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Abstract Variant calling is fundamental in bacterial genomics, underpinning the identification of 
disease transmission clusters, the construction of phylogenetic trees, and antimicrobial resistance 
detection. This study presents a comprehensive benchmarking of variant calling accuracy in bacterial 
genomes using Oxford Nanopore Technologies (ONT) sequencing data. We evaluated three ONT 
basecalling models and both simplex (single-strand) and duplex (dual-strand) read types across 14 
diverse bacterial species. Our findings reveal that deep learning-based variant callers, particularly 
Clair3 and DeepVariant, significantly outperform traditional methods and even exceed the accu-
racy of Illumina sequencing, especially when applied to ONT’s super-high accuracy model. ONT’s 
superior performance is attributed to its ability to overcome Illumina’s errors, which often arise from 
difficulties in aligning reads in repetitive and variant-dense genomic regions. Moreover, the use of 
high-performing variant callers with ONT’s super-high accuracy data mitigates ONT’s traditional 
errors in homopolymers. We also investigated the impact of read depth on variant calling, demon-
strating that 10× depth of ONT super-accuracy data can achieve precision and recall comparable 
to, or better than, full-depth Illumina sequencing. These results underscore the potential of ONT 
sequencing, combined with advanced variant calling algorithms, to replace traditional short-read 
sequencing methods in bacterial genomics, particularly in resource-limited settings.

eLife assessment
This important study shows how a combination of the latest generation of Oxford Nanopore Tech-
nology long reads with state-of-the art variant callers enables bacterial variant discovery at an accu-
racy that matches or exceeds the current "gold standard" with short reads. The work thus heralds 
a new era, in which Illumina short-read sequencing no longer rules supreme. While the inclusion 
of a larger number of reference genomes would have enabled an even more fine-grained analysis, 
the evidence as it is supports the claims of the authors convincingly. The work will be of interest 
to anyone performing sequencing for outbreak investigations, bacterial epidemiology, or similar 
studies.
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Introduction
Variant calling is a cornerstone of bacterial genomics as well as one of the major applications of next-
generation sequencing. Its downstream applications include identification of disease transmission 
clusters, prediction of antimicrobial resistance, and phylogenetic tree construction and subsequent 
evolutionary analyses, to name a few (Stimson et al., 2019; Sheka et al., 2021; Walker et al., 2022; 
Bertels et al., 2014). Variant calling is used extensively in public health laboratories to inform deci-
sions on managing bacterial outbreaks (Gorrie et al., 2021) and in molecular diagnostic laboratories 
as the basis for clinical decisions on how to best treat patients with disease (Sherry et al., 2023).

Over the last 15 years, short-read sequencing technologies, such as Illumina, have been the main-
stay of variant calling in bacterial genomes, largely due to their relatively high level of basecalling 
accuracy. However, nanopore sequencing on devices from Oxford Nanopore Technologies (ONT) 
have emerged as an alternative technology. One of the major advantages of ONT sequencing from 
an infectious disease’s public health perspective is the ability to generate sequencing data in near real 
time, as well as the portability of the devices, which has enabled researchers to sequence in remote 
regions, closer to the source of the disease outbreak (Faria et  al., 2016; Hoenen et  al., 2016). 
Limitations in ONT basecalling accuracy have historically limited its widespread adoption for bacterial 
genome variant calling (Delahaye and Nicolas, 2021). ONT have recently released a new R10.4.1 
pore, along with a new basecaller (Oxford Nanopore Technologies, 2023a) with three different accu-
racy modes (fast, high-accuracy [hac], and super-accuracy [sup]). The basecaller also has the ability to 
identify a subset of paired reads for which both strands have been sequenced (duplex), leading to 
impressive gains in basecalling accuracy (Sanderson et al., 2023; Sereika et al., 2022).

A number of variant callers have been developed for ONT sequencing (Edge and Bansal, 2019; 
Zheng et al., 2022; Ahsan et al., 2021). However, to date, benchmarking studies have focused on 

eLife digest Imagine being part of a public health institution when, suddenly, cases of Salmo-
nella surge across your country. You are facing an outbreak of this foodborne disease, and the clock is 
ticking. People are consuming a contaminated product that is making them sick; how do you identify 
related cases, track the source of the infection, and shut down its production?

In situations like these, scientists need to tell apart even closely related strains of the same bacterial 
species. This process, known as variant calling, relies on first analysing (or ‘sequencing’) the genetic 
information obtained from the bacteria of interest, then comparing it to a reference genome.

Currently, two main approaches are available for genome sequencing. Traditional ‘short-read’ 
technologies tend to be more accurate but less reliable when covering certain types of genomic 
regions. New ‘long-read’ approaches can bypass these limitations though they have historically been 
less accurate.

Comparison with a reference genome can be performed using a tool known as a variant caller. 
Many of the most effective ones are now based on artificial intelligence approaches such as deep 
learning. However, these have primarily been applied to human genomic data so far; it therefore 
remains unclear whether they are equally useful for bacterial genomes.

In response, Hall et al. set out to investigate the accuracy of four deep learning-based and three 
traditional variant callers on datasets from 14 bacterial species obtained via long-read approaches. 
Their respective performance was also benchmarked against a more conventional approach repre-
senting a standard of accuracy (that is, a popular, non-deep learning variant caller used on short-read 
datasets). These analyses were performed on a ‘truthset’ established by Hall et al., a collection of 
validated data that allowed them to assess the performance of the various tools tested.

The results show that, in this context, the deep learning variant callers more accurately detected 
genetic variations compared to the traditional approach. These tools, which could be run on standard 
laptops, were effective even with low amounts of sequencing data – making them useful even in 
settings where resources are limited.

Variant calling is an essential step in tracking the emergence and spread of disease, identifying new 
strains of bacteria, and examining their evolution. The findings by Hall et al. should therefore benefit 
various sectors, particularly clinical and public health laboratories.

https://doi.org/10.7554/eLife.98300
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human genome variant calling, and have mostly used the older pores, which do not have the ability to 
identify duplex reads (Olson et al., 2023; Olson et al., 2022; Pei et al., 2021). In addition, modern 
deep learning-based variant callers use models trained on human DNA sequence only, leaving an open 
question of their generalisability to bacteria (Zheng et al., 2022; Poplin et al., 2018; Ahsan et al., 
2021). Human genomes have a very different distribution of k-mers (segments of DNA sequence of 
length k) and patterns of DNA modification, and as such, results from human studies may not directly 
carry over into bacterial genomics. Moreover, there is substantial k-mer and DNA modification vari-
ation within bacteria, mandating a broad multi-species approach for evaluation (Tourancheau et al., 
2021). Existing benchmarks for bacterial genomes, while immensely beneficial and thorough, only 
assess short-read Illumina data (Bush, 2021; Bush et al., 2020).

In this study, we conduct a benchmark of single nucleotide polymorphism (SNP) and insertion/dele-
tion (indel) variant calling using ONT and Illumina sequencing across a comprehensive spectrum of 
14 Gram-positive and Gram-negative bacterial species. We used the same DNA extractions for both 
Illumina and ONT sequencing to ensure our results are not biased by acquisition of new mutations 
during culture. We develop a novel strategy for generating benchmark variant truthsets in which we 
project variations from different strains onto our gold standard reference genomes in order to create 
biologically realistic distribution of SNPs and indels. We assess both deep learning-based and tradi-
tional variant calling methods and investigate the sources of errors and the impact of read depth on 
variant accuracy.

Results
Genome and variant truthset
Ground truth reference assemblies were generated for each sample using ONT and Illumina reads 
(see Genome assembly).

Creating a variant truthset for benchmarking is challenging (Majidian et  al., 2023; Li, 2014). 
Calling variants against a sample’s own reference yields no variants, so we generated a mutated refer-
ence. Instead of random mutations, we used a pseudo-real approach, applying real variants from a 
donor genome to the sample’s reference (Li, 2014; Li et al., 2018). This approach has the advantage 
of a simulation, in that we can be certain of the truthset of variants, but with the added benefit of the 
variants being real differences between two genomes.

Table 1. Summary of the average nucleotide identity (ANI) and number of variants found between each sample and its donor 
genome.

Sample Species ANI (%) GC (%) SNPs Insertions Deletions Total variants

ATCC_33560__202309 Campylobacter jejuni 99.50 30.22 6369 117 106 6592

ATCC_35221__202309 Campylobacter lari 98.64 29.81 16541 57 67 16665

ATCC_25922__202309 Escherichia coli 99.50 50.42 4531 119 242 4892

KPC2__202310 Klebsiella pneumoniae 99.50 57.15 15877 90 78 16045

AJ292__202310 Klebsiella variicola 99.50 57.62 22850 95 98 23043

ATCC_19119__202309 Listeria ivanovii 99.46 37.13 8451 187 259 8897

ATCC_BAA-679__202309 Listeria monocytogenes 99.50 37.98 9090 66 78 9234

ATCC_35897__202309 Listeria welshimeri 99.03 36.35 16953 130 133 17216

AMtb_1__202402 Mycobacterium tuberculosis 99.73 65.62 2102 95 84 2281

ATCC_10708__202309 Salmonella enterica 99.36 52.20 18784 210 189 19183

BPH2947__202310 Staphylococcus aureus 99.48 32.80 7894 95 63 8052

MMC234__202311 Streptococcus dysgalactiae 99.16 39.49 10474 82 100 10656

RDH275__202311 Streptococcus pyogenes 99.50 38.32 5361 60 68 5489

ATCC_17802__202309 Vibrio parahaemolyticus 98.75 45.32 57887 280 304 58471

https://doi.org/10.7554/eLife.98300
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For each sample, we selected a donor genome with average nucleotide identity (ANI; a measure of 
similarity between two genomes) closest to 99.5% (see Truthset and reference generation). We iden-
tified all variants between the sample and donor using minimap2 (Li, 2018) and mummer (Marçais 
et al., 2018), intersected the variant sets, and removed overlaps and indels longer than 50 bp. This 
variant truthset was then applied to the sample’s reference to create a mutated reference, ensuring no 
complications from large structural differences. While incorporating structural variation would be an 
interesting and useful addition to the current work, we chose to focus here on small (<50 bp) variants.

Table 1 summarises the samples used, the number of variants, and the ANI between each sample 
and its donor. We analysed 14 samples from different species, spanning a wide range of GC content 
(30–66%). Despite the variation in SNP counts (2102-57887), the number of indels was consistent 
across samples (see Supplementary file 1b for details).

Data quality
We analysed ONT data basecalled with three different accuracy models – fast, high accuracy (hac), 
and super-accuracy (sup) – along with different read types – simplex and duplex (see Basecalling 
and quality control). Duplex reads are those in which both DNA strands from a single molecule are 
sequenced back-to-back and basecalled together, whereas simplex reads are basecalled only using 
a single DNA strand. The median, unfiltered read identities, calculated by aligning reads to their 
respective assembly, are shown in Figure 1. Duplex reads basecalled with the sup model had the 
highest median read identity of 99.93% (Q32). The Qscore is the logarithmic transformation of the 
read identity, ‍Q = −10 log10 P‍, where ‍P‍ is the read identity. This was followed by duplex hac (99.79% 
[Q27]), simplex sup (99.26% [Q21]), simplex hac (98.31% [Q18]), and simplex fast (94.09% [Q12]). Full 
summary statistics of the reads can be found in Supplementary file 1a.

Which method is the best?
For this study, we benchmarked the performance of seven variant callers on ONT sequencing data: 
BCFtools (v1.19, Danecek et  al., 2021), Clair3 (v1.0.5, Zheng et  al., 2022), DeepVariant (v1.6.0, 
Poplin et al., 2018), FreeBayes (v1.3.7, Garrison, 2012), Longshot (v0.4.5, Edge and Bansal, 2019), 
Medaka(v1.11.3, Oxford Nanopore Technologies, 2023a; Oxford Nanopore Technologies, 2023c), 
and NanoCaller (v3.4.1, Ahsan et al., 2021). In addition, we called variants from each sample’s Illu-
mina data using Snippy (v4.6.0, Seemann, 2015) to act as a performance comparison.

Alignments of ONT reads to each sample’s mutated reference (see Genome and variant truthset) 
were generated with minimap2 and provided to each variant caller (except Medaka, which takes reads 
directly). Variant calls were assessed against the truthset using vcfdist (v2.3.3, Dunn and Narayana-
samy, 2023), classifying each variant as true positive (TP), false positive (FP), or false negative (FN). 
Precision, recall, and the F1 score were calculated for SNPs and indels at each VCF quality score 

Figure 1. Median alignment-based read identity (x-axis) for each sample (points) stratified by basecalling model 
(colours) and read type (y-axis). The Qscore is the logarithmic transformation of the read identity, ‍Q = −10 log10 P‍, 
where ‍P‍ is the read identity.

https://doi.org/10.7554/eLife.98300
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increment. Figure 2 displays the highest F1 scores for each variant caller across samples, basecalling 
models, read types, and variant types.

The F1 score is the harmonic mean of precision and recall and acts as a good metric for overall 
evaluation. From Figure 2 we see that Clair3 and DeepVariant produce the highest F1 scores for 
both SNPs and indels with both read types. Unsurprisingly, the sup basecalling model leads to the 
highest F1 scores across all variant callers, though hac is not much lower. SNP F1 scores of 99.99% 
are obtained from Clair3 and DeepVariant on sup-basecalled data. For indel calls, Clair3 achieves 
F1 scores of 99.53% and 99.20% for sup simplex and duplex, respectively, while DeepVariant scores 

Figure 2. The highest F1 score for each sample (points), stratified by basecalling model (colours), variant type 
(rows), and read type (columns). Illumina results (green) are included as a reference and do not have different 
basecalling models or read types. Note, Longshot does not provide indel calls.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Precision at the highest F1 score for each sample (points), stratified by basecalling model 
(colours), variant type (rows), and read type (columns).

Figure supplement 2. Recall at the highest F1 score for each sample (points), stratified by basecalling model 
(colours), variant type (rows), and read type (columns).

Figure supplement 3. Clair3 sup model F1 score (y-axis) at the highest F1 score for each sample (x-axis), stratified 
by variant type (rows), and read type (shapes).

Figure supplement 4. Clair3 sup model precision (y-axis) at the highest F1 score for each sample (x-axis), stratified 
by variant type (rows), and read type (shapes).

Figure supplement 5. Clair3 sup model recall (y-axis) at the highest F1 score for each sample (x-axis), stratified by 
variant type (rows), and read type (shapes).

https://doi.org/10.7554/eLife.98300
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99.61% and 99.22%. The higher depth of the simplex reads likely explains why the best duplex indel 
F1 scores are slightly lower than simplex (see How much read depth is enough?). The precision and 
recall values at the highest F1 score can be seen in Figure 2—figure supplement 1 and Figure 2—
figure supplement 2 (see Supplementary file 1c for a summary and Supplementary file 1d for full 
details) as well as results broken down by species for Clair3 with the sup model in Figure 2—figure 

Figure 3. Precision and recall curves for each variant caller (colours and line styles) on sequencing data basecalled with the sup model, stratified 
by variant type (rows) and read type (columns) and aggregated across samples. The curves are generated by using increasing variant quality score 
thresholds to filter variants and calculating precision and recall at each threshold. The lowest threshold is the lower right part of the curve, moving to the 
highest at the top left. Note, Longshot does not provide indel calls.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Precision and recall curves for each variant caller (colours and line styles) on sequencing data basecalled with the hac model, 
stratified by variant type (rows) and ready type (columns).

Figure supplement 2. Precision and recall curves for each variant caller (colours and line styles) on sequencing data basecalled with the fast model, 
stratified by variant type (rows).

https://doi.org/10.7554/eLife.98300


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Microbiology and Infectious Disease

Hall et al. eLife 2024;13:RP98300. DOI: https://doi.org/10.7554/eLife.98300 � 7 of 23

supplement 3, Figure 2—figure supplement 4, and Figure 2—figure supplement 5. Reads base-
called with the fast model are an order of magnitude worse than the hac and sup models.

Figure 3 shows the precision-recall curves for the sup basecalling model (see Figure 3—figure 
supplement 1 and Figure 3—figure supplement 2 for the hac and fast model curves, respectively) 
for each variant and read type – aggregated across samples to produce a single curve for each variant 
caller. Due to the right-angle-like shape of the Clair3 and DeepVariant curves, filtering based on 
low-value variant quality improves precision considerably for variant calls, without losing much recall. 
A similar pattern holds true for BCFtools SNP calls. The best Clair3 and DeepVariant F1 scores are 
obtained with no quality filtering on sup data, except for indels from duplex data where a quality filter 
of 4 provides the best F1. See Supplementary file 1e for the full details.

A striking feature of Figure 2 and Figure 3 is the comparison of deep learning-based variant callers 
(Clair3, DeepVariant, Medaka, and NanoCaller) to Illumina. For all variant and read types with hac or 
sup data, these deep learning methods match or surpass Illumina, with median best SNP and indel 
F1 scores of 99.45% and 95.76% for Illumina. Clair3 and DeepVariant, in particular, perform an order 
of magnitude better. Traditional variant callers (Longshot, BCFtools, and FreeBayes) match or slightly 
exceed Illumina for SNP calls with hac and sup data. FreeBayes matches Illumina for indel calls, but 
BCFtools shows reduced indel accuracy across all models and read types. Fast model ONT data has a 
lower F1 score than Illumina, only achieving parity in the best case for SNPs.

Understanding missed and false calls
Conventional wisdom may leave readers surprised at finding that ONT data can provide better variant 
calls than Illumina. In order to convince ourselves (and others) of these results, we investigate the main 
causes for this difference.

Given the ONT read-level accuracy now exceeding Q20 (Figure  1; simplex sup), read length 
remains the primary difference between the two technologies. Figure 2—figure supplement 1 shows 
that Illumina’s lower F1 score is mainly due to recall rather than precision (Figure 2—figure supple-
ment 2). We hypothesised that Illumina errors are related to alignment difficulties in repetitive or 
variant-dense regions due to its shorter reads.

Figure  4 shows that variant density and repetitive regions account for many false negatives, 
lowering recall. We define variant density as the number of variants (missed or called) in a 100 bp 
window around each call. Figure 4a reveals a bimodal distribution of variant density for Illumina FNs, 
with a second peak at 20 variants per 100 bp, unlike the distribution for TP and FP calls. In contrast, 
Clair3, a top-performing ONT variant caller, shows no bimodal distribution and few missed or false 
calls at this density (Figure 4b). Illumina reads struggle to align in variant-dense regions, whereas ONT 
reads can (Figure 4—figure supplement 1), as 20 variants per 100 bp represents a larger portion of 
an Illumina read than an ONT read.

We also assessed the change in F1 score when masking repetitive regions of the genome (see Iden-
tifying repetitive regions). Due to their shorter length, Illumina reads struggle more with alignment 
in these regions compared to ONT reads (Treangen and Salzberg, 2011). Figure 4—figure supple-
ment 2 highlights missed variants and alignment gaps in Illumina data. This is further quantified by 
the increase in Illumina’s F1 score when repetitive regions are masked (Figure 4c), rising from 99.3% 
to 99.7%. In contrast, Clair3 100× simplex sup data shows only a 0.003% increase.

In terms of ONT missed calls, a variant-dense repetitive region in the E. coli sample ATCC_25922 
was the cause of the simplex sup SNP outlier from Figure 2 (see Appendix 2). In addition, the duplex 
sup SNP outlier was caused by very low read depth for sample KPC2_202310 (K. pneumoniae; 
Appendix 2).

Indels have traditionally been a systematic weakness for ONT sequencing data, primarily driven 
by variability in the length of homopolymeric regions as determined by basecallers (Delahaye and 
Nicolas, 2021). Having seen the drastic improvements in read accuracy in Figure 1, we sought to 
determine whether FP indel calls are still a byproduct of homopolymer-driven errors.

When analysing Clair3, the best-performing ONT caller, we found that reads basecalled with the 
fast model often miscalculate homopolymer lengths by 1 or 2 bp (Figure 5), though there is an equal 
number of non-homopolymeric false indel calls. In contrast, the sup model significantly reduced false 
indel calls, matching Illumina’s error profile. Of the eight false indel calls by Clair3 on sup data, five 
were homopolymers and three occurred within one or two bases of another insertion with a similar 

https://doi.org/10.7554/eLife.98300
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sequence. The hac model improved over the fast model but still produced notable false indel calls, 
mainly miscalculating homopolymers by 1 bp. DeepVariant showed a similar error profile to Clair3 
(Figure 5—figure supplement 2), with 8/11 false indels being homopolymers. FreeBayes (Figure 5—
figure supplement 3), Medaka (Figure 5—figure supplement 4), and NanoCaller (Figure 5—figure 
supplement 5) performed similarly, while BCFtools (Figure  5—figure supplement 1) exhibited a 
persistent bias for homopolymeric indel errors, even with sup model reads. This indicates that while 
the sup basecaller reduces bias, deep learning methods like Clair3 and DeepVariant further mitigate it 
by training models to account for these systematic issues. An honourable mention goes to FreeBayes, 
a traditional variant caller that handles errors without inherent bias.

Figure 4. Impact of variant density and repetitive regions on Illumina variant calling. Variant density is the number of (true or false) variants in a 100 bp 
window centred on a call. (a and b) The distribution of variant densities for true positive (TP), false positive (FP), and false negative (FN) calls. The y-axis, 
percent, indicates the percent of all calls of that decision that fall within the density bin on the x-axis. Illumina calls, aggregated across all samples, are 
shown in a, while b shows Clair3 calls from simplex sup-basecalled reads at 100× depth. (c) Impact of repetitive regions on the F1 score (y-axis) for Clair3 
(100× simplex sup) and Illumina. The x-axis indicates whether variants that fall within repetitive regions are excluded from the calculation of the F1 score. 
Points indicate the F1 score for a single sample.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Read pileup in a variant-dense region in the genome of sample ATCC_17802__202309.

Figure supplement 2. Read pileup around two repetitive regions (horizontal blue bars) in the genome of sample AMtb_1__202401.

https://doi.org/10.7554/eLife.98300
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Figure 5. Relationship between indel length (y-axis) and homopolymer length (x-axis) for false positive (FP) indel calls for Clair3 100× simplex fast (top 
left), hac (top right), and sup (lower left) calls. Illumina is shown in the lower right for reference. The vertical red line indicates the threshold above which 
we deem a run of the same nucleotide to be a ‘true’ homopolymer. Indel length is the number of bases inserted/deleted for an indel, whereas the 
homopolymer length indicates how long the tract of the same nucleotide is after the indel. The colour of a cell indicates number of FP indels of that 
indel-homopolymer length combination.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Relationship between indel length (x-axis) and homopolymer length (y-axis) for false positive (FP) indel calls for BCFtools 100× 
simplex fast (top left), hac (top right), and sup (lower left) calls.

Figure supplement 2. Relationship between indel length (x-axis) and homopolymer length (y-axis) for false positive (FP) indel calls for DeepVariant 
100× simplex fast (top left), hac (top right), and sup (lower left) calls.

Figure supplement 3. Relationship between indel length (x-axis) and homopolymer length (y-axis) for false positive (FP) indel calls for FreeBayes 100× 
simplex fast (top left), hac (top right), and sup (lower left) calls.

Figure supplement 4. Relationship between indel length (x-axis) and homopolymer length (y-axis) for false positive (FP) indel calls for Medaka 100× 
simplex fast (top left), hac (top right), and sup (lower left) calls.

Figure 5 continued on next page

https://doi.org/10.7554/eLife.98300
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Lastly, we did not see any systematic indel bias in the context of missed calls (Figure 5—figure 
supplements 6–11), especially when compared to Illumina indel error profiles.

How much read depth is enough?
Having established the accuracy of variant calls from ‘full-depth’ ONT datasets (100×), we investi-
gated the required ONT read depth to achieve desired precision or recall, which varies by use case 
and resource availability. This is particularly relevant for ONT, where sequencing can be stopped in 
real time once ‘sufficient’ data is obtained.

We subsampled each ONT read set with rasusa (v0.8.0, Hall, 2022) to average depths of 5×, 10×, 
25×, 50×, and 100× and called variants with these reduced sets. Due to limited duplex depth, 50× was 
the maximum used for duplex reads, while 100× was used for simplex reads.

Figure 6 and Figure 7 show F1 score, precision, and recall as functions of read depth for SNPs and 
indels. Precision and recall decrease as read depth is reduced, notably below 25×. Remarkably, Clair3 
or DeepVariant on 10× ONT sup simplex data provides F1 scores consistent with, or better than, full-
depth Illumina for both SNPs and indels (see Supplementary file 1a for Illumina read depths). The 
same is true for duplex hac or sup reads.

With 5× of ONT read depth the F1 score is lower than Illumina for almost all variant caller and 
basecalling models. However, BCFtools surprisingly produces SNP F1 scores on par with Illumina on 
duplex sup reads. Despite the inferior F1 scores across the board at 5×, SNP precision remains above 
Illumina with duplex reads for all methods except NanoCaller, and calls from Clair3 and DeepVariant 
simplex sup data.

What computational resources do I need?
The final consideration for variant calling is the required computational resources. While this may be 
trivial for those with high-performance computing (HPC) access, many analyse bacterial genomes on 
personal computers due to their smaller size compared to eukaryotes. The main resource constraints 
are memory and runtime, especially for aligning reads to a reference and calling variants. Additionally, 
if working with raw (pod5) ONT data, basecalling is also a resource-intensive step.

Figure 8 shows the runtime (seconds per megabase of sequencing data) and maximum memory 
usage for read alignment and variant calling (see Figure 8—figure supplement 1 and Supplemen-
tary file 1g for basecalling GPU runtimes). DeepVariant was the slowest (median 5.7  s/Mbp) and 
most memory-intensive (median 8 GB), with a runtime of 38 min for a 4 Mbp genome at 100× depth. 
FreeBayes had the largest runtime variation, with a maximum of 597 s/Mbp, equating to 2.75 days for 
the same genome. In contrast, basecalling with a single GPU using the super-accuracy model required 
a median runtime of 0.77 s/Mbp, or just over 5 min for a 4 Mbp genome at 100× depth. Clair3 had a 
median memory usage of 1.6 GB and a runtime of 0.86 s/Mbp (<6 min for a 4 Mbp 100× genome). 
Full details are given in Supplementary file 1f.

Figure supplement 5. Relationship between indel length (x-axis) and homopolymer length (y-axis) for false positive (FP) indel calls for NanoCaller 100× 
simplex fast (top left), hac (top right), and sup (lower left) calls.

Figure supplement 6. Relationship between indel length (x-axis) and homopolymer length (y-axis) for false negative (FN) indel calls for Clair3 100× 
simplex fast (top left), hac (top right), and sup (lower left) calls.

Figure supplement 7. Relationship between indel length (x-axis) and homopolymer length (y-axis) for false negative (FN) indel calls for BCFtools 100× 
simplex fast (top left), hac (top right), and sup (lower left) calls.

Figure supplement 8. Relationship between indel length (x-axis) and homopolymer length (y-axis) for false negative (FN) indel calls for DeepVariant 
100× simplex fast (top left), hac (top right), and sup (lower left) calls.

Figure supplement 9. Relationship between indel length (x-axis) and homopolymer length (y-axis) for false negative (FN) indel calls for FreeBayes 100× 
simplex fast (top left), hac (top right), and sup (lower left) calls.

Figure supplement 10. Relationship between indel length (x-axis) and homopolymer length (y-axis) for false negative (FN) indel calls for Medaka 100× 
simplex fast (top left), hac (top right), and sup (lower left) calls.

Figure supplement 11. Relationship between indel length (x-axis) and homopolymer length (y-axis) for false negative (FN) indel calls for NanoCaller 
100× simplex fast (top left), hac (top right), and sup (lower left) calls.

Figure 5 continued

https://doi.org/10.7554/eLife.98300
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Discussion
In this study, we evaluated the accuracy of bacterial variant calls derived from ONT using both conven-
tional and deep learning-based tools. Our findings show that deep learning approaches, specifically 
Clair3 and DeepVariant, deliver high accuracy in SNP and indel calls from the latest high-accuracy 
basecalled ONT data, outperforming Illumina-based methods, with Clair3 achieving median F1 scores 
of 99.99% for SNPs and 99.53% for indels.

Our dataset comprised deep sequencing of 14 bacterial species using the latest ONT R10.4.1 
flow cells, with a 5 kHz sampling rate and complementary deep Illumina sequencing. Consistent with 
previous studies (Sanderson et al., 2024; Sanderson et al., 2023; Sereika et al., 2022), we observed 

Figure 6. Effect of read depth (x-axis) on the highest SNP F1 score, and precision and recall at that F1 score (y-axis), for each variant caller (colours). 
Each column is a basecall model and read type combination. The grey bars indicate the number of samples with at least that much read depth in the full 
read set. Samples with less than that depth were not used to calculate that depth’s metrics. Bars on each point at each depth depict the 95% confidence 
interval. The horizontal red dashed line is the full-depth Illumina value for that metric, with the red bands indicating the 95% confidence interval.

https://doi.org/10.7554/eLife.98300
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read accuracies greater than 99.0% (Q20) and 99.9% (Q30) for simplex and duplex reads, respectively 
(Figure 1).

The high-quality sequencing data enabled the creation of near-perfect reference genomes, crucial 
for evaluating variant calling accuracy. While not claiming perfection for these genomes, we consider 
them to be as accurate as current technology allows (or as philosophically possible) (Wick et al., 2023; 
Sereika et al., 2022).

To benchmark variant calling, we utilised a variant truthset generated by applying known differ-
ences between closely related genomes to a reference. This pseudo-real method offers a realistic 
evaluation framework and a reliable truthset for assessing variant calling accuracy (Li, 2014; Li et al., 
2018).

Figure 7. Effect of read depth (x-axis) on the highest indel F1 score, and precision and recall at that F1 score (y-axis), for each variant caller (colours). 
Each column is a basecall model and read type combination. The grey bars indicate the number of samples with at least that much read depth in the full 
read set. Samples with less than that depth were not used to calculate that depth’s metrics. Bars on each point at each depth depict the 95% confidence 
interval. The horizontal red dashed line is the full-depth Illumina value for that metric, with the red bands indicating the 95% confidence interval.

https://doi.org/10.7554/eLife.98300
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Our comparison of variant calling methods showed that deep learning techniques achieved the 
highest F1 scores for SNP and indel detection, indicating their potential in genomic analyses and 
suggesting a shift towards more advanced computational approaches. While the superior perfor-
mance of these methods has been established for human variant calls (Olson et al., 2022; Olson 
et al., 2023), our results confirm their effectiveness for bacterial genomes as well.

Our investigation into missed and false variant calls highlights inherent challenges posed by 
sequencing technology limitations, particularly read length, alignment in complex regions, and indel 
length in homopolymers. We found that variant density and repetitive regions hinder Illumina variant 
calling due to short read alignment issues. However, we found recent improvements in ONT read 
accuracy and deep learning-based variant callers have mitigated homopolymer-induced FP indel calls, 
previously a major systematic issue with ONT data (Delahaye and Nicolas, 2021; Sereika et  al., 
2022).

Having established the accuracy and error sources of modern methods, we examined the impact 
of read depth on variant calling accuracy. Our results show that high accuracy is achievable at reduced 
read depths of 10×, especially with super-accuracy basecalling models and deep learning algo-
rithms. This is significant for resource-limited projects, as 10× super-accuracy simplex data can match 
or exceed Illumina accuracy. For optimal clinical and public health applications, we recommend a 
minimum of 25× depth. Notably, 5× depth with duplex super-accuracy ONT data achieved SNP accu-
racy comparable to Illumina. Having such confidence in low-depth calls will no doubt be a boon for 
many clinical and public health applications where sequencing direct-from-sample is desired (Sheka 
et al., 2021; Street et al., 2020; Chiu and Miller, 2019; Nilgiriwala et al., 2023).

Lastly, considering computational resource requirements is crucial, especially for those without 
HPC facilities (Musila, 2022; Hoenen et al., 2016; Faria et al., 2016). Our findings show a wide range 
of demands among variant calling methods, with the worst-case scenario (FreeBayes) taking over 2 

Figure 8. Computational resource usage of alignment and each variant caller (y-axis and colours). The top panel 
shows the maximum memory usage (x-axis) and the lower panel shows the runtime as a function of the CPU time 
(seconds) divided by the number of basepairs in the readset (seconds per megabasepairs; x-axis). Each point 
represents a single run across read depths, basecalling models, read types, and samples for that variant caller (or 
alignment). s=seconds; m=minutes; MB = megabytes; GB = gigabytes; Mbp = megabasepairs.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Runtime of basecalling Oxford Nanopore Technologies (ONT) data with different models 
on GPUs.

https://doi.org/10.7554/eLife.98300
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days. Most methods, however, run in less than 40 min, with Clair3 having a median runtime of about 
6 minutes. All methods use less than 8 GB of memory, making them compatible with most laptops. 
Basecalling is generally faster than variant calling, assuming GPU access, which is likely considered 
when acquiring ONT-related equipment.

There are three main limitations to this work. The first is that we only assess small variants and 
ignored structural variants. Zhou et al. benchmarked structural variant calling from ONT data (Zhou 
et al., 2019), though this focused on human sequencing data. Generating a truthset of structural 
variants between two genomes is, in itself, a difficult task. However, we believe such an undertaking 
with a thorough investigation of structural variant calling methods for bacterial genomes would be 
highly beneficial.

The second limitation is not using a diverse range of ANI values for selecting the variant donor 
genomes when generating the truthset. Previous work from Bush et al. examined different diversity 
thresholds for selecting reference genomes when calling variants from Illumina data, and found it 
to be one of the main differentiating factors in accuracy (Bush et al., 2020). Our results mirror this 
to an extent, showing the reduction in Illumina accuracy as the variant density increases, though it 
would be interesting to determine whether the divergence in reference genomes has an affect on 
ONT variant calling accuracy. Nevertheless, to maintain our focus on the nuances of variant calling 
methods, including basecalling models, read types, error types, and the influence of read depth, we 
decided that introducing another layer of complexity into our benchmark could potentially obscure 
some of the insights.

The third limitation is that Illumina sequencing was performed on different models: three samples 
on the NextSeq 500 and the rest on the NextSeq 2000. While differences in error rates exist between 
Illumina instruments, no specific assessment has been made between these NextSeq models (Stoler 
and Nekrutenko, 2021). However, the absolute differences in error rates are minor and unlikely to 
impact our study significantly. This is particularly relevant since Illumina’s lower F1 score compared to 
ONT was due to missed calls rather than erroneous ones.

In conclusion, this study comprehensively evaluates bacterial variant calls using ONT, highlighting 
the superior performance of deep learning tools, particularly Clair3 and DeepVariant, in SNP and indel 
detection. Our extensive dataset and rigorous benchmarking demonstrate significant advancements 
in sequencing accuracy with the latest ONT technologies. Improvements in ONT read accuracy and 
deep learning variant callers have mitigated previous challenges like homopolymer-associated errors. 
We also found that high accuracy can be achieved at lower read depths, making these methods prac-
tical for resource-limited settings. This capability marks a significant step in making advanced genomic 
analysis more accessible and impactful.

Methods
Sequencing
Bacterial isolates were streaked onto agar plates and grown overnight at 37°C. M. tuberculosis, S. 
pyogenes, and S. dysgalactiae subsp. equisimilis were grown in liquid media of 7H9 or TSB with 
shaking until reaching high cell density (OD ∼ 1; see Appendix 1 for Streptococcus sample selection). 
The cultures were centrifuged at 13,000  rpm for 10  min and cell pellets were collected. Bacteria 
were lysed with appropriate enzymatic treatment except for Mycobacterium and Streptococcus, 
which were lysed by bead beating (PowerBead, 0.5 mm glass beads [13116-50] or Lysing Matrix Y 
[116960050-CF] and Precellys or TissueLyser [QIAGEN]). DNA extraction was performed by sodium 
acetate precipitation and further Ampure XP bead purification (Beckman Coulter) or either Beckman 
Coulter GenFind V2 (A41497) or QIAGEN Blood and Tissue DNEasy kit (69506). Illumina library prepa-
ration was performed using Illumina DNA prep (20060059) using quarter reagents and Illumina DNA/
RNA UD Indexes. Short-read whole-genome sequencing was performed on an Illumina NextSeq 
500 for the M. tuberculosis (AMtb_1__202402), S. pyogenes (RDH275__202311), and S. dysgalac-
tiae (MMC234__202311) samples and a NextSeq 2000 for all other samples, with a 150 bp PE kit. 
ONT library preparation was performed using either Rapid Barcoding Kit V14 (SQK-RBK114.96) or 
Native Barcoding Kit V14 (SQK-NBD114.96). Long-read whole-genome sequencing was performed 
on a MinION Mk1b or GridION using R10.4.1 MinION flow cells (FLO-MIN114). Supplementary file 1i 
contains detailed information about the instrument models and multiplexing for each sample.

https://doi.org/10.7554/eLife.98300
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Basecalling and quality control
Raw ONT data were basecalled with Dorado (v0.5.0, Oxford Nanopore Technologies, 2023a) using 
the v4.3.0 models fast (dna_r10.4.1_e8.2_400bps_fast@v4.3.0), hac (dna_r10.4.1_e8.2_400bps_hac@
v4.3.0), and sup (dna_r10.4.1_e8.2_400bps_sup@v4.3.0). Duplex reads were additionally generated 
using the duplex subcommand of Dorado with hac and sup models (fast is not compatible with 
duplex). All runs were basecalled on an Nvidia A100 GPU to ensure consistency. Reads shorter than 
1000bp or with a quality score below 10 were removed with SeqKit (v2.6.1 Shen et al., 2016) and 
each readset was randomly subsampled to a maximum mean read depth of 100x with Rasusa (v0.8.0 
Hall, 2022).

Illumina reads were preprocessed with fastp (v0.23.4, Chen et  al., 2018) to remove adapter 
sequences, trim low-quality bases from the ends of the reads, and remove duplicate reads and reads 
shorter than 30bp.

Genome assembly
Ground truth assemblies were generated for each sample as per Wick et al., 2023. Briefly, the unfil-
tered ONT simplex sup reads were filtered with Filtlong (v0.2.1, Wick, 2021) to keep the best 90% 
(-p 90) and fastp (default settings) was used to process the raw Illumina reads. We performed 24 
separate assemblies using the Extra-thorough assembly instructions in Trycycler’s (v0.5.4, Wick et al., 
2021) documentation. Assemblies were combined into a single consensus assembly with Trycycler and 
Illumina reads were used to polish that assembly using Polypolish (v0.6.0; default settings, Wick and 
Holt, 2022) and Pypolca (v0.3.1, Bouras et al., 2024; Zimin and Salzberg, 2020) with --careful. 
Manual curation and investigation of all polishing changes was made as per Wick et al., 2023 (e.g. for 
very long homopolymers, the correct length was chosen as per Illumina reads support).

Truthset and reference generation
To generate the variant truthset for each sample, we identified all variants between the sample and 
a donor genome. To select the variant-donor genome for a given sample, we downloaded all RefSeq 
assemblies for that species (up to a maximum of 10,000) using genome_updater (v0.6.3, Piro, 2023). 
ANI was calculated between each downloaded genome and the sample reference using skani (v0.2.1, 
Shaw and Yu, 2023). We only kept genomes with an ANI, ‍a‍, such that ‍98.40% ≤ a <= 99.80%‍. In 
addition, we excluded any genomes with CheckM (Parks et al., 2015) completeness less than 98% 
and contamination greater than 5%. We then selected the genome with the ANI closest to 99.50%. 
Our reasoning for this range exclusion is that genomes with ‍a > 99.80%‍ are almost always members of 
the same sequence type (ST) (Rodriguez-R et al., 2024; Viver et al., 2024), and we found very little 
variation between them (data not shown).

We then identified variants between the reference and donor genomes using both minimap2 
(v2.26, Li, 2018) and mummer (v4.0.0rc1, Marçais et al., 2018). We took the intersection of the vari-
ants identified by minimap2 and mummer into a single variant call file (VCF) and used BCFtools (v1.19, 
Danecek et al., 2021) to decompose multi-nucleotide polymorphisms (MNPs) into SNPs, left-align 
and normalise indels, remove duplicate and overlapping variants, and exclude any indel longer than 
50 bp. The resulting VCF file is our truthset.

Next, we generated a mutated reference genome, which we used as the reference against which 
variants were called by the different methods we assess. BCFtools’ consensus subcommand was 
used to apply the truthset of variants to the sample reference, thus producing a mutated reference.

Alignment and variant calling
ONT reads were aligned to the mutated reference with minimap2 using options --cs --MD -aLx 
map-ont and output to a BAM alignment file.

Variant calling was performed from the alignment files with BCFtools (v1.19, Danecek et al., 2021), 
Clair3 (v1.0.5, Zheng et  al., 2022), DeepVariant (v1.6.0, Poplin et  al., 2018), FreeBayes (v1.3.7, 
Garrison, 2012), Longshot (v0.4.5, Edge and Bansal, 2019), and NanoCaller (v3.4.1, Ahsan et al., 
2021). In addition, variant calling was performed directly from the reads for Medaka (v1.11.3, Oxford 
Nanopore Technologies, 2023b) as Medaka does its own alignment with minimap2. Individual 
parameters used for each variant caller can be found in the accompanying GitHub repository (Hall, 
2024a; Hall, 2023).

https://doi.org/10.7554/eLife.98300
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Where a variant caller provided an option to set the expected ploidy, haploid was given. In addition, 
where a minimum read depth or base quality option was available, a value of 2 and 10, respectively, 
was used in order to try and make downstream assessment and filtering consistent across callers.

For Clair3, the pretrained models for Dorado model v4.3.0 provided by ONT were used (Oxford 
Nanopore Technologies, 2023c). However, as no fast model is available, we used the hac model with 
the fast-basecalled reads. The pretrained model option --model_type ONT_R104 was used with 
DeepVariant, and the default model was used for NanoCaller. For Medaka, the provided v4.3.0 sup 
and hac models were used, with the hac model being used for fast data as no fast model is available.

For the Illumina variant calls that act as a benchmark to compare ONT against, we chose Snippy 
(Seemann, 2015) due to it being tailored for haploid genomes and being one of the best performing 
variant callers on Illumina data (Bush et al., 2020). Snippy performs alignment of reads with BWA-
MEM (Li, 2013) and calls variants with FreeBayes.

VCFs were then filtered to remove overlapping variants, make heterozygous calls homozygous for 
the allele with the most depth, normalise and left-align indels, break MNPs into SNPs, and remove 
indels longer than 50 bp, all with BCFtools.

Variant call assessment
Filtered VCFs were assessed with vcfdist (v2.3.3, Dunn and Narayanasamy, 2023) using the truth 
VCFs and mutated references from Truthset and reference generation. We disabled partial credit with 
--credit-threshold 1.0 and set the maximum variant quality threshold (-mx) to the maximum 
in the VCF being assessed.

Identifying repetitive regions
To identify repetitive regions in the mutated reference, we used the following mummer utilities. 
nucmer --maxmatch --nosimplify to align the reference against itself and retain non-unique 
alignments. We then passed the output into show-coords -rTH -I 60 to obtain the coordinates 
for all alignments with an identity of 60% or greater. Alignments where the start and end coordinates 
of the alignment do not match are considered as repeats and these are output in the BED format, with 
intervals being merged with BEDtools (Quinlan and Hall, 2010).

Code availability
All code to perform the analyses in this work are available on GitHub and archived on Zenodo (Hall, 
2024a; Hall, 2023).
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The following datasets were generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Hall MB, Wick RR, 
Judd LM, Nguyen 
ANT, Steinig EJ, 
Xie O, Davies MR, 
Seemann T, Stinear 
TP, Coin LJM

2024 Sequencing data from: 
Benchmarking reveals 
superiority of deep learning 
variant callers on bacterial 
nanopore sequence data

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA1087001/

NCBI BioProject, 
PRJNA1087001

Wick RR, Judd LM, 
Stinear TP

2023 ATCC genome sequencing https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA1042815/

NCBI BioProject, 
PRJNA1042815

References
Ahsan MU, Liu Q, Fang L, Wang K. 2021. NanoCaller for accurate detection of SNPs and indels in difficult-to-

map regions from long-read sequencing by haplotype-aware deep neural networks. Genome Biology 22:261. 
DOI: https://doi.org/10.1186/s13059-021-02472-2, PMID: 34488830

Bertels F, Silander OK, Pachkov M, Rainey PB, van Nimwegen E. 2014. Automated reconstruction of whole-
genome phylogenies from short-sequence reads. Molecular Biology and Evolution 31:1077–1088. DOI: https://​
doi.org/10.1093/molbev/msu088, PMID: 24600054

Bouras G, Judd LM, Edwards RA, Vreugde S, Stinear TP, Wick RR. 2024. How low can you go? Short-read 
polishing of Oxford Nanopore bacterial genome assemblies. Microbial Genomics 10:001254. DOI: https://doi.​
org/10.1099/mgen.0.001254, PMID: 38833287

Bush SJ, Foster D, Eyre DW, Clark EL, De Maio N, Shaw LP, Stoesser N, Peto TEA, Crook DW, Walker AS. 2020. 
Genomic diversity affects the accuracy of bacterial single-nucleotide polymorphism-calling pipelines. 
GigaScience 9:giaa007. DOI: https://doi.org/10.1093/gigascience/giaa007, PMID: 32025702

Bush SJ. 2021. Generalizable characteristics of false-positive bacterial variant calls. Microbial Genomics 
7:000615. DOI: https://doi.org/10.1099/mgen.0.000615, PMID: 34346861

Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–
i890. DOI: https://doi.org/10.1093/bioinformatics/bty560, PMID: 30423086

Chiu CY, Miller SA. 2019. Clinical metagenomics. Nature Reviews. Genetics 20:341–355. DOI: https://doi.org/10.​
1038/s41576-019-0113-7, PMID: 30918369

Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, 
Davies RM, Li H. 2021. Twelve years of SAMtools and BCFtools. GigaScience 10:giab008. DOI: https://doi.org/​
10.1093/gigascience/giab008, PMID: 33590861

Delahaye C, Nicolas J. 2021. Sequencing DNA with nanopores: Troubles and biases. PLOS ONE 16:e0257521. 
DOI: https://doi.org/10.1371/journal.pone.0257521, PMID: 34597327

Dunn T, Narayanasamy S. 2023. vcfdist: accurately benchmarking phased small variant calls in human genomes. 
Nature Communications 14:8149. DOI: https://doi.org/10.1038/s41467-023-43876-x, PMID: 38071244

Edge P, Bansal V. 2019. Longshot enables accurate variant calling in diploid genomes from single-molecule long 
read sequencing. Nature Communications 10:4660. DOI: https://doi.org/10.1038/s41467-019-12493-y, PMID: 
31604920

Faria NR, Sabino EC, Nunes MRT, Alcantara LCJ, Loman NJ, Pybus OG. 2016. Mobile real-time surveillance of 
Zika virus in Brazil. Genome Medicine 8:97. DOI: https://doi.org/10.1186/s13073-016-0356-2, PMID: 27683027

Garrison E. 2012. Haplotype-based variant detection from short-read sequencing. arXiv. DOI: https://doi.org/10.​
48550/arXiv.1207.3907

Gorrie CL, Da Silva AG, Ingle DJ, Higgs C, Seemann T, Stinear TP, Williamson DA, Kwong JC, Grayson ML, 
Sherry NL, Howden BP. 2021. Key parameters for genomics-based real-time detection and tracking of 
multidrug-resistant bacteria: a systematic analysis. The Lancet Microbe 2:e575–e583. DOI: https://doi.org/10.​
1016/S2666-5247(21)00149-X

Hall M. 2022. Rasusa: Randomly subsample sequencing reads to a specified coverage. Journal of Open Source 
Software 7:3941. DOI: https://doi.org/10.21105/joss.03941

Hall MB. 2023. NanoVarBench: evaluating nanopore-based bacterial variant calling. 02c0a51. Github. https://​
github.com/mbhall88/NanoVarBench

Hall MB. 2024a. Mbhall88/nanovarbench. preprint. Zenodo. https://doi.org/10.5281/zenodo.10820970
Hall MB. 2024b. NanoVarBench variant truthset files. v1. Zenodo. https://doi.org/10.5281/zenodo.10867171
Hoenen T, Groseth A, Rosenke K, Fischer RJ, Hoenen A, Judson SD, Martellaro C, Falzarano D, Marzi A, 

Squires RB, Wollenberg KR, de Wit E, Prescott J, Safronetz D, van Doremalen N, Bushmaker T, Feldmann F, 
McNally K, Bolay FK, Fields B, et al. 2016. Nanopore sequencing as a rapidly deployable ebola outbreak tool. 
Emerging Infectious Diseases 22:331–334. DOI: https://doi.org/10.3201/eid2202.151796, PMID: 26812583

Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. [arXiv]. https://doi.​
org/10.48550/arXiv.1303.3997

Li H. 2014. Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics 
30:2843–2851. DOI: https://doi.org/10.1093/bioinformatics/btu356, PMID: 24974202

https://doi.org/10.7554/eLife.98300
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1087001/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1087001/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1087001/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1042815/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1042815/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1042815/
https://doi.org/10.1186/s13059-021-02472-2
http://www.ncbi.nlm.nih.gov/pubmed/34488830
https://doi.org/10.1093/molbev/msu088
https://doi.org/10.1093/molbev/msu088
http://www.ncbi.nlm.nih.gov/pubmed/24600054
https://doi.org/10.1099/mgen.0.001254
https://doi.org/10.1099/mgen.0.001254
http://www.ncbi.nlm.nih.gov/pubmed/38833287
https://doi.org/10.1093/gigascience/giaa007
http://www.ncbi.nlm.nih.gov/pubmed/32025702
https://doi.org/10.1099/mgen.0.000615
http://www.ncbi.nlm.nih.gov/pubmed/34346861
https://doi.org/10.1093/bioinformatics/bty560
http://www.ncbi.nlm.nih.gov/pubmed/30423086
https://doi.org/10.1038/s41576-019-0113-7
https://doi.org/10.1038/s41576-019-0113-7
http://www.ncbi.nlm.nih.gov/pubmed/30918369
https://doi.org/10.1093/gigascience/giab008
https://doi.org/10.1093/gigascience/giab008
http://www.ncbi.nlm.nih.gov/pubmed/33590861
https://doi.org/10.1371/journal.pone.0257521
http://www.ncbi.nlm.nih.gov/pubmed/34597327
https://doi.org/10.1038/s41467-023-43876-x
http://www.ncbi.nlm.nih.gov/pubmed/38071244
https://doi.org/10.1038/s41467-019-12493-y
http://www.ncbi.nlm.nih.gov/pubmed/31604920
https://doi.org/10.1186/s13073-016-0356-2
http://www.ncbi.nlm.nih.gov/pubmed/27683027
https://doi.org/10.48550/arXiv.1207.3907
https://doi.org/10.48550/arXiv.1207.3907
https://doi.org/10.1016/S2666-5247(21)00149-X
https://doi.org/10.1016/S2666-5247(21)00149-X
https://doi.org/10.21105/joss.03941
https://github.com/mbhall88/NanoVarBench
https://github.com/mbhall88/NanoVarBench
https://doi.org/10.5281/zenodo.10820970
https://doi.org/10.5281/zenodo.10867171
https://doi.org/10.3201/eid2202.151796
http://www.ncbi.nlm.nih.gov/pubmed/26812583
https://doi.org/10.48550/arXiv.1303.3997
https://doi.org/10.48550/arXiv.1303.3997
https://doi.org/10.1093/bioinformatics/btu356
http://www.ncbi.nlm.nih.gov/pubmed/24974202


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Microbiology and Infectious Disease

Hall et al. eLife 2024;13:RP98300. DOI: https://doi.org/10.7554/eLife.98300 � 19 of 23

Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34:3094–3100. DOI: https://​
doi.org/10.1093/bioinformatics/bty191, PMID: 29750242

Li H, Bloom JM, Farjoun Y, Fleharty M, Gauthier L, Neale B, MacArthur D. 2018. A synthetic-diploid benchmark 
for accurate variant-calling evaluation. Nature Methods 15:595–597. DOI: https://doi.org/10.1038/s41592-018-​
0054-7, PMID: 30013044

Majidian S, Agustinho DP, Chin CS, Sedlazeck FJ, Mahmoud M. 2023. Genomic variant benchmark: if you cannot 
measure it, you cannot improve it. Genome Biology 24:221. DOI: https://doi.org/10.1186/s13059-023-03061-1, 
PMID: 37798733

Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin A. 2018. MUMmer4: A fast and versatile 
genome alignment system. PLOS Computational Biology 14:e1005944. DOI: https://doi.org/10.1371/journal.​
pcbi.1005944, PMID: 29373581

Musila L. 2022. Genomic outbreak surveillance in resource-poor settings. Nature Reviews. Genetics 23:522–523. 
DOI: https://doi.org/10.1038/s41576-022-00500-w, PMID: 35577990

Nilgiriwala K, Rabodoarivelo MS, Hall MB, Patel G, Mandal A, Mishra S, Andrianomanana FR, Dingle K, 
Rodger G, George S, Crook DW, Hoosdally S, Mistry N, Rakotosamimanana N, Iqbal Z, Grandjean Lapierre S, 
Walker TM. 2023. Genomic sequencing from sputum for tuberculosis disease diagnosis, lineage determination, 
and drug susceptibility prediction. Journal of Clinical Microbiology 61:e0157822. DOI: https://doi.org/10.1128/​
jcm.01578-22, PMID: 36815861

Olson ND, Wagner J, McDaniel J, Stephens SH, Westreich ST, Prasanna AG, Johanson E, Boja E, Maier EJ, 
Serang O, Jáspez D, Lorenzo-Salazar JM, Muñoz-Barrera A, Rubio-Rodríguez LA, Flores C, Kyriakidis K, 
Malousi A, Shafin K, Pesout T, Jain M, et al. 2022. PrecisionFDA Truth Challenge V2: calling variants from short 
and long reads in difficult-to-map regions. Cell Genomics 2:100129. DOI: https://doi.org/10.1016/j.xgen.2022.​
100129, PMID: 35720974

Olson ND, Wagner J, Dwarshuis N, Miga KH, Sedlazeck FJ, Salit M, Zook JM. 2023. Variant calling and 
benchmarking in an era of complete human genome sequences. Nature Reviews. Genetics 24:464–483. DOI: 
https://doi.org/10.1038/s41576-023-00590-0, PMID: 37059810

Oxford Nanopore Technologies. 2023a. Rerio: research release basecalling models and configurations. c0c8ce6. 
Github. https://github.com/nanoporetech/rerio

Oxford Nanopore Technologies. 2023b. Dorado: oxford nanopore’s basecaller. acec121. Github. https://github.​
com/nanoporetech/dorado

Oxford Nanopore Technologies. 2023c. Medaka: sequence correction provided by ONT research. 9df4dee. 
Github. https://github.com/nanoporetech/medaka

Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the quality of microbial 
genomes recovered from isolates, single cells, and metagenomes. Genome Research 25:1043–1055. DOI: 
https://doi.org/10.1101/gr.186072.114, PMID: 25977477

Pei S, Liu T, Ren X, Li W, Chen C, Xie Z. 2021. Benchmarking variant callers in next-generation and third-
generation sequencing analysis. Briefings in Bioinformatics 22:bbaa148. DOI: https://doi.org/10.1093/bib/​
bbaa148

Piro C. 2023. Genome_updater. 78c3fb5. GitHub. https://github.com/pirovc/genome_updater​DOI: https://doi.
org/78c3fb5

Poplin R, Chang P-C, Alexander D, Schwartz S, Colthurst T, Ku A, Newburger D, Dijamco J, Nguyen N, 
Afshar PT, Gross SS, Dorfman L, McLean CY, DePristo MA. 2018. A universal SNP and small-indel variant caller 
using deep neural networks. Nature Biotechnology 36:983–987. DOI: https://doi.org/10.1038/nbt.4235

Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 
26:841–842. DOI: https://doi.org/10.1093/bioinformatics/btq033, PMID: 20110278

Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. 2011. Integrative 
genomics viewer. Nature Biotechnology 29:24–26. DOI: https://doi.org/10.1038/nbt.1754, PMID: 21221095

Rodriguez-R LM, Conrad RE, Viver T, Feistel DJ, Lindner BG, Venter SN, Orellana LH, Amann R, Rossello-Mora R, 
Konstantinidis KT. 2024. An ANI gap within bacterial species that advances the definitions of intra-species 
units. mBio 15:e0269623. DOI: https://doi.org/10.1128/mbio.02696-23, PMID: 38085031

Sanderson ND, Kapel N, Rodger G, Webster H, Lipworth S, Street TL, Peto T, Crook D, Stoesser N. 2023. 
Comparison of R9.4.1/Kit10 and R10/Kit12 Oxford Nanopore flowcells and chemistries in bacterial genome 
reconstruction. Microbial Genomics 9:mgen000910. DOI: https://doi.org/10.1099/mgen.0.000910, PMID: 
36748454

Sanderson ND, Hopkins K, Colpus M, Parker M, Lipworth S, Crook D, Stoesser N. 2024 Evaluation of the 
accuracy of bacterial genome reconstruction with oxford nanopore R10.4.1 long-read-only sequencing. 
[bioRxiv]. DOI: https://doi.org/10.1101/2024.01.12.575342

Seemann T. 2015. Snippy: fast bacterial variant calling from NGS reads. 3362a59. Github. https://github.com/​
tseemann/snippy

Sereika M, Kirkegaard RH, Karst SM, Michaelsen TY, Sørensen EA, Wollenberg RD, Albertsen M. 2022. Oxford 
Nanopore R10.4 long-read sequencing enables the generation of near-finished bacterial genomes from pure 
cultures and metagenomes without short-read or reference polishing. Nature Methods 19:823–826. DOI: 
https://doi.org/10.1038/s41592-022-01539-7, PMID: 35789207

Shaw J, Yu YW. 2023. Fast and robust metagenomic sequence comparison through sparse chaining with skani. 
Nature Methods 20:1661–1665. DOI: https://doi.org/10.1038/s41592-023-02018-3, PMID: 37735570

Sheka D, Alabi N, Gordon PMK. 2021. Oxford nanopore sequencing in clinical microbiology and infection 
diagnostics. Briefings in Bioinformatics 22:bbaa403. DOI: https://doi.org/10.1093/bib/bbaa403

https://doi.org/10.7554/eLife.98300
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/bty191
http://www.ncbi.nlm.nih.gov/pubmed/29750242
https://doi.org/10.1038/s41592-018-0054-7
https://doi.org/10.1038/s41592-018-0054-7
http://www.ncbi.nlm.nih.gov/pubmed/30013044
https://doi.org/10.1186/s13059-023-03061-1
http://www.ncbi.nlm.nih.gov/pubmed/37798733
https://doi.org/10.1371/journal.pcbi.1005944
https://doi.org/10.1371/journal.pcbi.1005944
http://www.ncbi.nlm.nih.gov/pubmed/29373581
https://doi.org/10.1038/s41576-022-00500-w
http://www.ncbi.nlm.nih.gov/pubmed/35577990
https://doi.org/10.1128/jcm.01578-22
https://doi.org/10.1128/jcm.01578-22
http://www.ncbi.nlm.nih.gov/pubmed/36815861
https://doi.org/10.1016/j.xgen.2022.100129
https://doi.org/10.1016/j.xgen.2022.100129
http://www.ncbi.nlm.nih.gov/pubmed/35720974
https://doi.org/10.1038/s41576-023-00590-0
http://www.ncbi.nlm.nih.gov/pubmed/37059810
https://github.com/nanoporetech/rerio
https://github.com/nanoporetech/dorado
https://github.com/nanoporetech/dorado
https://github.com/nanoporetech/medaka
https://doi.org/10.1101/gr.186072.114
http://www.ncbi.nlm.nih.gov/pubmed/25977477
https://doi.org/10.1093/bib/bbaa148
https://doi.org/10.1093/bib/bbaa148
https://github.com/pirovc/genome_updater
https://doi.org/78c3fb5
https://doi.org/78c3fb5
https://doi.org/10.1038/nbt.4235
https://doi.org/10.1093/bioinformatics/btq033
http://www.ncbi.nlm.nih.gov/pubmed/20110278
https://doi.org/10.1038/nbt.1754
http://www.ncbi.nlm.nih.gov/pubmed/21221095
https://doi.org/10.1128/mbio.02696-23
http://www.ncbi.nlm.nih.gov/pubmed/38085031
https://doi.org/10.1099/mgen.0.000910
http://www.ncbi.nlm.nih.gov/pubmed/36748454
https://doi.org/10.1101/2024.01.12.575342
https://github.com/tseemann/snippy
https://github.com/tseemann/snippy
https://doi.org/10.1038/s41592-022-01539-7
http://www.ncbi.nlm.nih.gov/pubmed/35789207
https://doi.org/10.1038/s41592-023-02018-3
http://www.ncbi.nlm.nih.gov/pubmed/37735570
https://doi.org/10.1093/bib/bbaa403


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Microbiology and Infectious Disease

Hall et al. eLife 2024;13:RP98300. DOI: https://doi.org/10.7554/eLife.98300 � 20 of 23

Shen W, Le S, Li Y, Hu F. 2016. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLOS 
ONE 11:e0163962. DOI: https://doi.org/10.1371/journal.pone.0163962, PMID: 27706213

Sherry NL, Horan KA, Ballard SA, Gonҫalves da Silva A, Gorrie CL, Schultz MB, Stevens K, Valcanis M, Sait ML, 
Stinear TP, Howden BP, Seemann T. 2023. An ISO-certified genomics workflow for identification and 
surveillance of antimicrobial resistance. Nature Communications 14:60. DOI: https://doi.org/10.1038/s41467-​
022-35713-4, PMID: 36599823

Stimson J, Gardy J, Mathema B, Crudu V, Cohen T, Colijn C. 2019. Beyond the SNP Threshold: identifying 
outbreak clusters using inferred transmissions. Molecular Biology and Evolution 36:587–603. DOI: https://doi.​
org/10.1093/molbev/msy242, PMID: 30690464

Stoler N, Nekrutenko A. 2021. Sequencing error profiles of Illumina sequencing instruments. NAR Genomics and 
Bioinformatics 3:lqab019. DOI: https://doi.org/10.1093/nargab/lqab019, PMID: 33817639

Street TL, Barker L, Sanderson ND, Kavanagh J, Hoosdally S, Cole K, Newnham R, Selvaratnam M, Andersson M, 
Llewelyn MJ, O’Grady J, Crook DW, Eyre DW. 2020. Optimizing DNA extraction methods for nanopore 
sequencing of neisseria gonorrhoeae directly from urine samples. Journal of Clinical Microbiology 
58:e01822-19. DOI: https://doi.org/10.1128/JCM.01822-19, PMID: 31852766

Tourancheau A, Mead EA, Zhang X-S, Fang G. 2021. Discovering multiple types of DNA methylation from 
bacteria and microbiome using nanopore sequencing. Nature Methods 18:491–498. DOI: https://doi.org/10.​
1038/s41592-021-01109-3, PMID: 33820988

Treangen TJ, Salzberg SL. 2011. Repetitive DNA and next-generation sequencing: computational challenges and 
solutions. Nature Reviews. Genetics 13:36–46. DOI: https://doi.org/10.1038/nrg3117, PMID: 22124482

Viver T, Conrad RE, Rodriguez-R LM, Ramírez AS, Venter SN, Rocha-Cárdenas J, Llabrés M, Amann R, 
Konstantinidis KT, Rossello-Mora R. 2024. Towards estimating the number of strains that make up a natural 
bacterial population. Nature Communications 15:544. DOI: https://doi.org/10.1038/s41467-023-44622-z, 
PMID: 38228587

Walker TM, Miotto P, Köser CU, Fowler PW, Knaggs J, Iqbal Z, Hunt M, Chindelevitch L, Farhat M, Cirillo DM, 
Comas I, Posey J, Omar SV, Peto TE, Suresh A, Uplekar S, Laurent S, Colman RE, Nathanson CM, Zignol M, 
et al. 2022. The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug 
resistance: A genotypic analysis. The Lancet. Microbe 3:e265–e273. DOI: https://doi.org/10.1016/S2666-5247(​
21)00301-3, PMID: 35373160

Wick RR. 2021. Filtlong: quality filtering tool for long reads. 7c654f1. Github. https://github.com/rrwick/Filtlong
Wick RR, Judd LM, Cerdeira LT, Hawkey J, Méric G, Vezina B, Wyres KL, Holt KE. 2021. Trycycler: consensus 

long-read assemblies for bacterial genomes. Genome Biology 22:266. DOI: https://doi.org/10.1186/s13059-​
021-02483-z, PMID: 34521459

Wick RR, Holt KE. 2022. Polypolish: Short-read polishing of long-read bacterial genome assemblies. PLOS 
Computational Biology 18:e1009802. DOI: https://doi.org/10.1371/journal.pcbi.1009802, PMID: 35073327

Wick RR, Judd LM, Holt KE. 2023. Assembling the perfect bacterial genome using Oxford Nanopore and 
Illumina sequencing. PLOS Computational Biology 19:e1010905. DOI: https://doi.org/10.1371/journal.pcbi.​
1010905, PMID: 36862631

Zheng Z, Li S, Su J, Leung AWS, Lam TW, Luo R. 2022. Symphonizing pileup and full-alignment for deep 
learning-based long-read variant calling. Nature Computational Science 2:797–803. DOI: https://doi.org/10.​
1038/s43588-022-00387-x, PMID: 38177392

Zhou A, Lin T, Xing J. 2019. Evaluating nanopore sequencing data processing pipelines for structural variation 
identification. Genome Biology 20:237. DOI: https://doi.org/10.1186/s13059-019-1858-1, PMID: 31727126

Zimin AV, Salzberg SL. 2020. The genome polishing tool POLCA makes fast and accurate corrections in genome 
assemblies. PLOS Computational Biology 16:e1007981. DOI: https://doi.org/10.1371/journal.pcbi.1007981, 
PMID: 32589667

https://doi.org/10.7554/eLife.98300
https://doi.org/10.1371/journal.pone.0163962
http://www.ncbi.nlm.nih.gov/pubmed/27706213
https://doi.org/10.1038/s41467-022-35713-4
https://doi.org/10.1038/s41467-022-35713-4
http://www.ncbi.nlm.nih.gov/pubmed/36599823
https://doi.org/10.1093/molbev/msy242
https://doi.org/10.1093/molbev/msy242
http://www.ncbi.nlm.nih.gov/pubmed/30690464
https://doi.org/10.1093/nargab/lqab019
http://www.ncbi.nlm.nih.gov/pubmed/33817639
https://doi.org/10.1128/JCM.01822-19
http://www.ncbi.nlm.nih.gov/pubmed/31852766
https://doi.org/10.1038/s41592-021-01109-3
https://doi.org/10.1038/s41592-021-01109-3
http://www.ncbi.nlm.nih.gov/pubmed/33820988
https://doi.org/10.1038/nrg3117
http://www.ncbi.nlm.nih.gov/pubmed/22124482
https://doi.org/10.1038/s41467-023-44622-z
http://www.ncbi.nlm.nih.gov/pubmed/38228587
https://doi.org/10.1016/S2666-5247(21)00301-3
https://doi.org/10.1016/S2666-5247(21)00301-3
http://www.ncbi.nlm.nih.gov/pubmed/35373160
https://github.com/rrwick/Filtlong
https://doi.org/10.1186/s13059-021-02483-z
https://doi.org/10.1186/s13059-021-02483-z
http://www.ncbi.nlm.nih.gov/pubmed/34521459
https://doi.org/10.1371/journal.pcbi.1009802
http://www.ncbi.nlm.nih.gov/pubmed/35073327
https://doi.org/10.1371/journal.pcbi.1010905
https://doi.org/10.1371/journal.pcbi.1010905
http://www.ncbi.nlm.nih.gov/pubmed/36862631
https://doi.org/10.1038/s43588-022-00387-x
https://doi.org/10.1038/s43588-022-00387-x
http://www.ncbi.nlm.nih.gov/pubmed/38177392
https://doi.org/10.1186/s13059-019-1858-1
http://www.ncbi.nlm.nih.gov/pubmed/31727126
https://doi.org/10.1371/journal.pcbi.1007981
http://www.ncbi.nlm.nih.gov/pubmed/32589667


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Microbiology and Infectious Disease

Hall et al. eLife 2024;13:RP98300. DOI: https://doi.org/10.7554/eLife.98300 � 21 of 23

Appendix 1
Streptococcus sample selection
MMC234__202311 and RDH275__202311 were collected as part of an invasive streptococcal 
surveillance study in Australia (approved by the Royal Melbourne Hospital Human Research Ethics 
Committee [HREC/80105/MH-2021] and the Human Research Ethics Committee of the Northern 
Territory Depart of Health and Menzies School of Health Research [2021-4181]).

https://doi.org/10.7554/eLife.98300
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Appendix 2

Simplex F1 outlier
From Figure 2 in the main text it is clear that in the simplex SNP panel (top left) there is a single 
outlier for the sup model for most variant callers. This sample is the same across the variant callers 
– ATCC_25922 (E. coli). We chose to investigate the reason for this outlier using the Clair3 (simplex 
sup) variant calls. The reason for the lower F1 score was reduced recall (as seen in Figure 2—figure 
supplement 2). ATCC_25922 had 47 FN variants, with 45 of those coming from two repetitive 
regions (see Identifying repetitive regions in the main text). In addition, these two regions have a 
higher variant density compared to the rest of the genome and are the repeats of each other. The 
two regions are 7.5 Kbp long and have an identity of 96.5%. As can be seen from Figure 1, there 
is a lot of heterogeneity at the FN site. This is caused by reads from the reciprocal region multi-
mapping to this region. Appendix 2—figure 2 shows a textual representation of the of the two 
sequences. Position 3 is the FN, where we expect a C>T variant call. While 50% of the bases at 
position 3 are indeed T, and 34% are C, Clair3 and most other callers fail to call this site a variant 
site. This pattern of heterogeneity leading to missed calls was repeated for the other FNs within 
these repeats. Highlighting that even though deep learning callers using R10 ONT data deal much 
better with repetitive and variant-dense regions, they can still struggle when you have both of these 
difficulties combined to a high degree. However, it is interesting to note that Medaka did not have 
the same issues with missed variants for these sites. Assumably the model training for Medaka is 
sufficiently different to DeepVariant and Clair3 to allow it to deal with these difficult sites without 
issue.

The other notable outlier from Figure 2 in the main text is in the duplex SNP panel (top right). 
This outlier is sample KPC2_202310 (K. pneumoniae). The reason for its reduced F1 score is again to 
do with recall. However, this reduced recall is simply due to the fact that the duplex depth for this 
sample is only 3×.

Appendix 2—figure 1. Pileup surrounding a Clair3 false negative variant. The top track (four blue rectangles) 
shows true variants – i.e., variants we expect to find. The second track shows a single false negative variant. The 
third track shows the alignment of Oxford Nanopore Technologies (ONT) reads to this region, with coloured 
letters indicating where the aligned sequence disagrees with the reference. The fourth track shows the alignment 
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of Illumina reads. The fifth track is the reference sequence. The bottom track shows repetitive regions (the whole 
region is repetitive as the blue rectangle spans the whole region in view).

 

       1     2          3 
S1 - {T}GG{T}CCGGCAT{C}CGCC 
S2 - {G}GG{C}CCGGCAT{T}CGCC 
       1     2           3
Appendix 2—figure 2. Textual example of two small repetitive regions in sample ATCC_25922 that lead to a false 
negative at position 3 in sequence S1. Positions 1 and 2 are two other variant positions where a true positive was 
obtained for S1 (the expected variants at positions 1 and 2 match the sequence in S2).
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