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Abstract BTB (bric-a-brack, Tramtrack, and broad complex) is a diverse group of protein-protein 
interaction domains found within metazoan proteins. Transcription factors contain a dimerizing BTB 
subtype with a characteristic N-terminal extension. The Tramtrack group (TTK) is a distinct type of 
BTB domain, which can multimerize. Single-particle cryo-EM microscopy revealed that the TTK-
type BTB domains assemble into a hexameric structure consisting of three canonical BTB dimers 
connected through a previously uncharacterized interface. We demonstrated that the TTK-type BTB 
domains are found only in Arthropods and have undergone lineage-specific expansion in modern 
insects. The Drosophila genome encodes 24 transcription factors with TTK-type BTB domains, 
whereas only four have non-TTK-type BTB domains. Yeast two-hybrid analysis revealed that the 
TTK-type BTB domains have an unusually broad potential for heteromeric associations presumably 
through a dimer-dimer interaction interface. Thus, the TTK-type BTB domains are a structurally and 
functionally distinct group of protein domains specific to Arthropodan transcription factors.

Editor's evaluation
This important study investigates Tramtrack–like BTB domains of metazoan transcription factors 
using Cryo–EM microscopy, evolutionary and fold prediction analyses. The research presents 
compelling evidence for the structural basis of the multimerization and explores the evolutionary 
history of this family. This study will be of particular interest to structural and evolutionary biologists.

Introduction
BTB, also known as POZ (Pox-virus and zinc-finger), is an evolutionarily conserved domain that was 
originally found in the Drosophila proteins bric-a-brac, Tramtrack, and broad complex (Zollman et al., 
1994). BTB proteins have been identified in poxviruses and eukaryotes, and have various functions 
including regulation of transcription, chromatin remodeling, cytoskeletal function, ion transport, 

Research Article

*For correspondence: 
echinaceus@gmail.com (ANB); 
andreas.naschberger@kaust.edu.​
sa (AN); 
georgiev_p@mail.ru (PGG)

Competing interest: The authors 
declare that no competing 
interests exist.

Funding: See page 19

Preprinted: 02 September 2022
Received: 06 February 2024
Accepted: 02 September 2024
Published: 02 September 2024

Reviewing Editor: Anna 
Panchenko, Queen's University, 
Canada

‍ ‍ Copyright Bonchuk et al. This 
article is distributed under the 
terms of the Creative Commons 
Attribution License, which 
permits unrestricted use and 
redistribution provided that the 
original author and source are 
credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.96832
mailto:echinaceus@gmail.com
mailto:andreas.naschberger@kaust.edu.sa
mailto:andreas.naschberger@kaust.edu.sa
mailto:georgiev_p@mail.ru
https://doi.org/10.1101/2022.09.01.506177
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Research article﻿﻿﻿﻿﻿﻿ Structural Biology and Molecular Biophysics

Bonchuk et al. eLife 2024;13:e96832. DOI: https://doi.org/10.7554/eLife.96832 � 2 of 25

and ubiquitination/degradation of proteins (Perez-Torrado et al., 2006; Stogios et al., 2005). BTB 
domains are 100–120 aa in size and the core structure consists of five α-helices and three β-strands 
(Ahmad et al., 1998; Bonchuk et al., 2023; Li et al., 1999). In addition to this core, different subclasses 
of BTB proteins include N- and C-terminal BTB extension regions that facilitate protein-specific func-
tions. As a result, the BTB fold is a versatile scaffold that participates in a variety of family-specific 
protein-protein interactions (Bonchuk et al., 2023).

In metazoans, BTB domains of transcription factors (commonly referred to as BTB and Zinc Fingers 
or ZBTB since they are mostly found in combination with C2H2 zinc fingers) contain an amino-terminal 
extension that enables homodimerization (Ahmad et al., 1998; Ahmad et al., 2003; Bonchuk et al., 
2023). Other subtypes of BTB domains are Cullin-interacting KLHL-BTBs, which mostly form dimers; 
Skp1/ElonginC proteins which are subunits of Ubiquitin-ligase complexes; tetrameric T1 BTB domains 
participating in ion channel formation and the related pentameric KCTD BTB domains with various 
functions (Bonchuk et al., 2023). Most members of the ZBTB family contain C2H2-type zinc fingers 
(BTB-C2H2). In humans, 156 genes are predicted to encode BTB domain-containing proteins, of which 
49 are transcription factors possessing between 2 and 14 C2H2 domains (Siggs and Beutler, 2012). In 
Drosophila, 56 genes are predicted to encode BTB proteins, out of which 28 are transcription factors 
with the BTB domain of the ZBTB subtype (see below). BTB-C2H2 proteins act as classical transcrip-
tion factors, binding to chromatin and participating in the regulation of transcription. In insects, some 
transcription factors contain BTB domains in combination with other DNA-binding domains such as 
helix-turn-helix (HTH) and its subtype Pipsqueak (PSQ, BTB PSQ Siegmund and Lehmann, 2002). 
Several ВТВ-containing transcription factors contain FLYWCH (named after characteristic sequence 
motif) domains that belong to the WRKY family of transcription factors (Babu et al., 2006) and may 
be involved in the interaction with either DNA, RNA, or proteins (Beaster-Jones and Okkema, 2004; 
Melnikova et al., 2017).

In mammals, BTB-C2H2 transcription factors are required for the development of lymphocytes, 
fertility, skeletal morphogenesis, and neurological development (Chaharbakhshi and Jemc, 2016). 
The well-characterized BTB domains form tightly intertwined dimers and possess a peptide-binding 
groove, which is responsible for the interaction with various transcription factors and co-repressor 
complexes (Ahmad et al., 2003; Ghetu et al., 2008; Vogelmann et al., 2014; Zacharchenko and 
Wright, 2021). In most cases, mammalian C2H2 transcription factors have BTB domains which exclu-
sively form homodimers. An exception to this rule is the C2H2 protein Miz-1, whose BTB domain 
forms tetramers (Stead et al., 2007). Several BTB domains are capable of heterodimer formation 
(Olivieri et al., 2021). The structural basis for heterodimerization has been studied using chimeric 
Bcl6/Miz-1 and Miz-1/NAC1 assembly Stead and Wright, 2014; however, there is evidence that 
formation of such heterodimers in vivo is prevented by co-translational dimer assembly and the 
quality-control protein degradation machinery (Bertolini et  al., 2021; Mena et  al., 2020; Mena 
et al., 2018).

In Drosophila, a number of C2H2 proteins with a BTB domain have been described, some containing 
a typical BTB domain, such as CP190 and CG6792 (Maeng et al., 2012). The most well-studied of 
these, CP190, has four C2H2 zinc finger domains that appear to be involved in protein-protein interac-
tions rather than DNA binding (Oliver et al., 2010). The N-terminal BTB/POZ domain of CP190 forms 
stable homodimers (Bonchuk et al., 2011; Oliver et al., 2010; Plevock et al., 2015; Sabirov et al., 
2021b; Vogelmann et al., 2014). CP190 is required for the activity of housekeeping promoters and 
insulators (Bartkuhn et al., 2009; Sabirov et al., 2021a). CG6792 is similar to mammalian BTB-C2H2 
proteins, has seven DNA-binding zinc fingers, and is involved in wing development (Maeng et al., 
2012).

Most of the well-characterized Drosophila BTB transcription factors, including GAF, Mod(mdg4), 
LOLA, Broad-complex (BR-C), Batman, Pipsqueak, and Bric-a-brac (Bab), have TTK-type BTB domains 
(Bonchuk et al., 2011; Zollman et al., 1994). Proteins from this group often have important functions 
in transcription regulation, development, and chromosome architecture (Chaharbakhshi and Jemc, 
2016). Many TTK-group proteins, such as BR-C, TTK, and Bab, are critical regulators of development 
that function as transcriptional repressors (Bradley and Andrew, 2001; Chaharbakhshi and Jemc, 
2016; Mukai et al., 2007; Silva et al., 2016). Several have been implicated in chromatin architectural 
function, acting as a component of a chromatin insulator complex (Mod(mdg4)) or recruiting chro-
matin remodeling complexes (GAF, Pipsqueak) (Huang et al., 2002; Lomaev et al., 2017). Recently, 
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it was shown that GAF is a pioneer factor that acts as a stable mitotic bookmarker during zygotic 
genome activation during Drosophila embryogenesis (Bellec et al., 2022; Tang et al., 2022).

TTK-type BTB domains contain a highly conserved N-terminal FxLRWN motif, where x is a hydro-
philic residue (Bonchuk et al., 2011). Several TTK-type BTB domains can selectively interact with each 
other and form multimers (Bonchuk et al., 2011). Although there are more than 30 crystal structures 
of non-TTK BTB domains that form stable homodimers (Ahmad et al., 1998; Stogios et al., 2007; 
Stogios et al., 2010; Stogios et al., 2005; Vogelmann et al., 2014), the structures of the TTK-type 
BTB domains and the structural basis for their multimerization remain unknown.

In this study, we investigated the presence of TTK-type and canonical BTB domains in transcription 
factors from various phylogenetic groups of Bilateria. The TTK-type BTB domains were found only in 
Arthropodan transcription factors and underwent a lineage-specific expansion in insects. Using an 
integrative structural biology approach, we built a structural model of the TTK-group BTB hexameric 
assembly, validating it using MALS, SAXS, cryo-EM microscopy, and site-directed mutagenesis. Finally, 
we found an unusual potential for these domains to form heteromultimers, which likely involve a 
dimer-dimer interaction interface.
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Figure 1. Schematic representation of Drosophila transcription factors with broad-complex, Tramtrack, and bric-a-brac (BTB) domains. Only one 
representative isoform is shown for each gene. Pipsqueak psq DNA-binding domain is depicted as ‘HTH’ since it is a type of helix-turn-helix (HTH) 
domain.
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Results
Most BTB domains of transcription factors in Drosophila melanogaster 
are of TTK-type
The Drosophila melanogaster genome contains 28 genes encoding transcription factors with BTB 
domains (Figure 1). Many genes encode several BTB-containing protein isoforms, which differ in their 
C-terminal sequences. At two exceptional loci, mod(mdg4) and lola, multiple isoforms are formed by 
trans-splicing, the mechanism of which is still unclear (Tikhonov et al., 2018). The mod(mdg4) locus 
encodes at least 30 isoforms, most of which have FLYWCH domains (Bradley and Andrew, 2001). 
Seventeen of the 20 isoforms produced by the lola locus contain different C-terminal C2H2 zinc-
fingers (Horiuchi et al., 2003).

BTB domains of transcription factors belong to the distinct subtype of BTB domains (ZBTB) with 
N-terminal extension playing a role in their homodimerization (Bonchuk et al., 2023). A characteristic 
feature of the TTK-type BTB domain is the presence of the FxLRWN motif at this N-terminal extension. 
Comparison of the amino acid sequence of BTBs from 28 Drosophila BTB-containing transcription 
factors showed that 24 BTB domains contain the characteristic ‘TTK motif’ (Figure 2a and b). The 
TTK-type BTB domains are usually located at the N-termini of proteins, however, in two proteins 
(CG6118, bric-a-brac2), the BTB domains are located in the middle of the protein (Figure  1). As 
an exception, Batman consists of only the BTB domain. Four transcription factors (CP190, CG6792, 
CG15725, and Ken) have BTB domains without a TTK motif (Figure 1).

The TTK-type BTB domains display a broad heteromeric interaction 
propensity
The characteristic feature of the TTK-type BTB domains is their ability to selectively interact with each 
other (Bonchuk et al., 2011). We tested the interaction of all TTK-type BTB domains with BTB domains 
from Mod(mdg4), LOLA, Chinmo, CG8924, and GAF in a yeast two-hybrid assay (Y2H; Figure 2c, and 
Supplementary file 2 and Figure 2—figure supplements 1–6). We found that all BTB domains can 
interact with themselves. 23 out of 24 TTK-type BTB domains also interacted with at least one of the 
GAF, LOLA, or Mod(mdg4) BTB domains. GAF, Mod(mdg4), LOLA, and CG8924 all interacted with 
at least 10 of the 24 TTK-type BTB domains, while Chinmo interacted with 18 TTK-type BTB domains 
(Figure 2c, Supplementary file 2). The homology between interacting domains was mostly in the 
range 35–47%, but could be as low as 25%. No obvious relationship between homology and hetero-
meric interaction ability was found (Supplementary file 3).

We also tested the interaction between four non-TTK BTB domains (CP190, Ken, CG15275, and 
CG6792 (dPLZF)) and did not find heteromeric interaction between them (Supplementary file 4). 
The BTBs of CP190 and CG6792 formed homodimers in vitro, like all other classical BTB domains 
(Figure 3—figure supplement 2). The Ken and CG15725 BTB domains were insoluble after bacterial 
expression. Using Y2H, we detected only a small number of interactions between the non-TTK BTB 
domains of CP190 and Ken with the TTK-type BTB domains: CP190 interacted with GAF and Ribbon, 
while Ken interacted with Batman and Mamo (Supplementary file 5 and Figure 2—figure supple-
ments 7–11). These data also serve as an additional negative control for results showing the broad 
ability of TTK-type to heteromerization in Y2H assay. These results confirm that the TTK-type domains 
are functionally distinct from classical BTB domains.

Cryo-electron microscopy reveals hexameric assembly of the BTB 
domain of CG6765 protein through a previously uncharacterized 
interface
To test the ability of TTK-type BTB domains to multimerize and shed light on their possible structure, 
we screened all TTK-type BTB domains from Drosophila melanogaster for the possibility of high-yield 
expression and soluble purification for subsequent structural analysis.

We expressed all 24 TTK-type Drosophila BTB domains as TEV-cleavable thioredoxin fusions. 
Out of 24 BTBs, only ten domains were soluble and stable after TEV-cleavage. Eight BTB domains 
appeared as a single peak on size-exclusion chromatography (SEC) with apparent Mw 90–150 kDa, 
Batman BTB eluted as a dimer (Figure 3—figure supplements 3–4), while CG32121 BTB formed 

https://doi.org/10.7554/eLife.96832
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Figure 2. Characterization of the the Tramtrack group (TTK)-type broad-complex, Tramtrack, and bric-a-brac (BTB) domains.  (a) Multiple sequence 
alignment of BTB domains from Drosophila transcription factors and a few human BTB domains with known 3D structures. Secondary structure elements 
are labeled according to Stogios et al., 2005.(b) Hidden Markov Model (HMM)-profile models for the TTK motif (upper) and the main dimer-dimer 
interaction interface (lower) were obtained for 14 Diptera species. (c) Testing of the GAF, Mod(mdg4), and LOLA BTB domains for interaction with all 
TTK-type BTB domains found in Drosophila melanogaster. Original data are shown in Figure 2—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Results of yeast two-hybrid assays.

Figure supplement 2. Results of yeast two-hybrid assays of interactions between the Tramtrack group (TTK) broad-complex, tramtrack, and bric-a-brac 
(BTB) domains (continued).

Figure supplement 3. Results of yeast two-hybrid assays of interactions between The Tramtrack group (TTK) Broad-complex, tramtrack, and bric-a-brac 
(BTB) domains (continued).

Figure supplement 4. Results of yeast two-hybrid assays of interactions between the Tramtrack group (TTK) broad-complex, tramtrack, and bric-a-brac 
(BTB) domains (continued).

Figure supplement 5. Results of yeast two-hybrid assays of interactions between the Tramtrack group (TTK) broad-complex, tramtrack, and bric-a-brac 
(BTB) domains (continued).

Figure supplement 6. Results of yeast two-hybrid assays of interactions between the Tramtrack group (TTK) broad-complex, tramtrack, and bric-a-brac 
(BTB) domains (continued).

Figure supplement 7. Results of yeast two-hybrid assays of interactions between the Tramtrack group (TTK) and non-TTK broad-complex, tramtrack, 
and bric-a-brac (BTB) domains.

Figure 2 continued on next page

https://doi.org/10.7554/eLife.96832
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multiple peaks. Unfortunately, most of these BTBs had low solubility (~1 mg/mL) and, therefore, were 
not suitable for structural studies.

Only three BTB domains (CG67651-133, CG321211-147, and LOLA1-120) were soluble at concentrations 
above 5 mg/mL. CG321211-147 was excluded from further analysis due to its heterogeneous oligo-
meric state. Multiple crystallization trials led to nicely shaped crystals of CG67651-133 which, however, 
diffracted to above 6 Å, hampering the structure solution.

Hence, we used single-particle cryo-EM to elucidate the structure of BTB domain assemblies. To 
enhance particle contrast on cryo-EM images, we used the BTB domain of CG67651-133 fused to MBP 
(40 kDa), which resulted in a monomer Mw of 56 kDa. Iterative masked refinement excluding flexible 
MBP regions resulted in a final reconstruction of core CG67651-133 multimer at a resolution of 3.3 Å (full 
data processing flowchart is shown at Figure 3—figure supplement 1). The map clearly shows the 
hexameric assembly consisting of three dimers (Figure 3a). To model the atomic structure of CG6765 
hexamers, we utilized an AlphaFold multimer implementation (Evans et al., 2022). The hexamer was 
predicted with high confidence and despite the loop regions the model fits well into the obtained 
cryo-EM map (Figure 3b). CG6765 hexamer consists of three canonical BTB dimers with extensive 
hydrophobic molecular contacts and main-chain hydrogen bonds (N78, V82, Y84, V86) forming a 
β-sheet between two parallel β4-strands (corresponding to B3 according to Stogios et  al., 2005; 
Figure 3b and c). In addition, a bifurcated hydrogen bond is formed from the side chain hydroxy 
group of Y84 of one dimer to the sidechain of T77 and main-chains of either N78 or I76 of the second 
dimer. Furthermore, a few inter-dimer hydrogen bonds are formed between (i) T50 and T73, (ii) N78 
and N80, and (iii) side chain hydroxy group of Y36 and P75/M70 main chain atoms. Interdimeric 
interactions were further strengthened by hydrophobic contacts between A2 (F66, M70, P75), the 
loop preceding B1 (I48), and B2/B1/B3 sheet (V34, V86) (Figure 3b), with the B3 strand formed by 
residues highly conserved only within the TTK group (Figure 2a). Residues with large hydrophobic or 
aromatic side-chains at positions corresponding to Y84 and V86 of CG6765 are characteristic for all 
TTK-type BTBs, whereas residues involved in stabilizing interactions at B1/A2 and adjacent loops are 
less conserved (Figure 2a and b). The N-terminal TTK-motif is located within the first β-strand and is 
involved only in intra-dimer stabilization forming antiparallel beta-sheet with B4 (Figure 3b). Central 
part of the hexamer forms a pore, residues of loop regions surrounding the pore are not conserved, 
thus it is unlikely that it can possess some physiological function.

While hexamerization of TTK-type BTB domains is unique for the ZBTB family, the formation of 
tetramers and pentamers is a common property of the T1/KCTD structural subclass of BTBs. However, 
the mechanism of multimerization is completely different (Figure 3d, Figure 3—figure supplement 
5): T1/KCTD multimerize through the interaction between the B2 strand and A3 helix of adjacent 
subunits, further stabilized by contacts between the A4 helix and B3/A3 loop (Dementieva et al., 
2009; Ji et al., 2016; Kreusch et al., 1998; Minor et al., 2000). The contribution of structural elements 
differs between families: the formation of T1 tetramers mostly relies on the B3/A3 loop interaction 
with the A3 helix, whereas the A3/A4 loop interaction with A4 is more important for the formation 
of KCTD pentamers (Figure 3d). Recently another subclass of multimer-forming human ZBTBs was 
described (Mance et al., 2024; Park et al., 2024). These domains use yet another interface to form 
large filamentous multimers (through A2/A4/A5 helices and the B3-A3/A4-A5 linkers of each dimer).

Thus, the structure of CG6765 BTB domain obtained with cryo-EM reveals the first hexameric 
structure of the BTB domain of the TTK group consisting of three canonical BTB dimers connected 
via a novel interface formed by two parallel β-strands which has not yet been implicated in BTB 
multimerization.

Figure supplement 8. Results of yeast two-hybrid assays of interactions between the Tramtrack group (TTK) and non-TTK broad-complex, tramtrack, 
and bric-a-brac (BTB) domains (continued).

Figure supplement 9. Results of yeast two-hybrid assays of interactions between the Tramtrack group (TTK) and non-TTK broad-complex, tramtrack, 
and bric-a-brac (BTB) domains (continued).

Figure supplement 10. Results of yeast two-hybrid assays of interactions between the Tramtrack group (TTK) and non-TTK broad-complex, tramtrack, 
and bric-a-brac (BTB) domains (continued).

Figure supplement 11. Results of yeast two-hybrid assays of interactions between the Tramtrack group (TTK) and non-TTK broad-complex, tramtrack, 
and bric-a-brac (BTB) domains (continued).

Figure 2 continued

https://doi.org/10.7554/eLife.96832
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Hexamers are the main oligomeric state of TTK-type BTB domains in 
solution
As it was noted earlier, 8 out of 10 soluble BTB domains of the TTK group formed stable high-order 
multimers. The SEC profile for the representative BTB domain of LOLA had a single symmetric peak, 
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Figure 3. Cryo-EM structure of CG6765 broad-complex, tramtrack, and bric-a-brac (BTB) domain.  (a) Cryo-EM map of CG6765 BTB domain. Map 
regions are colored according to corresponding protein chains. (b) Refined model of CG6765 BTB domain hexamer. Individual dimers are depicted, and 
details of dimer-dimer interaction interface and beta-sheet formation by FxLRWN (‘the Tramtrack group, TTK’) motif are shown at the right. Secondary 
structure elements are depicted according to Stogios et al., 2005. (c) Overlay of the dimeric subunit of CG6765 BTB domain and classical dimer 
of Bcl6 BTB domain (PDB ID: 1R28) (Ahmad et al., 2003). (d) Summary of the involvement of the secondary structural elements of BTB domains in 
multimerization. Overlays of BTB multimeric assemblies are shown at the Figure 3—figure supplement 5. (d) has been adapted from Figure 3A from 
Bonchuk et al., 2023.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Flowchart illustrating cryo-EM data processing of MBP-fused CG67651-133.

Figure supplement 2. Superdex S200 size-exclusion chromatography of the CP190 and CG6792 broad-complex, tramtrack, and bric-a-brac (BTB) 
domains.

Figure supplement 3. Superdex S200 size-exclusion chromatography of the Tramtrack group (TTK)-type broad-complex, tramtrack, and bric-a-brac 
(BTB) domains from Drosophila.

Figure supplement 4. Superdex S200 size-exclusion chromatography of the Tramtrack group (TTK)-type broad-complex, tramtrack, and bric-a-brac 
(BTB) domains from Drosophila (continued).

Figure supplement 5. Overlays of multimeric assemblies of CG6765 hexamer with.

https://doi.org/10.7554/eLife.96832
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the position of which remained unchanged even upon 10-fold dilution (Figure 4a). Since the apparent 
Mw of 113 kDa determined relative to protein standards did not allow us to unequivocally determine 
the oligomeric state of LOLA (the predicted monomer mass is 15.25 kDa), it was analyzed using SEC-
MALS, which provides the absolute Mw. The Mw determined by this method was 86.3 kDa, which 
was 5.7 times larger than the predicted monomeric Mw, and therefore was closest to a hexameric 
species. The monodispersity of the sample (Mw/Mn = 1.000) and the unchanged position on the 
elution profile upon dilution together indicated that the observed oligomer is stable. Consistent with 
this, we observed that MBP-fused LOLA also had a single symmetrical peak on the SEC profile, and 
its MALS-derived Mw of 315 kDa suggested a monodisperse (Mw/Mn = 1.000) ~5.6 mer (Figure 4b).

Since particles of BTB domains of CG6765 and LOLA are monodisperse in solution, we expected 
that BTB domain of LOLA would have a similar structure as was revealed by cryo-EM for CG6765. On 
the other hand, B3 element involved in hexamer formation is conserved among all TTK-type BTBs, 
but B3 of CG6765 substantially differs from others (Figure 2a). To further verify the structures and 
stability of stoichiometry of hexameric assemblies for LOLA BTB domain devoid of additional tags, we 
applied the SAXS method and AlphaFold modeling using CG6765 BTB as a reference. SAXS-derived 
structural parameters are listed in Table 1. Estimated molecular weights for LOLA and CG6765 BTB 
domains roughly correspond to hexamers and are in agreement with SEC-MALS and cryo-EM data. 
Then, we critically assessed AlphaFold models with different stoichiometries (from dimers to octamers) 
using the approximation of experimental SAXS data with curves calculated from the models using 
CRYSOL (Svergun et al., 1995 Figure 4—figure supplement 1a, b). For both CG6765 and LOLA 
BTBs, the theoretical scattering for hexameric models agreed best with the experimental data (χ2 
values 1.7 and 3.6, respectively Figure 4c and d), while the fits from alternative oligomeric assemblies 
predicted by AlphaFold were inadequate (Figure 4—figure supplement 1a, b). The models of 7-mers 
contained largely disconnected hexamers and an additional subunit and were not considered. The 
models of 5-mers provided second-best fit to the experimental SAXS profiles, but were disregarded 
due to symmetry considerations, the contradiction to cryo-EM data, and also because they appeared 
to represent hexamers lacking one of the subunits. We believe that, while the presence of incomplete 
assemblies in vitro cannot be excluded, they do not represent the main oligomeric state of TTK-type 
BTB domains. Thus, SAXS data support that the prevalent oligomer state in the solution of LOLA and 
CG6765 BTB domains is the hexamer, in accordance with the CryoEM data. The overall structures of 
both hexamers are highly similar (Figure 4c and d).

We also modeled hexamer assemblies of different BTB domains of the TTK group (Figure 4—
figure supplement 2) including Mod(mdg4) protein (Figure 4—figure supplement 2b), which is the 
best-studied protein of the family so far (Golovnin et al., 2007; Melnikova et al., 2017). All models 
had an architecture similar to those of the LOLA and CG6765 hexamers with interdimeric interface 
predicted with high confidence (Figure 4—figure supplement 2a). The dimer-dimer interaction inter-
face is also conserved in Batman, which did not form multimers larger than dimer, according to SEC 
data. We, therefore, modeled a Batman BTB dimer and compared its structure with a LOLA dimer 
within the hexamer. We found no steric hindrance obstructing hexamer formation in Batman, although 
some hexamer-stabilizing interactions were absent in this case, for example, F42, which stabilized 
the LOLA hexamer, is T42 in Batman, in the cryo-EM structure of the CG6765 BTB this interaction 
is supported by Y36 from adjacent beta-strand (Figure 4—figure supplement 2a and c). From this 
observation, we suggest that the core β-sheet might be not sufficient for stable hexamer formation, 
and further stabilizing contacts are required, which may determine the specificity of the interaction. 
The dimer-dimer interaction interface was substantially different in the model of Chinmo BTB, which 
can still form multimers, as well as in Ribbon and CG15812. Unfortunately, we could not test the 
multimerization of the latter two domains due to strong aggregation; however, the AlphaFold model 
suggested that the β-strand involved in the dimer-dimer interaction remained unchanged, but the 
confidence of prediction was substantially lower (Figure 4—figure supplement 2a and c).

It is likely that unusually broad interactions between different TTK-type BTB domains (heteromeric 
interactions) occur due to the association of different homodimers through the interdimeric interfaces 
described above, which are highly similar in different members of this family (Figure 2a). Notably, the 
sequence of B3 strand of CG6765 is the least conserved among all TTK-type BTBs, that correlates with 
its lower ability for heteromeric interactions (Figure 2—figure supplement 1). We developed a set 
of substitutions of conserved hydrophobic residues involved in the inter-subunit β-sheet interface. We 

https://doi.org/10.7554/eLife.96832
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Figure 4. An integrative biology approach reveals the hexameric assembly of the Tramtrack group (TTK)-type broad-complex, tramtrack, and bric-
a-brac (BTB) domains. Size-exclusion chromatography with multi-angle light scattering (SEC-MALS) data for LOLA. (a) and MBP-LOLA (b) showing 
the chromatographic peaks with the Mw distributions across each peak. Average Mw values in kDa, polydispersity index (Mw/Mn), and the formally 
calculated oligomeric state are shown. D280 designates optical density at 280 nm (absorbance units). The second Y axes are Mw, and kDa. Note that the 
10-fold dilution of LOLA (black and red curves in panel a) did not cause any shift of the chromatographic peak, indicating the stability of the observed 
oligomer. AlphaFold2-derived models of LOLA (c) and CG6765 (d) oligomers and fits of their theoretical scattering data to the experimental SAXS data. 
Models are colored according to AlphaFold pLDDT values.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Figure supplement 1. Studying the possibility of different stoichiometry of BTB domain assemblies using SAXS.

Figure supplement 2. Molecular modeling of the Tramtrack group (TTK)-type broad-complex, tramtrack, and bric-a-brac (BTB) domains with 
AlphaFold.

Figure supplement 3. Testing the impact of single amino-acid substitutions in dimer-dimer interaction interface on the oligomerization status of the 
Tramtrack group (TTK)-type broad-complex, tramtrack, and bric-a-brac (BTB) domains.

Figure supplement 4. Superdex S200 size-exclusion chromatography of Thioredoxin-tagged LOLA broad-complex, tramtrack, and bric-a-brac (BTB) 
domains bearing mutations in dimer-dimer interaction interface.

Figure supplement 4—source data 1. Uncropped gel images.

Figure supplement 5. Superdex S200 size-exclusion chromatography of Thioredoxin-tagged Mod(mdg4) broad-complex, tramtrack, and bric-a-brac 
(BTB) domains bearing mutations in dimer-dimer interaction interface.

Figure supplement 5—source data 1. Uncropped gel images.

Figure 4 continued on next page

https://doi.org/10.7554/eLife.96832
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employed several strategies, first, to break inter-subunit main-chain H-bonds we mutated to prolines 
conserved hydrophobic residues with side-chains contacting another subunit (I70/I72 in LOLA, I71/
F73 in mod(mdg4), and Y84/V86 in CG6765), second, we substituted these residues for lysine, which 
has large charged side chain to create electrostatic repulsion and make the surface more polar, and 
at last we applied conventional substitutions to alanine. Both single substitutions and substitutions 
of both residues at once were created. In general, all mutations led to a strong decrease in protein 
solubility and the appearance of aggregates in the SEC profiles (Figure 4—figure supplements 3–6), 
and often to an inability for self-interaction in Y2H assay (Figure 4—figure supplement 7) suggesting 
a general impact on protein folding. Only a small fraction of hexamers was present, along with the 
appearance of a fraction of dimers of comparable intensity, indicating the effect of the tested muta-
tions on the formation of hexamers. A large peak of proteolytic fragments was also visible, suggesting 
protein misfolding and degradation (see Figure 4—figure supplements 4–6). Strong impact of muta-
tions on protein stability much likely is a result of exposing large hydrophobic surfaces formed by A2 
and B1/B2 with surrounding loops indicating their importance for stabilization of the hexamer. Muta-
tional data support the importance of the integrity of dimer-dimer interaction interface for proper 
folding and stability of TTK group BTB domains. Such a strong impact of dimer-dimer interface muta-
tions on protein folding and self-association does not allow to confidently study the effect of these 
mutations on heteromeric interactions. To get further insight into possible mechanism of heteromeri-
zation we used AlphaFold-Multimer to predict the structures of possible heteromer assemblies since 
it was found to be reliable in predicting hexameric assemblies of TTK-type BTB domains. Prediction 
results suggested that usage of both inter-dimer and conventional dimerization interfaces for hetero-
meric interactions are possible in various cases, with preference for one over another in different pairs 
(Supplementary file 6). Thus, most likely the presence of two potential heteromerization interfaces 
expands the heteromerization capability of these domains.

In summary, various approaches independently confirm that hexameric assembly of three dimers is 
the main oligomeric state of TTK group BTB domains.

TTK-type BTB domains are specific to Arthropoda
In D. melanogaster, most transcription factor BTB domains are of TTK-type. We, therefore, investi-
gated when these domains emerged over the course of evolution and how widespread in animals they 
are. We built the Hidden Markov Model (HMM) profile ‘TTK motif’ based on sequence alignment of 
TTK-type BTBs from 14 Dipteran species (Figure 2b) and performed a search within the main groups 
of Arthropoda and several other Metazoan species (including basal groups such as Onychophora, 
Tardigrada, and Nematoda). TTK-type BTB domains were not found outside of Arthropoda. The most 
basal clades in which they emerged were Crustaceans and Arachnoidea (Figure 5a). This agrees with 
a recent study which traced the origin of GAF and Mod(mdg4) insulator proteins to ancestral groups 

Figure supplement 6. Superdex S200 size-exclusion chromatography of Thioredoxin-tagged CG6765 broad-complex, tramtrack, and bric-a-brac (BTB) 
domains bearing mutations in dimer-dimer interaction interface.

Figure supplement 6—source data 1. Uncropped gel images.

Figure supplement 7. Results of yeast two-hybrid assays of the impact of point mutations at the dimer-dimer interaction interface.

Figure 4 continued

Table 1. SAXS-derived structural parameters for CG6765 and LOLA broad-complex, tramtrack, and bric-a-brac (BTB) domains.
Rg is the radius of gyration, Dmax – the maximum dimension of the particles, and Vp – is Porod volume – volume of the particles. 
The sample of CG67651-133 with the concentration of 1.5 mg/ml provided sufficiently high-quality scattering data, which were used 
for all fitting experiments, whereas data obtained for LOLA1-120 at concentrations 1.0 and 3.0 mg/ml were merged to obtain the 
necessary quality. Samples with higher concentrations exhibited signs of aggregation and were excluded from analysis.

Polypeptide Sample concentration, mg/ml Rg, nm Dmax, nm Vp, nm3
Estimated molecular weight, 
kDa

Molecular weight of the 
monomer, kDa

CG67651-133 1.5 3.7 12.7 166 90.5–116.5 15.3

LOLA1-120
merged data for 1.0 and 3.0 mg/
ml 4.1 14.5 189 108–136 15.2

https://doi.org/10.7554/eLife.96832
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Figure 5. Domain architectures and orthologs of proteins with broad-complex, tramtrack, and bric-a-brac (BTB) domain of the Tramtrack group (TTK)-
type in various Arthropoda lineages. (a) Phylogenetic analysis of the distribution of the main DNA and protein interaction domain types in TTK-type BTB 
proteins in proteomes of representatives of Hexapoda, Crustacea, Myriapoda, and Arachnida. Each type of BTB protein domain architecture is shown 
as a bar segment. Total search results are shown in Supplementary file 7. The orthologs of several Drosophila BTB domains of TTK-type (b) and non-
TTK-type (c) in proteomes of key taxa in major Arthropod and other Ecdysozoa phylogenetic groups. The phylogenetic relationships among taxa are 
according to the NCBI Taxonomy Database. Azure blue – the ortholog is absent in the taxa, dark blue – the ortholog is present in the taxa, dark cyan – 
orthologs are not uniquely defined.

Figure 5 continued on next page
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of insects related to modern Protura and Plecopthera (Pauli et al., 2016). TTK-type BTB domains 
underwent a lineage-specific expansion in modern phylogenetic groups of insects, to the most extent 
in Diptera and Hymenoptera. In these species, TTK-type BTB domains almost completely replace tran-
scription factors with classical dimeric BTB domains, as in D. melanogaster (Figure 5a). An ortholog 
search of the 11 best-studied Drosophila TTK-type BTB proteins revealed that the oldest proteins 
with TTK-type BTBs are LOLA, bric-a-brac2, and Tramtrack, for which orthologs were found in the 
most basal clades (Figure 5b). The same search for four non-TTK Drosophila BTB proteins revealed 
that CP190 and CG6792 (a Drosophila PLZF homolog) are the oldest: a CP190 ortholog was found in 
Nematodes and CG6792 orthologs are present in almost all other Metazoan taxa (Figure 5c). Notably, 
each non-TTK Drosophila BTB-C2H2 protein has only one isoform, whereas many factors with a TTK-
type BTB have multiple isoforms, which typically differ in their DNA-binding domain, resulting in a 
wide diversity of these factors.

Most transcription factors with ZBTB also contain C2H2 or HTH DNA-binding domains. With the 
exception of Arachnida, in all examined Arthropoda species, the FLYWCH and HTH domains are 
found only in combination with the TTK-type BTB domains (Figure 6a). In the human proteome, BTB-
containing transcription factors almost exclusively utilize C2H2 zinc-fingers as DNA-binding domains. 
Interestingly, TTK-type BTBs are usually associated with one or two C2H2 domains (only MAMO has 
five C2H2 domains), while mammalian transcription factors commonly have BTB domains in combina-
tion with arrays consisting of an average of five C2H2 domains (Figure 6b).

To trace the origin and evolution of N-terminal extension of ZBTB we searched Uniprot database 
for the proteins with the simultaneous presence of BTB and Zinc Fingers and run AlphaFold-Multimer 
predictions of dimeric assemblies of all BTB domains in proteomes of basal Metazoan taxa (Amphim-
edon queenslandica, sponge the most ancient metazoans (Srivastava et  al., 2010), Trichoplax 
adhaerens, primitive metazoan organism (Srivastava et al., 2008) diverged over 600 million years 
ago), in proteome of Monosiga brevicollis, a member of Choanoflagellates, considered to be the 
closest metazoans ancestors (King et al., 2008), and in the proteomes of Arabidopsis thaliana and 
Dictyostelium discoideum as of members of sister to metazoan eukaryotic lineages. Cullin3-interacting 
domains KLHL-BTBs have similar to ZBTB architecture and dimerization surface, unlike ZBTBs they also 
possess additional 3-box/BACK alpha-helical extension serving as Cullin3-interacting domain (Ji and 
Privé, 2013). KLHL-BTBs are present in all eukaryotes and likely are predecessors of ZBTB domains 
(Bonchuk et al., 2023). According to AlphaFold modeling of dimers, all KLHL-BTB domains of plants 
and basal metazoans have α1 helix, but most of these domains from basal metazoans do not possess 
additional N-terminal beta-strand (β1) characteristics for ZBTB domains. We found only one KLHL-BTB 
(Uniprot ID: AA9VCT1_MONBE) with such N-terminal extension in Choanoflagellate proteome, one 
in Dictyostelium proteome (Q54F31_DICDI), and 7 (out of 43 BTB domains in total) and 13 (out of 
81) such domains in Trichoplax and Amphimedon proteomes correspondingly (Figure  5—figure 
supplement 1). There was no significant sequence similarity of β1 element at the level of primary 
sequence (Figure  5—figure supplement 1). However, most of these domains bear 3-box/BACK 
extension and represent typical KLHL-BTBs which are member of E3 ubiquitin-ligase complexes, they 
are often associated with protein-protein interacting MATH domain or WD40 repeats. We found only 
one protein in Trichoplax proteome (B3RQ74_TRIAD) with β1 strand in BTB domain which is also 
devoid of 3-box/BACK, resembling ZBTB topology. Thus, likely emergence of BTB domains of this 
subtype occurred early in Metazoan evolution (Figure 6c). At this point, ZBTBs were not yet associ-
ated with zinc-fingers. According to our survey, the actual fusion of the ZBTB domain with zinc-finger 
domains occurred in the evolution of earlier bilaterian organisms since proteins with such domain 
architecture are not found in Radiata but are present in basal Protostomia and Deuterostomia clades 
(Bonchuk and Georgiev, 2024). AlphaFold prediction of possible hexameric assemblies of ZBTBs 
associated with zinc fingers from proteomes of organisms from several Protostomia clades (Octopus 

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Multiple sequence alignment of β1-B3 sequences of broad-complex, tramtrack, and bric-a-brac (BTB) domains (KLHL family 
from basal Metazoans and ZBTB family from Protostomia clades beyond Arthropoda) bearing N-terminal beta-strand according to AlphaFold-multimer 
predictions. Amino acid residues are colored with ClustalX colors (legend is shown below).

Figure supplement 2. AlphaFold2 modelling of non-Arthropoda TTK-type BTB domains.

Figure 5 continued

https://doi.org/10.7554/eLife.96832
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Figure 6. The Tramtrack group (TTK)-type broad-complex, tramtrack, and bric-a-brac (BTB) domains are specific to Arthropodan transcription factors. 
(a) Distribution of major DNA interaction (C2H2, HTH, FLYWCH) and other domain types in non-TTK (left) and TTK-containing (right) BTB proteins in 
the proteomes of 16 Metazoan species. Each type of BTB-associated protein domain is denoted as a bar segment. Figure represents proteins with all 
BTB subtypes, domains of the ZBTB subtype are almost exclusively associated with one of the DNA-binding domains. Total search results are shown in 
Supplementary file 7 (TTK BTB domains) and Supplementary file 8 (non-TTK BTB domains).(b) Representation of non-TTK and TTK-containing BTB 
proteins with less than three (dark cyan) and three or more (dark blue) C2H2 domains in Drosophila melanogaster and Homo sapiens proteomes. (c) 
Origin of different subtypes of BTB domains over the course of evolution. (c) has been adapted from Figure 6C from Bonchuk et al., 2023.

https://doi.org/10.7554/eLife.96832


 Research article﻿﻿﻿﻿﻿﻿ Structural Biology and Molecular Biophysics

Bonchuk et al. eLife 2024;13:e96832. DOI: https://doi.org/10.7554/eLife.96832 � 14 of 25

bimaculoides, Aplysia californica, Lingula anatina, Caenorhabditis elegans, Capitella teleta) did not 
yield any reliable models. None of β1 and B3 element sequences are similar to those of TTK-type 
BTB domains (Figure 2, Figure 5—figure supplement 1). We further extended our search across 
whole InterPro database using HMM profile built on the sequences involved in the hexamer formation 
ranging from A2 to B3 structural elements derived from Drosophila TTK-type BTB domains (Supple-
mentary file 9). Arthropoda proteins were excluded and top-score hits were subjected to AlphaFold-
Multimer modeling of the hexamer interface. Surprisingly, in some plant species we found a few 
BTB domains able to form TTK-like hexamers, close examination of sequence homology revealed 
that these proteins contain TTK-motif and are close relatives of Arthropodan BTBs and likely origi-
nated from lateral gene transfer (Figure 5—figure supplement 2). Other top-score domains were not 
predicted to form hexamers.

Taken together, our results suggest that proteins with TTK-type BTBs comprise a distinct group of 
transcription factors specific to Arthropoda.

Discussion
The TTK-type BTB domains form a distinct group of ZBTB domains specific to Arthropodan transcrip-
tion factors. Here, we studied the mechanism of multimer formation of TTK-type BTB domains using 
an integrative structural biology approach. Cryo-EM, SAXS, molecular modeling, and MALS revealed 
that these domains form hexamers consisting of three dimers assembled through a novel dimer-dimer 
interaction interface. Hence the mechanism of multimer assembly is completely different from that 
observed in multimeric BTB domains from the T1/KCTD family (Figure 3d Ji et al., 2016; Long et al., 
2007). A neighbor surface (based on the B1-strand) was recently found to be involved in the Miz-1 BTB 
interaction with the HUWE-1 protein (Orth et al., 2021) and along with B3 was earlier implicated in 
Miz-1 tetramer formation in crystal (Stead et al., 2007). Apparently, this interface can be widely used 
for BTB-domain-mediated protein-protein interactions. Notably, the dimer-dimer interaction in Miz-1 
involves conformational flexibility in this region, and monomers within each dimer are non-equivalent, 
with only one containing the B3-strand. Our structure and models show that dimers of TTK-type 
BTB domains consist of identical monomers; however, further structural studies will be required to 
elucidate precise details of this interface. Single amino acid substitutions further confirmed that resi-
dues at the dimer-dimer interface are critical for multimer formation. The characteristic conserved 
N-terminal sequence FxLRWN forms the first β-strand and was found to be important for specific 
dimer formation rather than for higher-order oligomerization as previously suggested (Bonchuk et al., 
2011). This indicates that the FxLRWN motif at the N-terminus co-evolved together with the multim-
erization motif of the interface forming residues between the dimers. Probably FxLRWN is involved 
in binding to the yet unknown interaction partner. TTK-type BTB domains possess an unusually wide 
potential for heteromeric interactions despite a rather low sequence similarity. Heteromultimeriza-
tion likely may occur through heterodimer formation as well as through the interaction of different 
dimers, since the dimer-dimer interface is highly similar in different TTK-type BTB domains. The pres-
ence of two potential heteromerization interfaces most likely expands the ability of these domains 
to form hetero-multimers. This is a unique property of this class of ZBTB domains, as most classical 
ZBTB domains form almost exclusively homodimers. Recently discovered subclass of filament-forming 
human ZBTBs (Mance et al., 2024; Park et al., 2024) evolved to use different interface to assemble 
in multimers. The convergent evolution of multimerization of ZBTB domains in different phylogenetic 
groups emphasizes the importance of multimer formation in some of their functions.

The expansion of the TTK-type BTB domains in insects suggests an important but poorly-understood 
functional role for their ability to form homo- and hetero-multimers. Most of the transcription factors 
of the TTK group bind to short degenerate DNA motifs. Thus, the multimerization of proteins via the 
BTB domain can increase the binding affinity for several motifs located in close vicinity. Such a mech-
anism was previously demonstrated for the pioneer and bookmarking protein GAF that is stably asso-
ciated with chromatin (Bellec et al., 2022; Gaskill et al., 2021). GAF has only one zinc finger domain 
that binds to a GAGAG motif. It was shown that BTB oligomerization mediates strong co-operative 
binding of GAF to multiple sites but inhibits binding to a single motif (Espinás et al., 1999; Katsani 
et al., 1999) and promotes chromatin loop formation (Li et al., 2023).

Heteromultimerization of BTB domains can allow the formation of complexes of several TTK-type 
proteins on chromatin. The most striking example is the Batman protein, which consists only of the 

https://doi.org/10.7554/eLife.96832
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BTB domain (Mishra et al., 2003). Batman forms complexes with Pipsqueak and GAF by interacting 
with their BTBs (Faucheux et al., 2003). Batman also interacts with the BAB1 BTB domain, and these 
proteins cooperate in the control of sex combs on male tarsa (Gibert et al., 2007). Since the Batman 
BTB can be recruited to chromatin only through interaction with other DNA-binding BTB proteins, it 
does not form homomultimers that would prevent it from interaction with other BTBs. Thus, TTK-type 
BTB transcription factors may constitute a regulatory network controlling common target genes.

In this study, we have shown that TTK-type BTB domains are Arthropod-specific and underwent 
lineage-specific expansion in modern insects. The Drosophila proteome contains 24 transcription 
factors with TTK-type BTB domains. Moreover, non-TTK-type BTB domains are found in only four 
Drosophila transcription factors, suggesting that the TTK-type BTB domain confers some evolutionary-
important benefits. The most basal clades in which TTK-type BTBs can be traced are Crustacea and 
Arachnoidea. The only such proteins present in both taxa are Tramtrack orthologs, suggesting that it 
is the oldest member of the family.

Tracing the origin of ZBTB domains using bioinformatic and protein modeling approaches revealed 
that Cullin3-interacting KLHL BTBs likely are predecessors of ZBTB, evolving of the ZBTB-type N-ter-
minal extension containing β1 element occurred early in metazoan evolution, however, the actual 
fusion of ZBTB with zinc-fingers in domain architectures happened over the course of evolution of 
Bilaterian organisms.

Another multimeric class of BTB domains, the T1 tetramerization domains of voltage-gated potas-
sium channels, emerged also in metazoans. The first BTB domains of this type are found in sponges 
but not in Choanoflagellates (Srivastava et al., 2010). T1 BTBs are associated with the emergence 
of multicellularity and the need for cell-cell communication (Srivastava et  al., 2010). These BTBs 
evolved distinct mechanisms of tetramer formation (Figure 2d Bonchuk et al., 2023). T1 BTBs further 
specialized in vertebrates, leading to the divergence of the KCTD subclass with various functions (Liu 
et al., 2013).

In humans and mouse, BTB-C2H2 proteins are encoded by at least 49 genes that are important 
regulators of development and commonly function as sequence-specific repressors of gene expres-
sion. In contrast to Arthropoda TTK-type BTB proteins, mammalian BTB-C2H2 proteins usually have 
many C2H2 domains that recognize extended and specific DNA motifs. Despite the fact that mammals 
have more highly-specific DNA-binding proteins, many of the TTK-type BTB transcription factors in 
Arthropods have multiple isoforms with different DNA-binding or protein interaction domains which, 
along with the ability to heteromultimerize, can result in a large diversity of complexes possessing a 
broad range of DNA-binding specificities.

In conclusion, TTK-type BTB proteins form a structurally and functionally distinct group of Arthropod 
key regulatory factors with unique functions in the process of cell differentiation and transcriptional 
regulation. What functional role is played by the ability of these transcription factors to form various 
combinations of heterologous complexes remains an open and very interesting question.

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) or resource Designation Source or reference Identifiers Additional information

Gene (Drosophila melanogaster) CG6765 GenBank NM_139976.2

Gene (Drosophila melanogaster) Lola GenBank NM_170623.6

Strain, strain background (Escherichia coli) BL21(DE3) Novagen 69450

Recombinant DNA reagent pMALX(A) (plasmid) Moon et al., 2010

Recombinant DNA reagent pET32a(+) (plasmid) Novagen 69015

Recombinant DNA reagent pGAD424 TaKaRa bio NCBI gi: 464015

Recombinant DNA reagent pGBT9 TaKaRa bio NCBI gi: 470667

Software, algorithm RELION 4.0 and 5.0beta Scheres, 2012 Kimanius et al., 2023

Software, algorithm CryoSPARC v4.3.1 Punjani et al., 2017

Software, algorithm PyEM Asarnow et al., 2019

https://doi.org/10.7554/eLife.96832
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Reagent type (species) or resource Designation Source or reference Identifiers Additional information

Software, algorithm UCSF Chimera Pettersen et al., 2004

Software, algorithm ​Phenix.​refine Liebschner et al., 2019

Software, algorithm ISOLDE Croll, 2018

Software, algorithm COOT Emsley et al., 2010

Software, algorithm Topaz Bepler et al., 2019

Software, algorithm ChimeraX v.1.6 Pettersen et al., 2021

Software, algorithm ATSAS package Franke et al., 2017

Software, algorithm AlphaFold2 Evans et al., 2022

Software, algorithm AlphaPulldown Yu et al., 2023

Software, algorithm HMMSEARCH Potter et al., 2018

Software, algorithm MEME Bailey et al., 2009

Software, algorithm MUSCLE Edgar, 2004

Software, algorithm biomaRt Durinck et al., 2009

Software, algorithm OrthoDB Kriventseva et al., 2019

Software, algorithm MEGA-X Kumar et al., 2018

Software, algorithm taxize Chamberlain and Szöcs, 2013

Software, algorithm CDD/SPARCLE NCBI Lu et al., 2020

 Continued

Bioinformatics
The search for orthologs for 24 D. melanogaster proteins with BTB domains containing ttk sequences 
was carried out in Metazoa, with the exception of Chordata, using the OrthoDB database (Krivent-
seva et al., 2019). There were no records for Mod(mdg4), GAF, and LOLA in OrthoDB, and orthologs 
of Fruitless were found only in Diptera. In order to fill up the data obtained from OrthoDB, orthologs 
for these proteins were searched in Ensembl using biomaRt (Durinck et al., 2009). The total number 
of identified orthologs was 3027. Amino acid sequences of orthologs of 23 ttk proteins of D. mela-
nogaster in 14 Diptera species (five Drosophila species, two Aedes species, two Anopheles species, 
one Culex and fore flies) were aligned in MUSCLE (Edgar, 2004). The motif of the ttk domain in the 
resulting alignment was isolated using the EM algorithm by positional weight matrix (PWM) (at no 
limit motif E-value threshold and motif size 6–10 aa (Figure 2a)) in MEME (MEME SUITE) (Bailey et al., 
2009), then in FIMO (MEME SUITE) we searched for the motif in the obtained database of ortholo-
gous sequences for all Metazoa (the threshold FDR value was 0.001). In addition, for the training set 
for 14 Diptera species, a hmm profile for the ttk domain was generated in MEGA-X (Kumar et al., 
2018), and it was searched using HMMSEARCH (HmmerWeb version 2.41.1 Potter et al., 2018) in 
the UniProtKB database at E-value=10. Data on full protein sequences (n=259, excluding isoforms) 
deposited in UniProtKB were combined with previously obtained ttk-containing sequences of ortho-
logs from OrthoDB and Ensembl (n=2208). In addition, in the large taxa closest to Arthropoda (several 
phyla of Protostomes: Tardigrada, Onychophora, Priapulida, Kinorhyncha, Loricifera, Nematoda, 
Annelida, Mollusca), the search for the ttk sequence motif in blastp and hmm-profile in HMMSEARCH 
were carried out; in the representatives of the above taxa, no proteins containing the ttk motif were 
found in non-redundant DBs.

Additionally, using the mentioned training set for 14 species of Diptera, a hmm-profile of the 
expanded dimer-dimer interface (including the 22 preceding amino acids) was built in HMMER 3.3.2 
(Finn et al., 2011). The hmm-profile search was carried out among all proteins containing the BTB 
domain (303,255 sequences in total) retrieved from the InterPro database and including all kingdoms 
of living organisms in HMMER 3.3.2. The number of hits exceeding the 1×10–5 E-value threshold was 
129,357.

Phylogenetic classification was reconstructed in accordance with the NCBI Taxonomy Database 
using taxize (Chamberlain and Szöcs, 2013), and visualization of the phylogenetic tree is implemented 

https://doi.org/10.7554/eLife.96832
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in ggtree (Yu, 2020). In the most basal clades (Crustacea, Arachnida, Myriapoda), the presence of the 
corresponding orthologs was predicted manually in blastp, due to the low similarity of amino acid 
sequences. We considered as orthologs, in addition to the previously annotated ones, only those 
proteins for which homology was observed in the structure, in both the BTB domain (including the 
presence of the ttk sequence) and the DNA binding domain. The presence/absence of some ortho-
logs in individual orders of insects was also checked in blastp and HMMSEARCH (HmmerWeb version 
2.41.1). In addition, the previously published data by Pauli et al., 2016 were used for Mod (mdg4) 
and GAF.

The domain structure of the detected orthologs of ttk-containing proteins was studied in 37 refer-
ence species - representatives of 16 Hexapoda orders, two orders of Crustaceans and Arachnids, and 
one - Myriapoda (Figure 5a). The search for domains in the orthologous sequences was performed 
using the Pfam database in Batch CD-Search (CDD/SPARCLE NCBI [Lu et al., 2020]), the threshold 
E-value was taken to be 0.5. The detection results were filtered: incomplete and overlapping domains 
were removed. In sum, after filtering, the total number of domains found was 1055; the analyzed 
domains belonged to 26 PFAM families.

For 16 species with well-annotated proteomes belonging to the phyla Arthropoda, Nematoda, and 
Annelida, as well as for Homo sapiens, the sequences of all proteins containing BTB domains in their 
proteomes were searched using InterProScan in the Pfam protein domain database by the generalized 
hmm -BTB domain profile. In the set of the found sequences, the search for the ttk-domain motif in 
FIMO was carried out as described above, the ttk-containing proteins were filtered, and the remaining 
sequences were analyzed in Batch CD-Search in order to identify their domain structure. In total, 3028 
domains belonging to 99 PFAM families were found in the sequences of BTB proteins without the ttk 
motif in 16 species.

Proteome-scale analysis of the simultaneous presence of C2H2 zinc-fingers and BTB domain and 
extraction of BTB domain sequences were carried out with an in-house built set of Python scripts avail-
able at https://github.com/errinaceus/cluster-counting, (copy archived at errinaceus, 2024).

AlphaFold predictions were run locally using AlphaFold 2.3 installation (Evans et al., 2022; Jumper 
et al., 2021) with a full set of genetic databases. Multiple predictions were arranged using AlphaPull-
down wrapper scripts (Yu et al., 2023).

Plasmids and cloning
cDNAs of BTB domains were PCR-amplified using corresponding primers (Supplementary file 10) 
and cloned into modified pET32a(+) vector (Novagen) encoding TEV protease cleavage site after 6X 
His-tag and Thioredoxin, and into pGAD424 and pGBT9 vectors (Clontech) in frame with GAL4 Activa-
tion or DNA-binding domains, respectively. PCR-directed mutagenesis was used to create constructs 
expressing mutant BTBs using mutagenic primers (Supplementary file 10). For MBP fusions cDNAs 
of BTB domains were cloned into pMALX(A) vector (Moon et al., 2010).

Protein expression and purification
BL21(DE3) cells transformed with a construct expressing BTB domain fused with TEV-cleavable 6xHis-
Thioredoxin were grown in 1 L of LB media to a D600 of 1.0 at 37 °C and then induced with 1 mM IPTG 
at 18 °C overnight. Cells were disrupted by sonication in buffer A (30 mM HEPES (pH 7.5), 400 mM 
NaCl, 5 mM β-mercaptoethanol, 5% glycerol, 0.1% NP40, 10 mM imidazole) containing 1 mM PMSF 
and Calbiochem Complete Protease Inhibitor Cocktail VII (1 μL/ml). After centrifugation, lysate was 
applied to a Ni-NTA column, and after washing with buffer B (30 mM HEPES (pH 7.5), 400 mM NaCl, 
5 mM β-mercaptoethanol, 30 mM imidazole) was eluted with 300 mM imidazole. For cleavage of the 
6X-His-thioredoxin-tag, 6X-His-tagged TEV protease was added at a molar ratio of 1:50 directly to the 
eluted protein, and the mixture was incubated for 2 hr at room temperature, then dialyzed against 
buffer A without NP-40 and applied to a Ni-NTA column. Flow-through was collected; dialyzed against 
20 mM Tris-HCl (pH 7.4), 50 mM NaCl, and 1 mM DTT; and then applied to a SOURCE15Q 4.6/100 
column (GE Healthcare) and eluted with a 50–500 mM linear gradient of NaCl. Fractions containing 
protein were concentrated, frozen in liquid nitrogen, and stored at –70 °C. Size-exclusion chromatog-
raphy was performed in 20 mM Tris-HCl (pH 7.4), 200 mM NaCl, and 1 mM DTT using Superdex S200 
10/300 GL column (GE Healthcare).

https://doi.org/10.7554/eLife.96832
https://github.com/errinaceus/cluster-counting
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SEC-MALS
Size-exclusion chromatography with multi-angle light scattering (SEC-MALS) detection was used to 
determine absolute Mw for LOLA and MBP-LOLA samples. Protein samples (1–5 mg/ml) were loaded 
individually on a Superdex 200 Increase 10/300 column (GE Healthcare), and the elution profiles were 
obtained using a tandem of sequentially connected UV-Vis Prostar 335 (Varian, Australia) and mini-
DAWN detectors (Wyatt Technology, USA). The column was pre-equilibrated with filtered (0.1 μm) 
and degassed 20 mM Tris-HCl buffer, pH 7.6, containing 200 mM NaCl and 5 mM β-mercaptoethanol 
and was operated at a 0.8 ml/min flow rate. Data were processed in ASTRA 8.0 (Wyatt Technology, 
USA) using dn/dc equal to 0.185 and extinction coefficients ε(0.1%) at 280 nm equal to 0.80 ml/(mg 
cm) and 1.38 ml/(mg cm) for LOLA and MBP-LOLA, respectively. Additionally, apparent Mw values 
were determined from column calibration with standard proteins. Data were processed and presented 
using Origin 9.0 (Originlab, Northampton, MA, USA).

Cryo-EM grid preparation and data collection
Quantifoil R1.2/1.3 Cu 300-mesh carbon grids were glow-discharged for 60 s at 20 mA using a GloQube 
(Quorum) instrument. 4 μl of the MBP-CG67651-133 sample (4 μg/μl) were applied to the freshly glow-
discharged grids and plunge-frozen in LN2-cooled liquid ethane using a Vitrobot Mark IV (Thermo 
Fisher Scientific) with a blotting time of 2.5 s. Temperature and relative humidity were maintained at 
4°C and 100%, respectively. Grids were clipped and loaded into a 300-kV Titan Krios G4i microscope 
(Thermo Fisher Scientific, USA) equipped with a Selectris X energy filter and a Falcon 4i (Thermo 
Fisher Scientific, USA) direct electron detector. Micrographs were recorded at a nominal magnification 
of 165,000X corresponding to a calibrated pixel size of 0.729  Å. A total of 9765 movies were recorded 
with a total dose of ~40 electron/Å2 per movie. The Defocus range was set between −0.5 μm and 
−2 μm. Data collection and processing statistics are summarized in Supplementary file 1.

Cryo-EM data processing
Figure 3—figure supplement 1 illustrates the data processing workflow for the MBP-CG67651-133 
dataset. The following pre-processing steps were performed with cryoSPARC Live v4.3.1 (Punjani 
et al., 2017). Movie stacks were motion-corrected and dose-weighted, and contrast transfer func-
tion (CTF) estimates for the motion-corrected micrographs were calculated. Particles were initially 
picked with a blob-picker using subset-selected micrographs, and these were used for reference-free 
two-dimensional (2D) classification to generate picking templates. Subsequent image processing was 
carried out with cryoSPARC v4.3.1 (Punjani et al., 2017). The templates were used to train a picking 
model in Topaz (Bepler et al., 2019), which was subsequently used to pick particles from the whole 
dataset. Auto-picking using Topaz from 9765 micrographs yielded ~100,000 particles. Initial models 
were generated without imposing symmetry (C1)  using stochastic gradient descent in cryoSPARC 
Live. Best initial model was subjected to homogeneous and heterogeneous refinement rounds and 
the best classes were used to create templates for another round of template picking, followed by 2D 
classification and training the new Topaz picking model, which was used for the final picking round. 
480721 particles were picked. Particles were classified with three-dimensional (3D) heterogenous 
refinement using four classes, resulting in 197,562 particles.

To generate a high-resolution reconstruction, particles were re-extracted in 448 pixels box size 
followed by 3D refinement with a local angular search using the map from the previous processing in 
cryoSPARC as reference. A mask including only map fragments corresponding to the hexamer core 
was generated using UCSF Chimera (Pettersen et al., 2004) and RELION v.4.0 (Scheres, 2012). The 
mask was used in subsequent 3D refinement jobs and CTF refinements in CryoSPARC. The particles 
were exported to RELION using PyEM (Asarnow et al., 2019) and further processed in RELION 4.01. 
After 3D refinement followed by CTF refinement, Bayesian polishing was applied. 3D refinement on 
the polished particles, followed by CTF refinement and another round of 3D refinement with Blush 
regularization (in RELION 5.0beta Kimanius et al., 2023), yielded a reconstruction to ~3.3 Å overall 
resolution with C1 symmetry. We realized that Blush regularization did not improve the nominal 
resolution, however, it slightly improved the quality of the map especially in the core region of the 
complex. In the peripheral solvent exposed part, the map without blush regularization appeared to be 
of better quality and was, therefore, used to build the loop regions of the complex. Both maps were 
deposited in the EMDB.

https://doi.org/10.7554/eLife.96832
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AlphaFold model of the hexamer was used as the initial model, it was fitted into the reconstruction 
using UCSF Chimera (Pettersen et al., 2004), followed by manual real-space refinement in Coot, and 
further refined with ​Phenix.​refine (Liebschner et al., 2019) and ISOLDE (Croll, 2018). Figures were 
prepared with UCSF ChimeraX (Pettersen et al., 2021).

Yeast two-hybrid assay
Yeast two-hybrid assay was performed as described (Bonchuk et al., 2011).

SAXS data collection and analysis
Synchrotron radiation X-ray scattering data were collected using standard procedures on the BM29 
BioSAXS beamline at the ESRF (Grenoble, France) as described previously (Bonchuk et al., 2020). 
Data analysis was performed using the ATSAS software package (Franke et al., 2017). Approximation 
of the experimental scattering profiles using calculated scattering curves was performed with CRYSOL 
(Svergun et al., 1995). The molecular mass (MM) of the protein was calculated using several algo-
rithms implemented in the ATSAS package (Franke et al., 2017).
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Baradaran R
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Drosophila CG6765 protein

https://www.​rcsb.​org/​
structure/​8RC6

RCSB Protein Data Bank, 
8RC6

Bonchuk AN, 
Naschberger A, 
Baradaran R

2024 Cryo-EM structure of 
hexameric BTB domain of 
Drosophila CG6765 protein

https://www.​ebi.​ac.​
uk/​emdb/​EMD-​19049

Electron Microscopy 
Database, EMD-19049

Bonchuk A 2024 BTB domain of 
longitudinals lacking 
(LOLA) protein

https://www.​sasbdb.​
org/​data/​SASDP59/

Small Angle Scattering 
Biological Data Bank, 
SASDP59

Bonchuk A 2024 BTB domain of CG6765 
protein at 1.5 mg/ml

https://www.​sasbdb.​
org/​data/​SASDP49/

Small Angle Scattering 
Biological Data Bank, 
SASDP49
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