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Beyond Haldane’s rule: Sex-biased 
hybrid dysfunction for all modes of 
sex determination
Asher D Cutter*

Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, 
Canada

Abstract Haldane’s rule occupies a special place in biology as one of the few ‘rules’ of specia-
tion, with empirical support from hundreds of species. And yet, its classic purview is restricted 
taxonomically to the subset of organisms with heteromorphic sex chromosomes. I propose explicit 
acknowledgement of generalized hypotheses about Haldane’s rule that frame sex bias in hybrid 
dysfunction broadly and irrespective of the sexual system. The consensus view of classic Haldane’s 
rule holds that sex-biased hybrid dysfunction across taxa is a composite phenomenon that requires 
explanations from multiple causes. Testing of the multiple alternative hypotheses for Haldane’s rule 
is, in many cases, applicable to taxa with homomorphic sex chromosomes, environmental sex deter-
mination, haplodiploidy, and hermaphroditism. Integration of a variety of biological phenomena 
about hybrids across diverse sexual systems, beyond classic Haldane’s rule, will help to derive a 
more general understanding of the contributing forces and mechanisms that lead to predictable sex 
biases in evolutionary divergence and speciation.

Introduction
Haldane’s rule – disproportionate sterility, rarity, or inviability of the heterogametic sex in inter-species 
hybrids Haldane, 1922 – is touted, with good reason, as ‘one of the most general patterns in specia-
tion biology (Schilthuizen et al., 2011).’ Hundreds of examples document excess hybrid male sterility 
(e.g. mammals and flies and nematodes) or excess hybrid female sterility (e.g. birds and butterflies), 
among diverse animal taxa and including plants (Laurie, 1997; Orr, 1997; Coyne and Orr, 2004; 
Schilthuizen et al., 2011; Watson and Demuth, 2012; Delph and Demuth, 2016; Fontdevila, 2016; 
Cutter, 2018). These patterns of post-zygotic reproductive isolation that are genetically intrinsic to 
organismal development in hybrids also often apply to sex-ratio biases among hybrids, typically due 
to sex-biased inviability. At least six evolutionary hypotheses receive support as compelling partial 
and non-exclusive explanations for the Haldane’s rule pattern (see below) (Laurie, 1997; Orr, 1997; 
Kulathinal and Singh, 2008; Presgraves, 2010a; Schilthuizen et  al., 2011; Delph and Demuth, 
2016; Cowell, 2023). And yet, many species of animals and plants with separate sexes lack hetero-
morphic sex chromosomes (Figure 1), and many others are comprised of hermaphrodites (Bachtrog 
et al., 2014), rendering Haldane’s rule irrelevant in a simple application to such taxa.

Some hypotheses to explain Haldane’s rule, however, may be extended to or tested with those 
taxa that do not have heteromorphic sex chromosomes (Figure  2; Presgraves and Orr, 1998; 
Koevoets and Beukeboom, 2009; Schilthuizen et  al., 2011). Diverse taxa contain distinct sexes 
with individuals predisposed to developing small gametes (male sperm) or large gametes (female 
eggs), or a sex capable of producing both types of gamete (hermaphrodites), through an array of 
mechanisms that do not involve heteromorphic sex chromosomes (Bell, 1982; Bachtrog et al., 2014). 
In interspecies hybrids between taxa lacking heteromorphic sex chromosomes, the sexes do indeed 
often differ in the extent to which they display sterility, inviability, or other dysfunctional phenotypes 
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(Presgraves and Orr, 1998; Malone and Fontenot, 2008a). Moreover, male versus female sexual 
structures of hermaphrodites often show different susceptibility to developmental disruption in inter-
species hybrids (Rieseberg and Blackman, 2010; Baack et al., 2015; Fishman and Sweigart, 2018; 
Cutter, 2019).

I propose that Haldane’s rule, in the strict sense of taxa with heteromorphic sex chromosomes, be 
considered a special case of the more general phenomenon of sex-biased hybrid dysfunction (Box 1). 
By testing alternative hypotheses for sex-biased hybrid dysfunction that may also apply to taxa with 
homomorphic sex chromosomes, environmental sex determination, haplodiploidy, or hermaphro-
ditism, we may derive a more comprehensive understanding of the forces and mechanisms that lead 
to predictable sex biases in evolutionary divergence and speciation.

Theories to explain sex-biased hybrid dysfunction
A wide variety of theories have emerged to explain Haldane’s rule (Schilthuizen et al., 2011; Delph 
and Demuth, 2016; Cowell, 2023), some of which extend beyond taxa with heteromorphic sex chro-
mosomes. The emergent consensus holds that each of these models is important to different degrees 
in different taxa to make Haldane’s rule a composite phenomenon (Orr, 1993b; Wu and Davis, 1993; 
Schilthuizen et al., 2011; Cowell, 2023). Thus, there is no single cause of Haldane’s rule even in 
the strict sense, further encouraging a generalized view of causes responsible for sex bias in hybrid 
dysfunction. Here, I first summarize the rationales for six common explanations for Haldane’s rule. I 
also introduce several additional rarer explanations, and introduce their implications for alternative 
sexual systems, before considering alternative sexual systems directly in a subsequent section.

Dominance theory
Dominance theory, proposed by Muller, 1940, provides one of the simplest potential explanations 
for classic Haldane’s rule. If loci that induce Dobzhansky-Muller incompatibilities (DMIs) tend to act 
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Figure 1. Incidence of different sexual modes in vertebrates (A), invertebrates (B), and plants (C). Vertebrate values out of 1475 species with information 
on the karyotype (homomorphic genetic sex determination, GSD) or 2145 species with information on sexual system Environmental sex determination 
(ESD), hermaphrodite. Invertebrate values out of 11914 species, with homomorphic value including any incidence of homomorphism and haplodiploidy 
excluding cases of paternal genome elimination; only 2 cases (0.02%) of hermaphroditism are indicated. Species with heteromorphic sex chromosomes 
are reported for 57% of species in both vertebrates and insects. Plant values out of 11038 species with information on the sexual system. Plant cases with 
single sex include hermaphrodite and monoecy (excludes apomixis); multiple sexes include dioecy, androdioecy, gynodioecy, andromonoecy, etc. Data 
was redrawn from Ashman et al., 2014; Bachtrog et al., 2014.
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Figure 2. Predicted contributions to sex-biased hybrid dysfunction in different sexual systems for alternative hypotheses that aim to explain the 
classic Haldane’s rule pattern. Predictions for haplodiploidy applies to comparisons involving F1 females with males from F2 and later-generation 
hybrids (Laurie, 1997; Koevoets and Beukeboom, 2009; Bendall et al., 2023). * mechanisms sometimes subsumed under the umbrella of ‘faster 
heterogametic sex theory’ (Kulathinal and Singh, 2008); ** primarily or only expected to affect hybrid sterility; *** details of sex determination pathway 
disruption may predispose taxa of a given sexual system to a particular direction of sex bias in absence or rarity; 1 hybrid dysfunction biased toward male 
gametes (sperm, pollen) and accessory structures; 2 cytoplasmic male sterility in F1 hybrids may not serve as a reproductive isolating barrier (Rieseberg 
and Blackman, 2010); 3 applies to haploid gametophytic phase (e.g. following pollen germination) for taxa like plants with active haploid stages of male 
gametes; 4 does not apply in XO or ZO systems (Coyne et al., 1991); 5 does not apply to systems lacking global dosage compensation mediated by 
downregulation of both sex chromosome copies in the homogametic sex.
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recessively in hybrids (Box 2), as appears to be the case at least in Drosophila (True et al., 1996; Pres-
graves, 2003; Masly and Presgraves, 2007), then their linkage to sex chromosomes would unmask 
their negative effects of epistasis in the hemizygous sex to yield hybrid dysfunction (Orr, 1993a; 
Turelli and Orr, 1995; Orr and Turelli, 1996). Consequently, males in taxa with heteromorphic XY 
and XO chromosomal sex determination systems would suffer a more pronounced incidence of hybrid 
sterility and inviability (females in ZW and ZO systems). This pattern of sex bias is expected to be 
especially robust when sex chromosomes comprise a greater fraction of the genome and when DMIs 
involve more loci (Orr and Turelli, 1996).

The logic of dominance theory also applies to haplodiploid systems in which haploid males 
develop from unfertilized eggs, with some additional nuance due to the absence of X-autosome 
DMIs (Koevoets and Beukeboom, 2009; Schilthuizen et al., 2011). But dominance theory does not 
predict sex-biased hybrid dysfunction in taxa with homomorphic sex chromosomes, environmental 
sex determination, or hermaphroditism (excepting sex-biases in the active haploid sexual phases of 
the life cycle, e.g. plant gametophytes) (Figure 2). Despite the prominent role of dominance theory 
in Haldane’s rule among placental mammals, it is insufficient as an explanation for sex differences 
in marsupials due to the mechanism of dosage compensation that silences the paternal copy of the 
X-chromosome in females (Watson and Demuth, 2012). Moreover, if some taxa are predisposed to 
partially-dominant rather than recessive mutations (as they act within hybrid individuals), on average, 
perhaps due to peculiarities of genetic architecture, then dominance theory in such taxa would be 

Box 1. Classic Haldane’s rule and a broadening of 
perspective.

J.B.S. Haldane defined in 1922 the oft-quoted pattern known as Haldane’s rule: ‘When in 
the F1 offspring of a cross between two animal species or races one sex is absent, rare, or 
sterile, that sex is always the heterozygous sex’ (p. 108). This principle is taken to apply to 
crosses between any kind of sexually-reproducing taxa, not just animals (Brothers and Delph, 
2010; Kasjaniuk et al., 2019), and ‘heterozygous’ in this context is understood to indicate 
heteromorphic sex chromosomes in organisms with genetic sex determination (also termed 
‘heterogametic’). I consider this scenario to encapsulate ‘classic Haldane’s rule’ in the strict 
sense, and as it is generally conceived and cited in the speciation literature.
A number of authors have pointed out that sex biases in interspecies hybrid dysfunction 
appear in circumstances that do not conform neatly to the classic Haldane’s rule situation. For 
example, Presgraves and Orr, 1998 deduced that faster male evolution likely contributes 
to the pattern of male-biased hybrid sterility in Aedes mosquitoes that have homomorphic 
sex chromosomes. These authors later pointed out that male structures in hermaphrodite or 
monoecious plants (i.e. pollen or pollen-bearing structures) might also suffer disproportionate 
dysfunction in hybrids (Orr and Presgraves, 2000). Indeed, for example, hybrid male (pollen 
or sperm) sterility is especially strong in hermaphroditic Mimulus monkeyflowers (Fishman 
and Willis, 2001) and Argopecten scallops (Yu et al., 2023). Subsequently, Koevoets 
and Beukeboom, 2009 described how a modified version of Haldane’s rule is pertinent 
to haplodiploids. Analysis of hybrids beyond the F1 generation also informs sex-biases in 
important ways (Demuth et al., 2014). These various issues have been characterized as 
‘Haldane’s rule-like’ patterns (Schilthuizen et al., 2011).
For consistency, I refer to all of the circumstances of sex biases in hybrid dysfunction as 
pertinent to a generalized view of Haldane’s rule, regardless of the sexual system (Figure 2). 
Despite this broader perspective on sex-biased hybrid dysfunction, it nonetheless depends 
on sexual reproduction and so excludes obligate asexual species. The sex bias may plausibly 
influence hybrid fertility or hybrid viability, among other traits, depending on the sexual 
system and mechanism under consideration. Consequently, a broad view of Haldane’s rule 
poses the hypothesis that, ‘In the F1 or later generation hybrids that follow from a cross 
between two populations with partial reproductive isolation, dysfunctional development 
differs consistently between the sexes or sexual functions’.

https://doi.org/10.7554/eLife.96652
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expected to work in opposition to classic Haldane’s rule (Turelli and Orr, 1995). For example, the 
relative incidence of adaptive evolution from new mutations versus standing variation will affect the 
realized distribution of dominance among fixed substitutions (‘Haldane’s sieve’) (Orr and Betancourt, 
2001), as will migration during local adaptation (Zwaenepoel et al., 2024) or the incidence of selec-
tion on haploid expression during the gametophytic phase of life cycles (Peters and Weis, 2018). 
Notably, however, the dominance relationships of alleles during the within-species population genetic 

Box 2. Dobzhansky-Muller incompatibilities and 
explanations for Haldane’s rule.

The Bateson-Dobzhansky-Muller model invokes multi-locus epistasis with negative fitness 
effects to explain how diverging populations can evolve intrinsic reproductive isolation as an 
incidental byproduct of genetic drift or adaptive evolution (or genetic drive) (Orr, 1995; Orr, 
1996). The idea is that novel-derived alleles arise and evolve at each locus in each descendant 
population independently, and so there is no loss of fitness within any given population as the 
alleles arise and become fixed. When the novel alleles are given the opportunity to interact 
for the first time, in a hybrid organism, they may fail to interact properly. Such incompatible 
genetic interactions in hybrids, termed Dobzhansky-Muller incompatibilities (DMIs), can 
cause dysfunctional development that manifests as hybrid sterility or hybrid inviability. While 
DMIs often are depicted in their simplest form involving two loci (Box 2—figure 1), they may 
commonly involve ‘complex epistasis’ of more than two loci (Presgraves, 2010a; Phadnis, 
2011; Satokangas et al., 2020). Should the derived alleles act recessively in hybrids, then 
their effects will be apparent in F1 organisms only when linked to hemizygous chromosomes 
in hybrid genomes that contain DNA sourced from both parents, such as involving sex 
chromosome linkage. Dominance theory proposes that such DMIs will lead to sex-biased 
hybrid dysfunction due to sex-chromosome linkage (classic Haldane’s rule), provided that 
incompatibility loci most often act recessively in hybrids (Orr, 1993a; Turelli and Orr, 1995; 
Orr and Turelli, 1996). Most other explanations for Haldane’s rule also appeal to genic DMIs 
as providing the genetic source of hybrid dysfunction, with the idea of sex-chromosome mis-
segregation as one notable exception.
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Box 2—figure 1. Evolution of a two-locus DMI.

Independent accumulation of derived alleles (autosomal orange A, sex-chromosomal blue B) 
in different populations for distinct loci can lead to incompatible genetic interactions between 
them upon hybridization (purple). When one of the loci is linked to a sex-chromosome, then 
recessive-acting incompatibility loci can reveal their fitness effects in the F1 generation of 
hybrid individuals hemizygous for that sex chromosome.
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processes resulting in substitutions need not be equivalent to dominance relationships expressed 
from hybrid genomes. Despite the inescapable conclusion for most heterogametic taxa that ‘domi-
nance plays a more universal and thus fundamental role in Haldane’s rule’ than do other explanations 
(Orr, 1997), dominance is largely irrelevant to explaining sex-biased hybrid dysfunction in non-
heterogametic and some other taxa.

Faster X/Z theory
Theory predicts that genes linked to the X or Z sex chromosomes will experience more rapid molec-
ular evolution under some population genetic conditions (Charlesworth et al., 1987; Charlesworth 
et al., 2018). Namely, ‘faster X/Z’ evolution can occur if adaptation results from new mutational input 
with recessive effects, especially when they are beneficial to male fitness, or in combination with 
male-biased mutation rates or greater variance in male versus female reproductive success (Orr, 
1993a; Turelli and Orr, 1995; Presgraves and Meiklejohn, 2021). Provided that each mutational 
substitution confers some probability of contributing to a DMI in hybrids (Orr and Turelli, 2001), 
such faster X/Z evolution could lead to disproportionate involvement of these sex chromosomes in 
hybrid dysfunction i.e., a large X effect (Orr, 1989b; Coyne, 1992) that exaggerates the Haldane’s 
rule pattern expected from dominance theory. In addition, should genes with male-biased expres-
sion and faster evolution from new mutational input more often be linked to the sex chromosomes, 
then the Haldane’s rule pattern could emerge as a byproduct (Orr, 1997). The molecular evolution 
of X/Z-linked loci shows mixed, if often supporting, evidence across taxa for accelerated divergence 
(Kulathinal and Singh, 2008; Meisel and Connallon, 2013; Delph and Demuth, 2016). In addition 
to accelerated coding sequence evolution, gene expression divergence that likely reflects non-coding 
regulatory sequence evolution also appears to accumulate more rapidly for X-linked loci in mammals 
and Drosophila (Meisel and Connallon, 2013; Coolon et al., 2015). The faster X/Z theory, of course, 
makes no prediction about sex-biased hybrid dysfunction in taxa with an indistinguishable karyotypic 
make-up between the sexes (Figure 2).

Sex-chromosome drive theory
Meiotic drive elements linked to a sex chromosome (X or Y, Z or W) can invade populations and skew 
sex ratios through a variety of mechanisms, which imposes strong selection for alleles at other loci 
capable of acting as suppressors of drive (Hurst and Werren, 2001; Jaenike, 2001; Werren, 2011; 
Rice, 2013; Lindholm et al., 2016). This situation of arms race coevolution can lead to a special kind 
of faster X/Z evolution and the formation of DMIs that generate classic Haldane’s rule in interspecies 
hybrids, with the DMIs arising as a result of hybrids inheriting sex-linked drive alleles and mismatched 
suppressor alleles at other loci (Frank, 1991; Hurst and Pomiankowski, 1991). Meiotic drive systems 
frequently influence meiosis in males (or gamete maturation; see below discussion of gametic selec-
tion cf. ‘true drive’) (Jaenike, 2001; McDermott and Noor, 2010), so incompatibility from the ‘mutual 
imbalance of meiotic drive genes’ is predisposed to disrupt fertility in hybrid males disproportionately 
(Hurst and Pomiankowski, 1991). Driving elements are implicated in hybrid male sterility in several 
combinations of Drosophila species and in stalk-eyed flies (McDermott and Noor, 2010; Phadnis, 
2011; Patten, 2018). Thus, sex-chromosome drive theory interacts with male-centric theories (faster 
male, fragile male) as well as other sex chromosome-centric theories (faster X/Z). Incompatibilities 
arising from co-evolution from the sex-chromosome drive, however, might be expected to dispropor-
tionately impact the heterogametic sex regardless of whether they are male (Tao and Hartl, 2003). 
To the extent that drive-mediated coevolution tends to generate X-Y (or Z-W) incompatibilities, there 
is some speculation that sex-chromosome drive might be less likely to underlie sex-biased hybrid 
dysfunction in taxa with XO sex determination, in addition to taxa that lack sex chromosomes alto-
gether (Johnson, 2010; Moran et al., 2017). Sex-chromosome drive as a source of sex-biased hybrid 
dysfunction, of course, does not extend to taxa lacking sex chromosomes.

Transposable elements (TE) also present a form of genetic drive with the potential to generate 
DMIs in hybrids due to mismatch with suppressors of their activity (Hurst and Pomiankowski, 1991; 
Castillo and Moyle, 2012; Ågren, 2013; Cutter, 2023b), and may accumulate disproportionately on 
sex chromosomes (Peona et al., 2021). As a consequence, TE-mediated sex biases in hybrid dysfunc-
tion could arise if TE activity, or mismatches in TE suppression, involves sex-chromosome linkage (see 

https://doi.org/10.7554/eLife.96652
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faster-X/Z theory) or interferes with sex-dependent developmental genetic architecture (see fragile 
male theory below).

Selfish genetic elements that can invade populations by incapacitating those post-meiotic gamete 
cells that lack the element, sometimes referred to as ‘gamete-killer’ meiotic drivers, differ from mech-
anisms of ‘true drive’ that influence meiosis to bias the transmission process itself (McDermott and 
Noor, 2010; Patten, 2018; Cutter, 2023b). Such cases of gamete-killers are a form of gametic selec-
tion, which can be challenging to distinguish from ‘true drive’ (Scott et al., 2018). Gametic selection 
exacerbates Haldane’s rule in terms of a hybrid male rarity in some Caenorhabditis nematodes due to 
a competitive advantage in fertilization by X-bearing sperm over nullo-X sperm (Bundus et al., 2015). 
In principle, gametic selection also could lead to an advantage of Y-bearing sperm. Gametic selection, 
irrespective of selfish genetic elements, is especially prominent in plants in pollen competition (Lank-
inen and Karlsson Green, 2015; Immler, 2019). Similarly, gametophytic haploid selection presents 
itself as an especially important factor in those organisms with extended gametophytic stages of the 
life cycle, as in some bryophytes and algae (Haig, 2016; Beaudry et al., 2020; Charlesworth, 2022).

Cytoplasmic drive theory
Divergence of cytoplasmic drive elements between species also can lead to Haldane’s rule (Hurst 
and Pomiankowski, 1991). Again, sex-limited inheritance of cytoplasmic drive elements that are 
linked to plastid genomes or vertically-inherited endosymbiotic bacterial genomes skew sex ratios 
and select for suppressor alleles, setting up arms-race coevolution (Werren, 2011). Mismatched driver 
and suppressor genotypes in hybrids can manifest as hybrid sterility or inviability, as documented in 
Drosophila and other insects (Hurst and Pomiankowski, 1991; McDermott and Noor, 2010; Miller 
et al., 2010; Shropshire et al., 2020), in some cases also contributing to reciprocal cross asymmetry 
(Darwin’s corollary to Haldane’s rule) (Jaenike et al., 2006; Turelli and Moyle, 2007). Similarly, the 
cytoplasmic endosymbiont Wolbachia can lead to reproductive isolation with sex-biased effects, with 
evidence from Tribolium beetles, mushroom-feeding Drosophila, and haplodiploid Nasonia wasps 
(Wade et al., 1995; Shoemaker et al., 1999; Bordenstein and Werren, 2007).

Hermaphroditic plants are well-known to experience cytoplasmic hybrid incompatibility as a source 
of sterility for hybrid pollen, often arising from mitochondrial rearrangements (Frank, 1989; Riese-
berg and Blackman, 2010). At face value, then, one can interpret such cases as a source of Haldane’s 
rule when examining F1 hybrids. However, the genetic drive that promotes the evolution of such cyto-
plasmic male sterility (CMS) alleles in the first place may subvert their potential to provide long-term 
reproductive barriers pertinent to speciation by promoting outcrossing and gene flow (Rieseberg and 
Blackman, 2010; Ågren, 2013; Sweigart et al., 2019).

These cases of haplodiploid and hermaphrodite sexual systems highlight how drive as a factor can 
contribute to sex-biased hybrid dysfunction in taxa lacking heteromorphic sex chromosomes. The 
fact that the magnitude of cytoplasmic-mediated dysfunction caused by Wolbachia is temperature-
sensitive (Shropshire et  al., 2020) suggests the speculative possibility that systems with environ-
mental sex determination also might exhibit predictable consequences of cytoplasmic incompatibility 
in hybrids.

Faster male theory
Models of sexual selection and sexually antagonistic selection often predict the more rapid evolution of 
male reproductive traits and the genes that underlie them (Grath and Parsch, 2016; Kasimatis et al., 
2017; Swanson and Vacquier, 2002). This logic extends to hybrid dysfunction by again presuming 
that each new mutational substitution increases the likelihood of contributing to a DMI. Consequently, 
faster male theory predicts that hybrid males will suffer disproportionate hybrid dysfunction irrespec-
tive of the mode of sex determination (Wu and Davis, 1993). Because genes controlling the devel-
opment of the gonad and other reproductive structures provide prime sources of sex-biased gene 
expression and targets of sexual selection, the faster male hypothesis is thought to more readily 
explain sex-biased sterility than the inviability of hybrids (Wu and Davis, 1993; Wu et al., 1996). Even 
hermaphrodite systems can experience sexual selection and sexual conflict to promote the evolution 
of male gametes and reproductive structures (Abbott, 2011; Lankinen and Karlsson Green, 2015; 
Schärer et al., 2014; Cutter, 2019). Consequently, this theory applies to sex-biased hybrid dysfunction 
irrespective of the mechanism of sex determination and makes no assumptions about the dominance 
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of incompatibility alleles (Figure 2). In addition, genes with sex-biased expression will experience 
weaker purifying selection, and so also may evolve faster than other loci due to mutation accumulation 
by genetic drift (Demuth and Wade, 2007b; Dapper and Wade, 2016; Dapper and Wade, 2020). 
Molecular evolutionary evidence generally supports the more rapid divergence of coding sequence 
and of expression profiles for genes with male-biased expression (Swanson and Vacquier, 2002; Elle-
gren and Parsch, 2007; Grath and Parsch, 2016). Regardless of whether faster male evolution might 
result from directional selection or relaxed selection, however, it will act in opposition to other forces 
that promote the classic Haldane’s rule pattern in those taxa with female heterogamety (Turelli and 
Orr, 1995; Figure 2). If sufficiently strong, then faster male evolution could attenuate or reverse the 
magnitude of Haldane’s rule in some female-heterogametic organisms to help explain exceptions to 
classic Haldane’s rule, as in Xenopus frogs (Malone and Michalak, 2008b; Table 1).

Fragile male theory
The initial proposition of faster male theory for Haldane’s rule also posited that spermatogenesis 
might be especially prone to disruption to also make male hybrids especially vulnerable to hybrid 
dysfunction (Wu and Davis, 1993). Here, I separate this hypothesis regarding the fragility of male 
developmental mechanisms as a conceptually distinct idea relative to faster male theory in the strict 
sense of rapid divergence of genes and traits with male-biased expression that result from sexual 
selection or conflict-driven rapid evolution (Laurie, 1997; Cutter and Bundus, 2020).

Although no explicit mechanism was proposed to explain the fragility of male development 
(Wu and Davis, 1993), disruption of meiotic checkpoints are more prone to induce sterility in sper-
matogenesis than oogenesis in some organisms (Hunt and Hassold, 2002; Malone and Michalak, 

Table 1. Exemplar taxa and exceptional examples with experimental evidence that is informative 
about sex biases in hybrid dysfunction for different sexual systems.

Sexual system Exemplar taxa *
Exceptional 
examples **

Evidence informative 
to sex biases in hybrid 
dysfunction *** Review references

Heteromorphic sex 
chromosomes in male

Many insects 
(e.g. Drosophila, 
Lepidoptera), 
mammals, nematodes; 
Silene plants

Teleogryllus (field 
crickets; XX/XO)

Pervasive male-biased 
hybrid sterility & inviability; 
support for multiple 
mechanisms affecting 
Haldane’s rule

Delph and Demuth, 
2016; Fontdevila, 
2016; Moran et al., 
2017

Heteromorphic sex 
chromosomes in female

Many insects, birds, 
nematodes

Xenopus (clawed 
frogs; ZW/ZZ)

Pervasive female-biased 
hybrid sterility & inviability; 
support for multiple 
mechanisms affecting 
Haldane’s rule

Malone and Michalak, 
2008b; Delph and 
Demuth, 2016; 
Fontdevila, 2016

Haplodiploidy

Nasonia (wasps), 
Formica (ants), 
Tetramorium (ants), 
Tetranychus (mites) Neodiprion (sawflies)

Sex-biased hybrid 
inviability more common 
than hybrid sterility; 
support for cytoplasmic 
drive

Koevoets and 
Beukeboom, 2009; 
Bendall et al., 2023

Homomorphic sex 
chromosomes

Aedes (mosquitoes), 
Tigriopus (copepods), 
many amphibians, 
and fish Bufo (toads)

Heterogeneous support 
for sex-biases across taxa; 
higher female inviability 
and higher male sterility 
in Bufo; support for faster 
male and/or fragile male 
theories (Aedes, Bufo)

Presgraves and Orr, 
1998; Malone and 
Fontenot, 2008a; Lima, 
2014; Dufresnes and 
Crochet, 2022

Hermaphroditism

Many plants (e.g. 
Mimulus, Solanum, 
Helianthus, 
Arabidopsis), molluscs, 
nematodes Argopecten (scallops)

Pervasive sterility of male 
function (pollen, sperm); 
support for cytonuclear 
incompatibilities

Rieseberg and 
Blackman, 2010; Yu 
et al., 2023

Environmental sex 
determination

Many turtles and fish, 
some lizards Lepomis (sunfish) Male-biased sex ratios Bolnick, 2009

*taxonomic scale varies across study systems used in speciation research; ** recent or rare well-developed example system; *** 
the commonness or rarity of sex-biased hybrid dysfunction across taxa remains to be determined for most sexual systems that lack 
heteromorphic sex chromosomes.
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2008c). The sexes also experience intrinsic sex differences in gene regulatory network architecture, 
at least in some contexts, that could potentially underlie different sensitivities to perturbation. For 
example, spermatogenesis developmental programs depend primarily on transcriptional regulation 
in C. elegans nematodes, whereas post-transcriptional regulation dominates for other germline genes 
(Merritt et al., 2008). It may be the case that post-transcriptional regulation confers greater robust-
ness to genetic networks (McManus et al., 2014). In addition, the architecture in terms of genetic 
network size, connectivity, or modularity that underlies the development of male traits might predis-
pose them to low robustness in the face of genetic or environmental perturbations as experienced 
in hybrid organisms (Cutter and Bundus, 2020; Cutter, 2023a). For example, genes with sex-biased 
expression in nematodes also differ in how regulatory divergence has accumulated changes to cis-
acting versus trans-acting regulatory factors that could predispose one sex to dysfunctional control 
of tissue development in hybrids (Sánchez-Ramírez et  al., 2021). Thus, even if genes with male-
biased expression do not evolve any faster than other genes, genetic network architecture may lead 
to disproportionately perturbed male fertility or viability in hybrids.

While faster male and fragile male hypotheses are typically applied to hybrid sterility (Wu and 
Davis, 1993; Wu et al., 1996), sex differences in developmental genetic mechanisms might extend 
these explanations to hybrid inviability. For example, extreme temperature conditions exacerbate the 
magnitude of Haldane’s rule for hybrid male inviability in both insects and nematodes (Wade et al., 
1999; Bundus et al., 2015). If these properties are general to male gametogenesis and the develop-
ment of related traits, then the fragile male hypothesis will apply to sex-biased hybrid dysfunction in 
taxa irrespective of sexual system (Figure 2).

Other hypotheses to explain sex biases in hybrids
Despite the prominence of the aforementioned hypotheses to explain Haldane’s rule, several other 
ideas (Figure  2) have been proposed over the years with varying degrees of evidentiary support 
(Cowell, 2023). It is valuable to consider their potential influence in any given system, given that no 
single explanation accounts for all observations of sex-biased hybrid dysfunction (Coyne, 2018). For 
example, disruptions to sex determination developmental pathways can contribute to Haldane’s rule 
by sexual transformation (Sturtevant, 1920; Haldane, 1922), as observed in hybrids of some nema-
tode species in which XO hybrid individuals develop as females rather than as males (Baird, 2002). 
Sexual transformation can help explain the absence or rarity of a sex, but does not easily account for 
sex-biased sterility. Moreover, the expected directionality of sex bias caused by perturbed genetic 
pathways governing sex determination will depend on the details of genetic pathway structure for 
the taxa under consideration. Notably, cytoplasmic drive elements also sometimes operate through 
sexual transformation (Legrand et al., 1987).

Perhaps related to Haldane’s rule by sexual transformation in some circumstances, disrupted mech-
anisms of dosage compensation and meiotic silencing of unsynapsed chromatin can contribute to 
Haldane’s rule in some species (Orr, 1989a; Johnson and Lachance, 2012). These circumstances 
include situations in which neo-sex chromosomes are evolving greater heteromorphism (Filatov, 2018). 
However, disruption to some mechanisms of dosage compensation could oppose classic Haldane’s 
rule (Laurie, 1997). Moreover, distinct mechanisms of dosage compensation also are important for 
understanding other models, such as dominance theory and the fragile male hypothesis (Johnson and 
Lachance, 2012). For example, the details of dosage compensation preclude dominance as a cause 
of Haldane’s rule in marsupials because they show paternal X-chromosome silencing in females rather 
than the mosaic silencing seen in placental mammals (Watson and Demuth, 2012). The putative lack 
of global dosage compensation in taxa like the Lepidoptera also rules out a contribution of dosage 
compensation as an explanation in some organisms (Presgraves, 2002).

Gene movement from sex-chromosomes to autosomes as a source of divergence between species, 
even in the absence of any change in gene function, can lead to Haldane’s rule (Haldane, 1932; 
Zeng, 1996; Moyle et  al., 2010). The impact of such sex-chromosome rearrangement, translo-
cation, and duplication may also be compounded by greater densities of sex-biased genes on the 
sex chromosomes, mediating hybrid dysfunction due to null genotype effects, dosage effects, and 
X/Z-inactivation effects (Moyle et  al., 2010). Consequently, any effects of sex-chromosome rear-
rangements on viability and fertility in F1 may depend on the degree of post-meiotic expression 
by gametes, the details of dosage compensation mechanisms, or the sensitivity of sex-chromosome 
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inactivation pathways. Sex chromosome rearrangements are implicated in Haldane’s rule in Rumex 
plants, with impacts on male (pollen) fertility in particular (Kasjaniuk et al., 2019).

Because any DMI interactions that involve loci linked to Y or W chromosomes would necessarily 
be sex-specific, such interactions can provide an alternative explanation for classic Haldane’s rule 
that is independent of dominance theory (Turelli and Orr, 1995; Delph and Demuth, 2016). Despite 
evidence for such Y/W-linked incompatibilities in some systems (Turelli and Orr, 1995; Cocquet 
et al., 2012; Cowell, 2023), this idea cannot explain sex-biased hybrid dysfunction in XO/ZO systems 
or in taxa lacking heteromorphic sex chromosomes. DMIs involving Y/W-linked genes are expected 
to arise more readily in taxa with less-degenerated Y/W-chromosomes (Presgraves, 2002). DMIs 
resulting from X-X or Z-Z interactions, however, will tend to oppose Haldane’s rule in the F1 (Laurie, 
1997).

While most explanations for Haldane’s rule invoke DMIs, sex-chromosome mis-segregation in F1s 
provides another possible contributor that does not depend on genic interactions per se (Haldane, 
1922; Forsdyke, 2000; Demuth et al., 2014). Perhaps faster-X/Z evolution, elevated translocations 
off of sex chromosomes (Moyle et al., 2010), or centromeric divergence could lead to special suscep-
tibility of sex chromosomes to errors in pairing or segregation in the heterogametic sex. It is possible 
that both genic DMIs and chromosomal segregation defects could act in concert to contribute to 
Haldane’s rule, especially in taxa capable of forming hybrids in spite of extensive DNA sequence diver-
gence. There is some evidence consistent with sex-chromosome segregation defects in plant hybrids 
(Demuth et al., 2014), though this idea to explain Haldane’s rule does not extend beyond taxa with 
heteromorphic sex chromosomes.

Transgenerational parental effects also can influence the manifestation of Haldane’s rule through 
their interaction with sex chromosomes (Sawamura, 1996), acting distinctively from cyto-nuclear 
incompatibilities due to drive elements or endosymbionts (Turelli and Orr, 2000). Maternal effects 
in male-heterogametic systems, in particular, can act counter to classic Haldane’s rule to help explain 
exceptions to the expected pattern, whereas maternal effects contribute to Haldane’s rule in female-
heterogametic taxa from any cyto-Z incompatibilities (Turelli and Orr, 2000). Paternal effects presum-
ably would act in a reciprocal way, though I know of no explicit consideration of paternal effects on 
Haldane’s rule. DMIs that arise from plastid-encoded loci as plastid-Z incompatibilities in female-
heterogametic taxa, however, also could contribute to hybrid female dysfunction as an additional 
source of dominance effects for the hemizygous Z-chromosome in hybrid females, beyond standard 
Z-autosome incompatibilities (Presgraves, 2002).

Integrating sex-biased hybrid dysfunction across sexual systems
For many years, researchers have acknowledged the idea that explanations for Haldane’s rule may 
also explain patterns of reproductive isolation beyond just those taxa with heteromorphic sex chro-
mosomes (Presgraves and Orr, 1998; Orr and Presgraves, 2000; Koevoets and Beukeboom, 
2009; Schilthuizen et al., 2011). Here I will consider how different proposed explanations for classic 
Haldane’s rule intersect with the sexual systems of haplodiploidy, genetic sex determination (GSD) 
with homomorphic sex chromosomes, environmental sex determination (ESD), and hermaphroditism.

Haplodiploidy (haploid arrhenotoky)
Sex differences in ploidy are found in approximately 15% of arthropod species (Normark, 2003; 
Koevoets et al., 2012b; de la Filia et al., 2015), and also are observed in some rotifers and nema-
todes (Mable and Otto, 1998). Haldane recognized such organisms as displaying ‘extreme cases of 
the normal type’ (p. 101) (Haldane, 1922) and relevant to the Haldane’s rule pattern. In terms of trans-
mission genetics, the entire genome is analogous to an X-chromosome (or set of X-chromosomes) in 
species with XO sex determination (or, e.g. X1X2OO), a genome that lacks autosomes entirely.

Consequently, following an interspecies cross, hybrid males will contain genetic material from 
both species only in F2 and later generations as a result of meiotic recombination and segregation 
in F1 females (Koevoets and Beukeboom, 2009; Schilthuizen et al., 2011; Bendall et al., 2023). 
This feature requires that tests for sex biases in hybrid dysfunction must consider multiple cross-
generations, which also means that sex bias cannot be assessed in haplodiploid systems for which 
F1 hybrid females are sterile or inviable. Sex-biased hybrid dysfunction in haplodiploids is expected 
only for recessive-acting DMIs (Koevoets and Beukeboom, 2009). Because the entire genome 
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is effectively sex-linked in haplodiploids, it has been proposed that the faster-X/Z theory predicts 
stronger postzygotic isolation and reinforcement in haplodiploid than in diplodiploid taxa (Koevoets 
and Beukeboom, 2009), with support from evolutionary simulations (Bendall et al., 2022). Faster-X/Z 
theory predicts sex-biased effects in hybrids only when coupled to the more rapid evolution of genes 
with male-biased expression (Koevoets and Beukeboom, 2009), making it difficult to discriminate 
between faster-male and faster-X/Z theory in haplodiploids.

The lack of autosomes means that some explanations for classic Haldane’s rule should not apply to 
haplodiploids (e.g. sex-chromosome rearrangement, dosage compensation), and that some predic-
tions require modification (Koevoets and Beukeboom, 2009; Bendall et al., 2023). For example, 
because all DMIs in haplodiploids effectively involve X-X interactions that ought to oppose classic 
Haldane’s rule (Laurie, 1997), we might expect such taxa to often provide examples of stronger 
hybrid dysfunction in females. Indeed, female hybrids of Neodiprion sawflies show greater inviability 
than do hybrid males (Bendall et al., 2023; Table 1), though the sex bias is the reverse in hybrids of 
Nasonia wasps (Koevoets and Beukeboom, 2009; Koevoets et al., 2012a) with indirect evidence in 
several species of haplodiploid ants and mites also consistent with greater dysfunction of male hybrids 
(reviewed in Bendall et al., 2023). It remains to be established confidently whether exceptions to 
classic Haldane’s rule are any more common in haplodiploids than in taxa with heteromorphic sex 
chromosomes. Cytonuclear incompatibilities also present an important potential source of sex-biased 
hybrid dysfunction in haplodiploids, as implicated in data from Nasonia (Koevoets et al., 2012a), 
in contrast to diplodiploids in which hemizygous sex chromosomes comprise a small minority of the 
nuclear genome (Presgraves, 2002). Moreover, the longer-term consequences of Haldane’s rule 
differ for haplodiploid taxa relative to diploids, such that patterns of biased introgression of mitochon-
drial: nuclear DNA are unaffected by sex-biased hybrid dysfunction in haplodiploids (Patten et al., 
2015). The presence of distinct sexes allows a number of other potential explanations to be tested in 
haplodiploid taxa (e.g. faster male, fragile male) (Figure 2). Because males produce sperm through 
a mitosis-like process, rather than standard meiosis, it merits further consideration as to whether or 
not the fragile male hypothesis ought to apply to haplodiploids. Studies to date on haplodiploid taxa 
suggest that hybrid sterility evolves slowly compared to hybrid inviability (Bendall et al., 2023) and 
it remains to be determined empirically whether any consistent trends for sex-biased hybrid sterility 
emerge.

Homomorphic GSD
Approximately 5% of animals have separate sexes that develop through genetic sex determination 
despite not having distinguishable sex chromosomes (Bachtrog et  al., 2014). An implication of 
such homomorphic GSD is that most of the chromosomes on which sex-determination loci reside 
function as an autosome. Among dioecious plants, homomorphic sex chromosomes appear to be 
the norm, and heteromorphic sex chromosomes are the exception (Bachtrog et al., 2014; Filatov, 
2015). Consequently, dominance theory is insufficient to explain sex biases in hybrid dysfunction 
in such taxa because essentially the entire nuclear genome is encoded autosomally. Other models 
that depend on distinctive sex chromosomes also cannot explain sex-biased hybrid dysfunction in 
such taxa (i.e. faster X/Z; dosage compensation; gametic selection; sex-chromosome-mediated drive, 
translocations, incompatibilities, mis-segregation, or interaction with parental effects), unless the sex-
determination loci themselves exert such pleiotropic effects. For these reasons, it has been suggested 
that Haldane’s rule in the generalized sense may be less universal, or may evolve at a slower pace, in 
frogs and other organisms that often have homomorphic GSD (Dufresnes and Crochet, 2022; Wang 
et  al., 2023). Perhaps consistent with this idea, Tigriopus copepods show no evidence of dispro-
portionate F1 hybrid sterility in males (Willett, 2008) and the genetic architecture of F2 hybrid male 
sterility is population-dependent (Olsen et al., 2023). Some evolutionary processes may nonetheless 
be important in driving sex biases in hybrid dysfunction. For example, the higher incidence of hybrid 
sterility in male versus female Aedes mosquitoes that have homogametic GSD is consistent with faster 
male and fragile male hypotheses (Presgraves and Orr, 1998). Similarly, toads often show sex-biased 
hybrid dysfunction in spite of generally having homomorphic sex chromosomes (Table 1), though 
possibly ZW in some species of Bufo (Malone and Fontenot, 2008a). Hybrid male toads frequently 
are inviable or sterile whereas females generally are fertile, albeit with a twofold greater incidence of 
female hybrid inviability (Malone and Fontenot, 2008a). Consequently, differences in the balance of 
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countervailing factors may contribute to this variation among hybrid crosses in the sign and magni-
tude of sex-biased hybrid dysfunction. In principle, sexual transformation or cytoplasmic drive also 
could contribute to sex-biased hybrid dysfunction in taxa with homogametic GSD.

ESD
Environmental sex determination that depends on temperature, or other cues or stressors, occurs in 
diverse animal phyla, most famously in reptiles and fish (Korpelainen, 1990; Valenzuela and Lance, 
2004). Similar to taxa with homomorphic GSD, the entire nuclear genome is autosomal. Ancestrally 
in reptiles, males develop from eggs incubated at intermediate temperatures (e.g. crocodilians, 
some lizards, and turtles), though in most turtles males develop from cool incubation temperatures 
and, in ESD fish, warm incubation leads to male development (also, e.g. in tuatara) (Valenzuela and 
Lance, 2004; Ospina-Alvarez and Piferrer, 2008; Lawson and Rollinson, 2021). These temperature-
dependent responses also are typical in species with sex determined jointly by genetic and tempera-
ture effects (Navarro-Martín et al., 2011). The genetic perturbation of a hybrid genome may disrupt 
the environmental response curve of sexual development to cause predictably skewed sex ratios or 
sex-biased defects of development.

Even species with heteromorphic sex chromosomes can show an influence of temperature, and 
perhaps other environmental variables, on sex-biased hybrid dysfunction (Hutter et  al., 1990; 
Wade et al., 1999; Bundus et al., 2015). Temperature responses in vertebrate sex determination 
are, at least in part, often mediated by differential DNA methylation of the aromatase gene Cyp19a 
(Navarro-Martín et al., 2011). Those environmental conditions that are least stressful typically are 
predicted to favor male development, due to greater sensitivity of male fitness to variation in body 
condition (Trivers and Willard, 1973; Charnov and Bull, 1977; Charnov and Bull, 1989; Rowe and 
Houle, 1996; Lawson and Rollinson, 2021), reminiscent of the assumptions underlying the fragile 
male hypothesis for Haldane’s rule (see above).

As a consequence of the preceding factors, to the extent that a hybrid genome introduces a form 
of stress, we might predict that hybrids of taxa with ESD would show female-biased sex ratios and 
greater male infertility, even under otherwise benign rearing conditions. Further modeling of ESD 
with respect to hybrids, as well as assessment of thermal response curves in hybrids, would help 
clarify whether such predictions might hold for all response profiles and life histories, as short-lived 
species or those with males produced under warm conditions might differ in expectations (Lawson 
and Rollinson, 2021). For example, Lepomis sunfish hybrids tend to show male-biased sex ratios that 
are not due to the inviability of hybrid females (Bolnick, 2009; Table 1), with male-biased sex ratios 
also arising within sunfish species under high temperatures experienced in early development (Wang 
et al., 2014). Sex-biased hybrid dysfunction might also occur in ESD taxa as a result of faster male 
evolution in the narrow sense, due to DMIs involved in disproportionate divergence of loci with male-
specific expression. Biological stress can differentially affect both sexual development (Lawson and 
Rollinson, 2021) and viability (Teder and Kaasik, 2023), which may also link to sexual size dimorphism 
(De Lisle and Rowe, 2013). Consequently, it also will be interesting to explore the interspecies hybrid 
context of how sexual size dimorphism and sensitivity to stress might predict Haldane’s rule and sex-
biased hybrid dysfunction more generally.

Hermaphroditism
Populations of most plants and many animals are composed of just a single-sex, hermaphrodites 
(Figure 1), which have fully autosomal genomes. Nonetheless, hermaphrodites can reproduce sexu-
ally, meaning that they reproduce through the fertilization of large and mostly-sedentary (female) 
gametes by small and motile (male) gametes that get produced either simultaneously or sequentially 
by a given individual over the life cycle (Ghiselin, 1969; Schärer et al., 2014; Kuwamura et al., 2020). 
In this way, researchers can consider sex bias in hybrid dysfunction even in hermaphroditic taxa by 
examining the different gametes and any distinctive reproductive structures that are associated with 
them (Rieseberg and Blackman, 2010). In addition to mechanisms of CMS, non-drive genetic inter-
actions can yield hybrid male (sperm, pollen) sterility, as in rice, tomato, and Primulina (Long et al., 
2008; Moyle and Nakazato, 2008; Feng et al., 2020). Some hermaphrodite organisms, however, 
do not appear to show a strong sex bias to hybrid dysfunction, such as Solanum tomatoes (Moyle 
and Nakazato, 2008). In an animal, hermaphroditic Argopecten scallops show sex-biased hybrid 
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sterility primarily due to disruption of testis development and sperm fertility, though egg fertility also 
is compromised (Wang et al., 2017; Yu et al., 2023; Table 1). Haploid cells in hermaphrodite plant 
pollen are renowned for their gene expression that can manifest sex-biased effects (Rutley and Twell, 
2015; Somers and Nelms, 2023), though there also is growing recognition of haploid expression in 
animal sperm (Joseph and Kirkpatrick, 2004; Immler, 2019; Bhutani et al., 2021). The renewed 
recognition and investigation of sexual selection and sexual conflict in hermaphrodites, in both plants 
and animals (Abbott, 2011; Lankinen and Karlsson Green, 2015; Schärer et al., 2014), highlights 
these distinct male and female sexual functions and their implications for speciation (Schilthuizen 
et al., 2011; Ågren, 2013; Cutter, 2019).

The causes of any sex-biased hybrid dysfunction in hermaphrodites must stem from mechanisms 
that do not depend on sex chromosomes. Consequently, faster male, fragile male, and cytoplasmic 
drive theories all are applicable to sex-biased hybrid dysfunction in hermaphrodites (Figure  2). It 
remains to be assessed broadly how common male-biased hybrid dysfunction is among hermaphro-
dite taxa and what relative role different theories might play as causes. Moreover, the reproductive 
biology of hermaphrodites might motivate the development of novel hypotheses to explain sex-biased 
hybrid dysfunction when it occurs. In particular, novel hypotheses might derive from further consider-
ation of haploid expression in gametophytes and the diverse reproductive modes of hermaphrodites 
(e.g. protandrous versus protogynous sequential hermaphroditism, monoecy, androdioecious versus 
gynodioecious).

Distinguishing among mechanisms of sex-biased hybrid 
dysfunction
There is a broad appreciation that Haldane’s rule emerges due to the influence of multiple factors. 
This appreciation highlights how important it is to deduce the contributions of those distinct factors 
acting to either reinforce or oppose a given direction of sex-biased hybrid dysfunction (Laurie, 1997). 
The challenge of deciphering reinforcing or opposing factors applies to classic Haldane’s rule, and 
even more so for non-heterogametic taxa to control the magnitude and sign of sex-biased hybrid 
dysfunction. With respect to classic Haldane’s rule, the relative input of each contributing factor 
is key to explaining exceptions. The balance of factors also will contribute to the nature of hybrid 
dysfunction in terms of which aspects of development are expected to be compromised, whether 
they be gametes, non-germline reproductive structures, embryonic development, or other aspects of 
ontogeny and life history.

Experimental manipulation of sex determination
A variety of established research approaches can help to distinguish the relative contributions of 
distinct factors that may lead to sex-biased hybrid dysfunction. One of the most powerful tech-
niques applies manipulative experimentation. For example, in ESD turtles, the application of partic-
ular hormones to eggs can be used to manipulate sex development independently of temperature 
(Warner et al., 2017). Similarly, the sex of Xenopus clawed frogs can be reversed experimentally via 
hormone treatment to contrast sex-reversed individuals with animals that develop from the typical sex 
determination defined by their heteromorphic Z and W sex chromosomes. By applying this technique 
to Xenopus hybrids (Table 1), Malone and Michalak, 2008b determined that it is physiological male-
ness per se and not sex chromosome composition that is primarily responsible for sex-biased hybrid 
dysfunction (sterility) and that the traits of female hybrid individuals (fertility) have greater organismal 
robustness in the face of elevated perturbations to gene expression (Malone and Michalak, 2008c). 
These experiments helped explain an exception to classic Haldane’s rule, consistent with fragile male 
and/or faster male evolution overpowering the influence of dominance.

Experimental manipulations of sex determination and sex chromosome karyotype are valuable in 
other systems, as well. For example, the generation of XXY female sex chromosome compositions 
of Drosophila have proven valuable since the experiments of Sturtevant in the 1920s for exploring 
genetic questions of sexual asymmetry in speciation (Coyne, 1985; Barbash, 2010), and were instru-
mental in demonstrating how the genetic causes can differ for hybrid sterility and inviability (Orr, 
1993b). In haplodiploid Nasonia wasps, artificial diploid males can be generated to dissect the 
influence of dominance and other factors (Cohen et al., 2021). Artificial tetraploid Caenorhabditis 
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also have demonstrated that hybrid male sterility is sensitive to sex-chromosome ploidy (Woodruff 
et al., 2010). Moreover, the well-characterized sex determination pathway in C. elegans and related 
nematode species offers a number of genetic opportunities for such manipulations (Hodgkin, 2002), 
including creating genetic models of temperature-dependent sex determination (Janzen and Phillips, 
2006). These manipulative experimental approaches are underexploited for testing the relative contri-
butions of alternative hypotheses for sex-biased hybrid dysfunction.

Ontogenetic analysis of hybrids
The quantitative characterization of defects in development provides another means to explore the 
causes and consequences of sex-biased hybrid dysfunction. For example, measuring the incidence of 
hybrids among different age classes in wood ants allowed Kulmuni et al., 2020 to assess selection 
on hybrid males. Expanding temporal assessments of reproductive isolation across the full ontogeny 
of hybrids – as has been conducted in toads, nematodes, and flies (Malone and Fontenot, 2008a; 
Bundus et al., 2015; Turissini et al., 2018) – is instructive for determining how and when the sexes 
can differ in sensitivity to genetic perturbation to organismal development to impact hybrid fertility, 
viability, and other traits (Cutter and Bundus, 2020; Cutter, 2023a).

Analysis of later generation hybrids
Hybrid dysfunction that manifests in F2 and later generations also can provide a powerful source 
of insight for learning about the mechanisms of sex-biased hybrid dysfunction, despite the classic 
Haldane’s rule emphasis on the F1 generation. For example, multi-generation crossing experiments in 
Silene helped to demonstrate how dominance theory was sufficient to explain Haldane’s rule for sex-
biased hybrid sterility but not for inviability (Demuth et al., 2014). Later-generation crosses in Tribolium 
showed how incompatibility loci linked to sex-chromosomes often indicated sexually-unbiased effects 
(Demuth and Wade, 2007a). Genetic maps inferred from interspecies hybrid populations can point 
to regions of transmission ratio distortion that may involve sex-biased effects, potentially caused by 
genetic drive, selfish genetic elements, or strong DMIs (Fishman et al., 2001; Woodruff et al., 2010). 
Over longer timescales, hybrid populations (Schumer et al., 2015; Powell et al., 2020), hybrid zones 
(Payseur, 2010; Shurtliff, 2013), population genomic patterns of introgression (Payseur and Riese-
berg, 2016; Wolf and Ellegren, 2017), or experimental evolution with hybrids (Matute et al., 2020; 
Szabo and Cutter, 2023) permit evaluation of sex-linked introgression as a contributor to sex-biases 
in reproductive isolation (Presgraves, 2018; Fraïsse and Sachdeva, 2021).

Parent-of-origin asymmetries in sex-biased hybrid dysfunction
Reciprocal cross-experiments often reveal parent-of-origin asymmetries in the degree of hybrid 
dysfunction, termed Darwin’s corollary to Haldane’s rule (Turelli and Moyle, 2007). Explanations for 
Darwin’s corollary remain incompletely integrated with patterns and exceptions for Haldane’s rule 
more broadly, though the asymmetric accumulation of substitutions between lineages is expected to 
restrict the potential for classic Haldane’s rule to manifest (Orr, 1993a). One promising avenue is to 
exploit modified versions of Fisher’s geometric model of fitness landscapes to integrate parent-of-
origin asymmetries with sexual asymmetries in testable ways (Simon et al., 2018; Schneemann et al., 
2022). It also would be valuable to assess more explicitly what forces could generate parent-of-origin 
asymmetries in sex-biased hybrid dysfunction in systems lacking heteromorphic sex chromosomes 
(Table 2), as well as the conditions under which factors leading to Darwin’s corollary might reinforce or 
oppose Haldane’s rule e.g., cytonuclear incompatibilities (Arntzen et al., 2009).

Sex-biased hybrid transcriptome misexpression
Transcriptome-wide gene expression perturbation in hybrids is now an accessible way to quantify 
sex-biased trait dysfunction (i.e. genes showing transgressive misexpression phenotypes) (Mack 
and Nachman, 2017; Cutter, 2023a; Runemark et al., 2024). Differences between the sexes in the 
magnitude, extent (i.e. number of loci), and kind (i.e. due to cis-acting and/or trans-acting regulatory 
divergence) of hybrid misexpression are readily observed in a variety of taxa (Landry et al., 2007; 
Malone and Michalak, 2008c; Mank, 2017; Signor and Nuzhdin, 2018; Sánchez-Ramírez et al., 
2021). In principle, such information on expression and regulatory divergence may help to inform 
how likely is a faster X/Z, faster male, or fragile male explanation for Haldane’s rule on dysfunctional 
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organismal traits. Even in species with homomorphic sex chromosomes with pseudo-autosomal gene 
content, however, expression of genes linked to the same chromosome as the sex-determining region 
can show pronounced sex biases (Vicoso et al., 2013), although it is not known what occurs in hybrids 
of such taxa. A challenge of such analyses, however, is to interpret how the degree of misexpression 
differences between the sexes may translate into sex differences in organismal hybrid dysfunction 
(Malone and Michalak, 2008c) and how misexpression itself may represent the consequence rather 

Table 2. Outstanding questions for Haldane’s rule and sex-biased hybrid dysfunction.

Consideration Questions in need of addressing

Model development in exploring sex-biased hybrid 
dysfunction

How can models of classic Haldane’s rule be extended to 
provide predictions for sex-biased hybrid dysfunction in 
taxa lacking heteromorphic sex chromosomes?

What new models can be developed to explain sex-biased 
hybrid dysfunction in taxa with homomorphic GSD, ESD, 
haplodiploidy, and hermaphroditism?

Relative influence of factors causing Haldane’s rule

What is the balance across sexual systems of forces that 
reinforce and oppose hybrid dysfunction biased toward a 
particular sex?

Which mechanisms most commonly explain exceptions to 
classic Haldane’s rule, and how do they link to phylogeny?

Associating sex-biased hybrid dysfunction with 
developmental timing over life history

Under what circumstances do alternative mechanisms for 
sex-biased hybrid dysfunction affect predictions differently 
for sterility than for inviability?

Is sex-biased hybrid dysfunction truly more prevalent for 
sterility than for inviability, and if so, why?

To what extent does sex bias in pre-zygotic reproductive 
isolation associate with sex bias in post-zygotic hybrid 
dysfunction?

Connecting to other features of reproductive isolation

How do predictions for sex-biased hybrid dysfunction 
intersect with parent-of-origin asymmetries (Darwin’s 
corollary to Haldane’s rule)?

What is the extent and biological significance of 
within-species genetic variation for sex-biased hybrid 
dysfunction?

Approaches and methodologies to investigate sex-
biased hybrid dysfunction

What is the relative contribution of divergence in 
regulatory and coding sequence to sex-biased hybrid 
dysfunction, and how do they conform to alternate 
theoretical expectations?

How might inference of different rates of accumulation 
of sex-biased hybrid dysfunction from ‘speciation clock’ 
analysis inform alternate explanatory models?

How might taxa with multiple sex chromosomes, neo-sex 
chromosomes, and autosomal paleo-sex chromosomes be 
exploited to inform alternate models for sex-biased hybrid 
dysfunction?

How can analysis of hybrid zones and hybrid populations 
differentiate among alternative explanations for sex-biased 
hybrid dysfunction?

What do experimental manipulations of sex using 
hormone treatments, transgenic alterations, and karyotype 
perturbations indicate for general causes of sex-biased 
hybrid dysfunction?

How can alternative causes of sex-biased hybrid 
dysfunction be distinguished by testing for differences 
in the ontogenetic timing at which dysfunctional 
development manifests?
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than the cause of hybrid defects that originated earlier in development (Ortíz-Barrientos et al., 2007; 
Kerwin and Sweigart, 2020).

Given the observation that expression divergence and coding sequence divergence often are 
decoupled (Castillo-Davis et  al., 2004; Tirosh and Barkai, 2008; Sánchez-Ramírez et  al., 2021; 
Kopania et al., 2022), it will be interesting to assess the relative importance of regulatory and coding 
changes as causes of Haldane’s rule. Among ‘speciation genes’ described to-date (Johnson, 2010; 
Presgraves, 2010b; Maheshwari and Barbash, 2011), there are examples of DMIs mediated by 
both regulatory and coding differences between species. A larger sample of the molecular causes, 
however, is required to draw general conclusions about the relative contribution of regulatory and 
coding divergence to alternative explanations for sex-biased hybrid dysfunction.
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Figure 3. Reproductive isolation clocks for male (blue) and female (red) post-zygotic reproductive isolation 
documents the accumulation of sex-specific hybrid dysfunction over population divergence. Hybrid sterility (A) and 
hybrid inviability (B) evolve sooner for males than for females, on average, in Drosophila. Figure is redrawn from 
Turissini et al., 2018.
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Reproductive isolation clocks
Another instructive way to investigate speciation is by building ‘reproductive isolation clocks’ that 
quantify reproductive isolation between species as a function of the duration of divergence between 
them Figure  3. Pioneered in the classic 1989 study of Drosophila by Coyne and Orr, 1989, this 
approach has now been applied to a variety of taxa for distinct types of reproductive isolation traits 
(Coyne and Orr, 1997; Sasa et al., 1998; Presgraves, 2002; Price and Bouvier, 2002; Bolnick and 
Near, 2005; Phillips and Edmands, 2012; Lima, 2014; Turissini et al., 2018; Coughlan and Matute, 
2020; Melander and Mueller, 2020). These kinds of analyses show that classic Haldane’s rule appears 
especially readily between those species pairs with less divergence between them (Coyne and Orr, 
1997), although Haldane’s rule also occurs between highly divergent species (Baird et al., 1992). In 
some taxa (e.g. flies), hybrid sterility tends to evolve sooner than hybrid inviability (Figure 3), whereas 
in other taxa it is the reverse (e.g. wasps) (Koevoets and Beukeboom, 2009; Presgraves, 2010a). 
The greater pertinence of some factors as a contributor to sex-biased hybrid dysfunction in terms of 
fertility versus viability (e.g. sterility via faster male and fragile male theories, inviability via maternal 
effects) could benefit from further integration with speciation clock analysis. As such studies grow 
in availability, it will be important to account for the expectation of more idiosyncratic cases at low 
divergence due to the stochasticity of fewer genetic incompatibilities. Even if most X-linked incom-
patibilities act recessively, nonetheless, some will be dominant (Laurie, 1997; Moran et al., 2017). 
Stochasticity in the effects of substitutions at short timescales of divergence means that any X-linked 
dominant incompatibilities may arise in a way that interacts with divergence time to exacerbate idio-
syncrasies and exceptions to Haldane’s rule at short timescales of divergence.

Dominance theory (and faster-X/Z theory) predicts that taxa will evolve sex-biased hybrid dysfunc-
tion more quickly if they have sex chromosomes that comprise a larger portion of the total genome 
(Turelli and Orr, 1995; Turelli and Begun, 1997). Species with heteromorphic sex chromosomes do 
tend to show stronger Haldane’s rule than those with homomorphic sex chromosomes (Phillips and 
Edmands, 2012; Lima, 2014), and taxa with a greater proportion of their genomes being comprised 
of heteromorphic sex chromosomes also tend to show stronger reproductive isolation (Turelli and 
Begun, 1997). We generally expect stronger sex-biased hybrid dysfunction in taxa with heteromor-
phic sex chromosomes because the possible paths to hybrid dysfunction that uniquely depend on sex 
chromosomes are so multifarious (Dufresnes and Crochet, 2022). This expectation connects classic 
Haldane’s rule and the large-X effect, sometimes requiring careful consideration to disambiguate the 
large-X/Z effect from faster-X/Z evolution (Delph and Demuth, 2016; Cowell, 2023). Contrasts in 
rates of evolution for sex-biased effects in hybrids are especially amenable to comparative analysis 
within a reproductive isolation clock framework (Phillips and Edmands, 2012; Lima, 2014).

Further consideration with other sexual systems – and a broader range of organisms more generally, 
including those with multiple sex-chromosomes (e.g. X1X2Y1Y2 or X1X2OO), neo-sex chromosomes, or 
autosomal paleo-sex chromosomes – would be especially enlightening in assessing the pervasiveness 
of such patterns and their implications for different theories for the causes and evolution of sex-biased 
hybrid dysfunction. For example, stickleback fish are renowned for their rapid evolution of sex deter-
mination, with some taxa having male- or female-heteromorphic sex chromosomes and others being 
homomorphic (Ross et al., 2009). Pungitius ninespine stickleback is unusual in this group in showing 
male-biased hybrid sterility, as a result of spermatogenesis defects (Takahashi et al., 2005). Further 
interrogation of this group, including through reproductive isolation clock-type analyses, may prove 
valuable in discriminating the relative influence of different factors to sex-biased (or, on balance, sex-
unbiased) hybrid dysfunction.

Inspiration for new theories to explain sex-biased hybrid dysfunction
Among the virtues of expanding the study systems available to inform Haldane’s rule is the oppor-
tunity that diverse systems present to inspire new ideas for how the evolution of sex-biased hybrid 
dysfunction comes about. For example, species with haploid expression in gametophytes suggest an 
intersection of dominance theory and the fragile male hypothesis, if haploid expression is more prev-
alent in male gametophytes. Some plant taxa also are well-known for paternal transmission of plastid 
genomes (Munasinghe and Ågren, 2023), in contrast to the more familiar scenario of female trans-
mission, and so may provide compelling substrate for tests of hypotheses that depend on parental 
effects and evolution of cytoplasmic factors. Taxa with alternating sexual and asexual periods of 
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reproduction may also impose evolutionary pressures distinct from obligatorily sexual organisms that 
lead to predictable effects of sex-biased dysfunction (or lack thereof) in hybrids.

Even for species with heteromorphic sex chromosomes, there may be room for new or modified 
ideas. For example, specific population genetic conditions are required to generate faster X/Z evolu-
tion (Charlesworth et al., 1987; Orr, 1993a; Turelli and Orr, 1995; Presgraves and Meiklejohn, 
2021). Some taxa might differ from the assumptions in such a way as to lead to ‘slower X/Z’ evolution 
to be expected to influence sex-biased hybrid dysfunction, for example, if the sex chromosomes 
have a lower mutation rate than autosomes, lower observed dN/dS ratios, or a rarity of genes with 
male-biased expression. Similarly, neo-X chromosomes (Mrnjavac et al., 2023) and adaptation from 
standing variation (Orr and Betancourt, 2001) also can lead to ‘slower X/Z’ evolution. Such scenarios 
could help explain exceptions to classic Haldane’s rule. The pace of evolution of fixed DMI alleles 
ought to accumulate faster for some mechanisms that can contribute to sex-biased hybrid dysfunc-
tion, such as under faster-X/Z, sex-chromosome and cytoplasmic drive, and faster-male theories. 
Consequently, within-species variation for Haldane’s rule might also distinguish taxa in predictable 
ways, with polymorphisms tending to be rarer when DMIs responsible for sex-biased hybrid dysfunc-
tion accrue rapidly (Rieseberg and Blackman, 2010; Lachance et al., 2011; Cutter, 2012).

Moreover, most explanations for Haldane’s rule depend on the Dobzhansky-Muller model of 
incompatibilities (Box 2; Moyle et al., 2010; Delph and Demuth, 2016). Theory about the accumula-
tion of DMIs depends on the input of newly derived mutations (Orr, 1993a; Turelli and Orr, 1995; Orr 
and Turelli, 1996), and so divergence from ancestral standing variation generally is not considered 
to be an important source of negative effects of epistasis in hybrids that could generate Haldane’s 
rule. Nonetheless, negative effects of epistasis between ancestral alleles is possible (Corbett-Detig 
et al., 2013), and could potentially provide a basis for ‘ancestral-ancestral DMIs’ arising from standing 
variation within an ancestral population. Consequently, the assumptions that underpin existing theory 
about DMI evolution raises the question of how and whether alternative details of the genetic interac-
tions controlling DMIs might suggest new explanations for Haldane’s rule. For example, do assump-
tions about single-locus incompatibility versus complex multi-locus DMIs versus network models of 
incompatibility predispose hybrids to sex-biased dysfunction to different degrees in different sexual 
systems? Other genetic complications beyond locus number and interaction structure might also 
serve to influence sex-bias in predictable ways. For example, the observation of tissue-dependent 
dominance reversal in some hybrids (de Zwaan et al., 2022) raises questions about how commonly 
they occur and whether they might contribute substantively to models of Haldane’s rule.

Fitness landscape models (Barton, 2001; Chevin et  al., 2014; Fraïsse et  al., 2016; Simon 
et  al., 2018; Schneemann et  al., 2022), among other approaches (Schiffman and Ralph, 2022), 
have provided tractable and insightful inroads to understand expectations about hybrid fitness for a 
diverse range of scenarios to complement DMI models (Orr, 1993a; Turelli and Orr, 1995; Orr and 
Turelli, 1996). In particular, they empower predictions about sex asymmetries, cross asymmetries, 
and fitness dynamics as a function of accumulated divergence to permit comparisons among models 
with different assumptions (Schneemann and Welch, 2024). For example, perhaps non-intuitively, 
exceptions to Haldane’s rule may be especially likely when the X-chromosome is very large (Schnee-
mann et al., 2022), a prediction that may be particularly relevant to situations of haplodiploidy. Such 
approaches also may prove valuable in bridging timescales, starting from sex differences in heterosis 
(hybrid vigor) at ‘optimal outbreeding’ genetic distances – with male-biased heterosis observed in 
organisms like beetles and mice whereas ‘homogametic heterosis’ is found in some other cases (Ston-
aker, 1963; Boylan and Wong, 1965; White et al., 1970). Patterns at these shorter genetic distances 
may then link in predictable ways to sex-biases in hybrid dysfunction and ‘outbreeding depression’ 
at greater genetic distances (Bolnick and Near, 2005). I anticipate that theoreticians and organismal 
biologists will explore genetic factors like these to devise novel and testable hypotheses, and strate-
gies for experimental design and analysis, to distinguish the relative importance of distinct contribu-
tors to sex-biased hybrid dysfunction in taxa with shared circumstances.

Among the key outstanding questions is, what is the balance of reinforcing and opposing forces 
that can influence sex-biased hybrid dysfunction across sexual systems? Exceptions to classic Haldane’s 
rule, and their dissection (Malone and Michalak, 2008b), certainly point to this tension. But further 
research is required to assess the predispositions of different kinds of taxa and sexual systems to the 
various forces. We also seek to understand general principles across forces and taxa. For example, if 
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Haldane’s rule is weak in most taxa that lack heteromorphic sex chromosomes, as has been proposed 
(Dufresnes and Crochet, 2022), then it would lend support to the notion that, in absolute terms, 
factors like faster male and fragile male evolution are relatively weak influences on hybrid dysfunction. 
Studies on taxa with heteromorphic sex chromosomes suggest this possibility (Schilthuizen et al., 
2011), though a thorough evaluation of partial contributions remains to be seen. Characterization 
of general patterns may help to predict and explain differences in the speed of accumulation of 
hybrid sterility vs inviability in different taxa, e.g. Lepidoptera vs Drosophila (Presgraves, 2002) and 
amphibians vs mammals (Dufresnes and Crochet, 2022), or differences among taxa in whether they 
gradually accumulate DMIs or rapidly evolve RI e.g., via cytoplasmic drive mechanisms (Presgraves, 
2002). Examination of sex-biased hybrid dysfunction broadly also provides more opportunities for 
integrating observations of sex-bias (or lack thereof) in pre-zygotic isolation and reinforcement theory. 
Key to assessing relative contributions of the multiple possible drivers of sex-biased hybrid dysfunc-
tion, and to going beyond the pattern of classic Haldane’s rule, involves the regularized reporting 
of sex differences, or lack thereof, in metrics of reproductive isolation for speciation studies for all 
sexual systems. Efforts to generate broad taxonomic databases of sexual systems, like the Tree of Sex 
initiative (Ashman et al., 2014; Bachtrog et al., 2014), combined with establishing similar resources 
for speciation and reproductive isolation (Stankowski et al., 2024) will provide a powerful substrate 
for meta-analysis to assess general features in the evolution of sex-biased hybrid dysfunction across 
sexual systems (Table 3).

Conclusions
Organisms with separate sexes and heteromorphic sex chromosomes remain important study systems 
for exploring speciation, and yet many principles that underlie the evolution of reproductive isolation 
extend more broadly across the tree of life. Consequently, I propose a broad and inclusive view of the 
processes that generate sex biases in hybrid dysfunction (Box 1), irrespective of sexual system, and 
despite the continuing importance of deciphering the mechanisms responsible for classic Haldane’s 
rule in the strict sense. This broader view of sex-biased hybrid dysfunction calls attention to a variety 
of outstanding biological questions in need of resolution from a range of concrete research directions 
(Table 3).
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Table 3. Recommended research directions to establish a generalized view of Haldane’s rule and 
sex-biased hybrid dysfunction.

Recommendation Status, prospect, or approach

Compile sexual system information across taxa Tree of Sex database in progress (Ashman et al., 2014; 
Bachtrog et al., 2014)

Compile sex-biased reproductive isolation information 
across taxa

Speciation database proposed (Stankowski et al., 
2024)

Integrate speciation modeling predictions for sex bias 
explicitly with distinct sexual systems

Feasible for DMI, fitness landscape, systems theory, and 
other paradigms (Orr, 1993a; Orr and Turelli, 1996; 
Simon et al., 2018; Schiffman and Ralph, 2022)

Test for presence/absence of distinct sources of sex-
biased hybrid dysfunction across taxa

Well-studied in Diptera and Lepidoptera, but requires 
further empirical study and integration more broadly

Quantify the relative contribution of distinct sources of 
sex-biased hybrid dysfunction

Most feasible in genetic model organisms, but diverse 
experimental (e.g. backcross analysis, hormone 
treatment) and genomic (e.g. transcriptomes, molecular 
evolution) techniques empower study in many taxa

Conduct developmental analyses of genetic complexity 
for hybrid sterility and inviability for each sex

Experimentally feasible with interspecies QTL mapping, 
hybrid allele-specific expression analysis, or other 
approaches

Characterize ‘speciation clocks’ separately for each sex in 
different sets of taxa

Available for some Drosophila (Turissini et al., 
2018), feasible to test in any focal group with partial 
reproductive isolation between many species pairs
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