPI-hot spots in 
proteins with the complex structures, we found 
67 ‘noninterface’ PPI-hot spots with no hydrogen 
bonds and/or vdW contacts across the protein 

 
 

 

 

Figure 2. (Top) The structure (PDB 2N73)76 of GCP60 (green; chain A) in complex with PI4K-

b (cyan; chain B) with the GCP60–PI4K-b interface encircled. (Bottom) The four 

experimentally known PPI-hot spots of GCP60 are shown in red. H45 and Y49 form hydrogen 

bonds across the interface with PI4K-b. Although F19 and Y46 do not directly contact PI4K-

b, F19 is in vdW contact with Q42, which in turn forms vdW contacts with H45, whereas Y46 

is in vdW contact with both H45 and Y49. 
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Figure 3. Interface and noninterface PPI-hot spots of 
Golgi resident protein (GCP60). (Top) The structure 
(PDB 2N73) (Wright et al., 2024) of GCP60 (green) 
in complex with PI4K-β (cyan) with the GCP60–PI4K-β 
interface encircled. (Bottom) The four experimentally 
known PPI-hot spots of GCP60 are shown in red. H45 
and Y49 form hydrogen bonds across the interface with 
PI4K-β. Although F19 and Y46 do not directly contact 
PI4K-β, F19 is in van der Waals (vdW) contact with Q42, 
which in turn forms vdW contacts with H45, whereas 
Y46 is in vdW contact with both H45 and Y49.

Source data 3. Listing primer sequences.

Figure supplement 1. Uncropped immunoblot images.

Figure 2 continued
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interface. PPI-hotspotID identified 43 of these 67 noninterface PPI-hot spots. An illustrative example 
is the binding of Golgi resident protein (GCP60) with phosphatidylinositol 4-kinase β (PI4K-β). PPI-
hotspotID correctly predicted all four experimentally known GCP60 PPI-hot spots including F19 and 
Y46, which do not form hydrogen bonds across the interface with PI4K-β (Figure 3). These results 
highlight the ability of PPI-hotspotID to identify PPI-hot spots involved in indirect interactions with 
partner proteins.

Proteins typically interact with multiple partners, but their PPI-hot spots may have been experi-
mentally characterized for only a few partners. In some cases where PPI-hotspotID predicted residues 
that were absent in the PPI-Hotspot+PDBBM(1.1) as PPI-hot spots, the protein’s complex structures 
with other binding partners show intermolecular hydrogen bonds between PPI-hotspotID-predicted 
residues and residues of the respective partner proteins. This suggests that some of the PPI-hotspotID-
predicted residues might be potential PPI-hot spots for other binding partners. For example, the 
death domain of CRADD (caspase-recruitment domain and death domain-containing adaptor protein) 
contains 7 experimentally known PPI-hot spots (N121, Q125, Y146, R147, K149, V156, Q169) critical 
for its interaction with PIDD (p53-induced death domain-containing protein). Based on the free crystal 
structure of CRADD (PDB 2O71-A) (Park and Wu, 2006), PPI-hotspotID correctly predicted three 
true positives (Y146, R147, and Q169), as well as G128. In the oligomeric structure (PDB 2OF5) (Park 
et al., 2007) of seven CRADD proteins in complex with five PIDD proteins, G128 shows no hydrogen-
bonding interactions, but its neighbor, L127, forms a backbone – side chain hydrogen bond with R147 
in another CRADD chain (Figure 4). A positively charged G128R mutation would repel the nearby 
positively charged R147 in another CRADD chain, thus disrupting the CRADD–CRADD interface and 
decreasing CRADD’s affinity for PIDD. Experimental data showed that the G128R CRADD mutant 
did not co-immunoprecipitate the PIDD death domain, and patients who have non-syndromic mental 
retardation possess the G128R mutant (Puffenberger et al., 2012). Thus, PPI-hotspotID could unveil 
a PPI-hot spot, G128, that is not apparent from the 2OF5 complex structure: although G128 does 
not directly interact with PIDD, its mutation, especially to an Arg, might perturb the CRADD–CRADD 
interface and thus CRADD’s oligomeric structure and binding affinity for PIDD.

The ability of PPI-hotspotID to detect PPI-hot spots provides biologists with a useful tool, as alanine-
scanning mutagenesis and protein–protein complex structure determination to identify PPI-hot spots 

G128

2.6 Å

L127

R147

2OF5-C2OF5-G 2OF5-G

2OF5-C

Figure 4. Based on the free CRADD X-ray structure (PDB 2O71-A), PPI-hotspotID predicted G128 as a PPI-hot spot for CRADD–CRADD interactions. 
(Left) The structure (PDB 2OF5) (Park et al., 2007) of seven CRADD proteins in complex with fuve PIDD proteins. The circle shows the CRADD–CRADD 
interface between chains C (cyan) and G (orange), whereas the other five CRADD chains are in gray, and the five PIDD proteins are in green. (Right) G128 
(red) in CRADD (chain C) participates indirectly in CRADD–CRADD interactions via a backbone – side chain hydrogen bond between its neighbor, L127, 
and R147 in another CRADD (chain G).

https://doi.org/10.7554/eLife.96643


 Research article﻿﻿﻿﻿﻿﻿ Structural Biology and Molecular Biophysics

Chen et al. eLife 2024;13:RP96643. DOI: https://doi.org/10.7554/eLife.96643 � 10 of 17

are laborious, time-consuming, and costly. Conventional methods based on complex structures might 
miss nonobvious PPI-hot spots with no direct interactions with the protein’s partner. AlphaFold-
Multimer and future improved protein–protein complex prediction methods require knowledge of 
interacting partners and independent calculations for each known partner, which reduces the overall 
efficiency. Moreover, solved/modeled protein–protein complex structures only reveal the interface 
residues. In contrast, PPI-hotspotID can reveal nonobvious PPI-hot spots as well as potential PPI-hot 
spots for other protein partners, thus helping to elucidate the different PPI mechanisms.

Materials and methods
Dataset: True PPI-hot spots
We updated the PPI-Hotspot+PDBBM benchmark by removing two fused protein structures and adding 
new PPI-hot spots by (i) reviewing references in ASEdb (Thorn and Bogan, 2001) to include nonala-
nine mutations with ΔΔGbind > 2 kcal/mol, and (ii) checking the experimental data of certain mutations 
in UniProtKB (UniProt Consortium, 2018). For example, the PPI-Hotspot+PDBBM benchmark included 
R43A in aprataxin (UniProtID Q7Z2E3), annotated as ‘loss of interaction with MDC1’, but not K52A, 
annotated as ‘impairs interaction with MDC1’. However, when we checked the experimental data in the 
UniProtKB reference, the binding bands were absent for both R43A and K52A mutants; therefore, we 
added K52A as a PPI-hot spot. The updated benchmark, termed PPI-Hotspot+PDBBM(1.1), contains 414 
PPI-hot spots. Among these, 104 PPI-hot spots in 32 nonredundant proteins are based on mutations 
resulting in ΔΔGbind ≥ 2 kcal/mol from ASEdb (Thorn and Bogan, 2001) and SKEMPI2.0 (Jankauskaite 
et al., 2019) with no known mutations resulting in ΔΔGbind < 0.5 kcal/mol. The remaining 310 PPI-hot 
spots in 128 nonredundant proteins are based on mutations that are manually curated in UniProtKB 
(UniProt Consortium, 2018) to significantly impair/disrupt PPIs. Two of the proteins have PPI-hot 
spots from ASEdb/SKEMPI2.0 and UniProtKB, resulting in a total of 158 nonredundant proteins with 
free structures harboring 414 PPI-hot spots.

True PPI-nonhot spots
To obtain PPI-nonhot spots for the 158 nonredundant proteins with true PPI-hot spots, we identified 
residues from ASEdb (Thorn and Bogan, 2001) and SKEMPI2.0 (Jankauskaite et al., 2019) databases 
where mutations to alanine/nonalanine resulted in protein ΔΔGbind < 0.5 kcal/mol. We also identified 
residues in the UniProtKB where mutations to alanine/nonalanine were curated not to perturb PPIs. 
We manually checked each reference to ensure that mutations of these residues did not lead to 
ΔΔGbind changes ≥0.5 kcal/mol or impact binding in immunoprecipitation or GST pull-down assays. 
PPI-nonhot spots in non-native proteins or regions with missing structures were excluded.

Input features
To distinguish PPI-hot spots from PPI-nonhot spots, we input sequence, structural, and stability 
features of each residue in the protein for training various machine-learning classifiers. The input 
features for each residue i of a protein included its aa type, conservation score, secondary struc-
ture, SASA, gas-phase energy, and respective components, polar solvation free energy, and nonpolar 
solvation free energy. The secondary structure, SASA, and energy components of each residue were 
computed using the DSSP program (Kabsch and Sander, 1983), FreeSasa (Mitternacht, 2016), and 
AmberTools version 20 (Case, 2020), respectively, using default parameters.

Per-residue free energy contributions
For a given free protein structure, the Reduce program (Word et al., 1999) was used to add hydro-
gens and assign the protonation states of ionizable residues. Additional missing heavy and hydrogen 
atoms were added using the AmberTools version 20 (Case, 2020) and the Amber FF19SB forcefield 
(Tian et al., 2020). To eliminate any steric clashes, we performed a conjugate gradients minimization 
with constraints on the heavy atoms using the Generalized Born model for 500 steps. The resulting 
structure was used to compute the per-residue energy/free energy contributions using the Molecular 
Mechanics Poisson–Boltzmann Surface Area module in AmberTools (Case, 2020). For each residue i in 
the protein, we computed the (i) molecular mechanics energy Ei

gas = Ei
MM,int + Ei

MM,vdW + Ei
MM,ele, where 

Ei
MM,int includes contributions from bonded terms, Ei

MM,vdW is the vdW interaction energy, and Ei
MM,ele is 

https://doi.org/10.7554/eLife.96643
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the electrostatic interaction energy as well as (ii) the polar (ΔGi
solv,pol) and nonpolar (ΔGi

solv,npl) solvation 
free energies relative to the corresponding values of residue i in an extended reference state where 
the residues do not interact with one another (Chen et al., 2007).

Per-residue conservation score
To calculate the conservation score, ki

C, of residue i in a protein, we implemented a method similar to 
ConSurf (Glaser et al., 2003; Landau et al., 2005) to run in parallel with the energy evaluation code. 
First, we searched the UNIREF-90 database (Wu et al., 2006) using HMMER (Johnson et al., 2010) to 
find sequences similar to the target sequence. Near-duplicates were removed by clustering matched 
sequences with ≥95% pairwise sequence identity using CD-hit (Li and Godzik, 2006) and keeping 
only one representative. Since HMMER (Johnson et al., 2010) may only find good matches for a small 
proportion of the target sequence, we compared the HMMER sequences with the target sequence. 
We kept only those with >60% overlap with the target sequence and discarded sequences that were 
dissimilar (≤35% sequence identity) or nearly identical (≥95% sequence identity). Next, we pairwise 
aligned the remaining sequences, and if two sequences overlapped by >10% of the sequence, we 
rejected the shorter sequence. After this filtering process, the resulting HMMER hits were used, or if 
the number of hits exceeded 300, we selected the top 300 hits. These sequences were then aligned 
to the target sequence using MAFFT-LINSi (Nakamura et al., 2018). We then used the Rate4Site 
program (Pupko et al., 2002) to compute position-specific evolutionary rates from the generated 
multiple sequence alignment. These rates were normalized and grouped into ConSurf grades ranging 
from 1 to 9, where kC = 1 represents the most rapidly evolving residues, and kC = 9 indicates the most 
conserved residues.

Generating PPI-hot spot predictive model using AutoGluon
We provided all the aforementioned residue features including the conservation score, ki

C, aa type, 
DSSP secondary structure, SASAi, Ei

MM,int, Ei
MM,vdW, Ei

MM,ele, Ei
MM, ΔGi

solv,pol, andΔGi
solv,npl to the Tabular 

module in AutoGluon v0.8.2 (https://auto.gluon.ai/stable/index.html). AutoGluon was chosen for 
model training and validation due to its robustness and user-friendly interface, allowing for the simul-
taneous and automated exploration of various machine-learning approaches and their combinations. 
Instead of using a single training set to train the model and a separate test set to evaluate its perfor-
mance, we employed cross-validation as it utilizes the entire dataset for both training and testing, 
making efficient use of the limited data on PPI-hot spots and PPI-nonhot spots. AutoGluon-Tabular 
automatically chose a random partitioning of our dataset into multiple subsets/folds for training and 
validation. Notably, the training and validation data share insignificant homology as the average 
pairwise sequence identity in our dataset is 26%. Each fold was used once as a test set, while the 
remaining folds served as the training set. For each test set, the model’s performance was measured 
using the F1 score.

AutoGluon then trained individual ‘base’ models, including LightGBM, CatBoost, XGBoost, random 
forests, extremely randomized trees, neural networks, and K-nearest neighbors. Using the aggregated 
predictions of the base models as features in addition to the original features, AutoGluon trained 
multiple ‘stacker’ models, whose predictions were fed as inputs to additional higher layer stacker 
models in an iterative process called multilayer stacking. The output layer used ensemble selection 
to aggregate the predictions of the stacker models. To improve stacking performance, AutoGluon 
used all the data for both training and validation through repeated k-fold bagging of all models at 
all layers of the stack, where k is determined by best precision. We refer the reader to the original 
study by Erickson et al., 2020, which provides details on the methodology including the types of 
‘base’ models, multilayer stack ensembling, and repeated k-fold bagging. Based on the highest mean 
F1 score, AutoGluon yielded a final PPI-hot spot predictive model that is a weighted regularized 
ensemble comprising more than a dozen different models (https://auto.gluon.ai/dev/api/autogluon.​
tabular.models.html).

Selecting key features
Next, we evaluated the importance of each feature by performing a permutation-based test (part 
of the AutoGluon package), in which a feature in a column was randomly shuffled across different 
residues (rows), and the F1 score was evaluated. The importance test results revealed the four most 

https://doi.org/10.7554/eLife.96643
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important residue features, which in order of their importance are (i) kC, (ii) aa residue type, (iii) SASAi, 
and (iv) ΔGi

gas. These four features were used to train an ensemble of machine-learning models using 
the entire dataset, consisting of 414 true PPI-hot spots and 504 nonhot spots. The resulting PPI-
hot spot prediction model, named PPI-hotspotID, yielded an F1 score comparable to the F1 score 
obtained using the initial set of 10 features. PPI-hotspotID was implemented as a freely accessible web 
server (https://ppihotspotid.limlab.dnsalias.org/; Wright et al., 2024) with access to four virtual CPUs 
and 8 GB of memory. Calculations for a 539-residue protein (PDB 1c2bA) took 35 min. The source 
code for PPI-hotspotID is available at https://github.com/wrigjz/ppihotspotid/ (Wright, 2024).

Detecting PPI-hot spots using the AlphaFold-Multimer-predicted 
interface
In cases where experimental complex structures are unavailable, can the protein–protein complexes 
modeled by AlphaFold-Multimer (Evans et  al., 2021) be used to identify PPI-hot spots using 
the predicted interface residues? To address this, we first identified PPI-hot spots within the PPI-
Hotspot+PDBBM(1.1) dataset that lack experimentally determined protein complex structures. Not all 
the 414 PPI-hot spots in the PPI-Hotspot+PDBBM(1.1) have sequence information and thus UniProtID of 
the respective binding partners, leaving 360 PPI-hot spots in 135 proteins associated with 155 pairs of 
PPIs, as some proteins are involved in multiple PPIs. Also, 90 of the 155 PPI pairs have complex struc-
tures in the PDB. For the 65 PPI pairs lacking complex structures, 17 pairs contain >1100 residues, 
exceeding the current size limit of AlphaFold-Multimer (Evans et al., 2021). Thus, we generated struc-
tural models for the remaining 48 complexes using the AlphaFold-Multimer module in the ColabFold 
version 1.3.0 (Mirdita et al., 2022) with default settings. For each AB complex, the input sequence 
for protein A was based on the free structure sequence in the PPI-Hotspot+PDBBM(1.1), whereas that for 
protein B was retrieved in its entirety from the UniProtKB (UniProt Consortium, 2018) as the binding 
region in protein B was unknown. Based on the AMBER-relaxed model structure with the highest pTM 
score, interface residues were defined as residues of protein A with ≥1 atom within a 5 Å cutoff of any 
protein B atom.

Experimental verification of predicted eEF2 PPI-hot spots: Plasmid 
construction
The predicted PPI-hot spots and PPI-nonhot spots were mutated using the QuikChange Site-Directed 
Mutagenesis Kit (Stratagene). The pcDNA3.1-flag-meEF2 plasmid was used as the PCR template, 
and the sets of sense and antisense primers for mutagenesis are listed in Figure 2—source data 3. 
All constructs were sequenced to confirm the mutations. The shRNA clones, #1 TRCN0000047908 
(​GCGA​​TCAT​​GAAT​​TTCA​​AGAA​A) and #2: TRCN0000047910 (​GCAG​​TACC​​TCAA​​CGAG​​ATCA​A), 
against human eEF2 mRNA were obtained from the RNAi Core Facility (Academia Sinica).

Cell lines
HEK-293T cells (# CRL-3216) and HeLa cells (# CCL-2) were obtained from American Type Culture 
Collection (ATCC).

Testing eEF2-CPEB2 interactions using co-IP and reciprocal co-IP
HEK-293T cells (ATCC, # CRL-3216) were cultured in DMEM with 10% fetal bovine serum (FBS). For 
reciprocal co-IP, the 8 µg DNA mixture containing 3 µg myc-CPEB2 and 5 µg flag-eEF2 (or a negative 
control, GFP) plasmids, generated in the previous study (Chen and Huang, 2012), was transfected 
into a 10 cm dish of 293T cells using Lipofectamine 2000. We transfected more flag-eEF2 plasmid 
DNA than myc-CPEB2 plasmid because myc-CPEB2 is expressed more abundantly than flag-eEF2. 
Overnight transfected cells were lysed in 500 µl IP buffer (20 mM HEPES, pH 7.4, 100 mM NaCl, 1 mM 
MgCl2, 0.1% TritonX-100, 10% glycerol, 0.5 mM DTT, 1× protease inhibitor cocktail, and 100 µg/ml 
RNaseA) and centrifuged at 10,000 × g for 3 min at 4°C. The supernatant was equally divided and 
incubated with Protein G beads bound with myc (Abcam, 9E10 clone) or flag (Sigma-Aldrich, F1804) 
antibody for 3 hr at 4°C to respectively pull down myc-CPEB2 and flag-eEF2. The beads were washed 
five times with 300 µl IP buffer. If myc-CPEB2 and flag-eEF2 interact, myc-CPEB2 can co-precipitate 
with flag-eEF2 on flag antibody beads, whereas flag-eEF2 can co-precipitate with myc-CPEB2 on myc 
antibody beads. GFP was used as a negative control to ensure that the signals on the beads were 
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caused by binding between flag-eEF2 and myc-CPEB2. The precipitated proteins were separated on 
a sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) for western blot analysis. 
Similarly, for the initial co-IP screening, the 4  µg DNA mixture containing 1.5  µg myc-CPEB2 and 
2.5 µg flag-eEF2 (or a negative control, EGFP) plasmids was transfected into a 6 cm dish of 293T cells, 
harvested in 200 µl IP buffer, and immunoprecipitated using flag antibody-bound beads.

Functional impact of eEF2 mutants on HIF-1α and global protein 
synthesis
HeLa cells (ATCC, # CCL-2) were cultured in DMEM with 10% FBS. Each 6 cm plate of HeLa cells 
was transfected with 2 μg human eEF2 knockdown plasmid and 2 μg flag-meEF2 wild-type/mutant 
plasmid. Overnight transfected cells were selected with 0.5 μg/ml puromycin and 600 μg/ml G418 
for 3 days to knock down endogenous eEF2 and maintain the expression of flag-meEF2, respec-
tively. The selected cells were incubated with 10 μM MG132 for 4 hr before harvesting for western 
blotting of HIF-1α or replaced with 2 ml Met/Cys-lacking DMEM with 1% FBS and 60 μCi 35S-Met/
Cys (PerkinElmer, cat# NEG772002MC) for 2 hr before separation on an SDS-PAGE. Antibodies used 
are CPEB2, generated in house; HIF-1α (NB100-134) from Novus; eEF2 (SC-13004) from Santa Cruz 
Biotechnology; and β-actin (A5441) form Sigma-Aldrich.
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