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eLife Assessment
This study poses an important step forward in understanding the brain-network embedding of beta 
oscillations. The study advances our circuit-level understanding of the pathophysiology associated 
with dopaminergic alterations in psychiatric or neurological disorders. The study provides compel-
ling evidence that beta oscillations across the neocortex and basal ganglia map onto shared func-
tional and structural networks that show significant positive correlations with dopamine receptors.

Abstract Brain rhythms can facilitate neural communication for the maintenance of brain func-
tion. Beta rhythms (13–35 Hz) have been proposed to serve multiple domains of human ability, 
including motor control, cognition, memory, and emotion, but the overarching organisational princi-
ples remain unknown. To uncover the circuit architecture of beta oscillations, we leverage normative 
brain data, analysing over 30 hr of invasive brain signals from 1772 channels from cortical areas in 
epilepsy patients, to demonstrate that beta is the most distributed cortical brain rhythm. Next, we 
identify a shared brain network from beta-dominant areas with deeper brain structures, like the basal 
ganglia, by mapping parametrised oscillatory peaks to whole-brain functional and structural MRI 
connectomes. Finally, we show that these networks share significant overlap with dopamine uptake 
as indicated by positron emission tomography. Our study suggests that beta oscillations emerge in 
cortico-subcortical brain networks that are modulated by dopamine. It provides the foundation for 
a unifying circuit-based conceptualisation of the functional role of beta activity beyond the motor 
domain and may inspire an extended investigation of beta activity as a feedback signal for closed-
loop neurotherapies for dopaminergic disorders.

Introduction
Oscillatory neural activity is proposed to orchestrate brain function by providing multilateral rhythmic 
synchronisation of neural excitability and action potential firing (Fries, 2015). One prominent example 
in the human brain is the beta rhythm (13–35 Hz), which has traditionally been described as a phenom-
enon of the motor domain, primarily localised to motor cortex and important for the pathophysiology 
of movement disorders, such as Parkinson’s disease (PD) (Hammond et al., 2007; Paulo et al., 2023). 
In PD, beta activity, especially in deeper brain structures, such as the basal ganglia, has been associ-
ated with the loss of innervation with dopamine (Iskhakova et al., 2021), a neurotransmitter critically 
involved in synaptic plasticity and reinforcement learning at cortico-striatal synapses (Berke, 2018). 
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This relationship is mirrored in rodent and non-human primate models of PD, corroborating the role 
of dopamine as a key neurotransmitter governing beta synchrony. Meanwhile, the putative function 
of beta modulation in both human and animal literature has been extended within and beyond PD, to 
diverse domains of cognition (Paulo et al., 2023), memory (Hanslmayr et al., 2016), and emotions 
(Alagapan et al., 2023), but only a few studies so far have sought to relate these observations to 
dopamine signalling. For each of these domains, localised synchronisation or desynchronisation 
phenomena in the beta frequency range have been described in specific brain regions. What the 
common denominators of these brain regions are, and whether beta activity has a general structural 
and functional overlap with dopaminergic innervation remains unknown. This reflects a significant 
roadblock to a fundamental understanding of the circuit architecture of beta activity. To overcome 
this roadblock, we have developed a unique multimodal research data pipeline combining normative 
sources of invasive brain signal recordings, MRI connectomics, and positron emission tomography 
(PET). We address the hypothesis that beta activity is a ubiquitous synchronisation phenomenon that 
is characterised by whole-brain networks with subcortical nuclei that are under modulatory control of 
dopamine.

Results
Beta activity is a widely distributed resting brain rhythm in invasive 
cortical recordings
First, we aimed to identify the spatial distribution of cortical sources of beta activity in the resting 
human brain. Electrophysiology studies describing brain oscillations often rely on non-invasive elec-
troencephalography (EEG) or magnetoencephalography (MEG) that provide access to brain signal 
recordings in healthy subjects. While beamforming and other source reconstruction techniques can 
provide estimates of the spatial peaks of certain brain activity patterns in these recordings, it can 
be hard to rule out that the derived brain regions are free from influence of volume conduction and 
current mixing from neighbouring brain areas (Hedrich et al., 2017). Thus, estimates of beta activity 
in prefrontal areas identified with EEG or MEG could to some extent be the result of motor cortex 
activity, contaminating sensors in frontal locations. Invasive recordings directly from brain tissue can 
circumvent such contamination, but are unavailable in healthy subjects. Here, we analysed over 30 hr 
of invasive resting-state brain signals from an open atlas (Frauscher et al., 2018) of the normal elec-
troencephalogram in 1772 channels of either electrocorticography (ECoG; n = 258) or stereoelectro-
encephalography (sEEG; n = 1514) covering the human cortex. The atlas is derived from 106 epilepsy 
patients undergoing monitoring for seizure activity for respective surgery, but the signals were 
selected based on strict criteria to ensure their origin from healthy brain regions, in relevant distance 
to epileptogenic zones or lesions (Frauscher et  al., 2018). The localised recordings from bipolar 
channels of one minute resting periods with eyes closed were taken to the frequency domain using 
Morlet wavelets and parametrised using the ‘fitting oscillations and one over f’ (FOOOF) toolbox 
(Donoghue et al., 2020), to extract the maximum peak amplitude of the periodic component of beta 
activity (13–30 Hz). For comparison and as a control, we extended this analysis to other canonical brain 
rhythms, including theta (4–8 Hz), alpha (8–12 Hz), and gamma (30–100 Hz) frequency bands. The 
frequency band with the highest peak amplitude was identified using the extracted peak parameter 
(pw) for each channel and depicted as the dominant rhythm for the respective localisation (Figure 1). 
In case of multiple peaks within the same frequency band, we focused the analysis on the peak with 
the highest amplitude. This revealed that 15.6% (277) channels were identified as theta-dominant, 
22.4% (397) as alpha-dominant, 56.6% (1005) as beta-dominant, and 5.2% (93) as gamma-dominant 
channels. The focus of this article is beta oscillations, so all further analyses will refer to beta with 
alpha for comparison as it was the second most frequently occurring frequency band after beta. It 
should be noted that that alpha recordings were performed in eyes closed which is known to increase 
alpha power, which may influence the generalisability of the alpha maps to an eyes open condition. 
However, given that our primary use of alpha was to act as a control, we believe that this should not 
affect the interpretability of the key findings of our study. Further information on the topography of 
theta channels is shown in Figure 1—figure supplement 1.

To investigate the regional distributions of frequency bands, we counted the occurrence of each 
dominant rhythm in gyri and lobes (see Figure 1 and Table 1) by projecting the coordinates in MNI 

https://doi.org/10.7554/eLife.97184
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Figure 1. Beta activity is a widely distributed resting brain rhythm in invasive cortical recordings. (A) Exemplar stereoelectroencephalography (sEEG) 
electrodes with dominant beta (teal; 20 Hz) or dominant alpha (purple; 9 Hz) rhythms, alongside the respective raw signal and parametrised power 
spectrum. (B) 1005/1772 channels showed higher maximum peak power in beta (13–30 Hz) than theta (4–8 Hz), alpha (8–12 Hz), and gamma (30–100 Hz). 
397/1772 were alpha-dominant (theta and gamma not shown). (C) Beta-dominant channels were distributed across the entire cortex, from occipital to 
frontal regions, with highest density in sensorimotor areas like precentral gyrus, frontal middle gyrus, frontal inferior gyrus, and supplementary motor 
area. Alpha channels were largely concentrated posteriorly in temporoparietal and occipital areas based on the automatic anatomical labelling atlas 
(Rolls et al., 2020). Neither alpha nor beta activity showed systematic hemispheric differences (p>0.05).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Cortical spread and amplitudes of theta peaks.

https://doi.org/10.7554/eLife.97184
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(Montreal Neurological Institute) space to the automatic anatomical labelling (AAL) atlas parcellation 
(Rolls et al., 2020). Notably, many channels showed more than one oscillatory peak, and all covered 
lobes had channels with dominant rhythms in each, theta, alpha, and beta frequency bands (see 
Table 1). Beta activity was the most frequent and most widely distributed resting rhythm across all 
lobes of the human brain, including frontal, temporal, cingulate, insula, and parietal lobes. Interest-
ingly, the occipital lobe was the only brain region that showed higher percentage of alpha-dominant 
channels (53/94; 56.4%). The coverage of subdural ECoG grids or tissue penetrating sEEG electrodes 
could vary, but within overlapping regions, no major differences in the distribution of brain rhythms 
were observed for electrode type (see Table 1—source data 1, Table 1—source data 2).

MRI connectomics reveal shared cortico-subcortical beta networks
Oscillatory synchronisation across brain regions may shape neural communication through modulation 
of synaptic sum potentials and neural firing (Fries, 2015). Oscillatory connectivity can be computed 
through correlation and modelling of phase and amplitude relationships between brain signals from 
multielectrode recordings. The spatial coverage of such computations, however, is inherently limited 
to brain regions that are accessible with the respective recording technique. For non-invasive M/EEG, 
the analysis of connectivity is limited to superficial cortical brain areas and can be biased by noise and 
volume conduction (Pellegrini et al., 2023). Invasive recordings in both human and animal studies 
provide more robust estimates of oscillatory connectivity but are limited to a selected number of 
channels from defined brain regions (Engel et al., 2005). Here, we aimed to investigate the whole-
brain circuit representation of beta activity, which is impossible with non-invasive neurophysiology 
approaches. Instead, we tested the hypothesis that cortical brain areas that exhibit resting beta share 
a global brain network by means of MRI connectomics. For this, we derived the methodology from 
lesion and deep brain stimulation (DBS) network mapping (Fox, 2018), which has provided ground-
breaking insights into the circuit nature of brain lesion and neurostimulation effects and applied it to 
reveal the shared network fingerprints of brain regions that exhibit a neurophysiological phenomenon; 
namely, dominant beta activity. For this, we followed a multimodal approach, investigating neuro-
physiologically identified brain regions by means of MRI connectomics, generating functional and 
structural connectivity maps for each brain signal recording location, as previously described (Lofredi 
et al., 2021). In brief, the MNI coordinates of the invasive electrode locations were used as seeds to 
compute whole-brain connectivity maps based on MRI data from 1000 healthy subjects as available 
through the Brain Genomics Superstruct project, and MRI data from 32 subjects as available through 
the Human Connectome Project (HCP) as part of the Lead Mapper pipeline (Neudorfer et al., 2023). 
While the connectivity maps estimated with functional MRI (fMRI) are based on the covariance blood 
oxygenation level-dependent signals that provide an estimate of functional coactivation, the structural 

Table 1. Spread of invasive electrophysiological channels.
Given the low number of channels exhibiting resting-state gamma activity, we excluded those from this table.

Lobe Channels/lobe ECoG sEEG Sum theta channels Sum alpha channels Sum beta channels

Frontal 616 122 494 73 11.80% 38 6.20% 458 73.40%

Temporal 519 68 451 106 20.40% 180 35.00% 216 41.60%

Cingulate 116 0 116 12 10.30% 21 18.10% 71 61.20%

Insula 128 2 126 19 14.80% 21 16.40% 86 67.20%

Amygdala 3 0 3 1 33.30% 0 0% 1 33.30%

Parietal 272 52 220 50 18.40% 73 26.80% 139 51.10%

Occipital 107 13 94 15 14.00% 62 57.90% 27 25.20%

Subcortex 11 1 10 1 9.10% 2 18.20% 7 63.60%

ECoG, electrocorticography; sEEG, stereoelectroencephalography.

The online version of this article includes the following source data for table 1:

Source data 1. sEEG channels (high and low beta calculated separately to calculate total beta peaks).

Source data 2. ECoG channels.

https://doi.org/10.7554/eLife.97184
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connectivity maps are based on diffusion-weighted MRI (dMRI) and provide a relative quantification 
of major anatomical white matter tracts. To allow for a statistical comparison of connectivity patterns, 
we compared voxel-wise connectivity estimates from recording locations with dominant beta rhythms 
to recording locations with dominant alpha rhythms using mass univariate two-sample t-tests in Statis-
tical Parametric Mapping software, with a family-wise error (FWE)-corrected voxel threshold set to 
p<0.05.

Our analysis revealed a shared whole-brain network for cortical brain regions that exhibit dominant 
beta oscillations, with marked and highly significant differences (Figure 2) to the control network for 
alpha oscillations, both in whole-brain functional and structural connectivity patterns (see Figure 2—
figure supplement 1 for unthresholded averages). Most prominently, the beta network showed signifi-
cantly higher positive connectivity to prefrontal, cingulate, and parietal cortical areas and the ventral 
thalamus and basal ganglia, including substantia nigra, striatum, pallidum, and subthalamic nucleus. 
In contrast, whole-brain networks seeded from alpha-dominant channels showed a more widespread 
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Figure 2. MRI connectomics reveal shared cortico-subcortical beta networks. Individual network fingerprints (A) seeded from representative beta 
(top) and alpha (bottom)-dominant electrodes highlight the methodological approach and showcase the distinct connectivity patterns that arise in 
dependence of the connected brain regions (for raw signal traces from these locations, see Figure 1). Aggregated functional (B) and structural (C) 
connectivity maps across all beta (top) and alpha (bottom)-dominant electrodes were subjected to mass univariate t-tests comparing beta vs. alpha 
networks with Statistical Parametric Mapping software and visualised as T-maps with significant clusters identified using family-wise error correction 
(shown opaque). Channel locations from beta-dominant channels were associated with more robust functional and structural connectivity to frontal 
cortex and the basal ganglia compared to alpha channel locations, which were more connected to the occipital cortex.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Unthresholded averages of functional and structural connectivity for alpha- and beta-dominant recording locations.

Figure supplement 2. Region-wise bar plots of functional connectivity values for every parcel based on the automatic anatomical labelling (AAL) atlas.

Figure supplement 3. Region-wise bar plots of structural connectivity values for every parcel based on the automatic anatomical labelling (AAL) atlas.

https://doi.org/10.7554/eLife.97184
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distribution across the posterior cortical areas, occipital and temporal lobes in comparison to the beta 
networks. All connectivity values including their sign are shown in figures as brain region averages 
parcellated with the automatic anatomical labelling atlas in Figure 2—figure supplements 2 and 3.

The connectomic beta network correlates with molecular markers of 
dopamine signalling
Invasive brain signal recordings in patients undergoing DBS for PD have robustly established a strong 
interaction between dopaminergic tone and amplitude of beta oscillations at rest, for example, by 
measuring changes in activity after withdrawal and administration of dopaminergic agents (Lofredi 
et  al., 2023). However, this interaction has been largely neglected outside the field of PD, likely 
because research methods to establish direct relationships between beta and dopamine in healthy 
subjects are not readily available. With the present project, we aimed to characterise the circuit archi-
tecture of cortical beta oscillations. We found that cortical brain areas that exhibit resting beta activity 
share a common brain network. This network, unrelated to pathology, includes strong connectivity 
with the basal ganglia, the primary target for dopaminergic innervation from the substantia nigra and 
the ventral tegmental area in the human brain. To further quantify the potential relationship between 
the beta network and dopamine signalling, we made use of another openly available human neurosci-
ence resource: a database of PET imaging, a molecular imaging technique that relies on intravenous 
injection of a radioactively labelled molecular tracer, which can be visualised to indicate brain areas 
with high uptake of neurotransmitters or related molecules in the brain (Hansen et al., 2022). Specif-
ically, we analysed to what degree the spatial uptake patterns of dopamine, as measurable with fluo-
rodopa (FDOPA; cohort average of 12 healthy subjects) and other dopamine signalling-related tracers 
that bind D1/D2 receptors (average of N = 17/44, respectively, healthy subjects), or the dopamine 
transporter (DAT; cohort average of N = 180 healthy subjects) were correlated with the unthresholded 
MRI connectivity maps. To reduce the dimensionality and complexity of this analysis, we first applied 
spatial normalisation and then averaged the abovementioned cohort images to yield a PET-based 
dopamine aggregate map (Figure 3). Next, we resliced the beta network map and the PET images to 
allow for a meaningful comparison using a combined parcellation with 476 brain regions that include 
cortex (Huang et al., 2022), basal ganglia (He et al., 2020), and cerebellum (Diedrichsen et al., 
2009). Here, each parcel – which was a collection of voxels belonging to a particular brain region – 
from the connectivity map was correlated with the same parcel containing average neurotransmitter 
uptake from the respective PET scan (see Figure 3A). In this way, non-parametric Spearman’s correla-
tions between PET intensity and structural and functional connectivity maps of beta networks were 
obtained, which indicates to what degree the spatial distribution of connectivity is similar to the distri-
bution of neurotransmitter uptake. This revealed a significant positive relationship between the beta 
functional and structural networks and dopamine uptake for cortex (rho = 0.22/0.40 for functional/
structural networks, p=0.0001) and basal ganglia (rho = 0.50/0.33, p=0.0001), but not cerebellum (all 
p>0.05). These patterns were largely qualitatively reproduced when the analysis was performed on 
the individual tracers (see Figure 3—figure supplement 1). Additionally, we repeated the analysis 
with PET images of GABA uptake, to serve as an unspecific molecular control, which revealed no 
significant relationship between the beta functional network and GABA uptake cortically (rho = 0.04, 
p=0.22), in the basal ganglia (rho = 0.07, p=0.27) or cerebellum (rho = 0.10, p=0.22). The structural 
beta network revealed low correlation with GABA (n = 16 healthy individuals) uptake for cortical 
areas (rho = 0.17, p=0.0003), negative correlations for basal ganglia (rho = −0.55, p=0.0001), and 
no correlation for cerebellum (p>0.05). In summary, we found significant and specific overlap of the 
functional and structural connectivity maps seeded from beta-dominant cortical brain areas with the 
spatial patterns of dopamine uptake in the human brain.

Discussion
The present study combined three openly available datasets of invasive neurophysiology, MRI connec-
tomics, and molecular neuroimaging in human subjects to characterise the spatial distribution of brain 
regions exhibiting resting beta activity, their shared circuit architecture, and its correlation with molec-
ular markers of dopamine signalling in the human brain. Our results can be broken down into three 
key insights: first, we demonstrate that the beta rhythm is the most widely distributed dominant 

https://doi.org/10.7554/eLife.97184
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Figure 3. The connectomic beta network correlates with molecular markers of dopamine signalling. Dopamine uptake significantly correlates with beta 
functional connectivity. (A) A method schematic explaining how correlations were calculated. Each point on the scatterplot represents a parcellation 
from the compound brain atlas. For every parcel Xi, a correlation is calculated for that parcel in the PET scan and in the beta network (B) in cortex (rho = 
0.22, p=0.0001) and basal ganglia (rho = 0.5, p=0.0001) but not cerebellum (p>0.05) and beta structural connectivity (C) in cortex (rho = 0.4, p=0.0001) 
and basal ganglia (rho = 0.33, p=0.001) but not cerebellum (p>0.05). GABA was used as a control molecule which revealed no significant correlations 
with beta functional connectivity (D) in cortex, basal ganglia, or cerebellum (p>0.05). Beta structural connectivity (E) revealed weaker positive correlation 
with GABA in cortex (rho = 0.17, p=0.0003), a negative correlation in the basal ganglia (rho = −0.55, p=0.0001), and no correlation in cerebellum 
(p>0.05).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Correlation plots for individual dopamine receptors.

https://doi.org/10.7554/eLife.97184
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neural synchronisation phenomenon, extending far beyond motor areas. Next, we show that these 
distributed areas share a common functional and structural whole-brain network that connects frontal, 
cingulate, and other large-scale brain areas with the basal ganglia. Finally, we show that this network 
shares significant spatial overlap with molecular markers of dopamine signalling. We interpret these 
findings as supportive evidence for the hypothesis that beta activity is generated and sustained by a 
cortico-subcortical brain network that is modulated by dopamine. This conceptualisation moves away 
from functionally specific domains towards a more holistic circuit understanding of beta activity as a 
brain circuit synchronisation phenomenon.

Brain functions associated with beta oscillations share brain networks 
modulated by dopamine
Our study investigates the connectivity profile of cortical brain regions that spontaneously exhibit 
beta oscillations as their dominant brain rhythm. Our results suggest that one common denominator 
of brain regions that generate beta activity is their affiliation with a large-scale global brain network 
that is modulated by dopamine. However, we do not see this concept as contradictory to previous 
reports of functional correlates of beta activity in the domains of motor control, cognition, memory, 
and emotion (Paulo et al., 2023; Hanslmayr et al., 2016; Alagapan et al., 2023; Neumann et al., 
2023b). Instead, we believe that the overlap in oscillatory activity across these domains can be concep-
tualised through a circuit definition of beta activity and its relationship to dopamine signalling. Fore-
most, in the motor domain there is direct evidence that pathological changes in dopamine causally 
modulates beta activity, as seen in human patients with PD (Lofredi et al., 2023), but also in animals 
lesioned with neurotoxins targeting dopaminergic neurons, such as 1-methyl-4-phenyl-1,2,3,6-tetrah
ydropyridine (MPTP) in non-human primates (Deffains and Bergman, 2019) or 6-hydroxydopamine 
(6-OHDA) in rodents (Sharott et al., 2005). Moreover, the robust beta modulation that is elicited by 
voluntary action in sensorimotor cortex is long known. In our study, motor and sensorimotor cortex 
showed higher beta peak amplitudes than any other brain regions. Thus, it is tempting to infer that 
beta activity and its relation to dopamine are characteristic to the motor domain. On the other hand, 
numerous studies have reported specific changes in beta activity in relation to many other neuroscien-
tific domains that define human ability. For example, it was shown that beta is implicated in working 
memory (Miller et al., 2018), utilisation of salient sensory cues (Leventhal et al., 2012), language 
processing (Meyer, 2018), motivation (Pierrieau et  al., 2023), sleep (Yin et  al., 2023), emotion 
recognition (Jabbi et al., 2015), mood (Kirkby et al., 2018), and may even serve as a biomarker for 
depressive symptom severity in the anterior cingulate cortex (Clark et al., 2016). Our connectomic 
characterisation of the beta network provides a network basis for these functions and highlights that 
similar synchronisation phenomena occur in brain areas associated with vastly different functions, such 
as prefrontal, cingulate, and parietal areas, which give rise to parallel striatal and other subcortical 
projections. In line with this more complex picture, direct measurement of dopamine concentration 
in non-human primates revealed specific interactions between dopamine release, beta oscillations, 
reward value, and motor control, depending on contextual information and striatal domain (Schwerdt 
et al., 2020). This shows that the relationship of dopamine and beta activity is not solely associated 
with either reward or movement and depends on where in the striatum beta activity is recorded. Thus, 
an obvious differentiator of these reported functions can be the specific brain region in which beta 
activity has been recorded from. However, the aim of our study was the opposite, namely to provide 
evidence for a shared network that unifies these functions.

An authoritative perspective article has proposed that the unifying function of beta oscillations is to 
signal the maintenance of ‘status quo’, for example, to indicate whether or not a motor or cognitive 
state should be changed or not (Engel and Fries, 2010). We hypothesise that this ‘status quo’ hypoth-
esis could be equally or maybe even more adequately posed on the neural level. Namely, it could 
provide insights to what degree a certain activity pattern or synaptic connection is to be strengthened 
or weakened in light of neural learning. We propose that this putative function can be contextualised 
in a recently described framework of neural reinforcement that serves to orchestrate the re-entrance 
and refinement of neural population dynamics for the production of neural trajectories (Athalye et al., 
2020). On the basis of our observed network architecture described for beta oscillations in this article, 
we speculate that the ‘status quo’ hypothesis and each of the abovementioned behavioural correlates 
can be summarised to reflect states with either loss or invigoration of neural reinforcement (Cavallo 

https://doi.org/10.7554/eLife.97184
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and Wolf-Julian, 2023), the brain’s intrinsic capacity to modulate the stability of population dynamics 
via cortico-striatal projections that are orchestrated by dopamine. To simplify this, maintenance of 
a behavioural, cognitive, or emotional ‘status quo’ may be reflected by beta activity on the neural 
circuit level, which in turn relates to the stability of neural dynamics in frontostriatal circuits that can 
be dynamically modulated by tonic and phasic changes of dopamine release. If beta is high, the 
neural dynamics remain stable. If beta is low, new neural trajectories may arise that lead to neural and 
behavioural state changes and neural learning. Thus, we speculate that the observed beta network and 
its relation to molecular markers of dopamine in this study may indicate that beta modulation occurs 
in situations that are associated with neural learning and optimisation of neural trajectories, or lack 
thereof. Notably, many functional correlates of beta activity could be summarised under the ‘status 
quo’ hypothesis, but some functions are not easily interpreted in this framework, such as the specific 
observations in the context of memory processing (Miller et al., 2018) or regulation of emotions and 
depression. On the other hand, the role for dopaminergic reinforcement and its implication in these 
processes is robustly established, both in memory (Rossato et al., 2009) and the pathophysiology 
of depression (Dunlop and Nemeroff, 2007). At this point, this discussion remains speculative, but 
advances in neuroscientific research methods that combine neurophysiology with neurotransmitter 
release may soon provide new evidence in favour or in opposition to these concepts.

Implications for neurotechnology and clinical brain–computer interfaces
A key component of clinical brain–computer interfaces (BCIs) is the bidirectional communication 
between brain activity and closed-loop control of neurotherapies. The robust association of the 
hypodopaminergic state in PD with excessive beta synchrony has led to the development of a closed-
loop neurostimulation therapy using beta activity as a feedback signal to adjust administration of DBS 
in real time to therapeutic demand (Neumann et al., 2023a). This approach, also termed adaptive 
DBS, was first demonstrated based on cortical beta activity that was used to adapt pallidal DBS in 
the MPTP non-human primate model of PD (Rosin et  al., 2011). It was quickly translated to first 
experimental studies using subcortical beta signals in human patients (Little et al., 2013), followed 
by further research using more complex cortical and subcortical sensing setups and biomarker combi-
nations (Gilron et al., 2021; Oehrn et al., 2023). Practically, beta activity is used in this novel ther-
apeutic approach to infer the dopaminergic tone and consequential therapeutic demand in PD for 
rapid adaptation of therapeutic delivery to the individual state that the patients are facing in real 
time. Our study provides support for the validity of this approach by providing further evidence for 
a relationship of dopamine and beta activity at the global circuit level. More importantly, our find-
ings may suggest that this relationship could be of greater utility of neurotechnology to treat other 
dopaminergic disorders. In fact, this notion is in part already backed by empirical data that shows 
that beta can be a valuable biomarker for depression severity as identified by machine learning algo-
rithms in invasive neurophysiological recordings from brain implants (Alagapan et al., 2023). Given 
our observation that beta activity is the most widespread cortical brain rhythm, it is foreseeable that 
future experimental in-human trials aiming to test the utility of invasive neurophysiology for the adap-
tation of neurotherapies will be capable of tracking beta dynamics in higher frequency (sampling 
rate) and higher precision than any other brain rhythm. Our findings could encourage clinical neuro-
science and neural engineering teams to conceptualise the dynamic fluctuations of beta oscillations 
in the context of cortico-striatal processing and dopaminergic modulation, which could lead to new 
hypothesis-driven treatment avenues. Specifically, our demonstration that the distributed occurrence 
of beta activity shares a brain network that is modulated by dopamine may motivate the use of beta 
oscillations to control BCIs or closed-loop neurostimulation for emerging indications related to dopa-
minergic dysfunction.

Limitations
The most important limitation of this project is aggregated and derived nature of the used brain 
data. Three independent datasets from different study cohorts were leveraged to fuse the inva-
sive neurophysiology with MRI and PET-based neuroimaging. On the one hand, the independence 
of the source data may be seen as a form of validation, for example, for functional and structural 
connectivity that showed highly overlapping findings while stemming from entirely different cohorts. 
On the other hand, precisely this aspect severely limits the generalisability of our results to the 
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level of the individual human subject. Similarly, the foundation of the results is built on patients 
undergoing brain surgery for epilepsy, a severe intractable brain disorder. But at the same time, the 
reported observations follow a long line of research and corroborate anecdotal or clinical knowledge 
that beta activity is a ubiquitous phenomenon. In this light, our study provides an unprecedented 
and methodologically robust quantitative approach by using only localised bipolar invasive record-
ings with oscillatory activity parametrised for optimal comparability. We believe that this rigorous 
neurophysiological methodology, alongside the fact that the brain signals have been meticulously 
controlled for pathological activity, by several experienced neurophysiologists, justifies its use and 
superiority over aggregates of non-invasive recordings from healthy subjects. Another limitation of 
our study is the fact that the statistical approach for the comparison of beta and alpha networks and 
even for multiple peaks within the same frequency band follows a winner-takes-all logic that is, by 
definition, a simplification as most areas will contribute to more than one spatio-spectrally distinct 
oscillatory network. Specifically, while multiple peaks within or across frequency bands could be 
present in each channel, we decided to allocate this channel to only the frequency band containing 
the highest peak amplitude. Alternatively, channels could have been allocated to multiple networks, 
contrasting channels that display vs. do not display peaks in a certain range. Alternative approaches 
could yield different results, for example, reusing channels for each peak that is observable and 
contrasting them to channels where such peak was not present. However, in our study the majority 
of channels exhibited beta activity even if peaks were of low amplitude, which we believe would have 
led to less interpretable results. Nevertheless, a previous study combining invasive basal ganglia 
neurophysiology with non-invasive cortical MEG recordings has identified the strongest oscillatory 
network of the internal pallidum to connect to frontal cortex in the beta frequency range, which is 
in line with our findings (Neumann et al., 2015). However, additional networks, such as an alpha 
network with the cerebellum and a theta network with the temporal lobe, were also observable in 
these parallel recordings. Thus, the presented MRI-based statistical maps in this study can be inter-
preted to reflect shared large-scale and robustly estimable whole-brain circuits of dominant beta vs. 
alpha oscillations but should not be misunderstood to reflect mutual exclusivity for the presence or 
communication in additional brain rhythms. In fact, when looking at individual parcels of structural 
connectivity, it is noticeable that both beta and alpha networks share strong connections to cingu-
late cortex. This is interesting because previous invasive neurophysiology studies in patients under-
going DBS surgery for depression have reported both excessive alpha and beta activity as potential 
biomarkers for depressive symptoms in the human cingulum (Clark et al., 2016), potentially related 
to differential modulation of neurotransmitters involved in the disease. One impactful study reported 
that beta oscillatory sub-networks of amygdala and hippocampus could reflect human variations in 
mood (Kirkby et al., 2018). This is interesting but highlights another relevant limitation of our study, 
namely that recordings in different areas were stemming from different patients, and thus, such sub-
network analyses on the oscillatory level could not be conducted.

Another limitation arises as a recurring controversy in fMRI researchis the issue insufficient knowl-
edge about negative correlations and their exact scientific implications. At present, there are no 
straightforward answers about what such correlations actually mean, and therefore, we have been 
hesitant in drawing conclusions relating to the signs of fMRI connectivity, and instead, treat it as a 
spatial fingerprint.

It should also be noted that in this project the data are static, but beta oscillations and dopamine 
are dynamic (Tinkhauser et al., 2017). Therefore, while we cannot infer the direction of the relation-
ship, it is very likely that the relationship would be negative, implying higher beta would mean lower 
dopamine. Finally, our study is limited to resting-state activity and thus does not allow for interpreta-
tion of functional changes with relation to behaviour or neural processes, which may individually be 
associated with other or additional brain rhythms. Most notably, gamma band oscillations are known 
to be reflective of local processing but notoriously absent in resting-state activity and thus are likely 
equally or even more ubiquitous than beta activity. However, we do not see this as a contradiction 
as resting beta activity provides insights into a different state of the cortical brain area, potentially 
more associated with global circuit synchrony, while gamma band activity may be more reflective of 
local activity in the cortical microcircuit. The aim of this study was to elucidate the circuit architec-
ture of beta oscillations, which is why insights from this study for other frequency bands are limited. 
Future research investigating the specific circuits of theta, alpha, and gamma oscillations and their 
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relationship with neurotransmitter uptake could yield new important insights into the networks under-
lying human brain rhythms.

Conclusion
In summary, our study suggests that the beta rhythm is the most widespread cortical oscillatory 
activity pattern in the resting brain that shares connectivity with the basal ganglia via a whole-brain 
network that is modulated by dopamine. We interpret our findings to provide a unifying circuit-based 
integration of previous reports on the functional role of beta oscillations. In the future, our findings 
may inspire and encourage the investigation of beta oscillations for the use as a feedback signal for 
neurotechnological interventions in the treatment of dopaminergic disorders.

Methods
Atlas of invasive electrophysiology
The collection of data, cohort, and electrophysiology of the MNI Open iEEG Atlas (https://mni-open-​
ieegatlas.research.mcgill.ca/) is as described in Frauscher et al., 2018. Intracranial EEG (iEEG) record-
ings from the healthy hemispheres of epilepsy patients were collected from three medical research 
centres. Then, 60 s EEG sections during resting wakefulness that were part of a controlled assessment 
across centres were chosen for analysis. Inclusion criteria for the recordings included that it must (1) 
contain at least one channel with normal activity, (2) have peri-implantation imaging, (3) be recorded 
after a minimum of 72 hr post-implantation for stereo-EEG electrodes or 1 week for subdural grids 
or strips, and (4) have a minimum sampling frequency of 200 Hz. The recordings were analysed to 
identify frequencies in the classical Berger frequency bands (0.3–70 Hz). Tissue containing channels 
exhibiting normal activity was classified as normal or healthy tissue. This meant it was outside of the 
zone of seizure onset, that is, no interictal epileptic discharge and no discharges or slow-wave anoma-
lies were found there. Ethical approval was granted at the MNI as lead ethics organisation (REB vote: 
MUHC-15-950). Electrode locations were registered to a common stereotaxic space.

Oscillatory analysis and neurophysiological preprocessing
Data from the iEEG atlas were preprocessed using the Statistical Parametric Mapping toolbox (https://
www.fil.ion.ucl.ac.uk/spm12/). The original data contained zero padded intervals between signal frag-
ments which were deleted. Next the data were Fourier transformed to obtain a time–frequency signal 
using Morlet wavelets with seven cycles. All time–frequency signals were averaged over time to obtain 
one frequency spectrum of 60 s sections of iEEG measurements. The resulting power spectra were 
quantified in terms of spectral peak properties and background-level activity using FOOOF (Dono-
ghue et al., 2020) with the following parameters; limits for possible peak widths were [0.5, 12 Hz], 
the maximum number of detectable peaks were set to infinite so as to not limit the number of peaks 
detected, and the minimum peak height was 0 while the peak threshold was within 2 standard devi-
ations of modelled power. Peak height was extracted using the pw parameter, which depicts peak 
amplitude after subtraction of any aperiodic activity. In case of multiple peaks within the same region, 
we used only the highest peak amplitude. Those extracted were z-scored within electrodes, within 
subjects, and within the whole dataset to quantify neural activity from several frequency bands of 
the spectrum. Frequency-specific activity was quantified using maximum peak amplitude for specific 
frequency ranges. The maximum peak amplitude was extracted from the z-scored parameters for four 
frequency bands; theta (4–8 Hz), alpha (8–12 Hz), beta (13–35 Hz), and gamma (30–100 Hz).

Connectivity analysis
Resting-state functional connectivity data was collected from 1000 healthy individuals using a 3T 
Siemens MRI scanner as part of the Brain Genomics Superstruct Project. Preprocessing included 
global signal regression and spatial smoothing at 6 mm full width at half maximum. The group connec-
tome for structural connectivity was obtained from multishell diffusion-weighted and T2-weighted 
imaging data subjects from the HCP (Setsompop et al., 2013). The imaging data were acquired using 
a custom MRI scanner with enhanced gradients. Whole-brain tractography fibre sets were generated 
using a generalised q-sampling imaging algorithm implemented in DSI Studio. Connectivity analyses 
were performed in MATLAB using normative connectomes calculated with Lead-Mapper (Horn and 
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Kühn, 2015). Three-dimensional spherical nifti files representing channel locations were extracted 
and used as seeds to calculate connectivity maps.

The fMRI and dMRI data underwent processing using the Lead-Connectome Mapper. Every contact 
location from the iEEG atlas was represented by a spherical seed nifti image (r = 5 mm) To minimise 
the impact of noise on the results, all maps underwent smoothing with a Gaussian kernel (standard 
deviation = 8 mm). Subsequently, the fMRI maps were masked with a grey matter mask to avoid the 
inclusion of white matter correlations, which would have introduced artefacts.

A functional connectivity map, that is, a mapping of the functional connectivity (based on a norma-
tive connectome) between a seed region and every other brain region, was derived for each individual 
channel (N = 1772). To do so, each channel was used as a seed region and its respective functional 
connectivity map was calculated, resulting in 1772 connectivity maps, one for every channel. These 
maps were subdivided based on the channel’s dominant frequency band. This resulted in 277 func-
tional connectivity maps for the theta, 397 for the alpha, and 1005 for the beta band. Group-level 
statistics were performed for connectivity maps of each frequency band. All functional connectivity 
maps were averaged in SPM ImCalc to reveal a group-level functional network for each frequency 
band. To investigate differences between beta-dominant and alpha-dominant functional connectivity 
networks, a two-sample t-test was calculated for the condition where beta was greater than alpha 
and vice versa using SPM. Here, the connectivity maps from each dominant channel (1005 beta func-
tional connectivity maps and 397 alpha connectivity maps). Estimation of model parameters yielded 
t-values for each voxel, indicating the strength and direction of differences between the two contrasts 
(beta > alpha, alpha > beta). To address the issue of multiple comparisons, we applied FWE correc-
tion, adjusting significance thresholds such that only voxels with p<0.05 would be included.

Like functional connectivity maps, structural connectivity maps (N = 1772) were calculated for each 
individual channel. These were again subdivided based on dominant frequency band per channel and 
gave a resulting set of structural connectivity maps for each frequency band of 277 (theta), 397 (alpha), 
and 1005 (beta). Each map contained a set of fibre tracts that were identified as correlated with 
the specific channel through the structural connectivity analysis. Therefore, to investigate group-level 
statistics, the maps had to be summed and not averaged as in the case of functional connectivity. The 
resulting structural networks for each frequency band were hence a sum calculated on SPM ImCalc of 
all identified fibres for all channels for a given frequency band.

Neurotransmitter uptake
To investigate dopamine uptake, an open dataset of neurotransmitter uptake was used for an open 
data set of PET data measuring neurotransmitter uptake (Hansen et al., 2022). Exclusively healthy 
samples of subjects were selected for various dopamine receptors such as D1 (Kaller et al., 2017) 
(healthy controls [HC] = 13), D2 (Alakurtti et al., 2015; Smith et al., 2019) (HC = 34), the DAT (Dukart 
et al., 2018; Sasaki et al., 2012) (HC = 180), and FDOPA (García Gómez et al., 2018) (HC = 12). To 
study the broad effects of dopamine, all dopamine receptor PET scans were resliced and averaged 
using the SPM ImCalc function. A spatial normalisation was then applied to finally create a unified 
aggregate image of all available dopamine receptors. A custom master parcellation in MNI space was 
created in MATLAB using SPM functions by combining three existing parcellations to include cortical 
regions (Huang et al., 2022), structures of the basal ganglia (He et al., 2020), and cerebellar regions 
(Diedrichsen et al., 2009). Regions that were (partially) overlapping between the atlases were only 
selected once. The final compound parcellation had 476 regions in total. This parcellation was applied 
to both PET and unthresholded structural and functional connectivity maps using SPM and custom 
code. This allowed for the calculation of spatial correlations, providing a statistical measure of spatial 
similarity of the PET intensity and MRI connectivity distributions. For this, Spearman’s ranked correla-
tions were used to calculate correlations between the PET images, such as the dopamine aggre-
gate map and both functional and structural beta connectivity networks (Figure 3). The analysis was 
repeated for individual tracers showing similar results (Figure 3—figure supplement 1). Finally, to 
validate these results, a control analysis was performed using a GABA PET scan from the same open 
dataset of neurotransmitter uptake following the same pipeline (Figure 2A and B).
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Data availability
All data used in the course of this work were publicly available open datasets and can be found 
online. The iEEG atlas is available on the McGill database and can be accessed via their publica-
tion (https://www.mcgill.ca/frauscher-lab/files/frauscher-lab/frauscher_brain2018.pdf). The normative 
connectomes are available within the Lead-DBS software (https://www.lead-dbs.org/). The PET scans 
for dopamine uptake as well as their data pipeline are available on the Network Neuroscience Lab 
GitHub repository (https://github.com/netneurolab/hansen_receptors; Hansen, 2022). All original 
code used to preprocess and analyze these data, and create the main and supplementary results 
is openly available on a GitHub repository (https://github.com/meera-cm/iEEG_connectomics, copy 
archived at Chikermane, 2024). Additional code from the open datasets is available at (https://github.​
com/leaddbs/leaddbs; Horn et al., 2019; Li, 2024) (Lead-DBS and Lead-Connectome Mapper) and 
https://github.com/netneurolab/hansen_receptors/tree/main/code (Hansen receptors).

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Cohen A, Al-Fatly B, 
Horn A

2023 GSP1000 Preprocessed 
Connectome for Lead DBS 
(V2)

https://​doi.​org/​10.​
7910/​DVN/​KKTJQC

Harvard Dataverse, 
10.7910/DVN/KKTJQC
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