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eLife Assessment
This valuable study provides a novel method to detect sleep cycles based on variations in the slope 
of the power spectrum from electroencephalography signals. The method, dispensing with time- 
consuming and potentially subjective manual identification of sleep cycles, is supported by solid 
evidence and analyses. This study will be of interest to researchers and clinicians working on sleep 
and brain dynamics.

Abstract Sleep cycles are defined as episodes of non- rapid eye movement (non- REM) sleep 
followed by an episode of REM sleep. Fractal or aperiodic neural activity is a well- established 
marker of arousal and sleep stages measured using electroencephalography. We introduce a new 
concept of ‘fractal cycles’ of sleep, defined as a time interval during which time series of fractal 
activity descend to their local minimum and ascend to the next local maximum. We assess correla-
tions between fractal and classical (i.e. non- REM – REM) sleep cycle durations and study cycles 
with skipped REM sleep. The sample comprised 205 healthy adults, 21 children and adolescents 
and 111 patients with depression. We found that fractal and classical cycle durations (89±34 vs 
90±25 min) correlated positively (r=0.5, p<0.001). Children and adolescents had shorter fractal 
cycles than young adults (76±34 vs 94±32 min). The fractal cycle algorithm detected cycles with 
skipped REM sleep in 91–98% of cases. Medicated patients with depression showed longer fractal 
cycles compared to their unmedicated state (107±51 vs 92±38 min) and age- matched controls 
(104±49 vs 88±31 min). In conclusion, fractal cycles are an objective, quantifiable, continuous and 
biologically plausible way to display sleep neural activity and its cycles.

Introduction
The cyclic nature of sleep has long been established with a classical sleep cycle defined as a time 
interval that consists of an episode of non- rapid eye movement (non- REM) sleep followed by an 
episode of REM sleep (Feinberg and Floyd, 1979; Le Bon, 2020). Typically, nocturnal sleep consists 
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of 4–6 such cycles, which last for about 90 min each. Every cycle is seen as a fundamental physiological 
unit of sleep central to its function (Feinberg, 1974) or a miniature representation of the sleep process 
(Le Bon et al., 2002).

Basic structural organization of normal sleep is rather conservative with some exceptions. Thus, 
occasionally, at the beginning of the night in healthy adolescents and young adults, there could occur 
cycles with skipped REM sleep, which are also called ‘skipped’ cycles. In skipped cycles, a REM sleep 
episode is expected to appear except that it does not and only a ‘lightening’ of sleep is observed 
presumably due to too high non- REM pressure (Le Bon, 2020). Likewise, some alterations of the sleep 
structure can be observed in sleep disorders, for example, narcolepsy and insomnia (Scammell, 2015), 
and healthy aging (Carrier et al., 2011; Conte et al., 2014). In some neurological and psychiatric 
conditions, such as major depressive disorder (MDD), Parkinson’s and Alzheimer’s diseases, sleep 
architecture disturbances are further linked to the disease neuropathology (Courtet and Olié, 2012; 
Palagini et al., 2013; Pillai and Leverenz, 2017).

While the importance of sleep cycles is indisputable, their function as a unit is poorly understood 
and surprisingly under- explored, especially when compared to the extensive research on sleep stages 
(either non- REM or REM) or sleep microstructure (e.g. sleep spindles, slow waves, microarousals). One 
of the reasons for this striking absence of research progress might be the lack of a proper quantifiable 
and reliable objective measure from which sleep cycles could be derived directly (Schneider et al., 
2022).

Currently, sleep cycles are defined via a visual inspection of the hypnogram, the graph in which 
categorically separated sleep stages are plotted over time. Yet assigning a discrete category to each 
sleep stage is rather arbitrary as sleep stages are presumably continuous and thus do not occur as 
steep lines of a hypnogram. In addition, visual sleep stage scoring is very time- consuming, subjective 
and error- prone with a relatively low (~80%) inter- rater agreement. This results in a low accuracy 
regarding the sleep cycle definition.

We suggest that a data- driven approach based on a real- valued neurophysiological metric (as 
opposed to the categorical one) with a finer quantized scale could forward the understanding of sleep 
cycles considerably. Specifically, we propose that research on sleep cycles would benefit from recent 
advances in the field of fractal neural activity. In literature, fractal activity is also called aperiodic, 
non- oscillatory, 1 /f or scale- free activity, being named after the self- similarity exhibited by patterns 
of sensor signals across various time scales. Fractal activity is a distinct type of brain dynamics, which 
is sometimes seen as a ‘background’ state of the brain, from which linear, rhythmic (i.e. periodic, 
oscillatory) dynamics emerge to support active processing (Buzsaki, 2006; Freeman, 2006). Growing 
evidence confirms that fractal activity has a rich information content, which opens a window into 
diverse neural processes associated with sleep, cognitive tasks, age, and disease (Voytek and Knight, 
2015; Bódizs et al., 2024; Höhn et al., 2024).

Fractal dynamics follow a power- law 1 /f function, where power decreases with increasing frequency 
(He, 2014). The steepness of this decay is approximated by the spectral exponent, which is equivalent 
to the slope of the spectrum when plotted in the log- log space (He, 2014; Gerster et al., 2022). 
The fractal signal is not dominated by any specific frequency, rather it reflects the overall frequency 
composition within the time series (Horváth et al., 2022) such that steeper (more negative) slopes 
indicate that the spectral power is relatively stronger in slow frequencies and relatively weaker in 
faster ones (He, 2014).

In terms of mechanisms, it has been suggested that flatter high- band (30–50 Hz) fractal slopes 
reflect a shift in the balance between excitatory and inhibitory neural currents in favour of excitation 
while steeper slopes reflect a shift towards inhibition (Gao et al., 2017). Given that the specific balance 
between excitation and inhibition defines a specific arousal state and the conscious experience of an 
organism (Nir and Tononi, 2010), the introduction of Gao’s model led to an increased interest in 
fractal activity. For example, it has been shown that high- band fractal slopes discriminate between 
wakefulness, non- REM and REM sleep stages as well as general anesthesia or unconsciousness (Gao 
et al., 2017; Colombo et al., 2019; Lendner et al., 2020; Höhn et al., 2024).

Of note, Gao’s model does not account for the lower part of the spectrum, which is also scale- free. 
An alternative model suggests that the broadband 1 /f² activity reflects the tendency of the central 
nervous system to alternate between UP- (very rapid spiking) and DOWN- (disfacilitation, no activity) 
states (Milstein et al., 2009; Baranauskas et al., 2012). Empirical studies further showed that the 
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broadband (2–48 Hz) slope is an especially strong indicator of sleep stages and sleep intensity with 
low inter- subject variability and sensitivity to age- related differences (Miskovic et al., 2019; Schneider 
et al., 2022; Horváth et al., 2022). Taken together, this literature suggests that fractal slopes can 
serve as a marker of arousal, sleep stages and sleep intensity (Lendner et al., 2020; Schneider et al., 
2022; Horváth et al., 2022). We expect that this line of inquiry could be extended to sleep cycles.

On a related note, the reciprocal interaction model of sleep cycles assumes that each sleep stage 
involves distinct activation patterns of inhibitory and excitatory neural networks (Pace- Schott and 
Hobson, 2002). This model explains alternations between non- REM and REM sleep stages by the 
interaction between aminergic and cholinergic neurons of the mesopontine junction (Pace- Schott 
and Hobson, 2002). Notably, during REM sleep, acetylcholine plays a major role in maintaining brain 
activation, which is expressed as EEG desynchronization, one of the main features of REM sleep 
(Nir and Tononi, 2010). This is of special importance in affective disorders since according to one of 
the pathophysiological explanations of depression, for example, the cholinergic- adrenergic hypoth-
esis, central cholinergic factors play a crucial role in the aetiology of affective disorders, with depres-
sion being a disease of cholinergic dominance (Janowsky et al., 1972). Many antidepressants (e.g. 
serotonin- norepinephrine reuptake inhibitors, selective serotonin reuptake inhibitors) suppress REM 
sleep and thus cause essential alterations in sleep architecture. Intriguingly, REM sleep suppression 
is related to the improvement of depression during pharmacological treatment with antidepressants 
enhancing monoaminergic neurotransmission (Vogel et al., 1990; Wichniak et al., 2013).

Based on this background, we propose that a fractal neural activity- based definition of sleep cycles 
has the potential to considerably advance our understanding of the cyclic nature of sleep, for example, 
by introducing graduality to the categorical concept of sleep stages. The current study analyzes the 
dynamics of nocturnal fluctuations in fractal activity using five independently collected polysomno-
graphic datasets overall comprising 205 recordings from healthy adults. Based on the inspection of 
fractal activity across a night, we introduce a new concept of fractal activity- based cycles of sleep or 
‘fractal cycles’ for short. We describe differences and similarities between fractal cycles defined by our 
algorithm and classical (non- REM – REM) cycles defined by the hypnogram. We hypothesize that the 
timing and durations of the fractal cycles would closely correspond to those of classical cycles. We 
had no prior hypothesis regarding correspondence between the fractal cycles and classical cycles with 
skipped REM sleep, that is this analysis was exploratory.

Given the above- mentioned age- related changes in fractal activity (flatter slopes) and sleep struc-
ture (fewer and shorter classical cycles), we also study whether fractal cycle characteristics change 
with age. To this end, we use 5 healthy adult datasets with the age range of 18–75 years (n=205). 
Moreover, we add to our study a pediatric polysomnographic dataset (age range: 8–17 years, n=21) to 
explore fractal cycles in childhood and adolescence, a life period accompanied by deepest sleep and 
massive brain reorganization (Kurth et al., 2012) as well as a higher frequency of cycles with skipped 
REM sleep (Jenni and Carskadon, 2004).

Finally, we test the clinical value of the fractal cycles by analyzing polysomnographic data in 
111 patients with MDD, a condition characterized by disturbed sleep structure (besides its clinical 
symptoms, such as abnormalities of mood and affect). Specifically, we compare fractal cycles of sleep 
between medicated MDD patients (three MDD datasets, n=111) and healthy age- matched controls 
(n=111) as well as in the unmedicated and medicated states within the same MDD patients (one of the 
three MDD datasets, n=38). We hypothesize that the fractal cycle approach would be more sensitive 
in detecting differences between typical and atypical sleep architecture compared to the conventional 
classical cycles.

Results
Fractal cycles in healthy adults
Figure 1A displays smoothed fractal slope time series and hypnogram for an example subject. Four 
additional examples are presented in Figure 1—figure supplement 1. Fractal slope time series and 
hypnograms for all healthy adult participants are shown in Supplementary PowerPoint File shared on 
https://osf.io/gxzyd.

We observed that the slopes of the fractal (aperiodic) power component fluctuate across a night 
such that the peaks of the time series largely coincide with REM sleep episodes while the troughs of 
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Figure 1. Fractal cycles in healthy adults. (A – B) Individual fractal and classical sleep cycles. Time series of 
smoothed z- normalized fractal slopes (bottom) and corresponding hypnograms (top) observed in two different 
participants. The duration of the fractal cycle is a time interval between two successive peaks (blue diamonds). 
(A) S15 from Dataset 3 shows a one- to- one match between fractal cycles defined by the algorithm and classical 

Figure 1 continued on next page
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the time series for the most part coincide with non- REM sleep episodes. Based on this observation we 
propose the following definition:

Definition: The fractal activity- based cycles of sleep or ‘fractal cycles’ for short is a time interval 
during which the time series of the fractal slopes descend from the local maximum to the local 
minimum with the amplitudes higher than |0.9| z, and then lead back from that local minimum to the 
next local maximum.

Based on this definition, we created an algorithm, which automatically defined the onset and offset 
of the fractal cycles (the adjacent peaks of the time series of the fractal slopes; available on https:// 
osf.io/gxzyd/). An additional visual inspection showed that the automatic definition of fractal cycles 
(Figure 1A, blue diamonds) was identical to that provided by a human scorer.

Overall, fractal slopes cyclically descend and ascend 4–6 times per night and the average dura-
tion of such a descent- ascent cycle is close to 90 min. Figure 1—figure supplement 2A shows the 
frequency distribution of the fractal cycle durations for each dataset separately as well as for the 
pooled dataset.

This observation strikingly resembles what we know about classical sleep cycles: ‘night sleep 
consists of 4–6 sleep cycles, which last for about 90 min each’ (Feinberg and Floyd, 1979; Le Bon, 
2020; Figure 1—figure supplement 2A, bottom panel). Further calculations showed that the mean 
duration of the fractal cycles averaged over all cycles from all datasets (n=940) is 89±34 min while 
the mean duration of the classical sleep cycles is 90±25 min (Figure 1—figure supplement 2B). The 
mean durations of the fractal and classical sleep cycles averaged over each participant correlated in 
all analyzed datasets (r=0.4–0.5, Table 1, Figure 1C).

Figure 1—figure supplement 1D shows fractal activity across 13 hr, including 3 hr before the sleep 
onset and 2 hr after awakening (using data from Rosenblum et al., 2024b). The pattern of fractal fluc-
tuations suggests that fractal cycles are specific to sleep and are not observed during wake.

Cycle- to- cycle overnight dynamics showed an inverted U- shape of the fractal cycle durations and a 
gradual decrease in absolute amplitudes of the fractal descents and ascents from early to late cycles. 
This pattern resembled an inverted U- shape of the classical cycle durations (Figure 1D).

Correspondence between fractal and classical cycles
Analysis at the individual cycle level revealed that 81% (763/940) of all fractal cycles (77–88% in 
different datasets) could be matched to a specific classical cycle defined by hypnogram, that is, the 
timings of fractal and classical cycles approximately coincide. Bayesian prevalence analysis further 
revealed that the Bayesian highest posterior density interval with 96% probability level lies within the 

(non- REM – REM) cycles defined by the hypnogram. (B) In S22 from dataset 5, the second part of night has many 
wake epochs, some of them are identified by the algorithm as local peaks. This results in a higher number of fractal 
cycles as compared to the classical ones and a poor match between the fractal cycles No. 3–7 and classical cycles 
No. 2–5. The algorithm does not distinguish between the wake and REM- related fractal slopes and can define both 
as local peaks. Since the duration of the fractal cycles is defined as an interval of time between two adjacent peaks, 
more awakenings/arousals during sleep (usually associated with aging) are expected to result in more peaks and, 
consequently, more fractal cycles, that is a shorter cycle duration. This is one of the possible explanations for the 
correlation between the fractal cycle duration and age (shown in Figure 1—figure supplement 4A). Time series 
of the fractal slopes and corresponding hypnograms for all participants are reported in Supplementary PowerPoint 
File shared on https://osf.io/gxzyd. SWS – slow- wave sleep, REM – rapid eye movement. (C) Scatterplots: each dot 
represents the duration of the cycles averaged over one participant. The durations of the fractal and classical sleep 
cycles averaged over each participant correlate in all analyzed datasets, raw (non- ranked) values are shown, r – 
Spearman’s correlation coefficient. (D) Cycle- to- cycle overnight dynamics show an inverted U shape of the duration 
of both fractal and classical cycles across a night and a gradual decrease in absolute amplitudes of the fractal 
descents and ascents from early to late cycles.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Individual fractal and classical sleep cycles in healthy adults.

Figure supplement 2. Fractal and classical cycles: distributions, means, correlations and an individual example.

Figure supplement 3. Individual cycles with skipped REM sleep.

Figure supplement 4. Correlations.

Figure 1 continued
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0.77–0.83 range (the range within which the true population value lies) and the maximum a posteriori 
point estimate prevalence is equal to 0.8, reflecting the most likely values for the population param-
eter. This analysis reflects the within- participant replication probability: the probability of obtaining 
a significant experimental result if the same experiment was applied to a new participant randomly 
selected from the population (Ince et al., 2022).

Table 1. Demographic, sleep and fractal characteristics of healthy adults.

Characteristic Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Pooled dataset

No. participants 
analyzed 38 39 32 34 62 205

Age, years 46.8±10.7 31.0±9.9 45.3±15.9 21.5±3.8 37.4±15.3 36.7±15.0

Age range, years 29–65 19–54 22–75 18–35 20–66 18–75

Sex, female, % 53 54 61 68 55 58

Wake, % 6.0 4.9 7.5 7.1 9.1 7.0

Non- REM stage 
1, % 7.7 11.9 9.0 3.6 7.5 7.9

Non- REM stage 
2, % 48.1 45.9 49.3 34.7 46.1 45.1

Slow- wave sleep, % 19.2 20.3 16.2 34.2 17.2 20.9

REM sleep, % 19.0 16.9 17.9 19.3 19.3 18.6

Total sleep time, 
min 394±55 430±26 434±37 445±62 467±38 438±51

Classical sleep cycle 
duration, min 86.2±23.3 90.0±21.3 89.0±22.7 92.2±23.7 91.9±29.0 90.1±24.9

Fractal sleep cycle 
duration, min 86.4±35.2 90.0±25.5 86.4±31.2 94.7±37.1 89.9±37.1 89.1±34.0

Classical- fractal 
cycles duration 
correlation, r 0.407 0.485 0.498 0.548 0.481 0.488

Classical- fractal 
cycles duration 
correlation, p 0.011 0.002 0.004 0.001 10–5 10–13

One- to- one match 
between classical 
and fractal cycles 
timing and duration, 
% cycles 78 88 82 87 77 81

Participants having 
all fractal and 
classical cycles in a 
one- to- one match, 
% participants 53 62 66 53 45 54

Descent amplitude, 
z –2.2±0.9 –2.3±0.9 –2.2±0.8 –2.2±0.8 –2.1±0.8 –2.2±0.8

Ascent amplitude, z 2.1±0.6 2.2±0.6 2.1±0.6 2.1±0.6 2.0±0.6 2.2±0.6

No. fractal cycles 167 171 152 152 298 940

No. classical cycles 171 180 146 161 303 961

No. ‘skipped’ first 
cycles (%) 5 (13%) 7 (18%) 1 (3%) 19 (56%) 15 (24%) 47 (23%)

±shows mean and SD, r – Spearman’s correlation coefficient, ‘skipped’ cycle – a cycle where REM sleep does not 
appear, REM – rapid eye movement.

https://doi.org/10.7554/eLife.96784
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In 54% (111/205) of the participants (45–66% in different datasets), all fractal cycles approximately 
coincided with classical cycles (r=0.5–0.8, p<0.001, Table 1 and Figure 1—figure supplement 2C). 
Bayesian prevalence analysis revealed that the maximum a posteriori point estimate prevalence is 
equal to 0.52 and the Bayesian highest posterior density interval (the true population level) with 96% 
probability level lies within the 0.45–0.60 range.

In the remaining 46% of the participants, the difference between the fractal and classical cycle 
numbers ranged from –2 to 2 with the average of –0.23±1.23 cycle. This subgroup had 4.6±1.2 
fractal cycles per participant, while the number of classical cycles was 4.9±0.7 cycles per participant. 
The correlation coefficient between the fractal and classical cycle numbers was 0.280 (p=0.006) and 
between the cycle durations – 0.278 (p=0.006). Still, in these participants, many – even though not 
all – fractal cycles could be matched to a specific classical cycle. Figure 1B displays such an example 
in one participant. More examples can be found in Figure 1—figure supplement 1C, D and Supple-
mentary PowerPoint File shared on https://osf.io/gxzyd.

Sources of fractal and classical cycle mismatches
The timings and correlations between the fractal and classical cycles were not one- to- one (r=0.6–0.8, 
p<0.001). We identified two possible sources of a mismatch (Table 2; see also Table 5).

REM episode duration
While the fractal cycle end is defined as the local maximum of time series of fractal slopes, the classical 
cycle ends with the end of a REM episode. As a consequence, in some cases, especially for morning 
cycles that have rather long REM periods (>20 min), the match between fractal and classical cycles can 

Table 2. Sources of fractal and classical cycle mismatches.

Characteristic Dataset 1 (A) Dataset 2 (B)
Dataset 3
(C) Dataset 4 Dataset 5 Pooled dataset

Classical – fractal cycle duration difference, min 13.2±15.9 9.6±9.1 8.0±11.3 13.0±17.0 11.9±10.2 11.3±12.7

WASO, % 6.0±5.6 4.9±3.6 7.5±5.0 7.1±4.2 9.1±5.7 7.0±5.2

WASO %, r –0.011 0.488 0.377 0.141 0.361 0.226

WASO %, p 0.950 0.002 0.034 0.425 0.004 0.001

Descent amplitude, z –2.3±0.9 –2.5±0.9 –2.3±0.8 –2.0±0.7 –2.1±0.8 –2.2±0.8

Fractal descent, r 0.189 0.327 0.143 0.144 0.149 0.152

Fractal descent, p 0.171 0.002 0.182 0.271 0.135 0.002

Ascent amplitude, z 2.3±0.6 2.1±0.5 2.2±0.6 2.0±0.6 2.0±0.6 2.1±0.6

Fractal ascent, r 0.109 –0.105 –0.103 0.028 –0.010 –0.062

Fractal ascent, p 0.432 0.318 0.339 0.835 0.918 0.217

Skipped cycle lengths/TST, proportion 0.144 0.223 0.139 0.249 0.201 0.206

Skipped cycle lengths/TST, r 0.098 –0.363 0.384 –0.216 0.374 –0.019

Skipped cycles length/TST, p 0.788 0.303 0.523 0.334 0.066 0.873

REM episode length, min
23.5±15.2
(72 cycles)

22.8±13.2
(93 cycles)

21.8±11.6
(90 cycles)

26.0±13.9
(60 cycles)

24.3±15.0
(102 cycles)

0.251±0.08
(417 cycles)

REM episode length, r 0.222 0.411 0.400 0.231 0.394 0.358

REM episode length, p 0.061 <0.001 0.001 0.076 <0.001 <0.001

All parameters listed in the first column were correlated with the absolute value of the difference in classical vs fractal sleep cycle durations. For 
WASO and skipped cycles, all cycles of a given participant were averaged and the correlations were performed at the subject level. For the rest of the 
parameters, fractal and classical cycles were matched one- to- one when possible (~50% of all participants) and correlations were performed at the cycle 
level, r’s higher than 0.7 are considered as strong correlation scores, values lower than 0.3 are considered as weak, r’s values in the range of 0.3–0.7 are 
considered as moderate scores.
REM – rapid eye movement sleep, WASO – wake after sleep onset, TST – total sleep time, r – Spearman correlation coefficients.

https://doi.org/10.7554/eLife.96784
https://osf.io/gxzyd
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be rather coarse- grained (See, for example, cycle 3 in S16, Figure 1—figure supplement 1A). Yet, in 
other cases, the match between fractal and classical cycles might be almost perfect (See Figure 1A).

To test this visual observation, we correlated the absolute values of the difference in classical vs 
fractal sleep cycle durations with the REM episode length within a given cycle. We included in this 
analysis only the participants who had an equal number of fractal and classical cycles in order to 
match each fractal cycle to a classical cycle individually. We found that longer REM episodes were 
associated with a higher difference between classical vs fractal sleep cycle durations (r=0.36, p<0.001, 
n=417 cycles, Table 2). Interestingly, our recent study has shown that fractal activity within a REM 
sleep episode is not homogenous, with phasic states showing steeper fractal slopes than tonic ones 
(Rosenblum et al., 2025).

Wake after sleep onset (WASO) duration
Visual inspection of the data suggested that participants with more WASO often had more fractal 
than classical cycles. This might stem from the fact that both REM- and wake- related smoothed 
fractal slopes could be defined as local peaks (Figure 1A, B, Figure 4—figure supplement 4). More 
fractal peaks imply more fractal cycles and thus, possibly, more mismatches between the number and 
duration of classical and fractal cycles. To test this hypothesis, we correlated the average difference 
between the durations of classical and fractal cycles for each participant with the WASO proportion. 
We found that a higher difference in cycle durations was associated with a higher WASO proportion 
in 3/5 datasets (r’s=0.36–0.49, p<0.030) as well as in the merged dataset (r=0.23, p=0.001, n=205 
participants, Table 2).

In addition, we correlated the difference in classical vs fractal cycle durations with the fractal 
descent or ascent amplitudes (as reflections of fractal cycle depth and possibly sleep quality). We 
found that a shallower fractal descent was associated with a higher mismatch between fractal and 
classical cycles in 1/5 datasets (r=0.33, p=0.02) as well as in the merged dataset (r=0.15, p=0.002, 
n=400 cycles, Table 2).

Fractal cycles in children and adolescents
Next, we explored fractal cycles in children and adolescents (mean age: 12.4±3.1  years, n=21, 
Appendix 1—table 3) and compared them with those in young adults (mean age: 24.8±0.9 years, 
n=24). Two examples of smoothed fractal slope time series and hypnograms from the pediatric 
dataset are shown in Figure 2A – B. All examples are shown in Supplementary PowerPoint File shared 
on https://osf.io/gxzyd.

We found that children and adolescents had shorter fractal cycles compared to young adults with 
a medium effect size (76±34 vs 94±32 min, p<0.001, Cohen’s d=–0.57, 112 vs 121 pooled cycles, 5.0 
cycles/participant vs 4.4 cycles/participant, Figure 2C, D, Appendix 1—table 3). Similarly, children 
and adolescents showed shorter classical cycles than young adults with a medium effect size (80±23 
vs 90±22 min, p<0.001, Cohen’s d=–0.42, 112 vs 114 pooled cycles, Figure 2C, D).

To directly compare the fractal and classical approaches, we performed a Multivariate Analysis of 
Variance with fractal and classical cycle durations as dependent variables, the group as an indepen-
dent variable and the age as a covariate. We found that fractal cycle durations showed higher F- values 
(F(1, 43)=4.5 vs F(1, 43)=3.1), adjusted R squared (0.138 vs 0.089) and effect sizes (partial eta squared 0.18 
vs 0.13) than classical cycle durations.

Cycle- to- cycle overnight dynamics further revealed that the first and second fractal – but not clas-
sical – cycles were significantly shorter in the pediatric compared to the control group (Figure 2E) with 
medium effect sizes (d=–0.61–0.72). At the same time, the overnight classical – but not fractal – cycle 
analysis detected a between- group difference for the fourth classical cycle with a large effect size 
(d=–1.0, Figure 2E).

Skipped cycles
We tested whether the fractal cycle algorithm can detect skipped cycles, that is the cycles where an 
anticipated REM episode is skipped possibly due to too high homeostatic non- REM pressure. We 
counted only the first classical cycles (i.e. the first cycle out of the 4–6 cycles that each participant had 
per night, Figure 2A – B) as these cycles coincide with the highest non- REM pressure. An additional 
reason to disregard skipped cycles observed later during the night was our aim to achieve higher 

https://doi.org/10.7554/eLife.96784
https://osf.io/gxzyd
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A

C

E

D

B

Figure 2. Fractal cycles in children and adolescents. (A, B) Individual cycles: time series of smoothed z- normalized 
fractal slopes (bottom) and corresponding hypnograms (top). The duration of the fractal cycle is a time interval 
between two successive peaks (blue diamonds) defined with the Matlab function findpeaks with a minimum 
peak distance of 20 min and minimum peak prominence of 0.9 z. SWS – slow- wave sleep, REM – rapid eye 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.96784
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between- subject consistency as second – sixth skipped cycles were observed in only a small number 
of participants and were not distributed equally across the datasets.

The average number of the first skipped cycles for Datasets 1–5 is reported in Table 1. Appendix 1—
table 9 further reports the average number of skipped cycles as assessed by two independent human 
raters and the inter- rater agreement. Three specific examples of skipped cycles in young adults are 
presented in Figure 1—figure supplement 3 and two examples in children are shown in Figure 2A, 
B. All cycles are marked in Supplementary PowerPoint File shared on https://osf.io/gxzyd.

Visual inspection of the hypnograms from Datasets 1–6 was performed by two independent 
researchers. Scorer 1 and Scorer 2 detected that out of 226 first sleep cycles 58 (26%) and 64 (28%), 
respectively, lacked REM episodes. The agreement on the presence of skipped cycles between two 
human raters equaled 91% (58 cycles detected by both raters out of 64 cycles detected by two 
scorers). The fractal cycle algorithm detected skipped cycles in 57 out of 58 (98%) cases detected by 
Scorer 1 with one false positive (which, however, was tagged as a skipped cycle by Scorer 2), and in 
58 out of 64 (91%) cases detected by Scorer 2 with no false positives.

Age and fractal cycles
Next, we tested whether fractal cycle duration changes as a function of age. We found that in the 
merged adult dataset (Datasets 1–5, n=205), the mean duration of the fractal cycles negatively 
correlated with the age of the participants (r=–0.19, p=0.006, age range: 18–75  years, median: 
33.5 years, Figure 1—figure supplement 4A). Intriguingly, this correlation looked like a mirror image 
of the correlation between the age and wakefulness after sleep onset (Figure 1—figure supplement 
4B). Following this observation, we performed an additional correlation between the fractal cycle 
duration and wakefulness proportion and found that it was non- significant (r=0.01, p=0.969). Never-
theless, we further performed a partial correlation between the fractal cycle duration and participant 
age, while controlling for the effect of wakefulness after the sleep onset and found that the correlation 
remained significant (r=–0.18, p=0.011).

Given that participant’s age also correlated with REM latency (Figure 1—figure supplement 4D) 
while REM latency further correlated with fractal cycle duration (Figure 1—figure supplement 4C), 
we performed an additional partial correlation between the fractal cycle duration and age while 
controlling for REM latency. We found that it remained significant (r=–0.16, p=0.025). The partial 
correlation between the fractal cycle duration and REM latency adjusted for the participant’s age was 
non- significant (r=0, p=0.746).

Of note, these correlations were significant while analyzing the pooled dataset only, they were not 
observed while analyzing each dataset separately. Moreover, when we added to the pooled adult 
dataset (Datasets 1–5) our pediatric dataset (Dataset 6), the correlation between fractal cycle duration 
and age became non- significant.

movement sleep. (A) In this 9.9- year- old participant (from Dataset 6), we split the first 150- min- long classical 
cycle into two cycles according to the definitions of a ‘skipped’ cycle presented in Materials and methods. The 
fractal cycle algorithm successfully detected this skipped cycle. (B) This 14.9- year- old participant has a 156- min- 
long first classical cycle. Visual inspection shows that it should be divided into 3 skipped cycles, however, our 
a priori definition of skipped cycles did not include an option to subdivide a long cycle into three short cycles; 
hence, we split it into two short cycles. The fractal cycle algorithm was sensitive to these sleep lightenings and 
detected all three short cycles. Classical cycle 4 looks like a skipped cycle as it has two clear episodes of slow- 
wave sleep separated by non- REM stage 2. However, the length of this cycle is shorter than 110 min (the threshold 
defined a priori), therefore, we did not split the classical cycle 4 into two cycles. The fractal cycle algorithm 
was sensitive to this lightening of sleep and defined two fractal cycles during this period. (C) Histograms: The 
frequency distribution of fractal (left) and classical (right) cycle durations in children and adolescents (mean age: 
12.4±3.1 years) compared to young adults (mean age: 24.8±0.9 years). Kolmogorov- Smirnov’s test rejected the 
assumption that cycle duration comes from a standard normal distribution. (D) Box plots: in each box, a vertical 
central line represents the median, the left and right edges of the box indicate the 25th and 75th percentiles, 
respectively, the whiskers extend to the most extreme data points not considered outliers, and a plus sign 
represents outliers. Children and adolescents show shorter fractal cycle duration compared to young adults. 
(E) Overnight dynamics: cycle- to- cycle dynamics show that the first and the second fractal cycles are shorter in the 
pediatric compared to control group, * marks a statistically significant difference between the groups.

Figure 2 continued

https://doi.org/10.7554/eLife.96784
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Interestingly, the mean duration of the classical cycles did not correlate with the age of the adult 
participants neither in the merged dataset (r=–0.02, p=0.751) nor while analyzing each dataset 
separately.

Fractal cycles in MDD
Finally, to assess the clinical relevance of the fractal cycles, we explored them in patients with MDD. 
We found that patients at 7- and 28 day of medication treatment as well as long- termed medicated 
patients (Datasets A – C) showed a longer fractal cycle duration compared to controls with medium 
effect size (Table 3, Figure 3B). Moreover, in Dataset B, the patients who took REM- suppressive anti-
depressants (See Appendix 1—table 5 for information on specific medications taken by the patients) 
showed longer fractal cycle duration compared to patients who took REM- non- suppressive antide-
pressants with medium effect size (70 cycles of 21 patients vs 63 cycles of 17 patients). In Dataset C, 
no difference was detected between these sub- groups. However, it should be noted that in Datasets 
C, the REM- suppressive and REM- non- suppressive antidepressant groups were unbalanced (87 cycles 
of 23 patients vs 35 cycles of 10 patients) and consisted of different medications than Dataset B.

Table 3 and Figure 3 show results calculated over frontal electrodes (or central ones for Dataset A). 
The topographical analysis over other areas is reported in Appendix 1—table 6.

In Dataset B (the only dataset including unmedicated patients), 7- day medicated patients had 
longer fractal cycles compared to their own unmedicated state with medium effect size (p=0.001, 
Cohen’s d=0.4, Figure 3A, B, two additional examples are shown in Figure 3—figure supplement 
1). Unmedicated patients and controls showed comparable durations of the fractal cycles. The only 
difference observed between these groups was a smaller amplitude of the fractal descent of the first 
fractal cycles in unmedicated patients compared to controls with a medium effect size (−3.2 to –3.6 z, 
p=0.040, Cohen’s d=0.5).

In a pooled dataset, medicated patients showed a prolonged duration of fractal cycles compared 
to the controls (104±49 vs 88±31 min, p<0.001, Figure 3C). The between- group difference was the 
largest for the first cycle (Figure  3D). Moreover, cycle- to- cycle overnight dynamics of the fractal 
cycle duration showed a gradual decrease in medicated patients vs an inverted U shape in controls 
(Figure 3D).

To test our hypothesis that fractal cycles are more sensitive than classical cycles in detecting differ-
ences between patients and controls, we performed the same analysis as described above while using 
the duration of classical cycles as the variable of interest. The results were similar to those obtained 
for fractal cycle durations (Table 3, Figure 3C, D), that is our hypothesis was not confirmed. The 
comparable outcomes of the two analyses can be explained by the positive correlations between the 
durations of fractal and classical cycles observed in all groups of the medicated MDD patients like that 
seen in healthy controls (Table 3).

Discussion
This study introduced the new concept of fractal activity- based cycles of sleep or ‘fractal cycles’ for 
short, which is based on temporal fluctuations of the fractal (aperiodic) slopes across a night. We 
showed that durations of these fractal cycles correlated with those of classical (non- REM – REM) sleep 
cycles defined by hypnograms in five independently collected datasets counting 205 healthy partic-
ipants overall as well as in 111 medicated patients with MDD. Overnight cycle- to- cycle dynamics in 
healthy adults showed an inverted U- shape for both fractal and classical cycle durations. The fractal 
cycle algorithm was effective in detecting cycles with skipped REM sleep. The findings further revealed 
that children and adolescents showed shorter fractal cycles as compared to young healthy adults. In 
adults, fractal cycle durations negatively correlated with participants’ age. Medicated patients with 
MDD showed longer fractal cycles compared to their own unmedicated state and healthy controls. 
Below we discuss these findings in detail.

Fractal cycles: definition and motivation
We observed that the time series of fractal slopes have a cyclical nature, descending and ascending for 
about 4–6 times per night with a mean duration of approximately 90 min for each such (‘fractal’) cycle. 
This strikingly resembles the description of classical sleep cycles. Indeed, both the visual inspection 

https://doi.org/10.7554/eLife.96784
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A

B
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D

Figure 3. Fractal cycles in MDD. (A) Individual fractal cycles: time series of smoothed z- normalized fractal slopes 
observed in a 22 y.o. MDD patient (Dataset B) in their unmedicated (top) and 7- day medicated (bottom) states. 
Peaks (blue diamonds) are defined with the Matlab function findpeaks with the minimum peak distance of 20 min 
and minimum peak prominence of 0.9 z. Fractal cycles duration (defined as an interval of time between two 

Figure 3 continued on next page
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and formal correlational analyses revealed that the timing and duration of the fractal and classical 
cycles mainly matched. This led us to propose that the ‘fractal cycles of sleep’ could serve as a new 
data- driven definition of sleep cycles, that is a means to appreciate quantitatively what has been previ-
ously observed only qualitatively using hypnograms. Notably, we do not claim that fractal cycles are a 
substitute for the study of the individual sleep stages or microstructural features of sleep. We want to 
stress, however, that currently, sleep research is shifted towards the study of, to use a metaphor, ‘the 
atoms’ of sleep, such as individual sleep stages, slow oscillations, spindles, microarousals etc. Yet it is 
possible that some important (currently unknown) features of sleep could be explored only at the level 
of sleep cycles, ‘the molecules of sleep’. (Note, that we use the molecule and atom concepts only as 
a metaphor for the macro- and microstructure of sleep.)

Hypothetical functional significance of aperiodic activity and fractal 
cycles
The decision to incorporate fractal activity analysis in sleep cycle research was based on the reports 
that fractal (aperiodic) dynamics may reflect the bistability of the network (the overall tendency of 
alternating up and down states; Baranauskas et al., 2012) and/or alterations in the balance between 
neural excitatory and inhibitory currents (Gao et al., 2017). Circumstantial evidence suggests that 
fractal activity is a measure of sleep homeostasis or sleep intensity, reflecting sleep- wake history, sleep 
stage differences, sleep cycles, age- effects, local sleep and sleep disorders (Bódizs et  al., 2024). 
Recently, it has been reported that during human sleep, spectral slopes positively correlate with pupil 
size, a marker of arousal levels linked to the activity of the locus coeruleus- noradrenergic system 
(Carro- Domínguez et al., 2023).

According to the reciprocal- interaction model of sleep cycles, each sleep phase is characterized by 
a specific neurochemical mixture. During non- REM sleep, aminergic inhibition decreases and cholin-
ergic excitation increases such that at REM sleep onset, aminergic inhibition is shut off and cholin-
ergic excitability reaches its maximum, while other outputs are inhibited (Pace- Schott and Hobson, 
2002). Complex inhibitory and excitatory connections between pontine REM- on and REM- off neurons 
are further modulated by such neurotransmitters as GABA, glutamate, nitric oxide, and histamine. 
Intriguingly, during REM sleep, acetylcholine plays the main role in maintaining brain activation, which 
is expressed as EEG desynchronization, one of the main features of REM sleep, and other systems 
are silent (Nir and Tononi, 2010). This suggests that acetylcholine, which fluctuates cyclically across 
a night as a result of the REM- off – REM- on interactions, might have a key role in the sleep phase 
alternation.

successive peaks) is longer in the medicated compared to unmedicated states, reflecting shallower fluctuations 
of fractal (aperiodic) activity. Two additional patients are shown in Figure 3—figure supplement 1. (B) Box plots: 
the fractal cycle duration is longer in medicated MDD patients (red) compared to age and gender- matched 
healthy controls (black) in all datasets. In Dataset B, fractal cycles are longer in the medicated vs patients’ own 
unmedicated state and in patients who took REM- suppressive vs REM- non- suppressive antidepressants. A vertical 
central line represents the median in each box, the left and right edges of the box indicate the 25th and 75th 
percentiles, respectively, the whiskers extend to the most extreme data points not considered outliers, and a plus 
sign represents outliers (individual cycles). (C) Frequency distribution: individual fractal and classical cycles pooled 
from three MDD datasets (A – C) are counted separately for medicated MDD patients and HC. (D) Overnight 
dynamics: cycle- to- cycle dynamics of the duration of both fractal and classical cycles show a gradual decrease 
in medicated patients vs an inverted U shape in controls. The between- group difference in cycle duration is the 
largest for the first cycle. Patients show flatter fractal descents of the second cycle and steeper fractal descents of 
the fourth cycle compared to controls. Contrary to controls, patients do not show a gradual decrease in absolute 
amplitudes of the fractal descents from the second to the fourth cycles. Patients and controls show comparable 
cycle- to- cycle dynamics of fractal ascents, * marks a statistically significant difference between the groups. MDD 
– major depressive disorder, HC – healthy controls, unmed. – unmedicated, med. – medicated, SWS – slow- wave 
sleep, REM – rapid eye movement.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Individual fractal cycles in MDD patients.

Figure supplement 2. Fractal cycles in patients with insomnia.

Figure 3 continued
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Given that the specific neurochemical milieu of the brain produces a specific type of conscious 
experience (Nir and Tononi, 2010) and that conscious experience was shown to be related to fractal 
activity derived from the human sleep EEG (Colombo et al., 2019), it is tempting to speculate that 
fractal activity tracks sleep- related changes in the neurochemical milieu of the brain and overall 
network dynamics. This has not been tested in humans; nevertheless, in rats, cholinergic nucleus 
basalis stimulation acutely increased higher to lower frequency cortical LFP power ratio or in other 
words, caused flattering of spectral decay (Goard and Dan, 2009). One can, therefore, speculate that 
ascending parts and peaks of fractal cycles coincide with acetylcholine release. The troughs of fractal 
cycles, in turn, might reflect a higher homeostatic pressure and even cause feelings of sleepiness and 
the search for the opportunity of initiating sleep, as these are periods of the steepest fractal activity, 
which implies a higher ratio of lower over higher frequency power in the EEG (Bódizs et al., 2024).

In view of this literature, we speculate that fractal fluctuations may reflect two antagonistic roles of 
sleep (Simor et al., 2022). Specifically, fractal cycle troughs might cohere with sensory disconnection 
that facilitates restorative properties of sleep while fractal cycle peaks reflect monitoring of the envi-
ronment that transiently restores alertness (Table 4).

Fractal and classical cycles comparison (Table 5)
In this study, in healthy adults, 81% of all fractal cycles defined by our algorithm could be matched 
to individual classical cycles defined by hypnograms. Correlations between the durations of fractal 
and classical cycles were observed not only in healthy adults but also in MDD patients who took 
antidepressants. The results show that displaying sleep data using fractal activity as a function of time 
meaningfully adds to the conventionally used hypnograms thanks to the gradual and objective quality 
of fractal power.

Thus, in hypnograms, each sleep stage is ascribed with a categorical value (e.g. wake = 0, REM = 
–1, N1 = –2, N2 = –3 and SWS = –4, Figure 1A). Yet categorical labeling of sleep stages can induce 
information loss and lead to several misinterpretations, such as an implied order of sleep stages (e.g. 
‘REM sleep is located between wake and N1’) and an implied ‘attractor state’ conception of sleep 
stages (e.g. ‘no inter- stage states’). Likewise, defining the precise beginning and end of a classical 
sleep cycle using a hypnogram is often difficult and arbitrary, for example, in cycles with skipped or 
interrupted REM sleep or REM sleep without atonia.

In contrast, fractal cycles do not rely on the assignment of categories, being based on a real- 
valued metric with known neurophysiological functional significance. This introduces a biological 

Table 4. Hypothetical functional significance of fractal cycles.

Theory/model Reference
Hypothetical integration of the fractal cycle 
concept to the existing model

Two antagonistic roles of sleep:
1. sensory disconnection that facilitates restorative properties of sleep;
2. monitoring of the environment that transiently restores alertness. Simor et al., 2022

• troughs of fractal cycles reflect (1);
• peaks of fractal cycles reflect (2).

Reactive and predictive homeostatic functions of sleep:
1. intensive restorative processes during early- night sleep;
2. active future- oriented processes during late- night sleep. Simor et al., 2023

• deeper fractal cycles observed during 
early- night sleep reflect (1);

• shallower fractal cycles seen during late- 
night sleep reflect (2).

Reciprocal- interaction model of sleep cycles:
- alternations between non- REM and REM sleep stages are explained by the 
interaction between aminergic and cholinergic neurons of the mesopontine 
junction.

Pace- Schott and 
Hobson, 2002

• ascents and peaks of fractal cycles reflect 
acetylcholine release*;

• descents and troughs of fractal cycles 
coincide with aminergic activity.

Noradrenergic neurons create a non‐reducible timeframe for the NREM‐REM 
sleep cycle where low noradrenaline levels allow entries into REM sleep.

Osorio- Forero et al., 
2023.

Ascents and peaks of fractal cycles reflect a 
cease of noradrenaline release.

The Neuronal Transition Probability Model:
1. During a move towards deep sleep beta power drops exponentially, delta 

power rises in an S- curve and sigma power peaks while delta is still rising;
2. During a move away from deep sleep, delta drops, beta rises.

Merica and Fortune, 
2011

• descending part of the fractal cycle corre-
sponds to (1);

• ascending part of the fractal cycle corre-
sponds to (2).

*this hypothesis is also based on the report that in rats, cholinergic nucleus basalis stimulation caused flattering of spectral decay (Goard and Dan, 
2009).

https://doi.org/10.7554/eLife.96784


 Research article      Neuroscience

Rosenblum et al. eLife 2024;13:RP96784. DOI: https:// doi. org/ 10. 7554/ eLife. 96784  16 of 38

foundation and a more gradual impression of nocturnal changes compared to the abrupt changes 
that are inherent to hypnograms.

Importantly, fractal cycle computation is automatic and thus objective. Even though recently, there 
has been a significant surge in sleep analysis incorporating various machine learning techniques and 
deep neural network architectures, we should stress that this research line mainly focused on the auto-
matic classification of sleep stages and disorders almost ignoring the area of sleep cycles. Here, as the 
reference method, we used one of the very few available algorithms for sleep cycle detection (Blume 
and Cajochen, 2021). We found that automatically identified classical sleep cycles only moderately 
correlated with those detected by human raters (r’s=0.3–0.7 in different datasets). These coefficients 
lay within the range of the coefficients between fractal and classical cycle durations (r=0.41–0.55, 
moderate) and outside the range of the coefficients between classical cycle durations detected by two 
human scorers (r’s=0.7–0.9, strong, Appendix 1—table 8).

One of the most significant methodological strengths of the fractal cycle algorithm is its ability 
to detect cycles with skipped REM sleep common in children, adolescents and young adults. Our 
algorithm detected skipped cycles in 91–98% of cases. We deduce that the fractal cycle algorithm 
detected skipped cycles since a lightening of sleep that replaces a REM episode in skipped cycles is 
often expressed as a local peak in fractal slope time series. Based on this, we further hypothesize that, 

Table 5. Fractal and classical cycle comparison.

Fractal cycles by our algorithm Classical cycles by hypnograms

Definition/detection

Based on a real- valued metric with known neurophysiological functional 
significance

Based on categorical values of the cycle constituents (e.g. wake = 0, REM 
= –1, N1 = –2, N2 = –3 and SWS = –4)

Gradual changes Abrupt changes

Automatic computation, objective
Usually based on the visual inspection, time- consuming, subjective, error- 
prone

Findings

Cycles with skipped REM sleep detected in 91–98% of cases
Inter- rater agreement of 91% on the presence of cycles with skipped REM 
sleep

Fractal cycle durations negatively correlated with the age of adult 
participants Classical cycle durations did not correlate with the age of adult participants

Shorter fractal cycle durations in children vs adults: higher F- values, R², 
effect sizes than for classical cycles

Shorter classical cycle durations in children vs adults: lower F- values, R², 
effect sizes than for fractal cycles

Shorter first and second fractal cycles in the pediatric group
No difference in durations of the first and second classical cycles in 
pediatric vs adult groups

No difference in duration of the fourth fractal cycles in the pediatric group Shorter duration of the fourth classical cycle in the pediatric group

Longer fractal cycle duration in medicated patients with depression: 
comparable differences with those on classical cycles

Longer classical cycle duration in medicated patients with depression: 
comparable differences with those on fractal cycles

Sources of mismatches between fractal and classical cycles

Source Finding Reason

Across night variation in REM sleep 
episode duration: longer REM 
episodes towards morning

Longer REM episodes are associated with a higher mismatch between 
fractal vs classical cycles

The end of a fractal cycle is defined 
as the local maximum of time series 
of fractal slopes, whereas the end of 
a classical cycle is defined as the end 
of the REM episodes

Across subject variation in WASO: 
a higher WASO proportion in older 
participants

A higher WASO proportion is associated with a higher mismatch between 
fractal vs classical cycles

REM- and wake- related smoothed 
fractal slopes show close values, 
therefore, both could be defined as 
local peaks. More fractal peaks imply 
more fractal cycles

REM – rapid eye movement, SWS – slow- wave sleep, WASO – wake after sleep onset.
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analogously, fractal cycles might detect REM sleep without atonia episodes in REM sleep behaviour 
disorder, the episodes currently often mistaken as non- REM sleep.

The mismatches between fractal and classical cycle numbers and durations (observed in 19% of 
cases) were mainly related to longer WASO or REM sleep episode durations (Table 5). The latter 
finding is in line with our recent study that has shown that fractal activity within a REM sleep episode 
is not homogenous, with phasic states showing steeper fractal slopes than tonic ones (Rosenblum 
et al., 2025). Future research should define whether the mismatches between fractal and classical 
cycles (when present) are the disadvantages of our algorithm or, on the contrary, the reflection of its 
ability to measure the cycling nature of sleep in a more precise way than the classical cycles.

In summary, we expect that fractal cycles could bring insights into (yet) unexplained phenomena 
thanks to their gradual and objective quality, and, therefore, have the potential to induce a paradigm 
shift in basic and clinical (see below) sleep research.

Fractal slopes and SWA: overnight dynamics
Of note, currently, the gold standard marker of many sleep functions (e.g. restorative, regenerative) 
with a long- standing use is slow- wave activity (SWA), which, similar to fractal slopes, is also continuous 
and objective. SWA, however, has several disadvantages, such as large variability between individ-
uals, which makes it impossible to set up a given reference point for healthy sleep (Horváth et al., 
2022). Interindividual variability of spectral slopes is much smaller compared to SWA, making it a less 
individual- specific metric, yet spectral slopes strongly correlate with SWA (31–53% of shared variance 
throughout the non- REM periods; Horváth et al., 2022; Bódizs et al., 2024). In addition, both the 
literature and our findings show that while SWA has a cycling nature during the first part of the night, 
neural dynamics of late- night’s sleep are not reflected by SWA at all (Figure 4—figure supplement 9). 
Given that SWA is a primary marker of sleep homeostasis, this pattern possibly reflects the dissipation 
of a sleep need over the night (Bódizs et al., 2024). In contrast, fractal slopes show a cycling nature 
over the entire night’s sleep (Figure 1A, B), suggesting that they are a more suitable means to reflect 
the macrostructure of the whole night’s sleep than SWA.

Having said this, we should highlight that characteristics of fractal cycles of sleep do undergo 
some overnight changes. Thus, the durations of both fractal and classical cycles in health show an 
inverted U- shape across a night and the amplitudes of fractal descents and ascents are larger during 
early- night- compared to late- night cycles (Figure  1D). This is in line with the report on the flat-
tening of fractal activity from early to late sleep cycles (Horváth et al., 2022). If seen in the context 
of the reactive and predictive homeostatic functions of sleep (Simor et  al., 2023), deeper fractal 
cycles observed during early- night sleep could reflect intensive restorative processes (which are also 
reflected by SWA), whereas shallower fractal cycles seen during the later part of night’s sleep could 
reflect more active future- oriented processes (which are not reflected by SWA) with a shift towards 
neural excitation relative to inhibition expressed as overall flatter fractal activity (Table 4).

Fractal cycles and age
We found that older healthy participants had shorter fractal cycles compared to the younger ones 
while classical cycles did not correlate with the participants’ age. At first glance, it looked as if this 
association simply reflected an increased proportion of the wake after the sleep onset often seen in 
older adults (Figure 1—figure supplement 4B). Indeed, our algorithm does not discriminate between 
the smoothened wake- and REM- related fractal slopes and can define both as local peaks (Figure 1A, 
B). This happens because for the most part, wake- and REM sleep- related smoothed fractal slopes 
display comparable values, which are also the highest ones compared to other stages (Figure 4—
figure supplement 4, green squares). Since the fractal cycle duration is defined as an interval of 
time between two adjacent peaks, more awakenings during sleep are expected to result in more 
peaks and, consequently, more fractal cycles per total sleep time, that is a shorter cycle duration. It is 
worth mentioning that unsmoothed wake- and REM- related slopes differ Schneider et al., 2022 and 
Figure 4—figure supplement 4 here (black squares). However, this is a side notion as raw values were 
not used in this study since our algorithm performed poorly on raw time series.

Moreover, a larger difference in classical vs fractal cycle duration was associated with a higher 
proportion of wake after sleep onset (WASO) in 3/5 datasets as well as in the merged dataset (Table 2). 
On the other hand, the partial correlation between fractal cycle duration and age remained significant 

https://doi.org/10.7554/eLife.96784


 Research article      Neuroscience

Rosenblum et al. eLife 2024;13:RP96784. DOI: https:// doi. org/ 10. 7554/ eLife. 96784  18 of 38

after controlling for the WASO amount. This hints that the association between fractal cycles and age 
might reflect more than just a confounding effect of WASO. This interpretation is in line with literature 
on age- related changes in aperiodic activity, namely, on flattering of fractal slopes with age (Voytek 
and Knight, 2015; Bódizs et al., 2021; Pathania et al., 2022), especially during SWS (Schneider 
et al., 2022). Likewise, aging is associated with shorter and fewer classical cycles, with a mean of 
3.5 cycles per night compared to the usual 4–5 in adults and adolescents (Conte et al., 2014). Our 
findings suggest that fractal cycles are more sensitive to these age- related alterations than the clas-
sical ones. We further speculate that the claim that ‘age affects sleep microstructure more than sleep 
macrostructure’ (Schwarz et al., 2017) might reflect the lack of a reliable measure of sleep cycles.

Another plausible explanation for longer fractal cycles in younger compared to older adults could 
be rooted in increased sleep intensity of the younger adults (Jenni and Carskadon, 2004). Further, 
high sleep intensity driven by homeostatic pressure is associated with the delay in the emergence of 
the REM sleep phase (Le Bon, 2020; Tarokh et al., 2012). In our dataset, REM latency also decreased 
with age. Thus, Figure 1—figure supplement 4D illustrates that young adults might present with very 
delayed REM latency, that is 200–250 min after sleep onset, in line with the notion that younger adults 
more often show cycles with skipped REM sleep (Figure 1—figure supplement 3). This can be partly 
explained by the fact that younger people often have a later chronotype (‘night owls’) than older 
people with puberty linked to delays in the sleep cycle by up to 2 hr (Randler, 2016). Young people 
also have a longer circadian rhythm (>24 hr) than older ones (<24 hr, Monk, 2005).

To further strengthen this line of explanations, we performed a supplemental analysis, which 
showed that prolonged REM latencies are indeed associated with longer fractal cycles (Figure 1—
figure supplement 4C). Nevertheless, the correlation was weak (yet significant) and observed in 
the pooled dataset only, that is not while analyzing individual datasets. Likewise, the partial correla-
tion between the fractal cycle duration and REM latency adjusted for the participants’ age was 
non- significant. Moreover, we found that children and adolescents (the group that has the longest 
REM latencies and the highest rate of cycles with skipped REM sleep) showed shorter fractal cycles 
compared to young adults, specifically the early- night fractal cycles. In view of these analyses, our 
attempt to explain longer fractal cycles in younger compared to older adults by increased REM 
sleep latency becomes less convincing. Moreover, given that our algorithm does not miss cycles with 
skipped REM sleep, longer REM sleep latencies should not necessarily be related to longer cycles. 
To summarize, at this stage, the mechanism underlying age- related differences in fractal cycle dura-
tion is unclear (possibly with some non- linearities) and future studies are needed to corroborate and 
further explore it.

Fractal cycles in MDD
In addition, our study shows that deviations from the observed fractal patterns have some clinical 
relevance. We found that MDD patients in the medicated state had longer fractal cycles compared 
to their own unmedicated state and healthy controls. The largest differences were observed for the 
first sleep cycles. Moreover, patients who took REM- suppressive antidepressants showed prolonged 
fractal cycles compared to patients who took REM- non- suppressive antidepressants. Given that the 
fractal cycle duration was defined as an interval of time between two adjacent peaks and that the 
peaks usually coincide with REM sleep (Figure 1A), this finding may reflect such aftereffects of anti-
depressants as delayed onset and reduced amount of REM sleep (Palagini et al., 2013). In other 
words, if a patient has fewer REM sleep episodes, then the time series of their fractal slopes has fewer 
peaks and the algorithm detects fewer cycles per total sleep time, that is cycle’s duration is longer 
(Figure 3A).

Another explanation considers our previous finding that medicated MDD patients show flatter 
average fractal slopes compared to controls and their own unmedicated state during all sleep stages 
(Rosenblum et al., 2023a). This might mean that the antidepressant intake results in shallower fractal 
fluctuations, which in turn implies that fewer peaks could be detected by our algorithm as the peak 
threshold was defined a priori in a healthy – not MDD – sample. Interestingly, recently, flatter fractal 
slopes during REM sleep have been also associated with sustained polyphasic sleep restriction in 
health (Rosenblum et al., 2024b), whereas flatter fractal slopes during non- REM sleep were observed 
in patients with objective insomnia and sleep state misperception, reflecting an abnormally high level 
of excitation in line with the hyperarousal model of insomnia (Andrillon et al., 2020). Our pilot findings 
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have shown that patient with psychophysiological insomnia have shorter fractal cycles compared to 
controls (Figure 3—figure supplement 2).

Limitations and strengths
The major limitation of this study is its correlational approach, and thus an inability to shed light on 
the mechanism underlying sleep cycle generation. Therefore, the question of what determines the 
number and duration of cycles per night remains open. Moreover, further work is needed to deter-
mine the mathematically precise and physiologically meaningful model of fractal cycles. Notably, here, 
we suggest that fractal cycles are a new tool to study the macrostructure of sleep; however, they are 
presumably not a substitute for the study of the individual sleep stages and microstructural features 
of sleep (e.g. microarousals, spindles, slow waves).

Additionally, we explored the effect of developmental changes and aging on fractal cycles using a 
cross- sectional observational approach, whereas these factors might be disentangled more precisely 
in a longitudinal approach. The age of the pediatric group ranged from 8 to 17 years old; studying 
younger children and babies would add crucial information on the influence of neurodevelopmental 
changes on fractal cycles.

The strengths of this study are its large sample size, scripts and data sharing and self- replications 
in several clinical and healthy datasets of participants in a broad age range, affirming the overall 
robustness of the phenomena of fractal cycles. Another strength of this work is its generalizability as 
it has shown that the studies conducted in different experimental environments (including one study 
conducted at home) using different EEG devices provide comparable results.

To summarize, the large sample and self- replication performed in this study suggest that the ‘fractal 
cycle’ is a universal concept that should be extensively studied. Displaying the data in the format of 
fractal cycles provides an intuitive and biologically plausible way to present whole- night sleep neural 
activity and also adds some graduality to the purely categorical concept of sleep stages that comprise 
a hypnogram. In future studies, this graduality might help to illuminate differences in sleep archi-
tecture across different species, advance our understanding of the role of sleep in neurocognitive 
development in infants and adolescents as well as in neurodegenerative processes and other fields of 
neuroscience.

Conclusion
We observed that the slopes of the fractal (aperiodic) spectral power descend and ascend cyclically 
across a night such that the peaks of the time series of the fractal slopes coincide with REM sleep or 
sleep lightening while the troughs of these time series coincide with non- REM sleep. Based on this 
observation, we introduced a new concept of fractal activity- based cycles of sleep or ‘fractal cycles’ 
for short, defining it as a time interval between two adjacent local peaks of the fractal time series. 
We have shown that fractal cycles defined by our algorithm largely coincide with classical (non- REM 
– REM) sleep cycles defined by a hypnogram and replicated our findings in several independently 
collected healthy and clinical datasets. Moreover, we found that the fractal cycle algorithm reliably 
detected cycles with skipped REM sleep. In addition, we observed that fractal cycle duration changes 
as a non- linear function of age, being shorter in children and adolescents compared to young adults 
as well as in older compared to younger adults. To this end, we conclude that the fractal cycle is an 
objective, quantifiable and universal concept that could be used to define sleep cycles and display 
the whole- night sleep neural activity in a more intuitive and biologically plausible way as compared 
to the conventionally used hypnograms. Having shown that the fractal cycles are prolonged in medi-
cated patients with MDD, we suggest that fractal cycles are a useful tool to study the effects of anti-
depressants on sleep. Possibly, fractal cycles also will be able to serve as a means to explore sleep 
architecture alterations in different clinical populations (e.g. to detect REM sleep without atonia) and 
during neurocognitive development. In summary, this study shows that the fractal cycles of sleep are 
a promising research tool relevant in health and disease that should be extensively studied.

Materials and methods
Healthy participants
We retrospectively analyzed polysomnographic recordings from the following studies (Table 6):
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Datasets 1–3
40, 40, and 33 healthy controls from three independent sleep studies in MDD conducted at the Max 
Planck Institute of Psychiatry, Germany. These datasets are described in Rosenblum et al., 2023a 
and Bovy et al., 2022. In addition, these participants are used as controls in MDD datasets A – C 
described below.

Dataset 4
36 healthy participants from a home- based sleep study exploring simultaneous polysomnographic 
and EEG wearables conducted at the Donders Institute for Brain, Cognition and Behavior, the Neth-
erlands (Described as Dataset 2 in Jafarzadeh Esfahani et al., 2023). The signal was recorded at 
participants’ homes over three nights with a gap of a week between each recording. For consistency 
with other datasets (i.e. to end up with a comparable number of cycles provided by each participant), 
we used polysomnography (and not EEG recorded by wearables) from the first night only since it had 
the largest sample size (i.e. 5 subjects dropped out from the study after the first polysomnographic 
recording).

Table 6. Datasets description.

Characteristic
Dataset 1
(A)

Dataset 2
(B)

Dataset 3
(C) Dataset 4 Dataset 5

Dataset 6
(pediatric)

Reference to original 
study Rosenblum et al., 2023a

Jafarzadeh 
Esfahani et al., 
2023

Rosenblum et al., 
2024a

Furrer et al., 2019; 
Volk et al., 2019; 
Jaramillo et al., 
2020

No. healthy 
participants
(- excluded) 40 (- 2) 40 (- 1) 33 (- 1) 36 (- 2) 68 (- 6) 21 (0)

Exclusion reasons

>25% WASO
<150 min 
recording

<150 min 
recording >25% WASO

>25% WASO
No REM

>25% WASO
No REM —

No. MDD patients 
(none excluded) 40 38 33 0 0 0

Study environment

Sleep lab +a 
memory task 
before*

Sleep 
lab +memory 
tasks before*,† Sleep lab

Sleep at home 
with EEG and 
headband

Sleep 
lab +simultaneous 
blood 
measurement ‡

Sleep lab +MRI 
before and after 
sleep §

Device

Comlab 32 
Digital Sleep 
Lab, Brainlab 
V 3.3 Software, 
Schwarzer, GmbH, 
Munich, Germany

JE- 209A 
amplifier (Nihon 
Kohden, Tokyo, 
Japan), with 
128ch BrainCap 
(EasyCap GmbH, 
Herrsching, 
Germany)

Comlab 32 
Digital Sleep 
Lab, Brainlab 
V 3.3 Software, 
Schwarzer 
GmbH, Munich, 
Germany

Somnomedics 
GmbH, 
Randersacker, 
Germany

Comlab 32 Digital 
Sleep Lab, Brainlab 
V 3.3 Software, 
Schwarzer GmbH, 
Munich, Germany

Sensor Net for long- 
term monitoring 
(Electrical Geodesic 
Inc, EGI, Eugene, 
OR, USA)

No. channels 4 128 32 24 16 128

(Offline re)- 
referenced to

Contralateral 
mastoid

Average of all 
leads

Average of all 
leads

Contralateral 
mastoid

Contralateral 
mastoid

Contralateral 
mastoid

Sample rate, Hz 250 200 250 256 250 500

Filtering during 
recording, Hz 0.3–70 >0.016 0.53–70 0.2–35 0.3–70 0.01–200

Available frontal 
electrodes none

Fz, F1, F2, F3, F4, 
F5, F6, F7, F8, 
F9, F10 Fz, F3, F4, F7, F8 F3, F4 F3, F4 F3, F4

Analyzed electrodes C3, C4 F3, F4 F3, F4 F3, F4 F3, F4 F3, F4

WASO – wake after sleep onset, REM – rapid eye movement sleep, MDD – major depressive disorder.

*a procedural memory paradigm (finger tapping task) before sleep.
†a declarative memory paradigm (word- pair learning task) before sleep.
‡in this study, 4 ml blood were drawn every 20 min from the adjacent room, using an intravenous cannula and a tube extension.
§an MRI scan was taken in the evening before and in the morning after the sleep measurement.
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Dataset 5
68 healthy controls from previous endocrinological studies conducted at the Max Planck Institute 
of Psychiatry, Germany, using only nights with no pharmacological or endocrine intervention. 60/68 
participants are described in Rosenblum et al., 2024a.

Dataset 6
21 healthy children and adolescents from previous studies (Furrer et al., 2019; Volk et al., 2019; 
Jaramillo et al., 2020) conducted at the University Children’s Hospital Zürich, Switzerland. For the 
control group to this dataset, we selected all healthy adults from Datasets 1–3, 5, 6 (n=205) whose 
ages lay in the range of 23–25  years (the age when the brain maturation process is supposed to 
be finished Giedd and Rapoport, 2010 and no age- related processes are expected to start). This 
resulted in 24 subjects with a mean age of 24.8±0.9 years.

The studies were approved by the Ethics committee of the University of Munich (Datasets 1–3, 
5), Radboud University (Dataset 4) and Canton of Zürich (Dataset 6). All participants (or participants’ 
parents for Dataset 6) gave written informed consent.

Patients with MDD
We retrospectively analyzed polysomnographic recordings from our previous studies (Bovy et al., 
2022; Rosenblum et al., 2023a, Table 1, Table 2):

Dataset A
40 long- term medicated MDD patients vs 40 age- and gender- matched healthy controls (Dataset 1 
here).

Dataset B
38 MDD patients in unmedicated and 7- day medicated states vs 40 healthy age and gender- matched 
controls (Dataset 2 here).

Dataset C
33 MDD patients at 7 day and 28 day of medication treatment vs 33 healthy age and gender- matched 
controls (Dataset 3 here).

Demographic and sleep characteristics of the patients, medication treatment and polysomno-
graphic devices are described in our previous works (Bovy et al., 2022; Rosenblum et al., 2023a). 
Here, Appendix 1—table 5 presents medication treatment. In Rosenblum et al., 2023a, Datasets A, 
B, and C are referred to as the Replication Dataset 2, Main Dataset and Replication Dataset 1, respec-
tively; in Bovy et al., 2022, the naming is the same as here. All studies were approved by the Ethics 
committee of the University of Munich. All participants gave written informed consent.

The first part of this study analyzes the data from healthy participants only and labels the datasets 
with the numbers 1–6. The second part of this study compares patients and controls and labels the 
analyzed datasets with the letters A – C. Notably, healthy participants used as controls in datasets A 
– C are the same subjects analyzed in Datasets 1–3.

In Appendix, we report how many participants and for what reasons were excluded from the anal-
ysis. An example of one excluded participant is given in Figure 1—figure supplement 3 C (S37). 
Likewise, we report pilot findings on fractal cycles in patients with psychophysiological insomnia, using 
the open access dataset from Rezaei et al., 2017 (Figure 3—figure supplement 2).

Polysomnography
Information about the studies and polysomnographic devices is reported in Table 6. The participants 
slept wearing a polysomnographic device in a sleep laboratory (Datasets 1–3, 5, 6) or in the home 
environment (Dataset 4). In datasets 1–3 and 5, all participants had an adaptation night before the 
examination night; adaptation night data was not available to be analyzed and reported here. In 
dataset 6, all participants had two recording nights: a baseline and an examination night with auditory 
stimulation. Here, only the baseline night was analyzed, which was either the first night (in 50% of 
cases) or the second night for a given participant.
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Sleep stages were previously scored manually by independent experts according to the AASM 
standards (American Academy of Sleep Medicine, 2014). In the pediatric dataset, we used 20 s 
epochs, in the rest of the datasets, we used 30 s epochs. Epochs with EMG and EEG artifacts and 
channels with more than 20% artifacts during non- REM sleep were manually excluded by an experi-
enced scorer before all automatic analyses.

We opted to analyze the F3 and F4 electrodes for maximal consistency between the studies as 
these leads were available in 6 out of 7 datasets. Another reason is that in our future studies, we plan 
to replicate this work using the data recorded with at- home wearable devices, which often have only 
frontal channels (e.g. F7 and F8). We report the topographical analysis over central, parietal and occip-
ital electrodes (when available) in healthy and clinical datasets in Appendix 1—table 1; Appendix 1—
table 6 respectively, showing comparable results. In Appendix 1—table 1, we also report correlations 
between fractal cycle durations defined using different channels.

Fractal power component
The analysis flowchart is depicted in Figure 4—figure supplement 1. Outputs of some of the analysis 
steps in an example individual are shown in Figure 4.

Offline EEG data analyses were carried out with MATLAB (version R2021b, The MathWorks, Inc, 
Natick, MA), using the Fieldtrip toolbox and custom- made scripts. For each participant, we aver-
aged the EEG signal over the F3 and F4 electrodes (or C3 and C4 – for Dataset 1 where the frontal 
channels were unavailable), calculated its spectral power for every 30 (adult datasets) or 20 (the 
pediatric dataset) seconds corresponding to the conventionally defined duration of sleep epochs 
and differentiated the total power to its fractal (i.e. aperiodic, 1 /f, scale- free) and oscillatory compo-
nents. Several methods to calculate fractal components exist. We opted to use the Irregularly Resa-
mpled Auto- Spectral Analysis (IRASA; Wen and Liu, 2016) tool embedded in the Fieldtrip toolbox 
(Oostenveld et al., 2011), one of the leading open- source EEG softwares, with the ft_freqanalysis 
function as described elsewhere (Rosenblum et al., 2023b). A side note: slopes calculated with the 
IRASA strongly correlate (r = |0.9|) with those calculated using the ‘fitting oscillations and one over 
f’ (FOOOF, Schneider et al., 2022), another useful method used for aperiodic analysis (Donoghue 
et al., 2020). The fractal power component (shown in Figure 4—figure supplement 2) was trans-
formed to log- log coordinates and its slope was calculated to estimate the power- law exponent 
(the rate of spectral decay), using the function logfit (Lansey, 2020). The loglog data fit is shown in 
Figure 4—figure supplement 3.

As opposed to the oscillatory component, the fractal component is usually treated as a unity and, 
therefore, is filtered in the broadband frequency range (Donoghue et al., 2020; Bódizs et al., 2021; 
Gerster et al., 2022). Nevertheless, different studies defined (slightly) differing bands, for example 
30–50  Hz (Gao et  al., 2017; Lendner et  al., 2020), 3–55  Hz (Waschke et  al., 2021), 0.5–35  Hz 
(Miskovic et al., 2019), 1–40 Hz, 1–20 Hz and 20–40 Hz (Colombo et al., 2019), 1–45 Hz (Helson 
et al., 2023), 0.5–40 Hz (Vinding et al., 2021), 3–45 Hz and 30–45 Hz (Höhn et al., 2024) and 2–48 Hz 
(Bódizs et al., 2021; Schneider et al., 2022).

Here, we used the 0.3–30 Hz range as this is a typical sleep frequency band used in many areas 
of sleep research, showing good ability to differentiate between sleep stage as could be seen in 
Figure 4—figure supplement 4, which replicates existing literature. Dataset 4 was analyzed in the 
0.3–18 Hz range since relatively low low- pass filtering was applied to it during the recording (see 
Table 6). In Appendix 1—table 2, we also analyze the 1–30 Hz band to control for a possible distor-
tion (the so called “knees'' of the spectrum) of the linear fit by excluding low frequencies with strong 
oscillatory activity (Gao et al., 2017; Bódizs et al., 2021). We find that the results are similar to those 
obtained for the 0.3–30 Hz band reported in the Main text (probably thanks to the smoothening 
procedure we applied).

Finally, Figure 4—figure supplement 5 shows aperiodic slopes in the 30–48 Hz band averaged 
over sleep stages for Datasets 1–3 and 5. According to literature, REM sleep is expected to show the 
steepest (most negative) high- band slopes compared to all other sleep stages. However, we were able 
to replicate this finding in Datasets 1 and 5 only. Given poor differentiation between the stages in 2/4 
datasets, this variable was not used in any further analyses.
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Fractal activity-based cycles of sleep
Fractal activity- based cycles of sleep or ‘fractal cycles’ for short were defined from fractal slope 
time series. For this, time series of the fractal slopes were z- normalized (raw values can be seen in 
Figure 4—figure supplement 6) within a participant and smoothened with the Savitzky- Golay filter 
(Figure 4), the filter highly used in many fields of data processing. We used the Matlab’s function 
sgolayfilt(slope_time_series, order, frame_length) with the polynomial order of five and the frame 

Figure 4. Analysis output examples. Outputs of some of the analysis steps in an example healthy 26- year- old individual. From top to bottom: time- 
frequency representation of the total spectral power, raw and smoothed time series of the fractal slopes and hypnogram. Frontal spectral power and its 
slopes were calculated in the 0.3–30 Hz range for each 30 s of sleep.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Analysis flowchart.

Figure supplement 2. Fractal power component.

Figure supplement 3. Log- log fit of data.

Figure supplement 4. 0.3–30 Hz z- normalized slopes.

Figure supplement 5. 30–48 Hz z- normalized slopes.

Figure supplement 6. 0.3–30 Hz raw slopes.

Figure supplement 7. Autocorrelation (left) and partial autocorrelation (right) of the time series of the fractal slopes averaged over each 30 s of sleep 
show the correlation of this time series with a delayed version of itself as a function of time lag.

Figure supplement 8. Cross- correlations.

Figure supplement 9. Individual fractal vs. SWA time series.

https://doi.org/10.7554/eLife.96784
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length of 101. The peaks of the smoothed time series of the fractal slopes were defined with Matlab’s 
function findpeaks (slope_time_series, 'MinPeakDistance', 40, 'MinPeakProminence', 0.9) with the 
minimum peak distance of 20 min (i.e. forty 30 s epochs) and minimum peak prominence of |0.9| z 
(Figure 4). The amplitude of the descending and ascending phases of a cycle was defined to be > |0.9| 
z, meaning that there is a probability of P=0.8 that a given fractal slope lies below/above the standard 
normal distribution.

Of note, we had no solid a priori theoretical indication for choosing either of the function settings 
mentioned above. All settings were chosen a posteriori following an exploratory visual inspection of 
the normalized data from one dataset (Dataset 5), which therefore can be transferred to other data-
sets. That is, in datasets 1–4 and 6, the settings of the sgolayfilt and findpeaks functions were defined 
a priori based on the results obtained while inspecting Dataset 5.

In Appendix  1—table 7, we compare results obtained while using different thresholds of the 
abovementioned parameters; namely, longer and shorter smoothing windows and higher and lower 
minimum peak prominence.

Classical sleep cycles
Classical sleep cycles were defined manually via the visual inspection of the hypnograms by two inde-
pendent scorers according to the criteria originally proposed by Feinberg and Floyd, 1979 with 
some adaptations as follows. A cycle typically starts with N1, N2 or sometimes wake and is followed 
by N2 or N2 and slow- wave sleep (SWS) >20 min in duration, which can include wake. The cycle 
ends with the end of the REM period, which can include wake or short segments of non- REM sleep. 
No minimum REM duration criterion was applied (Tarokh et  al., 2012). In some cases (described 
below), the cycle end was defined at a non- REM sleep stage or wake. Two examples of hypnograms 
with marked classical sleep cycles are shown in Figure 1A – B. Four more examples are presented in 
Figure 1—figure supplement 1.

The last incomplete (not terminated by the REM sleep phase) cycle at the end of the night was 
included in the analysis if its duration was >50 min. The last incomplete cycles <50 min were removed 
(nevertheless, they are shown in figures when present).

In Supplementary Excel File shared on https://osf.io/gxzyd, we report classical cycle durations for 
each participant as scored by two human raters and the automatic algorithm (Blume and Cajochen, 
2021). In Appendix  1—table 8, we report the inter- rater agreement in number and durations of 
classical cycles.

Skipped cycles
Given the absence of strict and broadly accepted rules for cycles with skipped REM sleep definition 
in literature, here, we tagged a cycle as ‘skipped’ based on the visual inspection of the hypnogram 
combined with the criteria proposed by Jenni and Carskadon, 2004 and Tarokh et al., 2012. Specif-
ically, we subdivided a long cycle >110 min into two when: (1) there was a ‘lightening of sleep’ (i.e. 
the presence of wake, N1 and N2) in the middle of the long cycle, when a REM sleep episode was 
anticipated, (2) a continuous episode of N1, N2, wake or movement time lasting at least 12 min was 
preceded and followed by slow- wave sleep Jenni and Carskadon, 2004; (3) two clear episodes of 
slow- wave sleep were separated by lighter non- REM stages (which might include wake; Campbell 
et al., 2011; Tarokh et al., 2012). Long cycles containing skipped cycles were divided into cycles at 
time of sleep lightening. Examples of hypnograms with skipped sleep are shown in Figure 1—figure 
supplement 3. For each dataset, we checked whether the classical cycles with skipped REM sleep had 
been detected by the fractal cycle algorithm.

In Supplementary Excel File shared on https://osf.io/gxzyd, we report which classical cycles were 
tagged as ‘skipped’ by two human raters. In Appendix, we report the inter- rater agreement in number 
of cycles with skipped REM sleep (Appendix 1—table 9). In Supplementary PowerPoint File shared 
on https://osf.io/gxzyd, hypnograms of all healthy adult participants are presented next to fractal 
cycles with skipped cycles marked individually as assessed by rater 1.

Statistical analysis
The assumption that durations of the fractal and classical cycles come from a standard normal distri-
bution was tested using the one- sample Kolmogorov- Smirnov test. The result suggested that this 
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assumption should be rejected (p<0.05); therefore, non- parametric tests were used for all further 
analyses.

We correlated fractal and classical cycle durations using Spearman’s correlations in each dataset 
separately as well as in all datasets pooled. Given that in some participants (from 34 to 55% in different 
datasets), the number of the fractal cycles (mean 4.6±1.0 cycles per participant) was not equal to the 
number of the classical cycles (mean 4.7±0.9 cycles per participant), prior to the correlation analysis, 
we averaged the duration of the fractal and classical cycles over each participant. For a subset of 
the participants (45–66% of the participants in different datasets) with a one- to- one match between 
the fractal and classical cycles, we performed an additional correlation without averaging, that is, we 
correlated the durations of individual fractal and classical cycles.

To identify sources of fractal and classical cycle mismatch, we further correlated between the differ-
ence in classical vs fractal sleep cycle durations on the one side and either the amplitude of fractal 
descend/ascend (to reflect fractal cycle depth), duration of cycles with skipped REM sleep, duration 
of wake after sleep onset or the REM episode length of a given cycle (to reflect peak flatness) on the 
other side (Table 2).

Likewise, we computed person- centered effect sizes, the approach that answers the question, 
‘How many participants in the study showed the consistent with theoretical expectation effect?’. 
This approach helps to reveal data patterns that are missed by traditional statistical analyses (Grice 
et al., 2020). We calculated the sample prevalence by counting the number of significant correlations 
between fractal and classical cycle duration divided by the total number of cases (both significant and 
non- significant).

To assess the population prevalence of the findings with associated uncertainty, we used the 
Bayesian prevalence, accounting for the false positive rate of the statistical test (Ince et al., 2022). 
This method helps to estimate the proportion of the population that would show the effect if they 
were tested in this experiment or, in other words, the population within- participant replication proba-
bility (Ince et al., 2022). As an output, this method provides the maximum a posterior estimate – the 
most likely value of the population parameter. To quantify the uncertainty of this estimate, Bayesian 
prevalence also provides the highest posterior density intervals for various levels (we used the 96% 
probability level) – the range within which the true population value lies with the specified probability. 
To perform this analysis, we used an online web application available at https://estimate.prevalence. 
online.

To compare pediatric and young adult groups (Appendix 1—table 3), MDD patients and controls 
(Table  3), MDD patients treated with REM- suppressive antidepressants and patients treated with 
REM- non- suppressive antidepressants (Appendix 1—table 5), we used the non- parametric Mann- 
Whitney U test. We performed the analyses both at the cycle level (while pooling the cycles of all 
participants together) as well as at the subject level (while averaging the cycles of a given partici-
pant). Given that the results of both analyses were similar, we report only the cycle level analysis for 
simplicity. To compare medicated and unmedicated states of the MDD patients (Table 3), we used the 
paired samples Wilcoxon test. Effect sizes were calculated with Cohen’s d.

In Appendix, we report autocorrelations and partial autocorrelations of fractal slope time series 
(Figure  4—figure supplement 7) as well as cross- correlations (Figure  4—figure supplement 8, 
Appendix 1—table 4) between time series of fractal slopes vs. time series of non- REM or REM sleep 
proportion to further model their temporal relationships.
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Appendix 1
Participants
Healthy adults
We retrospectively analyzed polysomnographic recordings from the following studies Table 1:

Datasets 1–3
40, 40, and 33 healthy controls from three independent sleep studies in MDD conducted at the Max 
Planck Institute of Psychiatry, Germany. These datasets are described in Rosenblum et al., 2023a 
and Bovy et al., 2022. In addition, these participants are used as controls in MDD datasets A–C 
described below.

Dataset 4
36 healthy participants from a home- based sleep study exploring simultaneous polysomnographic 
and EEG wearables conducted at the Donders Institute for Brain, Cognition and Behavior, the 
Netherlands (Described as Dataset 2 in Jafarzadeh Esfahani et al., 2023). The signal was recorded 
at participants’ homes over three nights with a gap of a week between each recording. For 
consistency with other datasets (i.e. to end up with a comparable number of cycles provided by 
each participant), we used polysomnography (and not EEG recorded by wearables) from the first 
night only since it had the largest sample size (i.e. 5 subjects dropped out from the study after the 
first polysomnographic recording).

Dataset 5
68 healthy controls from previous endocrinological studies conducted at the Max Planck Institute 
of Psychiatry, Germany, using only nights with no pharmacological or endocrine intervention. 60/68 
participants are described in Rosenblum et al., 2023b.

Dataset 6
21 healthy children and adolescents from previous studies (Furrer et al., 2019; Volk et al., 2019; 
Jaramillo et al., 2020) conducted at the University Children’s Hospital Zürich, Switzerland. For the 
control group to this dataset, we selected all healthy adults from Datasets 1–3, 5, 6 (n=205) whose 
ages lay in the range of 23–25 years the age when the brain maturation process is supposed to 
be finished Giedd and Rapoport, 2010 and no age- related processes are expected to start. This 
resulted in 24 subjects with a mean age of 24.8±0.9 years (Appendix 1—table 3 here).

In Rosenblum et al., 2023a, Datasets A, B, and C are referred to as the Replication Dataset 2, 
Main Dataset and Replication Dataset 1, respectively; in Bovy et al., 2022, the naming is the same 
as here.

Patients with MDD
We retrospectively analyzed polysomnographic recordings from our previous studies (Bovy et al., 
2022; Rosenblum et al., 2023a, Table 1; Table 2):

Dataset A
40 long- term medicated MDD patients vs. 40 age- and gender- matched healthy controls (Dataset 
1 here).

Dataset B
38 MDD patients in unmedicated and 7- day medicated states vs. 40 healthy age and gender- 
matched controls (Dataset 2 here).

Dataset C
33 MDD patients at 7  day and 28  day of medication treatment vs. 33 healthy age and gender- 
matched controls (Dataset 3 here).

Demographic and sleep characteristics of the patients, medication treatment and polysomnographic 
devices are described in our previous works (Bovy et al., 2022; Rosenblum et al., 2023a). Here, 
Appendix  1—table 5 presents medication treatment. All studies were approved by the Ethics 
committee of the University of Munich. All patients gave written informed consent.
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Excluded participants
Dataset 1: in one participant, the recording was available for the first 90  minonly; in another 
participant, 25% of epochs were defined as ‘wake’; these two participants were excluded from the 
analysis. Dataset 2: in one participant, the recording was available for the first 133 minutes only; 
this subject was not included in the analysis. Dataset 3: in one participant 35% of all epochs were 
defined as ‘wake’ and their data was excluded. Dataset 4: in one participant 50% of the epochs were 
tagged as ‘wake’, another participant had no REM epochs, therefore, his classical sleep cycles could 
not be defined. These two participants were excluded. Dataset 5: in 5/68 participants, more than 
30% of all epochs were tagged as ‘wake’. In addition, one participant had no REM epochs. These 
six participants were excluded from further analyses (Table 6). No pediatric and MDD participants 
were excluded.

Notably, in many sleep studies > 25% of wake is not an exclusion criterion. However, here, we 
focus on sleep cycles specifically and can not assume that such a prolonged period of wakefulness 
during a night can be considered a part of a sleep cycle. An example of the data of one excluded 
participant is given in Figure 1—figure supplement 3C (S37).

Fractal cycles in patients with insomnia: a pilot
We compared fractal cycle duration in 11 patients with insomnia (18.18% male; age: 44±13.2 years, 
n=11, No. cycles = 51) and 11 healthy controls (54.5% male; age: 42.4±15.4 years, n=11, No. cycles 
= 46), using open access dataset from a cross- sectional study on psychophysiological insomnia 
(Rezaei et al., 2017). The analysis were performed as described in Methods. However, due to low- 
pass filtered EEG data, the fitting of spectral slopes was performed in the 1–18 Hz range.

An individual example of smoothed fractal slope time series and hypnograms is shown in in 
Figure 3—figure supplement 2A. We found that patients with insomnia showed a shorter duration 
of fractal cycles compared to controls with a medium effect size (83±45 vs 101±43 min, p=0.04, 
Cohen’s d=–0.4, 4.6 cycles/participant vs. 4.2 cycles/participant, Figure 3—figure supplement 2B, 
C).

These findings are in line with the existing literature on flatter slopes in insomnia patients 
compared to controls (Andrillon et al., 2020 and Figure 3—figure supplement 2D), strengthening 
the hyperarousal model of insomnia.

This analysis is an outlook only and future studies using a higher sample size should confirm this 
finding.

Appendix 1—table 1. Fractal cycle topography in healthy adults.

Area Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

Classical sleep cycle duration, min

--- 86.2±23.3 90.0±21.3 89.0±22.7 92.2±23.7 91.9±29.0

Fractal sleep cycle duration, min

F NA 90.0±25.5 86.4±31.2 94.7±37.1 89.9±37.1

C 86.4±35.2 91.1±29.4 85.2±34.2 95.4±37.3 90.8±39.9

P NA 95.0±32.3 89.8±37.2 NA 90.7±41.9

O NA 89.7±28.6 85.0±31.3 100.0±47.0 92.2±42.5

Classical- fractal cycles correlation, r coefficient

F NA 0.508 0.565 0.474 0.513

C 0.331 0.364 0.213 0.478 0.277

P NA 0.273 0.120 NA 0.411

O NA 0.306 0.239 0.516 0.279

Classical- fractal cycles correlation, p- value

F NA 0.001 0.001 0.005 <0.001

C 0.042 0.023 0.242 0.004 0.029

Appendix 1—table 1 Continued on next page
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Area Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

P NA 0.093 0.512 NA <0.001

O NA 0.058 0.189 0.002 0.028

F – frontal (averaged over F3 and F4), C – central (averaged over C3 and C4), P – parietal (averaged over P3 and 
P4), O – occipital (averaged over O1 and O2) electrodes.

Appendix 1—table 2. Fractal cycle characteristics: frequency bands comparison.

Parameter 0.3–30 Hz 1–30 Hz

Fractal cycles, No./night 4.6±1.0 4.6±1.1

Fractal sleep cycle duration, min 89.1±34.0 90.7±36.9

Descent amplitude, z –2.2±0.8 –2.1±0.8

Ascent amplitude, z 2.2±0.6 2.1±0.6

Classical – fractal cycles duration correlation, r 0.488 0.397

Classical – fractal cycles duration correlation, p 10e- 13 10e- 9

Mean values ± SD (min) are presented for the pooled dataset (n=205). The 1–30 Hz band is added to control 
for a possible distortion (the so called ‘knees’' of the spectrum) of the linear fit by excluding low frequencies 
with strong oscillatory activity. Both bands, however, show similar results probably because of the smoothening 
procedure used in this study.

Appendix 1—table 3. Pediatric demographic and sleep characteristics.

Characteristic
Children and adolescents 
(Dataset 6)

Controls: Young adults (from Datasets 
2, 4, 5)

Sample size 21 24

Age, years 12.4+3.1 24.8+0.9

Age range, years 8–17 23–25

Wake, % 4.94 6.09

Non- REM stage 1, % 3.29* 7.27

Non- REM stage 2, % 41.89 42.23

Slow- wave sleep, % 31.06 24.92

REM sleep, % 18.82 18.58

Total sleep time, min 444+37 441+44

Classical sleep cycle duration, 
min 80.4+23.0* 89.8+22.2

Fractal sleep cycle duration, min 75.5+33.7* 94.1+32.1

Ascent amplitude, z 2.2+0.7 2.1+0.6

No. fractal cycles 112 121

No. classical cycles 112 114

Autocorrelation and partial autocorrelation
Method
To further explore the fluctuating nature of the fractal slope time series, we assessed the autocorrelation 
and partial autocorrelation patterns of this data using Matlab’s autocorr and parcorr functions, 
respectively. In autocorrelation, a given value from a time series is regressed on previous values from 
that same time series. Partial autocorrelation is similar to autocorrelation except that it displays only 
the correlation between two observations that the shorter lags between those observations do not 
explain. In other words, the partial correlation for each lag is the unique correlation between those 
two observations after partialling out the intervening correlations, that is it controls for other lags.

Appendix 1—table 1 Continued
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For both autocorrelation and partial autocorrelations, we defined the number of lags as 180, 
which corresponds to 90 min, an average duration of a fractal cycle, with a 30 s step. We assessed 
these correlations in each participant separately and then averaged the correlation coefficients for 
each time lag over all participants of a given dataset and in a pooled dataset.

Results
Autocorrelation strength decayed throughout the lags showing a somewhat sinusoid shape. 
Specifically, positive correlations of moderate strength were observed for the 0.5–14 min lags; for 
the 14–25 min lags, the correlations were weak. In addition, weak positive autocorrelations were 
observed around the 90th minute while weak negative autocorrelations were observed around the 
45th minute (Figure 4—figure supplement 7, left), corroborating 90 min periodicity of fractal cycles.

The partial autocorrelation that controls for other lags further revealed that only 0–5 min lag 
coefficients were statistically significant, that is autocorrelation equals zero at lags greater than 
5 min (Figure 4—figure supplement 7, right). This finding indicates that the fractal slopes of the 
consecutive sleep epochs within a given 5 min are not independent, they autocorrelate so that they 
are much more likely to appear in an observed pattern (e.g. as in Figure 1A) than expected by 
chance.

Cross-correlations
Method
To further model the temporal relationship between fractal and classical cycles, we explored them on 
a finer grained level using cross- correlations between time series of fractal slopes and time series of 
non- REM or REM sleep proportion per each 5 min of sleep. Cross- correlation allows one to evaluate 
how two time series might concomitantly covary in the same or opposite directions at given temporal 
intervals (i.e. lags). Thus, it enables the identification of temporally coordinated fluctuations between 
two variables. From the shape of the cross- correlation function, information concerning the possible 
direction of the influence between the two processes can be obtained. Cross- correlation analyses 
were performed between the time series of the fractal slopes averaged over each 5 min (based on 
the results of autocorrelation analysis reported above) of sleep on one side and the time series of 
the proportion of either REM or non- REM stages 2 and 3 (together) on the other side. We averaged 
the values of all the time series (originally calculated for each 30 s of sleep) over each 5 min of sleep. 
The cross- correlation coefficients were computed for lags ranging from –40 to 40  min, a period 
approximately corresponding to an average duration of a fractal cycle, with a 5 min step. Confidence 
intervals of 95% were calculated to infer statistical significance. We calculated cross- correlations in 
each participant separately and then averaged correlation coefficients for each time lag over all 
healthy adult participants in a pooled dataset (Datasets 1–5). Likewise, we calculated the proportion 
of the participants who showed statistically significant correlation coefficients for each lag.

Results
We found that the time series of fractal slopes positively cross- correlated with the time series of REM 
sleep proportion and negatively correlated with the time series of non- REM sleep proportion for 
lags lying between –15 and +5 min (Figure 4—figure supplement 8, Appendix 1—table 4). At the 
individual level, significant correlations were observed in more than 80% of the participants for the 
–10–0 minute lags. Bayesian prevalence analysis revealed that the maximum a posterior prevalence 
estimate is equal to 0.79 while the Bayesian highest posterior density interval (true population level) 
with 96% probability level lies within the 0.73–0.85 range.

Appendix 1—table 4. Cross- correlations.

Time lag non- REM<-Slopes Slopes<-non- REM REM<-Slopes Slopes<-REM

Correlation coefficients, r

0 min –0.50 0.40

5 min –0.50 –0.36 0.44 0.32

10 min –0.44 n.s. 0.40 n.s.

15 min –0.33 n.s. 0.33 n.s.

Appendix 1—table 4 Continued on next page
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Time lag non- REM<-Slopes Slopes<-non- REM REM<-Slopes Slopes<-REM

20 min n.s. n.s. n.s. n.s.

Participants showing significant effect, %

0 min 85 80

5 min 85 70 87 72

10 min 84 54 86 53

15 min 76 21 79 18

20 min 52 9 5 61

REM – rapid eye movement sleep, n.s. – non- significant. Only lags associated with statistically significant 
correlation coefficients are reported, r’s higher than 0.7 are considered as strong correlation scores, values lower 
than 0.3 are considered as weak, r’s values in the range of 0.3–0.7 are considered as moderate scores. Correlation 
coefficients were calculated for each healthy adult individually and then averaged over all participants.

Appendix 1—table 5. Demographic and clinical characteristics of the subgroups of patients by 
medication class (mean ± SD).

Medication class n Age No. females

No. of previous 
depressive 
episodes

HAM- D 
baseline

HAM- D
7 day

SSRI (citalopram, 
escitalopram, 
paroxetine, sertraline) 13 29.9±10.0 8 0.6±0.8 19.7±4.2 13.9±4.6

TCA (trimipramine, 
amitriptyline, 
amitriptylinoxide) 8 36.6±11.9 4 2.1±1.1 22.1±3.4 16.6±5.5

NDRI (bupropion) 6 30.7±10.5 3 0.7±0.5 18.5±3. 5 17.8±3.2

SNRI (venlafaxine, 
duloxetine) 6 31.7±10.9 2 1.7±0.83 18.3±2.5 14.7±5.5

NaSSA (mirtazapine) 5 26.8±6.1 3 2.6±3.2 20.2±4.8 13.8±4.7

REM suppressive (SSRI, 
SNRI, amitriptyline, 
amitriptylinoxide) 21 31.1±10.3 11 1.1±1.0 19.2±3.6 14.1±4.5

REM non- suppressive 
(trimipramine, 
bupropion, 
mirtazapine) 17 31.6±10.4 7 1.7±2.0 20.7±4.1 16.6±4.9

HAM- D – Hamilton Depression Rating Scale, REM – rapid eye movement sleep, SD – standard deviation, NaSSA 
– noradrenergic and specific serotonergic antidepressants, NDRI – norepinephrine- dopamine reuptake inhibitor, 
SNRI – serotonin- norepinephrine reuptake inhibitors, SSRI – selective serotonin reuptake inhibitors, TCA – tricyclic 
antidepressants.

Appendix 1—table 6. Fractal cycle topography in MDD.

Dataset Group F C P O

A Healthy controls NA 84±35 NA NA

long- termed med. MDD NA 97±43* NA NA

B Healthy controls 90±26 91±29 95±32 90±29

unmed. MDD 92±38 92±39 95±44 92±35

7- d med. MDD 105±45*,† 100±49* 107±49*,† 105±51*,†

Appendix 1—table 4 Continued
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Dataset Group F C P O

C Healthy controls 88±32 86±34 90±37 85±31

7- d med. MDD 107±48* 108±49* 105±46* 107±44*

28- d med. MDD 106±51* 95±41* 104±51* 105±51*

Mean durations ± SD (min) are presented, MDD – major depressive disorder, unmed. – unmedicated, med. – 
medicated. F – frontal (averaged over F3 and F4), C – central (averaged over C3 and C4), P – parietal (averaged 
over P3 and P4), O – occipital (averaged over O1 and O2) electrodes.
*statistically significant p- values of the t- test that compares a given group to age- matched controls.
†statistically significant p- values of the t- test comparing medicated and unmedicated states of MDD patients 
(dataset B)

Intra-fractal method reliability
To assess the intra- fractal method reliability, we correlated between the durations of fractal cycles 
(i.e., the time interval between two adjacent local peaks) calculated as defined in the main text, that 
is using a minimum peak prominence of 0.94 z and smoothing window of 101 thirty- second epochs, 
with those calculated using a minimum peak prominence ranging from 0.86 to 1.20 z with a step size 
of 0.04 z and smoothing windows ranging from 81 to 121 thirty- second epochs with a step size of 
10 epochs (Appendix 1—table 7). We found that fractal cycle durations calculated using adjacent 
minimum peak prominence (i.e. those that differed by 0.04 z) showed r’s>0.92, while those calculated 
using adjacent smoothing windows (i.e. those that differed by 10 epochs) showed r’s>0.84.

In addition, we correlated fractal cycle durations defined using different channels and found 
that the correlation coefficients ranged between 0.66–0.67 for all datasets except Dataset 2, which 
showed lower than expected (while still significant) correlations coefficients in the range of 0.42–0.45 
(Appendix 1—table 1).

Thus, most of the correlations performed to assess intra- fractal method reliability showed 
correlation coefficients (r>0.6) higher than those obtained to assess inter- method reliability (r=0.41–
0.55), i.e., correlations between fractal and classical cycle durations (Table 1 and Figure 1C of the 
main text and Appendix 1—table 7 here). The strongest correlation between the durations of fractal 
vs classical cycles (r’s>0.45) were obtained while using the minimum peak prominence of 0.94 and 
0.98 z- values, smoothing windows of 101 and 111 (i.e. 50.5 and 55.5 min, Appendix 1—table 7) and 
frontal channels (Appendix 1—table 1).

Appendix 1—table 7. Intra- fractal method reliability.

Peak prominence variation 0.86 z 0.90 z 0.94 z 0.98 z 1.20 z

Correlations, r

0.86 z - 0.93 0.86 0.82 0.55

0.90 z - - 0.92 0.88 0.60

0.94 z - - - 0.95 0.67

0.98 z - - - - 0.74

1.20 z - - - - -

Classical cycles 0.45 0.45 0.46 0.46 0.31

Duration, min

Fractal cycles 88.6 90.5 92.7 93.8 106.1

Classical cycles 91.0

Smoothing window, 30 s epochs 81 91 101 111 121

Appendix 1—table 6 Continued
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Peak prominence variation 0.86 z 0.90 z 0.94 z 0.98 z 1.20 z

Correlations, r

81 - 0.85 0.69 0.59 0.49

91 - - 0.84 0.72 0.63

101 - - - 0.87 0.78

111 - - - - 0.85

121 - - - - -

Classical cycles 0.32 0.37 0.45 0.45 0.39

Duration, min Fractal cycles 84.5 88.6 92.4 94.5 98.6

Fractal cycle durations were calculated using the minimum peak prominence from 0.86 to 1.20 z with the step of 
0.04 z and smoothing window from 81 to 121 epochs with the step of 10 thirty- second epochs, r’s higher than 0.7 
are considered as strong correlation scores, values lower than 0.3 are considered as weak, r’s values in the range 
of 0.3–0.7 are considered as moderate scores, all correlations were statistically significant, therefore p- values are 
not reported, r – Spearman correlation coefficients.

Intra-classical method reliability
To assess the intra- classical method reliability, we correlated between the durations or numbers of 
classical cycles assessed by two independent human scorers and the automatic sleep cycle detection 
algorithm, namely, the R ‘SleepCycles’ package. The results are presented in Appendix 1—table 8.

In the pooled dataset, the correlation coefficient between classical cycle durations assessed by 
the two human scorers was 0.8, ranging from 0.7 to 0.9 in different datasets (in literature, r’s>0.7 are 
interpreted as strong correlations). This is consistent with the literature on sleep staging reporting an 
average inter- rater agreement of ~82.6% (Rosenberg and Van Hout, 2013).

In the pooled dataset, correlation coefficients obtained for sleep cycle durations between human 
raters and the automatic algorithm showed remarkably lower coefficients of around 0.55–0.59, 
ranging from 0.30 to 0.69 in different datasets (‘moderate’ correlations). These coefficients were 
remarkably lower compared to the coefficients obtained between two human scorers (‘strong’ 
correlations). The lowest human- automatic inter- rater agreement (r=0.3) was observed for Dataset 
4, where, notably, the data was collected at participants’ homes by participants.

In summary, intra- classical method correlations between classical cycle durations scored by two 
human raters were stronger than the inter- method correlations between fractal and classical cycle 
durations, which ranged from 0.41 to 0.55 (r’s in the range of 0.3–0.7 are considered moderate 
correlations). The human- automatic correlation coefficients for classical cycle durations (r~0.57) lay 
within the range of the correlation coefficients between fractal and classical cycle durations (r~0.49). 
In other words, here, the strength of the intra- and inter- method correlations was comparable.

Appendix 1—table 8. Intra- classical method reliability.
Characteristic Scorer Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Pooled dataset

Classical sleep cycle duration, min

Mean ± SD

Scorer 1 87.8±12.6 91.5±11.7 90.0±13.3 93.3±11.0 93.8±15.1 91.6±13.2

Scorer 2 88.2±11.6 89.4±9.7 91.6±11.9 90.0±11.9 90.4±14.6 89.8±12.3

Automatic 94.2±17.7 93.0±13.0 94.7±10.6 101.9±17.9 101.2±18.7 97.4±16.6

Correlation, r

Scorer 1–2 0.777 0.913 0.715 0.687 0.859 0.810

Scorer 1–automatic 0.669 0.621 0.530 0.447 0.584 0.593

Scorer 2–automatic 0.604 0.686 0.641 0.297 0.547 0.549
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Characteristic Scorer Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Pooled dataset

No. classical cycles

Mean ± SD

Scorer 1 4.4±0.8 4.6±0.7 4.6±0.6 4.7±0.8 4.9±0.8 4.7±0.8

Scorer 2 4.2±0.7 4.6±0.7 4.4±0.6 4.7±0.8 4.9±0.8 4.6±0.8

Automatic 4.1±0.9 4.3±0.9 4.4±0.6 4.2±1.1 4.2±1.0 4.2±0.9

Correlation, r

Scorer 1–2 0.828 0.928 0.755 1.000 0.986 0.922

Scorer 1–automatic 0.816 0.793 0.755 0.781 0.629 0.713

Scorer 2–automatic 0.840 0.761 0.885 0.781 0.669 0.720

± shows mean and SD, r – Spearman’s correlation coefficient, ‘skipped’ cycle – a cycle where a rapid eye movement sleep episode is expected to appear except that it does 
not.

Appendix 1—table 9. Skipped cycle human inter- scorer agreement.
Scorer Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 Pooled dataset

Scorer 1,
Number of 
Skipped Cycles (%) 5/38 (13%) 7/39 (18%) 1/32 (3%) 19/34 (56%) 16/62 (26%) 10/21 (48%) 58/226 (26%)

Scorer 2,
Number of 
Skipped Cycles (%) 6/38 (15%) 7/39 (18%) 3/32 (9%) 19/34 (59%) 19/62 (31%) 10/21 (48%) 64/226 (28%)

Scorer 1 – Scorer 2 
Agreement, % 83 100 33 100 84 100 91

Appendix 1—table 8 Continued
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