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eLife Assessment
This study retrospectively analyzed clinical data to develop a risk prediction model for pulmonary 
hypertension in high-altitude populations. The evidence is solid, and the findings are useful and 
hold clinical significance as the model can be used for intuitive and individualized prediction of 
pulmonary hypertension risk in these populations.

Abstract Individuals residing in plateau regions are susceptible to pulmonary hypertension (PH) 
and there is an urgent need for a prediction nomogram to assess the risk of PH in this population. 
A total of 6603 subjects were randomly divided into a derivation set and a validation set at a ratio 
of 7:3. Optimal predictive features were identified through the least absolute shrinkage and selec-
tion operator regression technique, and nomograms were constructed using multivariate logistic 
regression. The performance of these nomograms was evaluated and validated using the area 
under the curve (AUC), calibration curves, the Hosmer–Lemeshow test, and decision curve analysis. 
Comparisons between nomograms were conducted using the net reclassification improvement (NRI) 
and integrated discrimination improvement (IDI) indices. NomogramI was established based on 
independent risk factors, including gender, Tibetan ethnicity, age, incomplete right bundle branch 
block (IRBBB), atrial fibrillation (AF), sinus tachycardia (ST), and T wave changes (TC). The AUCs for 
NomogramI were 0.716 in the derivation set and 0.718 in the validation set. NomogramII was estab-
lished based on independent risk factors, including Tibetan ethnicity, age, right axis deviation, high 
voltage in the right ventricle, IRBBB, AF, pulmonary P waves, ST, and TC. The AUCs for NomogramII 
were 0.844 in the derivation set and 0.801 in the validation set. Both nomograms demonstrated 
satisfactory clinical consistency. The IDI and NRI indices confirmed that NomogramII outperformed 
NomogramI. Therefore, the online dynamic NomogramII was established to predict the risks of PH in 
the plateau population.

Introduction
Pulmonary hypertension (PH) is a chronic, progressive condition characterised by elevated pulmonary 
arterial pressure, primarily resulting from pulmonary vascular remodelling. This remodelling is driven 
by the infiltration of inflammatory cells, endothelial-to-mesenchymal transition, and hyperplasia of the 
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pulmonary intima (Rubin and Naeije, 2023; Shah et al., 2023; Simonneau et al., 2019). PH often 
presents similarly to other lung diseases, leading to diagnostic delays and, consequently, delays in 
receiving optimal treatment. Approximately 1% of the adult population and more than half of indi-
viduals with congestive heart failure are affected by PH (Hoeper et al., 2016; Mandras et al., 2020). 
Moreover, as the pulmonary vascular load increases, PH can ultimately lead to life-threatening right 
heart failure. The 1- and 3-year survival rates for patients with PH range from 68% to 93% and 39% to 
77%, respectively (Naeije et al., 2022; Ruopp and Cockrill, 2022).

Right heart catheterisation (RHC) is recognised as the gold standard for diagnosing PH, clari-
fying the specific diagnosis, and determining the severity of the condition. However, due to its inva-
sive nature, RHC is not suitable as a widespread population screening tool for PH (McGoon et al., 
2004). Transthoracic echocardiography (TTE), a non-invasive screening test, is extensively used for PH 
because it can provide estimates of pulmonary arterial systolic pressure (sPAP) and evaluates cardiac 
structure and function. A clinical study involving 731 patients in China found no significant difference 
between RHC and TTE in assessing sPAP in PH caused by hypoxia. Furthermore, Pearson correlation 
analysis between RHC and TTE demonstrated a moderate overall correlation (Hong et  al., 2023; 
McGoon et al., 2004; Xu and Jing, 2009).

According to literature reviews, nearly 140 million individuals reside in high-altitude regions (alti-
tudes exceeding 2500 m), and the number of people visiting these areas for economic or recreational 
reasons has been increasing over the past few decades (Moore et al., 1998; West, 2012; Xu and 
Jing, 2009). High altitude typically signifies a hypoxic environment due to the decrease in baro-
metric pressure as altitude increases, which proportionally reduces PO2, resulting in hypobaric hypoxia 
(Gassmann et al., 2021). PH arising from prolonged exposure to hypoxic conditions at high altitudes 
is termed high-altitude PH (Xu and Jing, 2009). Hypoxia triggers hypoxic pulmonary vasoconstriction 
(HPV), a physiological response aimed at optimising ventilation/perfusion matching by redirecting 
blood to better-oxygenated segments of the lung through the constriction of small pulmonary arteries 
(Dunham-Snary et al., 2017). Furthermore, sustained hypoxia leads to pulmonary vascular remod-
elling, increasing resistance to blood flow due to reduced vessel elasticity and decreased vessel 
diameter. HPV and vascular remodelling are the primary mechanisms underlying hypoxia-induced 
PH, which significantly impairs right ventricular function and can ultimately result in fatal heart failure 
(Julian and Moore, 2019; Penaloza and Arias-Stella, 2007). Consequently, there is a pressing need 
for a straightforward and dependable model to assist clinicians and individuals in assessing the risk of 
PH in populations at high altitudes.

In this study, we developed and validated two risk prediction models for high-altitude PH based on 
TTE results by examining routine inspection parameters in Tibet, China.

Results
Subjects’ characteristics
Following a 7:3 allocation ratio, 4622 subjects were placed in the derivation set and 1981 subjects 
in the validation set. The characteristics of the subjects are presented in Table 1. The prevalence of 
PH of Grade I or higher was 39.57% (1829 cases) in the derivation set and 39.27% (778 cases) in the 
validation set (p = 0.820 > 0.05). The prevalence of PH of Grade II or higher was 8.55% (395 cases) 
in the derivation set and 8.58% (170 cases) in the validation set (p = 0.962 > 0.05). No significant 
difference was observed in the age distribution between the derivation and validation sets (42.43 ± 
16.93 vs 42.05 ± 16.41, p = 0.390 > 0.05), with age categorised into ≤42 and >42 subgroups based on 
the mean age. The composition ratios of the two age subgroups did not significantly differ between 
the validation and derivation sets (p = 0.6352 > 0.05). Furthermore, no significant differences were 
observed in the characteristics related to gender, Tibetan or not, right axis deviation (RAD), clockwise 
rotation (CR), counterclockwise rotation (CCR), high voltage in the right ventricle (HVRV), incomplete 
right bundle branch block (IRBBB), complete right bundle branch block (CRBBB), atrial fibrillation (AF), 
sinus arrhythmia (SA), sinus tachycardia (ST), sinus bradycardia (SB), T wave changes (TC), ST-segment 
changes (STC), atrial premature beats (APB), ventricular premature beats (VPB), junctional premature 
beats (JPB), pulmonary P waves (PP), atrioventricular block (IAB, I-degree atrioventricular block), and 
complete left bundle branch block (CLBBB) (Table 1).

https://doi.org/10.7554/eLife.98169


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Tang, Yang et al. eLife 2024;13:RP98169. DOI: https://doi.org/10.7554/eLife.98169 � 3 of 17

Table 1. Baseline characteristics of individuals in the derivation and validation sets.
Variable Derivation set (n = 4622) Validation set (n = 1981) p

Age
Total (mean ± SD) 42.43 ± 16.93 42.05 ± 16.41 0.390

Age ≤42, n (%) 2619 (56.66) 1135 (57.29)

Age >42, n (%) 2003 (43.34) 846 (42.71) 0.635

Tibetan, n (%) 0.538

No 2856 (61.79) 1240 (62.59)

Yes 1766 (38.21) 741 (37.41)

Gender, n (%) 0.260

Female 1219 (26.37) 549 (27.71)

Male 3403 (73.63) 1432 (72.29)

RAD, n (%) 0.141

No 3833 (82.93) 1672 (84.40)

Yes 789 (17.07) 309 (15.60)

CR, n (%) 0.387

No 4000 (86.54) 1730 (87.33)

Yes 622 (13.46) 251 (12.67)

CCR, n (%) 0.402

No 3994 (86.41) 1727 (87.18)

Yes 628 (13.59) 254 (12.82)

HVRV, n (%) 0.102

No 4151 (89.81) 1805 (91.12)

Yes 471 (10.19) 176 (8.88)

IRBBB, n (%) 0.573

No 4547 (98.38) 1945 (98.18)

Yes 75 (1.62) 36 (1.82)

CRBBB, n (%) 0.945

No 4444 (96.15) 1904 (96.11)

Yes 178 (3.85) 77 (3.89)

AF, n (%) 0.594

No 4551 (98.46) 1954 (98.64)

Yes 71 (1.54) 27 (1.36)

SA, n (%) 0.243

No 4247 (91.89) 1837 (92.73)

Yes 375 (8.11) 144 (7.27)

ST, n (%) 0.910

No 4395 (95.09) 1885 (95.15)

Yes 227 (4.91) 96 (4.85)

SB, n (%) 0.345

No 4245 (91.84) 1833 (92.53)

Yes 377 (8.16) 148 (7.47)

TC, n (%) 0.769

No 4003 (86.61) 1721 (86.88)

Table 1 continued on next page

https://doi.org/10.7554/eLife.98169
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Independent risk factors in PH ≥ I grade group and PH ≥ II grade group
In the PH ≥ I grade group, based on the λ_min criterion in the least absolute shrinkage and selection 
operator (LASSO) regression model, 18 out of 22 variables were selected. However, this selection was 
deemed excessive for practical clinical applications. Therefore, we further refined the model using the 
λ_1se criterion, which reduced the number of variables, albeit with a significant decrease in the area 
under the curve (AUC) of the receiver operating characteristic (ROC) curve (λ_1se) compared to the 
ROC curve (λ_min) (Figures 1 and 2C, E, and G). Ultimately, nine variables were chosen according 
to λ_1se, including gender, Tibetan ethnicity, age  ≤42, age  >42, IRBBB, CRBBB, AF, ST, and TC 
(Figure 2I). Gender, Tibetan ethnicity, age, IRBBB, AF, ST, and TC were subsequently identified as 
independent risk factors for PH ≥ I grade through multivariate logistic regression analysis and were 
used to develop NomogramI (Table 2).

In the PH ≥ II grade group, based on the λ_1se criterion in the LASSO regression model (Figure 2D, 
F), 11 variables were selected to align with clinical needs. These variables were Tibetan ethnicity, 
age ≤42, age >42, RAD, HVRV, IRBBB, CRBBB, AF, PP, ST, and TC (Figure 2J). Tibetan ethnicity, age, 
RAD, HVRV, IRBBB, AF, PP, ST, and TC were determined to be independent risk factors for PH ≥ II 

Variable Derivation set (n = 4622) Validation set (n = 1981) p

Yes 619 (13.39) 260 (13.12)

STC, n (%) 0.415

No 4399 (95.18) 1876 (94.70)

Yes 223 (4.82) 105 (5.30)

APB, n (%) 0.219

No 4587 (99.24) 1960 (98.94)

Yes 35 (0.76) 21 (1.06)

JPB, n (%) 0.425

No 4603 (99.59) 1970 (99.44)

Yes 19 (0.41) 11 (0.56)

VPB, n (%) 0.844

No 4580 (99.09) 1962 (99.04)

Yes 42 (0.91) 19 (0.96)

PP, n (%) 0.439

No 4507 (97.51) 1938 (97.83)

Yes 115 (2.49) 43 (2.17)

CLBBB, n (%) 0.757

No 4610 (99.74) 1975 (99.70)

Yes 12 (0.26) 6 (0.30)

IAB, n (%) 0.910

No 4556 (98.57) 1952 (98.54)

Yes 66 (1.43) 29 (1.46)

PH ≥ I grade, n (%) 0.820

No 2793 (60.43) 1203 (60.73)

Yes 1829 (39.57) 778 (39.27)

PH ≥ II grade, n (%) 0.962

No 4227 (91.45) 1811 (91.42)

Yes 395 (8.55) 170 (8.58)

The online version of this article includes the following source data for table 1:

Source data 1. The raw data of Table 1.

Table 1 continued

https://doi.org/10.7554/eLife.98169
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Figure 1. Flow diagram. Based on the exclusion and inclusion criteria, 6603 patients were included in this study. Patients were divided into a validation 
set and a derivation set randomly following a 7:3 ratio. Pulmonary hypertension, PH; right axis deviation, RAD; high voltage in the right ventricle, HVRV; 
incomplete right bundle branch block, IRBBB; atrial fibrillation, AF; sinus tachycardia, ST; T wave changes, TC; pulmonary P waves, PP.

https://doi.org/10.7554/eLife.98169
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Figure 2. Illustrates the optimal predictive variables as determined by the least absolute shrinkage and selection 
operator (LASSO) binary logistic regression model. Panels A and B depict the measurement of tricuspid 
regurgitation spectra via transthoracic echocardiography in patients with Grade I pulmonary hypertension (PH) 
(A) and Grade III PH (B). Panels C to J demonstrate the identification of the optimal penalisation coefficient lambda 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.98169
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grade through multivariate logistic regression analysis and were utilised to construct NomogramII 
(Table 3).

Construction of NomogramI in PH ≥ I grade group and NomogramII in 
PH ≥ II grade group
In the PH ≥ I grade group, a predictive NomogramI for PH ≥ I grade was developed based on indepen-
dent risk factors, including gender, Tibetan ethnicity, age, IRBBB, AF, ST, and TC. Points are assigned 
to each independent factor by drawing a vertical line to the points scale. The total points for an indi-
vidual correspond to their risk of developing PH. Patients were then classified into high- and low-risk 
subgroups according to the total score’s cut-off value (cut-off value: 45), which was determined based 
on the ROC curve (Figure 3A). The risks for the two groups were evaluated in both the derivation and 
validation sets. In the derivation set, the risk of PH in the high-risk group was significantly higher than 
in the low-risk group (odds ratio [OR]: 4.210, 95% confidence interval [CI]: 3.715–4.775) (Figure 3B), 
as was also observed in the validation set (OR: 4.207, 95% CI: 3.476–5.102) (Figure 3C).

In the PH ≥ II grade group, a predictive NomogramII for PH ≥ II grade was developed using inde-
pendent risk factors, including Tibetan ethnicity, age, RAD, HVRV, IRBBB, AF, PP, ST, and TC. Based on 
the cut-off value of the total score (cut-off value: 76), determined in line with the ROC curve, patients 
were categorised into high- and low-risk subgroups (Figure 3D). The risks for the two groups were 
evaluated in both the derivation and validation sets. In the derivation set, the risk of PH in the high-
risk group was significantly greater than in the low-risk group (OR: 11.591, 95% CI: 9.128–14.845) 
(Figure  3E), a finding that was replicated in the validation set (OR: 7.103, 95% CI: 5.106–9.966) 
(Figure 3F).

Assessment and validation of NomogramI in the PH ≥ I grade group 
and NomogramII in the PH ≥ II grade group
In the PH ≥ I grade group, NomogramI was developed to predict the risk of PH ≥ I grade, utilising the 
AUC to assess its discriminative ability. The AUC value for NomogramI was 0.716 (95% CI: 0.701–0.731) 

(λ) in the LASSO model using 10-fold cross-validation for the PH ≥ I grade group (C) and the PH ≥ II grade group 
(D). The dotted line on the left (λ_min) represents the value of the harmonic parameter log(λ) at which the model’s 
error is minimised, and the dotted line on the right (λ_1se) indicates the value of the harmonic parameter log(λ) 
at which the model’s error is minimal minus 1 standard deviation. The LASSO coefficient profiles of 22 predictive 
factors for the PH ≥ I grade group (E) and the PH ≥ II grade group (F) show that as the value of λ decreased, the 
degree of model compression increased, enhancing the model’s ability to select significant variables. Receiver 
operating characteristic (ROC) curves were constructed for three models (LASSO, LASSO-λ_min, and LASSO-
λ_1se) in both the PH ≥ I grade group (G) and the PH ≥ II grade group (H). Histograms depict the final variables 
selected according to λ_1se and their coefficients for the PH ≥ I grade group (I) and the PH ≥ II grade group 
(J). Asterisks denote levels of statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001.

The online version of this article includes the following source data for figure 2:

Source data 1. Raw data of Figure 2.

Figure 2 continued

Table 2. Risk factors for pulmonary hypertension (PH) ≥ I grade in the derivation set.
Variable β-Coefficient OR (95% CI) p

Tibetan 0.34 1.40 (1.23–1.60) <0.001

Gender −0.3 0.74 (0.65–0.84) <0.001

Age 0.034 1.03 (1.03–1.04) <0.001

IRBBB 1.106 3.02 (1.96–4.67) <0.001

AF 1.431 4.18 (2.19–7.97) <0.001

ST 0.369 1.45 (1.14–1.84) 0.003

TC 0.306 1.36 (1.16–1.59) <0.001

The online version of this article includes the following source data for table 2:

Source data 1. Raw data of Table 2.

https://doi.org/10.7554/eLife.98169
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in the derivation set (Figure 4A) and 0.718 (95% CI: 0.695–0.741) in the validation set (Figure 4D). 
Furthermore, ROC curves were used to compare the discriminative capacity of NomogramI and single 
independent factors in predicting PH ≥ I grade. Notably, the AUC of NomogramI was significantly 
higher than that of any single independent factor in the derivation (Figure 4B, C) and the valida-
tion set (Figure 4E, F). The calibration curves for the derivation set (Figure 5A) and the validation 
set (Figure 5B) demonstrated high agreement between predicted and actual values, indicating that 
NomogramI accurately predicts PH ≥ I grade. The results of the Hosmer–Lemeshow test in both the 
derivation set (p = 0.109 > 0.05) and the validation set (p = 0.317 > 0.05) further confirmed the effec-
tive performance of NomogramI (Figure 5E).

NomogramII was developed to predict the risk of PH ≥ II grade. The AUC for NomogramII was 0.844 
(95% CI: 0.823–0.865) in the derivation set (Figure 4G) and 0.801 (95% CI: 0.763–0.838) in the valida-
tion set (Figure 4J). Furthermore, ROC curves were used to compare the discriminative capacity of 
NomogramII and individual independent factors in predicting PH ≥ II grade. The AUC of NomogramII 
was significantly higher than that of any single independent factor in the derivation set (Figure 4H, I) 
and the validation set (Figure 4K, L). The calibration curves for the derivation set (Figure 5C) and the 
validation set (Figure 5D) demonstrated high agreement between the predicted and actual values, 
indicating that NomogramII accurately predicts PH ≥ II grade. Additionally, the results of the Hosmer–
Lemeshow test in the derivation set (p = 0.377 > 0.05) and the validation set (p = 0.127 > 0.05) further 
confirmed the good performance of NomogramII (Figure 5F).

Clinical utility of NomogramI and NomogramII

In the PH ≥ I grade group, the clinical utility of NomogramI for predicting the risk of PH ≥ I grade was 
assessed using decision curve analysis (DCA). This analysis revealed a significant net benefit with a 
threshold probability range of 20–91% in the derivation set (Figure 6A) and 14–74% in the validation 
set (Figure 6B). Moreover, the DCA curve from the derivation set indicated that the clinical predictive 
capability of NomogramI surpassed that of any single independent factor, a finding that was corrobo-
rated in the validation set (Figure 6C, D).

In the PH ≥ II grade group, the clinical utility of NomogramII for predicting the risk of PH ≥ II grade 
was evaluated using DCA, which showed a clear net benefit within the threshold probability range 
of 1–70% in the derivation set (Figure 6E) and 1–82% in the validation set (Figure 6F). Additionally, 
the DCA curve for the derivation set demonstrated that the clinical predictive effectiveness of Nomo-
gramII exceeded that of any single independent factor, a conclusion that was also confirmed in the 
validation set (Figure 6G, H).

Comparison between NomogramI and NomogramII

In the PH ≥ I grade group, when comparing NomogramI to NomogramII, NomogramI exhibited an 
integrated discrimination improvement (IDI) of −0.0012 (95% CI: −0.0032 to 0.0009, p = 0.2777), a 
categorical net reclassification improvement (NRI) of 0.0117 (95% CI: −0.0004 to 0.0237, p = 0.0575), 

Table 3. Risk factors for pulmonary hypertension (PH) ≥ II grade in the derivation set.
Variable β-Coefficient OR (95% CI) p

Tibetan 0.689 1.99 (1.55–2.57) <0.001

Age 0.042 1.04 (1.03–1.05) <0.001

RAD 0.751 2.12 (1.56–2.88) <0.001

HVRV 0.486 1.63 (1.14–2.31) 0.007

IRBBB 1.512 4.53 (2.77–7.42) <0.001

AF 2.102 8.18 (5.13–13.05) <0.001

ST 1.247 3.48 (2.58–4.70) <0.001

TC 0.592 1.81 (1.44–2.27) <0.001

PP 1.486 4.42 (2.96–6.61) <0.001

The online version of this article includes the following source data for table 3:

Source data 1. The raw data of Table 3.

https://doi.org/10.7554/eLife.98169
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Figure 3. Nomogram for predicting pulmonary hypertension (PH) and risk stratification based on total score. (A–C) NomogramI for the prediction of 
PH ≥ I grade in the PH ≥ I grade group. Points for each independent factor are summed to calculate total points, determining the corresponding ‘risk’ 
level. Patients were divided into ‘High-risk’ and ‘Low-risk’ subgroups according to the cut-off of the total points (A). Histograms illustrate the odds 
ratio (OR) comparing the ‘High-risk’ group to the ‘Low-risk’ group in the derivation set (B) and validation set (C). (D–F) NomogramII for predicting PH ≥ 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.98169
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and a continuous NRI of −0.2423 (95% CI: −0.2992 to −0.1854, p < 0.001) in predicting the risk of 
PH ≥ I grade.

In the PH ≥ II grade group, compared to NomogramI, NomogramII demonstrated an IDI of 0.0366 
(95% CI: 0.0247–0.0485, p < 0.001), a categorical NRI of 0.0301 (95% CI: 0.0093–0.0510, p < 0.05), 
and a continuous NRI of 0.2785 (95% CI: 0.1824–0.3745, p < 0.001) for predicting the risk of PH ≥ II 
grade.

II grade within the PH ≥ II grade group: Similarly, points from each independent factor are totalled, and the corresponding ‘risk’ level is ascertained. 
Patients are divided into ‘High-risk’ and ‘Low-risk’ groups based on the cut-off value of the total points (D). Histograms display the OR for the ‘High-risk’ 
group compared to the ‘Low-risk’ group in the derivation (E) and validation set (F). ***p < 0.001. (G) Screenshot of dynamic NomogramII’s web page.

The online version of this article includes the following source data for figure 3:

Source data 1. The raw data and R software code of Figure 3.

Figure 3 continued

Figure 4. Receiver operating characteristic (ROC) curves and area under the curve (AUC) for NomogramI in 
pulmonary hypertension (PH) ≥ I and NomogramII in PH ≥ II grade groups. In the PH ≥ I grade group, the ROC 
and corresponding AUC of NomogramI and independent factors in the derivation set (A–C) and validation set 
(D–F). In the PH ≥ II grade group, the ROC and corresponding AUC of NomogramII and independent factors in the 
derivation set (G–I) and validation set (J–L).

The online version of this article includes the following source data for figure 4:

Source data 1. The raw data and R software code of Figure 4.

https://doi.org/10.7554/eLife.98169
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Figure 5. Calibration plots and Hosmer–Lemeshow test results for NomogramI in pulmonary hypertension (PH) ≥ I and NomogramII in PH ≥ II grade 
groups. In the PH ≥ I grade group, the calibration plots of NomogramI in the derivation set (A) and the validation set (B). In the PH ≥ II grade group, 
the calibration plots of NomogramII in the derivation set (C) and the validation set (D). (E) In the PH ≥ I grade group, Hosmer–Lemeshow test results for 

Figure 5 continued on next page

https://doi.org/10.7554/eLife.98169
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These results indicate that NomogramII outperformed NomogramI in terms of IDI and NRI values.

Website of NomogramII

Patients and physicians can calculate the risk of PH through a free web-based dynamic NomogramII 
(https://dapeng.shinyapps.io/dynnomapp-1/), and the screenshot of dynamic NomogramII’s web page 
was shown (Figure 3G).

Discussion
A significant portion of the global population lives in high-altitude areas such as the Tibetan Plateau, 
Ethiopian Highlands, Andes Mountains, and Pamir Plateau. These regions are marked by an extremely 
hypoxic environment that leads to alveolar hypoxia, posing severe risks to the cardiopulmonary system. 
One such risk is the development of PH, which occurs through mechanisms like HPV and pulmonary 
vascular remodelling (Burtscher et al., 2018; Sydykov et al., 2021; Wilkins et al., 2015). Accurate, 
timely diagnosis and early, effective treatment are crucial for the clinical improvement and survival 
of patients with PH. Without prompt intervention, PH can impair right heart function and ultimately 
result in fatal right heart failure (Benza et al., 2010; Kim and George, 2019; McGoon et al., 2004). 
Thus, there is a need to develop a predictive model to estimate the risk of PH, facilitating risk strat-
ification and management. In this study, we analysed routine electrocardiogram (ECG) examination 
indicators and basic demographic information to assess the risk of PH. We developed nomograms for 
the PH ≥ I grade group and the PH ≥ II grade group, and the performance of these nomograms was 
evaluated and validated.

Currently, TTE is widely utilised for large-scale, non-invasive screening of patients at risk for PH 
(D’Alto et al., 2018; Habib and Torbicki, 2010; Janda et al., 2011). However, in plateau regions such 
as Tibet, medical resources are relatively limited, and remote villages and towns lack the facilities for 
TTE examinations. ECG examinations, being easy to administer, cost-effective, and feasible for remote 
delivery through telemedicine, offer a practical alternative (Ismail et al., 2023). A retrospective anal-
ysis has demonstrated that ECG examination results correlate with clinical parameters reflecting the 
severity of PH (Michalski et al., 2022). Therefore, in developing this model, we primarily relied on 
ECG examination results from patients. Utilising ECG results as predictors of PH can significantly aid 
clinicians in identifying potential PH patients in remote plateau areas, facilitating their access to timely 
and relevant treatment.

In this study, based on sPAP assessed by TTE examination, patients at risk of PH were classified 
into Grades I–III. We developed and validated two nomograms for the PH ≥ I grade group (Nomo-
gramI) and the PH ≥ II grade group (NomogramII), with ECG examination results serving as the primary 
component for both. NomogramI included seven variables: gender, Tibetan ethnicity, age, IRBBB, AF, 
ST, and TC. NomogramII incorporated nine variables: Tibetan ethnicity, age, RAD, HVRV, IRBBB, AF, 
PP, ST, and TC (Figure 3A, D). These variables are readily available from routine ECG examinations. 
Additionally, patients were categorised into high- and low-risk groups based on the cut-off value of 
the total score in the nomogram, with the OR value for the high-risk group being significantly higher 
than that of the low-risk group (Figure 3). Therefore, both nomograms offer a useful and straightfor-
ward method for in-depth evaluation, even without medical professional intervention. Both Nomo-
gramI and NomogramII demonstrated good calibration and clinical utility (Figures 5 and 6), though 
ROC analysis revealed that the AUC for NomogramII was higher than that for NomogramI (0.844 vs 
0.716). IDI and NRI are recognised indicators that describe improved accuracy in predicting binary, 
multi-classification, or survival outcomes (Wang et al., 2020). In a similar vein to a 10-year retrospec-
tive cohort study, which constructed two nomograms for hypertension risk prediction and compared 
them using IDI and NRI values (Deng et al., 2021), we used IDI and NRI to evaluate the performance 
of NomogramI and NomogramII. Our findings indicated no significant difference between NomogramI 

NomogramI in the derivation set and the validation set. (F) In the PH ≥ II grade group, Hosmer–Lemeshow test results for NomogramII in the derivation 
set and the validation set.

The online version of this article includes the following source data for figure 5:

Source data 1. The raw data and R software code of Figure 5.

Figure 5 continued

https://doi.org/10.7554/eLife.98169
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and NomogramII in the PH ≥ I grade group; however, NomogramII exhibited superior performance 
compared to NomogramI in the PH ≥ II grade group, thus demonstrating its enhanced predictive 
capability. So, we created an online dynamic NomogramII for doctors and patients to calculate the risk 
of PH (Figure 3G).

In this study, age and Tibetan ethnicity were identified as independent predictors of PH, a finding 
that aligns with conclusions from a single-centre, cross-sectional study among native Tibetans in 
Sichuan Province, China (Gou et  al., 2020). We hypothesise that this association may be due to 
the longer exposure to the hypoxic environment at high altitudes experienced by older individuals 
and Tibetans, promoting hypoxic contraction of pulmonary blood vessels and subsequent pulmo-
nary vascular remodelling, thereby leading to PH. Additionally, the occurrence of AF emerged as an 
independent predictor of PH with the highest OR values in both nomograms (Tables 2 and 3). PH is 
known to be characterised by pulmonary vascular remodelling, which can induce fibrosis and exces-
sive myocardial apoptosis, ultimately contributing to AF (Yi et al., 2023), a finding that corroborates 
our results. Nonetheless, it was observed that no single predictor alone was effective in distinguishing 
PH, exhibiting poor clinical utility compared to the comprehensive approach offered by the nomo-
gram (Figures 4 and 6).

Our study has several limitations. Firstly, TTE serves only as a screening method for PH and is not 
the gold standard; its results merely indicate the risk of PH in the examined individuals. Secondly, 
given the constrained medical resources in remote areas, we primarily incorporated readily ECG 
results and basic demographic information into the nomograms, resulting in a relatively simple set of 
independent predictors. Lastly, the dataset for this study was exclusively sourced from Tibet, China, 
meaning the validation of the nomograms lacks external validation sets.

Conclusion
We have developed a reliable and straightforward nomogram to predict the risks associated with 
PH, demonstrating satisfactory discrimination and calibration. Upon rigorous validation using internal 
datasets, the nomogram has shown clinical utility and favourable predictive accuracy. It is anticipated 
to serve as an effective and convenient clinical tool for assessing the risk of PH in populations residing 
at high altitudes.

Materials and methods
Study population and data collection
Upon gathering data from all patients who underwent both TTE and 12-lead ECG examinations at 
the General Hospital of Tibet Military Command between April 2021 and October 2023, we further 
screened the records based on the following criteria: (1) age >14 years; (2) interval between the TTE 
and ECG examinations <2 months, and (3) for patients with multiple TTE and/or ECG records, only the 
examination with the shortest interval between TTE and ECG was selected. Ultimately, we compiled 
examination data for 6603 eligible patients.

The retrospectively collected clinical data were categorised into two main groups: (1) demographic 
characteristics, including name, age, gender, and Tibetan ethnicity; (2) ECG results, encompassing 
RAD, CR, CCR, HVRV, IRBBB, CRBBB, AF, SA, SB, ST, TC, STC, APB, VPB, JPB, CLBBB, first-degree 
IAB, and PP; (3) TTE results: sPAP was measured via TTE to evaluate PH. PH was graded as follows: 
Grade I PH (50 mmHg > sPAP ≥ 30 mmHg), Grade II PH (70 mmHg > sPAP ≥ 50 mmHg), and Grade 
III PH (sPAP ≥ 70 mmHg). The severity of PH increases with its grade, indicating a higher risk of the 
condition.

All procedures were conducted following the approval of the Ethics Committee of the General 
Hospital of Tibet Military Command (Approval Number: 2024-KD002-01). Subsequently, the data 
from all participants were anonymised and de-identified prior to analysis. Consequently, the require-
ment for informed consent was waived.

Statistical analysis
Statistical analysis was performed with R software version 4.3.2. p < 0.05 (double-tailed) was consid-
ered statistically significant.

https://doi.org/10.7554/eLife.98169
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Figure 6. Decision curve analysis (DCA) for NomogramI in the pulmonary hypertension (PH) ≥ I grade and NomogramII in the PH ≥ II grade group. In the 
PH ≥ I grade group, the DCAs of NomogramI and independent factors in the derivation (A, C) and validation set (B, D). In the PH ≥ II grade group, the 
DCAs of NomogramII and independent factors in the derivation (E, G) and validation set (F, H).

The online version of this article includes the following source data for figure 6:

Source data 1. The raw data and R software code of Figure 6.

https://doi.org/10.7554/eLife.98169
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For validation and derivation of the prediction model, subjects were divided into a validation set 
and a derivation set randomly, at a ratio of 7:3, respectively. Categorical variables were transformed 
into dichotomous variables, and continuous variables were expressed by concrete values (means ± 
standard deviation) and analysed using Student’s t-test. Fisher’s exact test or Pearson’s χ2 test was 
applied for categorical variables.

The derivation set was used to select optimal predictive factors through the LASSO regression 
technique. Independent factors were identified via multivariate logistic regression analysis, incorpo-
rating variables selected during the LASSO regression. A backward step-down selection process, 
guided by the Akaike information criterion, determined the final model. The predictive accuracy of 
the nomograms was assessed using the AUC of the ROC curve in both the derivation and valida-
tion sets. The Hosmer–Lemeshow test and calibration curves were employed to evaluate the consis-
tency between actual outcomes and predicted probabilities. The clinical utility of the nomograms was 
assessed through DCA. The cut-off value for the total score in the nomogram was established based 
on the ROC curve, with patients categorised into low- and high-risk groups. The performance compar-
ison between nomograms was analysed using the IDI and NRI.
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