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This study introduces a useful extension to a recently proposed model of neural assembly activity. 
The extension was to add recurrent connections to the hidden units of the Restricted Boltzmann 
Machine. The authors show solid evidence that the new model outperforms their earlier model on 
both a simulated dataset and on whole-brain neural activity from zebrafish.

Abstract Animal behaviour alternates between stochastic exploration and goal-directed actions, 
which are generated by the underlying neural dynamics. Previously, we demonstrated that the 
compositional Restricted Boltzmann Machine (cRBM) can decompose whole-brain activity of larval 
zebrafish data at the neural level into a small number (∼100-200) of assemblies that can account 
for the stochasticity of the neural activity (van der Plas et al., eLife, 2023). Here, we advance this 
representation by extending to a combined stochastic-dynamical representation to account for 
both aspects using the recurrent temporal RBM (RTRBM) and transfer-learning based on the cRBM 
estimate. We demonstrate that the functional advantage of the RTRBM is captured in the temporal 
weights on the hidden units, representing neural assemblies, for both simulated and experimental 
data. Our results show that the temporal expansion outperforms the stochastic-only cRBM in terms 
of generalization error and achieves a more accurate representation of the moments in time. Lastly, 
we demonstrate that we can identify the original time-scale of assembly dynamics by estimating 
multiple RTRBMs at different temporal resolutions. Together, we propose that RTRBMs are a valu-
able tool for capturing the combined stochastic and time-predictive dynamics of large-scale data 
sets.

Introduction
When large groups of neurons exhibit joint activity, they are often assumed to form a functional unit, 
referred to as a neural assembly (Harris, 2005). Neural assemblies are thought to form elementary 
computational units that are essential for cognitive functions such as short-term memory, sensorim-
otor computation, and decision-making (Harris, 2005; Hebb, 1949; Gerstein et al., 1989). Recent 
advancements in neuroimaging methods now enable us to study the role of these neural assemblies 
in more detail. For example, a large breakthrough is the introduction of light-sheet microscopy which 
enables functional recordings of whole-brain volumes, thereby allowing the study of how complex 
computation emerges in the brain (Ahrens et al., 2013). It, however, remains a computational chal-
lenge to extract neural activation patterns from such datasets comprising ∼100.000 neurons or more.
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Recent work leveraged the compositional restricted Boltzmann machine (cRBM) to identify such 
neural assemblies in large-scale neural data (van der Plas et al., 2023). The cRBM is an extension of the 
restricted Boltzmann machine (RBM) (Smolensky, 1986), an undirected graphical model that consists 
of two layers of random variables, representing the data itself (through a set of visible units) and a 
lower-dimensional latent representation (through a set of hidden units). The model learns in an unsu-
pervised manner by matching its model distribution to the empirical distribution of the data through 
maximum likelihood optimization (Tubiana et  al., 2019a; Salakhutdinov et  al., 2007). The cRBM 
extends the classical RBM by adhering to a set of structural conditions (see Materials and methods), 
pushing it to operate in a state referred to as the compositional phase (Tubiana and Monasson, 
2017; Tubiana et al., 2019a; Tubiana et al., 2019b). In the compositional phase, the visible-to-hidden 
connections in the RBM are sparse, and in our previous work (van der Plas et al., 2023) this Research 
Advance is based on, we show that the associated neural assemblies of the hidden units are localized 
and span the entire space of the visible units. Furthermore, only a small fraction of the hidden units 
are active at any point in time, improving model interpretability.

Although the cRBM can accurately reproduce neural statistics and produce a low-dimensional 
representation of the high-dimensional neural data, this model is limited in capturing only static 
dependencies and is unable to specifically account for temporal dependencies. Neural activity driving 
animal behavior is expressed in both stochastic and deterministic states, thus requiring dynamics to be 
explicitly included to capture most of the variance in the data. To tackle this problem, we here include 
temporal dependencies directly into the model by applying the recurrent temporal RBM (RTRBM) 
(Sutskever et al., 2008). We utilize a type of transfer learning to retain the sparsity advantages of the 
cRBM, while the model can additionally account for the deterministic dynamics underlying the neural 
activity it’s trained on.

In short, the RTRBM is a recurrent neural network constructed by chaining multiple RBMs in time 
(Mittelman et al., 2014). Each RBM has a hidden state that is conditioned on the expected hidden 
state of the RBM at the preceding time-step. While temporal connections are constrained to single 
time-steps, the recurrency in the model indirectly accounts for multi-time-step dependencies. Previous 
studies using RTRBMs in other domains have highlighted the value of including such temporal depen-
dencies in extracting spatiotemporal features from high-dimensional data (Boulanger-Lewandowski 
et al., 2012; Li et al., 2018; Zhang et al., 2018). A more detailed discussion on the RTRBM and its 
implementation can be found in RTRBM.

Results In this work, we apply the RTRBM to both simulated and real data. First, we show that 
the model is capable of retrieving the artificial neural assemblies and their temporal connections in a 
fully simulated networks with only a few hidden populations. We compare the resulting RTRBM with 
an RBM that is trained on the same data, and shows that it outperforms in terms of generalization 
error, pairwise moments, and time-shifted pairwise moments. We then use a combined approach 
of the RTRBM and the cRBM to model the temporal connections of different neural assemblies in 
whole-brain neuronal zebrafish data through transfer learning by initializing RTRBM weights with their 
cRBM counterparts. The resulting RTRBM model extends upon the neural assemblies identified by 
the cRBM models by additionally capturing their temporal dependencies. We demonstrate that this 
extension improves the reconstructive power in terms of the estimated moments and provides addi-
tional temporal information regarding the underlying structure of the brain.

Results
In this work, we investigated whether the inclusion of temporal dependencies between neural assem-
blies improve the representation of neuronal activity in the context of simulated data and whole-brain 
light-sheet recordings from zebrafish larvae (‍n = 8‍, ‍40709 ± 13854‍ neurons, van der Plas et al., 2023). 
For this purpose, we first introduce and compare the (RTRBM) to the compositional RBM (Tubiana 
et al., 2019a) and then use two-step transfer learning to arrive at an estimate of the RTRBM that stays 
in the compositional phase and maintains the locally restricted assemblies identified by the cRBM.

https://doi.org/10.7554/eLife.98489
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The RTRBM extends the RBM by temporal dynamics on the assembly 
level
The principal structural difference between the RBM and the RTRBM is the addition of recurrent 
connections through a set of weights ‍U ‍ in the RTRBM that connect the hidden unit states at time-
steps ‍t − 1‍ and ‍t‍. These connections allow the RTRBM to incorporate temporal dynamics from the 
data, while the (c)RBM is only able to represent time-independent, statistical relationships. This differ-
ence is illustrated in a small example of neural assemblies in Figure 1.

When applying the RBM to neural data, the neurons are represented by the visible units, while the 
underlying neural assemblies are represented by the hidden units (see Figure 1 for a visualization). In 
this basic example, we connect each assembly to an exclusive set of neurons for simplicity (Figure 1A). 
In the case of the RTRBM, there are additional, direct connections between the assemblies (Figure 1D, 
red arrows, defined by the weights ‍U ‍). To emphasize the resulting difference in temporal dynamics, we 
initialize an RBM and an RTRBM model with matching hidden to visible connections ‍W ‍ (Figure 1B and 
E). We set these connections up so that each neural assembly is connected to a single hidden unit. In 
this manner, the hidden unit dynamics act as assembly dynamics, where each hidden unit represents 
a distinct assembly. In addition, the RTRBM has a weight matrix ‍U ‍ that models the inter-assembly 
temporal dynamics. The activation function applied to the sum of the inputs is a sigmoid function, 
which enforces the output to be in the range ‍[0, 1]‍. The weights that connect the visible to the hidden 
units outside their assigned assembly must, therefore, be negative to prevent their participation in 
other assemblies.

To demonstrate the resulting difference in temporal dynamics, we sample from the RBM and 
RTRBM and compare the resulting activity traces. In the RBM, as expected from the model definition, 
the stochastic sampling between the hidden and visible units does not lead to systematic sequential 

Figure 1. The recurrent temporal RBM (RTRBM) extends the restricted Boltzmann machine (RBM) by additionally accounting for temporal interactions of 
the neural assemblies. (A) A schematic depiction of an RBM with visible units (neurons) on the left, and hidden units (neural assemblies) on the right. The 
visible and hidden units are connected through a set of weights ‍W ‍. (B) An example ‍W ‍ matrix where a subset of visible units is connected to one hidden 
unit. Details of the equations in panel B and E are given in Materials and methods. (C) Hidden and visible activity traces were generated by sampling 
from the RBM. Due to its static nature, the RBM samples do not exhibit any sequential activation pattern, but merely show a stochastic exploration of 
the population activity patterns. (D) Schematic depiction of an RTRBM. The RTRBM formulation matches the static connectivity of the RBM, but extends 
it with the weight matrix ‍U ‍ to model temporal dependencies between the hidden units. (E) In the present example, assembly 1 excites assembly 2, 
assembly 2 excites assembly 3, and assembly 3 excites assembly 1, while the remaining connections were set to 0. (F) Hidden and visible activity traces 
were generated by sampling from the RTRBM. In contrast to the RBM samples, the RTRBM generates samples featuring a sequential firing pattern. It is 
able to do so due to the temporal weight matrix ‍U ‍ which enables modeling temporal dependencies.

https://doi.org/10.7554/eLife.98489
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activations of the assemblies occur, aside from some persistence due to the reactivation of similar 
ensembles through the weights ‍W ‍.

Conversely for the RTRBM, a combination of temporal sequences and stochastic exploration 
can be realized: In this simple example of an RTRBM, assembly 1 excites assembly 2, assembly 2 
excites assembly 3 and assembly 3 again excites assembly 1 (see Figure 1E). As a result, the hidden 
activity traces of data sampled from the RTRBM show matching sequential activation of hidden units 
(Figure 1F). Because each hidden unit is connected to a subset of visible units, the results in a sequen-
tial activation of the assemblies, where typically only one assembly is strongly active at each time-step. 
As the representation of the RTRBM is still probabilistic, the dynamics display a mixture of dynamic, 
and stochastic properties, which we consider a hallmark of neural activity.

In summary, the RTRBM maintains the features of the RBM to provide an interpretable and prob-
abilistic representation of neural data, but extends it to include temporal dependencies between 
neural assemblies.

RTRBMs learn assembly dynamics from simulated neural data
In the above example, the neural assembly connectivity was predefined. Next, we demonstrate that 
the RTRBM can be trained on simulated neural data to learn a set of weights ‍W ‍ and ‍U ‍ that correctly 
captures the underlying temporal dynamics on the assembly level. Initially, we aimed to compare the 
performance of the cRBM with the cRTRBM. However, we did not manage to get the RTRBM to reach 
the compositional phase. To ensure a fair and robust comparison, we opted to compare the RBM with 
the RTRBM. In this test case, we indeed find the RTRBM to outperform the RBM in the representation 
of the underlying moments.

We devised a method for generating artificial data sets mimicking neural population activity using 
a simplified neural network model. Here, neural activity is driven by the population activity of under-
lying neural assemblies. These activities of assemblies were determined by two factors: endogenous, 
assembly-specific activations, and recurrent activations through the connections between assemblies 
(Figure 2A, left). The activity of the neurons was then generated from a Poisson process whose time-
dependent rate was given by the activations of a single assembly population. For clarity of the presen-
tation, we here again implement a direct match between assemblies and neurons, and thus expect the 
estimated weight matrix to be a ‘diagonal’ matrix between assemblies and neurons.

An RBM (Figure  2B) trained on the simulated data recovers a non-diagonal weight matrix 
(Figure 2C), which is composed of both the true assembly-to-neuron weights on the diagonal, but in 
addition has multiple off-diagonal weights, which partially account for the dependencies between the 
assemblies.

In contrast, the RTRBM correctly segments all ten assemblies, recovering a clean ‘diagonal’ esti-
mated connectivity matrix ‍̂W ‍ (Figure 2C, right), in addition to providing a close estimate ‍(Û)‍ to the 
true assembly connectivity matrix ‍U ‍, i.e., it recovers the underlying hidden connections from the acti-
vation patterns of neurons alone. Consistently, each visible neuron has only a single dominant weight 
(‍|Ŵij|‍) in the RTRBM and thus produces a diagonal weight matrix, while the RBM assigns multiple 
strong weights to an RBM to address the time-dependencies (Figure 2D).

As expected, the RBM performs very well in capturing the average activations of the visible units (‍⟨vi⟩‍) 
and their correlations (‍⟨vivj⟩‍), referred to as first and second order moments, respectively (Figure 2E, 
top). However, it cannot accurately capture the time-shifted moments of the visible or hidden units 
(Figure 2E, bottom). The RTRBM performs similarly for the simultaneous moments (Figure 2E, top), 
but provides a more accurate account of the time-shifted moments (Figure 2E, bottom). This behavior 
is consistent for the different moments across multiple runs on independent simulated data sets and 
model estimates (‍N = 10‍, Figure 2F), with significant improvements of the RTRBM observed for the 
time-shifted moments (p-values 0.993 for ‍vi‍, 0.312 for ‍hi‍, ‍9.13 · 10−5‍ for ‍v

t
iv

t+1
j ‍ and ‍4.55 · 10−3‍ for ‍h

t
ih

t+1
j ‍, 

one-sided Mann-Whitney U test).
Lastly, the RTRBM also exhibited a significantly lower normalized mean squared error (nMSE, see 

Materials and methods) (‍p = 4.1 · 10−8
‍, two-way ANOVA with time-steps and model type as factors, 

‍N = 10‍, Figure 2G) when predicting ahead in time inside the simulated data (not used in training). 
The RTRBM’s advantage in prediction stayed significant up to four time-steps (‍p < 0.001‍, two group 
t-tests per time-step with Bonferroni correction for the number of time-steps). This decay of differ-
ences between the models is expected, as the probabilistic basis of the RBM/RTRBM as well as the 

https://doi.org/10.7554/eLife.98489
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Figure 2. The recurrent temporal RBM (RTRBM) outperforms the restricted Boltzmann machine (RBM) on sequential statistics on simulated data. (A) 
Simulated data generation: Hidden Units (‍Nh‍) interact over time to generate firing rate traces which are used to sample a Poisson train. For example, 
assembly 1 drives assembly 2 and inhibits assembly 10, both at a single time-step delay. (B) Schematic depiction of the RBM and RTRBM trained on the 
simulated data. (C) For the RBM, the aligned estimated weight matrix ‍̂W ‍ contains spurious off-diagonal weights, while the RTRBM identifies the correct 
diagonal structure (top). For the assembly weights ‍U ‍ (left), the RTRBM also converges to similar aligned estimated temporal weights ‍̂U ‍ (right). (D) The 
RTRBM attributes only a single strong weight to each visible unit ((‍wi,j > 0.5σ‍, where ‍σ‍ is the standard deviation of ‍W ‍)), consistent with the specification 
in ‍W ‍, while in the RBM multiple significant weights get assigned per visible units. (E) The RBM and RTRBM perform similarly for concurrent (‍⟨vi⟩‍, ‍⟨vivj⟩‍) 
statistics, but the RTRBM provides more accurate estimates for sequential (‍⟨v

[t]
i v[t+1]

j ⟩‍, ‍⟨h
[t]
i h[t+1]

j ⟩‍) statistics. In all panels, the abscissa refers to the data 
statistics in the test set, while the ordinate shows data sampled from the two models,, respectively. (F) The trained RTRBM and the RBM yield similar 
concurrent moments, but the RTRBM significantly outperformed the RBM on time-shifted moments (see text for details on statistics). (G) The RTRBM 
achieved significantly lower normalized mean squared error (nMSE) when predicting ahead in time from the current state in comparison to RBMs for up 
to four time-steps.

Figure 2 continued on next page

https://doi.org/10.7554/eLife.98489
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simulated data by design leads to non-deterministic trajectories, similar to the divergence of trajecto-
ries in non-linear dynamic systems where small noise eventually leads to large differences (Strogatz, 
2000) (see discussion for a relation to animal behavior).

These results indicate that the RTRBM provides a more accurate account of the model structure and 
data statistics in particular for sequential activations. The RBM can partially account for the temporal 
structure, but only by conflating it with its non-temporal weights in ‍W ‍.

The RTRBM outperforms the cRBM on whole-brain zebrafish data
Next, we trained the RTRBM on whole-brain data recorded in zebrafish larvae (‍n = 8‍, same data as 
in van der Plas et al., 2023). To obtain binarized spike traces that can be used by the RTRBM, the 
individual fluorescence traces were deconvolved by means of blind sparse deconvolution (Figure 3A). 
Model training was performed using a trained cRBM as the basis for the assembly-to-neuron weights 
‍W ‍, and then training the temporal assembly-to-assembly weights ‍U ‍, while allowing ‍W ‍ to only change 
slightly (the learning rate for these weights is reduced by two orders of magnitude, see Materials and 
methods for more details on model training). For each animal, model training was successful and the 
weight changes converged to small values. This approach of using pre-learned weights can be seen 
as a variant of transfer learning (Tan et al., 2018). We chose for this training procedure as the weight 
matrix ‍W ‍ inferred by the RTRBM is rarely able to identify localized receptive fields for a large portion 
of hidden units within its present, non-compositional, formulation.

The mean square reconstruction error ‍
1
N
∑N

i=1(vdata,i − vmodel,i)2
‍ in the initial phase of model training 

was ‍∼ 0.40‍, the RTRBM was able to reduce this to ‍∼ 0.072‍, which it achieves predominantly by 
adjusting the temporal weights. The trained RTRBM model maintained the localised neural assemblies 
inherited from the cRBM (Figure 3C) as quantified by a sparse weight distribution (Figure 3B, left) and 
a comparable, lower number of typically 1–3 strong weights per neuron as in the cRBM (Figure 3B, 
right).

Most hidden units showed self-excitation, i.e., indicated as a positive value on the diagonal of 
‍̂U ‍. The overall pattern of temporal connections between the assemblies in ‍̂U ‍ could be divided into 
several groups. To this end, agglomerative clustering (for details see Materials and methods) can be 
applied to the incoming (row) or outgoing (columns) connections of the matrix ‍̂U ‍ to identify assemblies 
with similar temporal structures. We here focus on the incoming connections/receptive fields, as their 
grouping was more clear (Figure 3D, dashed lines indicate boundaries between clusters). The clus-
tering for outgoing connections was similar, however, not identical as ‍̂U ‍ are generally not symmetric, 
due to the directedness of the temporal connections. The identified clusters showed characteristic 
patterns of connectivity, e.g., clusters 1 and 5 show a diverse connectivity pattern with relatively 
strong intra-cluster connections (Figure 3D). Clusters 2 and 3 exhibit a diverse connectivity pattern as 
well, but do not show the same strong intra-cluster connectivity. Cluster 4 has very strong recurrent 
intra-cluster connectivity, but also excites all other clusters. Cluster 5 is dominated by strong inhibi-
tory connectivity to itself and all other clusters. We thus see a range of different connectivity patterns 
appearing, identified by the clustering method. By using a lower clustering threshold, an even further 
refined clustering structure appears (data not shown here). The sets of strongly connected visible 
units corresponding to the hidden unit clusters furthermore formed spatially localized sets of neurons 
(Figure 3E).

To compare the performance between the inferred RTRBM and cRBM models, we analyzed the 
reconstruction quality. To this end, we sampled data from both models and again compared the 
model statistics to the data statistics, using an unseen test set (matched to the test set in van der Plas 
et al., 2023, see Materials and methods for details). For the example fish in Figure 3B–F, the first 
order moments between neurons ‍⟨vi⟩‍ are strongly correlated for the RTRBM (‍rs = 0.92‍, ‍p < ϵ‍, where 
‍< ϵ‍ denotes machine precision), that is an improvement compared to the performance of the cRBM 
(‍rs = 0.75‍, ‍p < ϵ‍). The second-order moments between neurons ‍⟨vivj⟩‍ of the RTRBM (‍rs = 0.58‍, ‍p < ϵ‍) 
also correlates better compared to the cRBM (‍rs = 0.27‍, ‍p < ϵ‍). To establish how well both models can 
capture the temporal dynamics of the data, we compared the time-shifted moments of the visible 

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Alignment of weight matrices after learning.

Figure 2 continued

https://doi.org/10.7554/eLife.98489
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Figure 3. Recurrent temporal RBM (RTRBM) often outperforms the compositional restricted Boltzmann machine (cRBM) on zebrafish data. (A) Whole-
brain neural activity of larval zebrafish was imaged via Calcium-indicators using light-sheet microscopy at single neuron resolution (left). Calcium activity 
(middle, blue) is deconvolved by blind, sparse deconvolution to obtain a binarized spike train (middle, black). The binarized neural activity of 1000 
randomly chosen neurons (right). (B) Left: Distribution of all visible-to-hidden weights. Here, a strong weight is determined by proportional thresholding, 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.98489
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‍⟨v
[t]
i v[t+1]

j ⟩‍ and hidden ‍⟨h
[t]
i h[t+1]

j ⟩‍ units. The time-shifted moments of the visible units of the RTRBM 
(‍rs = 0.56‍, ‍p < ϵ‍) correlates better than the cRBM (‍rs = 0.27‍, ‍p < ϵ‍). While a direct comparison of the 
hidden unit activations between the cRBM and the RTRBM is hindered by the inherent discrepancy 
in their activation functions (unbounded and bounded, respectively), the analysis of time-shifted 
moments reveals a stronger correlation for the RTRBM hidden units (‍rs = 0.92‍, ‍p < ϵ‍) compared to the 
cRBM (‍rs = 0.88‍, ‍p < ϵ‍).

The Spearman correlation is scale-free, i.e., even if one variable is doubled, the correlation can stay 
the same. However, in many cases, the sampled RTRBM was much closer to the test data in absolute 
terms (indicated by densities in Figure 3F that are closer to the diagonal). To quantify this difference, 
we also compared the sum square difference (SSD) between the sampled statistics of the RTRBM and 
cRBM with the statistics of the test set, to determine how well both models accounted for the real 
data on a quantitative, absolute level. The RTRBM had a lower SSD for all first-, second-, and time-
shifted moments compared to the cRBM. This suggests that the statistics of the RTRBM are better 
matched in an absolute sense, and can be considered as better behaved than the statistics of the 
cRBM when compared to the test set.

Over the whole dataset, the RTRBM outperforms the cRBM on 5 out of 8 fish for ‍⟨vi⟩‍, and on 4 
out of 8 fish for ‍⟨vivj⟩‍, while the performance was similar on the remaining fish, except for the green 
fish (Figure 3G). To establish how well both models can capture the temporal dynamics of the data, 
we compared the ‍⟨v

[t]
i v[t+1]

j ⟩‍ and ‍⟨h
[t]
i h[t+1]

j ⟩‍. Here, the RTRBM outperformed the cRBM on 4 out of 8 
fish for the visible units and on 6 out of 8 fish for the hidden units. Specifically, the performance of 
the RTRBM is consistently improved compared to the cRBM for the same fish across the different 
moments (Figure  3G). Note, that the second order statistics are statistics the algorithms are not 
explicitly trained on to replicate (see also Materials and methods).

In summary, the transfer learning approach was able to successfully expand the cRBM model to 
include the temporal connections, while maintaining a high level of sparsity in the hidden-to-visible 
layer connections. It is beyond the scope of this study to evaluate the detailed differences between 
the two models, but this transfer learning approach appears a promising avenue to enable the RTRBM 
to be estimated on large scale data sets.

Identification of the underlying time-scale of assembly interactions
The sampling rate in an experiment will generally not match the effective interaction time between 
neural assemblies. If the mismatch is too large, it may prevent the RTRBM from making a correct esti-
mate of the temporal connections. It is therefore important to be able to estimate the interaction time 
of assemblies in relation to the sampling rate.

To investigate this issue, simulated data was generated where the interaction time between assem-
blies was set to ‍∆tA = 4‍ time-steps (relative to the sampling rate of the simulated data, Figure 4A, 
left). This simulated data was then down-sampled to different rates using integer steps on the range 

‍[1, 10]‍ (Figure 4A, middle). Down-sampling was performed by selecting the value of the data at the 
sampling interval, rather than averaging or interpolating over all points in the interval. This choice 
was motivated by the fact that light-sheet imaging only has access to the neural activity at particular 

‍wi,j > wthr‍. Here ‍wthr‍ is set such that 5000 neurons have a strong connection towards the hidden layer. Right: log-weight distribution of the visible to 
hidden connectivity. (C) The RTRBM extracts sample assemblies (color indicates assembly) by selecting neurons based on the previously mentioned 
threshold. Visible units with stronger connections than this threshold for a given hidden unit are included. Temporal connections (inhibitory: blue, 
excitatory: red) between assemblies are depicted across time-steps. (D) Temporal connections between the assemblies are sorted by agglomerative 
clustering (dashed lines separate clusters, colormap is clamped to ‍[−1, 1]‍). Details on the clustering method can be found in Materials and methods. 
(E) Corresponding receptive fields of the clusters identified in (D), where the visible units with strong weights are selected similarly to (B). The receptive 
field of cluster 5 has been left out as it contains only a very small number of neurons with strong weights based on the proportional threshold. (F) 
Comparative analysis between the cRBM (bottom row) and RTRBM (top row) on inferred model statistics and data statistics (test dataset). Compared in 
terms of Spearman correlations and sum square difference. From left to right: the RTRBM significantly outperformed the cRBM on the mean activations 

‍⟨vi⟩‍ (‍p < ϵ‍), pairwise neuron-neuron interactions ‍⟨vivj⟩‍ (‍p < ϵ‍), time-shifted pairwise neuron-neuron interactions ‍⟨v
[t]
i v[t+1]

j ⟩‍ (‍p < ϵ‍), and time-shifted 
pairwise hidden-hidden interactions ‍⟨h

[t]
i h[t+1]

j ⟩‍ (‍p < ϵ‍) for example fish 4. (G) The methodology in panel F is extended to analyze datasets from eight 
individual fish, each color representing one individual fish. Spearman correlation and the assessment of significant differences between both models are 
determined using a bootstrap method (see Materials and methods for details).

Figure 3 continued

https://doi.org/10.7554/eLife.98489
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time-points and cannot average the entire duration between these time-points (as it is imaging at 
different planes in depth in between). As the size of the system should not make a qualitative differ-
ence for this analysis, we generated simulated data with only ‍Nh = 10‍ hidden assemblies and ‍Nv = 20‍ 
visible units per assembly. Different runs (‍N = 10‍) were inferred on independently drawn assembly 
dynamics and subsequently drawn spike-times, but with identical temporal and static weight matrices 
‍W ‍ and ‍U ‍.

To evaluate the reconstruction performance of the trained RTRBMs, the reconstruction nMSE one 
time-step ahead is calculated on a single test data set and compared for different down-sampling 
rates (Figure 4B, see Materials and methods for details). The trained RTRBM performs significantly 
better than an unbiased random estimator, i.e., ‍P

(
v̂t

i = 1
)

=
⟨
vi
⟩
‍ (nMSE ‍= 1‍), when the down-sampling 

rate is a multiple of the simulated interaction time (‍p = 0.0098‍ for ‍∆tD ∈
{

4, 8
}
‍, one-sided Wilcoxon 

signed rank test, ‍N = 10‍ with Bonferroni correction for the number of down-sampling rates, effect 
size ‍≥ 8.93‍). The performance is best when the down-sampling factor matches this interaction time 
at ‍∆tD = 4‍ (‍p = 0.00082‍, one-sided Wilcoxon rank-sum test, ‍N = 10‍ with Bonferroni correction for 
the number of comparisons, effect size ‍≥ 7.05‍). The optimal estimator at ‍nMSE = 0‍ is obtained from 
knowing the underlying model precisely, only limited by the unpredictable variance from the random 
factors of Poisson sampling and intrinsic assembly dynamics (see Materials and methods for details). 
Visual inspection of the inferred data shows that only the sampled data from ‍∆tD = 4‍ contains the 
characteristic temporal sequences generated by the connections in ‍U ‍.

Figure 4. Neural interaction timescale can be identified via recurrent temporal RBM (RTRBM) estimates over multiple timescales. (A) Training 
paradigm. Simulated data is generated as in Figure 2, but with temporal interactions between populations at a delay of ‍∆tA = 4‍ time-steps. This data 
is downsampled according to a downsampling rate ‍∆tD‍ by taking every ‍∆tD‍-th time-step (shown here is ‍∆tD = 4‍), and used for training different 
RTRBMs. (B) Performance of the RTRBM for various down-sampling rates measured as the normalized mean squared error (MSE) in predicting the visible 
units one time-step ahead (‍N = 10‍ models per ‍∆tD‍). Dotted line shows the mean estimate of the lower bound ± SEM (‍N = 10, 000‍) due to inherent 
variance in the way the data is generated (see Materials and methods). Dashed gray line indicates the theoretical performance of an uninformed, 
unbiased estimator ‍P

(
v̂t

i = 1
)

=
⟨
vi
⟩
‍. (C) Cosine similarity between the interaction matrix ‍U ‍ and the aligned learned matrices ‍̂U ‍, both z-scored. Bars 

and errorbars show mean and standard deviation, respectively, across the ‍N = 10‍ models per ‍∆tD‍. Dark lines show absolute values of the mean cosine 
similarity. Shown above are the ‍̂U ‍ matrices with the largest absolute cosine similarity per down-sampling rate. (D) The same procedure as in (A) is 
performed on neural data in order to find the effect of down-sampling here. (E) Spearman correlation of three important model statistics across different 
down-sampling rates for neural data from example fish 4, similar to Figure 3F. Dots and shaded areas indicate mean and two times standard deviation, 
determined using a bootstrap method (see Materials and methods for details).

https://doi.org/10.7554/eLife.98489
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To verify that the correct temporal connections between the hidden units are identified, the esti-
mated temporal weights ‍̂U ‍ after alignment of assemblies (see Materials and methods) are compared 
with the true temporal connections ‍U ‍ of the simulated data using cosine similarity (Figure 4C). Corre-
spondingly, the similarity peaks when the down-sampling rate matches the interaction time. While 
neighboring values around the simulation step size have similar absolute correlations, the correct step 
size still outperforms them. Conversely, this indicates that it may be sufficient to be close to the true 
step size in order to correctly estimate the temporal dependence in ‍U ‍.

We applied this analysis as a refinement to the training of the RTRBM on zebrafish data, and found 
that the Spearman correlation of important moments between neural activity and model activity was 
highest at the natural sampling rate (Figure 4E). Therefore, the analysis in Figure 3 was conducted 
without down-sampling. Each RTRBM was trained with the same number of gradient updates to 
ensure a fair comparison. However, due to the down-sampling procedure the amount of training data 
available is drastically decreased for large down-sampling rates. We did not retrain the cRBM on the 
downsampled data because the cRBM model does not account for time dependencies.

Discussion
Here, we introduced the RTRBM as a powerful dynamical statistical model for the analysis of large-
scale neural data, demonstrating that it can uncover temporal dependencies between neural assem-
blies. We achieve this through transfer learning on the basis of the static assembly structure estimated 
by a cRBM trained on the same data (van der Plas et al., 2023). The estimated RTRBM models are 
structurally more fitting and provide more accurate accounts of the activity dynamics than those of the 
cRBM, as we demonstrate on simulated and experimentally acquired, whole-brain zebrafish data. The 
resulting temporal connectivity structure on the assembly level provides a compact description of the 
neural dynamics, which decomposes into dynamical networks of assemblies. Training of an RTRBM/
cRBM model can be completed in a few hours on current hardware, and could thus lend itself for 
within experiment, interventional studies. The RTRBM therefore provides an effective and practically 
feasible model formalism for accounting for temporal dynamics as well as stochastic properties of 
whole-brain zebrafish activity.

Relation with previous studies on large-scale assemblies
Estimating functional divisions and connectivity from large-scale activity data can be considered one 
of the key objectives of computational neuroscience, as it would allow to automatically extract inter-
pretable structure from datasets of (human-level) uninterpretable complexity. While it is generally 
recognized that this poses a difficult analytical challenge, in particular in highly connected systems 
(Das and Fiete, 2020), whole-brain recordings have brought a critical advance to this endeavor. 
However, due to the relatively recent introduction of whole-brain measurements in zebrafish larvae 
(Ahrens et al., 2013), surprisingly few studies exist in this system that have attempted the investiga-
tion of neural activity in this type of data at the whole-brain scale (Nguyen et al., 2018; Chen et al., 
2018; Betzel, 2020; van der Plas et al., 2023).

These studies have all focused on extracting functional groupings from the neural activity, without 
directly attempting to perform temporal predictions of neural activity. In Chen et al., 2018, a clus-
tering approach was introduced that identified a set of clusters of neurons, which showed responses 
to specific visual stimuli or motor behaviors. (Betzel, 2020) estimates instantaneous functional 
connectivity from spontaneous activity and identifies groups of local nodes that form a hierarchical, 
modular structure, however, without the possibility of using this model in a generative way. In our 
previous study (van der Plas et al., 2023) we identified neural assemblies from spontaneous activity 
using a generative, probabilistic approach, i.e., the cRBM, but without explicitly modeling any time-
dependencies. Lastly, (Nguyen et al., 2018) uses Gaussian mixture modelling to cluster on the activity 
level, but again, this method does not yield any insight into the time-dependencies between the 
identified clusters.

Many other studies have focused on the analysis of subsystems, but also without directly modelling 
the temporal dependence, e.g., sensorimotor transformations in the visual (Bianco and Engert, 2015) 
and the auditory system (Privat et al., 2019), the representation and maintenance of spatial location 

https://doi.org/10.7554/eLife.98489
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(Yang et al., 2022), decision making (Bahl and Engert, 2020), or the neural circuit underlying heading 
direction (Petrucco et al., 2023).

Since the current temporal resolution of light-sheet imaging is rather low, i.e., limited of a few 
volumes per second (but alternative scanning approaches might change this soon, see e.g., Bouchard 
et  al., 2015), estimating the temporal dynamics on the level of individual neurons is still difficult. 
Therefore, our present approach focuses on the dynamics between assemblies, which are expected 
to develop on slower timescales. Temporal connections are generally more insightful than instanta-
neous function connections, as they are directed and therefore provide a better basis for separating 
correlation from causation.

We demonstrate that the RTRBM was able to capture functional temporal connections between 
neural assemblies while maintaining localized receptive fields of the hidden units. Additionally, as the 
RTRBM yields insight into the temporal dynamics of these identified neural assemblies, it provides 
a way of identifying which assemblies are similar in their dynamics and thereby can suggest distinct 
large-scale dynamical networks spanning one or multiple brain areas (see Figure 3). Moreover, the 
RTRBM outperforms the classical RBM on the artificial data in terms of reconstruction statistics, and 
also outperforms cRBM in accounting for temporal dynamics.

To our knowledge, only two earlier studies have attempted to predict dynamics or estimate dynam-
ical relations between neural assemblies on the whole brain level (Watanakeesuntorn et al., 2020; 
Pao et al., 2021). In both studies Empirical Dynamical Modelling/Convergent Cross Mapping is used 
to estimate neural dynamics, however, the zebrafish data is mostly utilized as a usage case for demon-
strating that the methods scale to large datasets, without providing insight into the resulting ensem-
bles or prediction quality. Another approach used is to apply dynamical modeling of the behavioral 
level and then use concurrently acquired whole-brain activity to identify corresponding structures in 
the zebrafish brain (Dunn et al., 2016).

Limitations and future improvements
The RTRBM introduces temporal dependencies in a constrained way that effectively limit the number 
of additional parameters. This feature is important to avoid overfitting on the limited amount of data 
generally available in each experiment. However, the increased complexity involved with the addition 
of these temporal dependencies limits the analytical tractability of the model. This added complexity 
had a number of consequences on the estimation procedure, which should ideally be resolved in 
future work.

Specifically, the RTRBM in its current form is not intrinsically driven toward the compositional 
phase, which is an important property that pushes the model to identify localized neural assemblies. 
Specifically, the use of dReLU hidden unit potentials within the RTRBM framework was not analytically 
tractable in our hands. We therefore opted for a transfer learning approach, where the cRBM first esti-
mates the assemblies, and then we initialize the model with these identified assemblies. The RTRBM 
then infers the temporal connectivity between the identified localized assemblies, while only slightly 
modifying their assembly structure. This approach could be limiting in multiple ways. For example, 
the cRBM-estimated assembly structure could contain an amalgam of static and dynamic connectiv-
ities (see Figure 2 for simulated data). Furthermore, it might be necessary to estimate the assembly 
structure jointly with the temporal connectivities between them for optimal decomposition. Extending 
the current work, we aim to refine the RTRBM by introducing other sparsity constraints on the hidden-
hidden connections (similar to Mittelman et al., 2014), or by realizing the compositional properties in 
the RTRBM to allow single-step, direct estimation.

Another limitation of the current RTRBM framework is that all assemblies are interacting on a single 
time-scale. While we have demonstrated (Figure 4) that a single time-scale can be identified through 
the estimation of and subsequent selection from multiple RTRBMs on different timescales, the more 
general case of multiple interaction time-scales between different assembles remains unaddressed. 
Partly, this issue is alleviated by the compounding effect of temporal interactions over multiple time-
steps, which, therefore, suggests to err on the side of shorter time-steps in estimation. In preliminary 
explorations we noticed that the estimated RTRBM generates alternating dynamics between clusters 
of assemblies (see Figure 3) on time-scales that are much longer than the single interaction step. In 
subsequent work, the RTRBM could be generalized to include multiple time-scales of interaction for 
different assemblies.

https://doi.org/10.7554/eLife.98489


 Research advance﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Quiroz Monnens, Peters, Hesselink et al. eLife 2024;13:RP98489. DOI: https://doi.org/10.7554/eLife.98489 � 12 of 22

Related to the time-scale issue, light-sheet imaging is currently limited to ∼100 Hz, which means 
that the ∼30–40 imaging planes are sampled at only 2–4 Hz, depending on the specific system. At 
these low imaging rates it is likely that some assembly dynamics are missed or appear simultaneous. 
Improvements in the speed of stepping between imaging planes will increase the sampling rate per 
cell. Together with brighter fluorescent indicators (Zhang et al., 2023), this will provide a more reli-
able basis for estimating models that incorporate temporal dependencies.

Conclusions
The RTRBM formalism is the logical next step in the analysis of whole-brain recordings, as it accounts 
for the static and dynamic aspects using a probabilistic formalism, which captures both the stochastic 
and deterministic aspects that are hallmarks of neural activity. Followup studies need to attempt to 
extend the RTRBM into the compositional phase directly, thus speeding up learning and ensuring 
matched assemblies and temporal connectivities (Bargmann and Marder, 2013). Recordings at 
higher temporal resolutions and for longer durations will be instrumental in allowing convergence of 
the cRTRBM (Helmstaedter, 2015). Together with advancements in computing hardware this should 
allow for interventional studies based on the estimated dynamics to directly verify the estimated 
temporal connectivity through modulation techniques such as optogenetic control or laser ablation.

Materials and methods
The RBM
The RBM (Salakhutdinov et al., 2007) is an undirected graphical model that defines a probability 
distribution over a set of binary visible units carrying the data configurations ‍v ∈ {0, 1}Nv‍, and real-
valued latent representations are given by a set of hidden units ‍h ∈ RNh‍. In contrast to the definition 
of the classical Boltzmann Machine, the RBM has no direct couplings between pairs of units within the 
same layer, making it a bipartite graph that allows for more efficient model training. The joint proba-
bility distribution of the model is defined as:

	﻿‍
P(v, h) = 1

Z
exp(−E(v, h)) = 1

Z
exp(

∑
i

bvi vi −
∑

j
Uj

(
hj
)

+
∑

i,j
Wi,jvihj),

‍�
(1)

where ‍Wij‍ are visible-to-hidden unit weights, ‍E‍ is the global energy of the RBM, ‍Z =
∑

v
´

dhe−E(v,h)
‍ 

the partition sum, and ‍Uj
(
hj
)
‍ the hidden unit potential. The choice of the hidden unit potential shapes 

the energy landscape of the model and thus states the hidden units in the the model can take, making 
it an important model choice. For a more detailed discussion on the choice of the shape of the 
hidden unit potential, we refer to our previous paper (van der Plas et al., 2023). In this work, we use 
the Bernoulli hidden unit potential, which is defined as ‍Uj

(
hj
)

= −bhj hj‍, where ‍bh‍ is the hidden bias 
and ‍h ∈ {0, 1}Nh‍. Here, ‍i‍ is used to index the visible units and ‍j‍ to index the hidden units. The full 
set of model parameters is given by the visible bias ‍bv ∈ RNv‍, the hidden bias ‍bh ∈ RNh‍ and weights 
‍W ∈ RNh×Nv‍. Note that, while the visible units ‍v‍ are observed variables, the hidden units ‍h‍ are unob-
served (latent) variables and must therefore be sampled, conditioned on the state of the visible units 
‍v‍.

The posterior distributions over the hidden and visible units allow sequential sampling of the 
hidden and visible unit states. As both layers contain no within-layer dependencies, the posterior 
distributions over ‍v‍ and ‍h‍ are conditioned only on the other variable and factorize as:

	﻿‍
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The choice of the Bernoulli hidden unit potential reduces these equations to:

https://doi.org/10.7554/eLife.98489
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= σ
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
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(3)

where ‍σ‍ denotes the logistic function, defined as ‍σ(x) = 1
(1+exp(−x))‍. For a detailed derivation, we refer 

to Goodfellow et al., 2016.

Training the RBM
The RBM model parameters are learned by maximizing the log-likelihood of the target data, denoted 
as ‍L = ⟨log(P(v))⟩data‍ (Ackley et al., 1985). This learning procedure ensures an accurate representation 
of the underlying distribution of the target dataset through the Boltzmann-Gibbs energy distribu-
tion (Boltzmann, 1868). Stochastic gradient-based methods are employed to minimize the Kullback–
Leibler divergence (Kullback and Leibler, 1951) between the model and data distributions. These 
steps write:

	﻿‍ ∇θL = −⟨∇θE(v, h)⟩data + ⟨∇θE(v, h)⟩model ,‍� (4)

where ‍E‍ is the energy of the RBM, as given in probrbm. We here let ‍⟨...⟩‍ denote the expectation value 
over the data and the model distributions, respectively. As the visible states of the data are given, 

‍⟨E(v, h)⟩data‍ is straightforward to compute. In contrast, the computation ‍⟨E(v, h)⟩model‍ is intractable 
for sufficiently large systems due to the exponentially large state space over the visible unit states 
in the partition sum. To address this problem of intractability, a common solution is the use of a 
‍K ‍-step Markov Chain Monte Carlo sampling scheme (Gibbs sampling) (Hinton, 2002). This approach 
starts from an initial configuration and aims to approximate the expectation values of the model 
distribution. This is also known as contrastive divergence (CD). In this learning scheme, samples are 
sequentially drawn from the visible and hidden posterior distributions, respectively (Equation 4), up 
to ‍K ‍ time. For sufficiently large values of ‍K ‍, this procedure yields unbiased samples of the underlying 
model distribution (Hinton, 2002). In practice, a value of ‍K = 1‍ during training is generally sufficient to 
obtain reasonable expectation values (Carreira-Perpinan and Hinton, 2005). Increasing the number 
of samples will result in better approximations, and thus generally in improved model estimation.

The compositional phase
In the classical definition of the RBM training scheme, there is no regularization on the hidden-unit 
activation sparsity. This means that a visible unit can have a proportionally strong connection to a large 
set of hidden units. Such a non-localized visible-hidden unit connectivity can hinder the interpretation 
of the model’s learned latent representation. Previous work (Tubiana and Monasson, 2017; Tubiana 
et al., 2019a) introduced a method to regularize the RBM such that it is pushed towards a sparse 
visible-hidden unit connectivity, termed the compositional phase. The resulting cRBM was employed 
to discover compact neural assemblies in our previous study (van der Plas et al., 2023). This sparsity 
in connections allows for a direct and interpretable relationship between the weights in the cRBM and 
the generated data configurations. The compositional phase is observed when RBMs are constrained 
to a specified set of structural conditions (Tubiana and Monasson, 2017):

1.	 The hidden units are unbound and real-valued with ReLU like activation function.
2.	 The weight matrix ‍W ‍ is sparse.
3.	 The columns of the ‍W ‍ have similar norms.

A key implementation detail of this cRBM model is the use of the double-Rectified Linear Unit 
(dReLU) defining the hidden-unit potential (Tubiana and Monasson, 2017; Tubiana et al., 2019a; 
Tubiana et al., 2019b). Detailed analyses of RBMs operating in the compositional phase have exem-
plified the dynamical consequences and the advantages of this regime for learning complex data 
manifolds. In-depth discussions on the cRBM and the compositional phase can be found in related 
literature (Tubiana and Monasson, 2017; Tubiana et al., 2019a; Tubiana et al., 2019b). In this work, 
we use the implementation from van der Plas et al., 2023 for our cRBM model. A detailed description 
of the implementation and accompanying code can be found there.

https://doi.org/10.7554/eLife.98489
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The recurrent temporal restricted Boltzmann machine (RTRBM)
The RTRBM can be conceptualized as a series of RBMs unfolded across the temporal dimension, i.e., a 
recurrent network. The model state of the RTRBM at each time-step ‍t‍ is essentially an RBM, where the 
hidden state is conditioned on the contextual hidden state of the RBM at time-step ‍t − 1‍. Mathemat-
ically, this involves augmenting the hidden bias of the RBM at time ‍t‍ with an additional term depen-

dent on the previous expected hidden states 
‍
r[t−1] =

⟨
h[t−1]

⟩
‍
. Furthermore, the weights ‍U ∈ RNh×Nh‍ 

are introduced which directly connect the previous to the current hidden unit states. This setup allow 
the model to directly capture latent-state temporal dependencies that cross multiple time-steps. The 
statistical distribution of the RTRBM at time-step ‍t‍ is given by:

	﻿‍
P
(
v[t], h[t] | r[t−1]

)
= exp

(
v⊤[t]bv + h[t]Wv⊤[t] + h⊤

[t]
(
bh + Ur[t−1]

))
/Zr[t−1] ,‍� (5)

where we dropped the indexing subscripts ‍ij‍ for conciseness. At ‍t = 1‍, the term ‍Ur[t−1]‍ is replaced by 

‍binit ∈ RNh‍, which denotes the learnable initial bias for the hidden units. The joint probability distribu-
tion of an RTRBM model with length ‍T ‍ is found by factoring over the RBM stack over all time-steps 
‍t, . . . T ‍. This procedure is written as:

	﻿‍
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where
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Importantly, instead of using binary hidden unit states ‍h[t−1]‍, sampled from the expected real-valued 
hidden states ‍r[t−1]‍, the RTRBM propagates these real-valued hidden unit states directly. This approach 
constitutes the mean-field approximation of the hidden states of the temporally preceding RBMs, 
resulting in an efficient and easily computible approximation of the temporal state at each time-step ‍t‍ 
(Hinton, 2002; Sutskever et al., 2008). The inputs ‍r[t]‍ of the RTRBM at time-step ‍t‍, given the visible 
unit state ‍v‍, are then calculated as:

	﻿‍

r[t] =




σ
(
W[t]v[t] + bh + Ur[t−1]

)
, if t > 1

σ
(
W[t]v[t] + binit

)
, if t = 1

‍�

(8)

Training the RTRBM
The model parameters ‍θ ∈

{
W, U, bv, binit, bh

}
‍ are learned by maximization of the log-likelihood using 

(stochastic) gradient ascent:

	﻿‍ θ := θ + η∇θL,‍� (9)

where ‍η‍ denotes the learning rate and where

	﻿‍

∇θL = − ⟨∇θE
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⟩data
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t=1

)
⟩model‍�

(10)

are the partial derivatives of the log-likelihood with respect to the model parameters. The energy 
function of the RTRBM can be split up into two components: a static component ‍H‍ and a temporal 
component ‍Q‍. The gradients of the static component ‍H‍ with respect to ‍θ‍ are calculated by summing 
over the gradients of the RBM at each time-step. The calculation of the gradients of ‍Q‍ with respect to 
‍θ‍ is more complex. First, observe that ‍Q‍ can be computed recursively as:

https://doi.org/10.7554/eLife.98489
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τ Ur[τ−1] = Q[t+1] + h⊤
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(11)

Hence, the backpropagation-through-time algorithm (Rumelhart et al., 1986) can be employed to 
recursively compute gradients for ‍Q‍ with respect to ‍r[t]‍:

	﻿‍ ∇r[t]Q[t+1] = U⊤ (
∇r[t+1]Q[t+2] ⊙ r[t+1] ⊙

(
1 − r[t+1]

)
+ h[t+1]

)
‍� (12)

where ‍⊙‍ denotes the element-wise product. The final step to obtain the derivative with respect to ‍θ‍ 
involves applying the chain rule:

	﻿‍
∇θQ =

T∑
t=2

(
∇r[t]Q[t+1] ⊙∇θr[t] + ∇θ

(
h⊤

t Urt−1

))
.
‍�

(13)

For a more detailed derivation of these equations, we refer to Mittelman et al., 2014.

Inference in the RTRBM
The RTRBM’s sequential sampling scheme, using preceding hidden- and visible states to predict 
subsequent time-steps, enables generating data from its learned model distribution. Initially, ‍r[t]‍ 
is calculated using the previous expected hidden states and current visible states. The contrastive 
divergence sampling scheme is then used to sample ‍v[t+1]‍. Consequently, ‍v[t+1]‍ is utilized to get the 
following expected hidden unit states ‍r[t+1]‍, and so forth. This sequential process enables the RTRBM 
to statistically predict events in future time-steps.

During model training, all time-steps ‍T ‍ are available and it is not required to infer longer sequences. 
At the start of each training epoch ‍r[t]‍ can be computed recursively up to time point ‍T ‍, followed by 
contrastive divergence performed for all time-steps in parallel. At model inference, we initialize ‍r[t]‍ on 
the first time-step of each test batch and sample multiple time-steps into the future using the Gibbs 
sampling scheme (see Figure 2G). By comparing the inferred data with the remainder of the test data 
batch, we quantify the extent to which the RTRBM accurately captures the statistics of neural data 
across time (see also Performance metrics).

Model-generated simulated data
The simulated data is generated according to the following principles: ‍Nh‍ hidden units represent 
population activities that are temporally connected through a set of weights ‍U ‍. The activity of a single 
hidden unit is represented as a time-varying firing rate. Each hidden unit activity is the combination 
of two sources: (1) An intrinsic, time-varying firing rate, generated by two instances of randomly 
timed peaks (where the inter-peak interval is randomly drawn as ISI ‍∼ Uniform

(
t1, t2

)
‍) convolved with 

normalized Gaussian-shaped signals (‍ϕ(x; t,σ)‍, where ‍σ ∼ Uniform(σ1,σ2)‍ and where ‍ϕ(x)‍ signifies the 
standard Gaussian cumulative distribution function). Both of the resulting instances are subsequently 
renormalized to be in the intervals ‍[0, fmax/10]‍ and ‍[0, fmax]‍, respectively, and are summed together. The 
final signal is denoted ‍λ

init
i (t)‍ and represents the firing rates of hidden unit ‍i‍. (2) Recurrent interactions 

of firing rates between the hidden units at a delay of ‍∆tA‍, according to

	﻿‍

λi(t) = ϕ


λinit

i (t) +
Nh∑
j=1

Uijλj(t −∆tA)




‍�
(14)

where ‍ϕ‍ limits the output to the interval ‍
[
0, 3fmax

]
‍. The strength of the temporal interactions between 

hidden units are given by the entries in ‍U ‍, with positive and negative entries representing excitatory 
and inhibitory interactions, respectively.

Each hidden unit connects to a distinct set of ‍Nv per unit‍ visible units, yielding a total of ‍Nv = Nh · Nv per unit‍ 
visible units, and their activity ‍vi‍ is independently drawn from a Poisson distribution whose rate over 
time is given by the rate ‍λh‍ of the corresponding hidden unit, scaled by a different constant for each 
visible unit taken from the range ‍

(
c1, c2

)
‍. The first ‍tsettle‍ time points are removed from the simulated 

data as the initial activity is different from the long-term interacting dynamics. The parameters for the 
data generating model were set to ‍Nh = 10‍, ‍Nv per unit = 20‍, ‍t1 = 5‍, ‍t2 = 10‍, ‍σ1 = 0.1‍, ‍σ2 = 0.5‍, ‍c1 = 0.6‍, 

https://doi.org/10.7554/eLife.98489
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‍c2 = 1.4‍, ‍tsettle = 25‍, and ‍fmax = 0.8‍. The temporal connectivity matrix ‍U ‍ was configured such that each 
population is both excited and inhibited by one of the other populations, and scaled in such a way that 
the resulting activity is mainly determined by the interactions (Figure 2A shows a graphical represen-
tation of the data generation pipeline).

For model training and evaluation, the generated simulated data was divided into a train- and 
test-set. Model inference is used for generating samples from trained RBM/RTRBM models to eval-
uate their performance. At model inference, the models are initialized on the first time-step of the 
test batch, and the subsequent time-steps are inferred through Gibbs sampling. The inferred data is 
then compared to the ground-truth test data through several statistics: (1) The MSE between inferred 
and test data, which measures how well the models can reproduce unseen activity of visible units. (2) 
The mean activation of the visible units ‍⟨vi⟩‍, also referred to as the first order moments. (3) Pairwise 
moments between the visible units ‍⟨vivj⟩‍, also denoted as second-order statistics. These pairwise 
moments assess the model’s ability to capture data statistics it is not explicitly trained on. (4) Time-
shifted pairwise moments of the visible and hidden units, i.e., ‍⟨v

[t]
i v[t+1]

j ⟩‍ and ‍⟨h
[t]
i h[t+1]

j ⟩‍, respectively. 
More details on how these statistics are calculated can be found in performance metrics.

Zebrafish data
Whole-brain single-cell functional recordings for 15 zebrafish larvae were recorded by means of 
light-sheet microscopy in the lab of G. Debrégeas, 8 of which are used in this study (see van der 
Plas et al., 2023 for a more detailed description of both the data acquisition process and subse-
quent data processing). These datasets are publicly available and can be found at https://gin.g-node.​
org/vdplasthijs/cRBM_zebrafish_spontaneous_data. In summary, the datasets consist on average of 
‍40, 709 ± 13, 854‍ neurons, recorded for ‍5836 ± 1183‍ time-steps, at a frequency of 3.9 ± 0.8 Hz. The 
zebrafish larvae are 5–7 days post-fertilization and expressed GCaMP6s or GCaMP6f calcium reporters 
for imaging. The experimental procedure is described in more detail in van der Plas et al., 2023. The 
process from data segregation to analysis is displayed in Figure 3. To obtain binarized spike traces 
that can be used by the RTRBM the individual fluorescence traces are deconvolved by blind sparse 
deconvolution (Figure 3A; van der Plas et al., 2023).

RTRBM initialization through transfer learning
Through empirical evaluation, we found de novo learning of the RTRBM to not converge to a solution 
that satisfies the compositional-phase criteria (see The compositional phase). This is to be expected as 
the formulation of the RTRBM as used in this work does not feature the required elements necessary 
to push the model solution towards such a solution. To overcome this issue, we make use of a transfer 
learning strategy (Tan et al., 2018). More specifically, the visible-to-hidden weights ‍W ‍ of the RTRBM 
models are initialized by their estimated counterparts from trained cRBM models (van der Plas et al., 
2023). During subsequent training of the RTRBM, we let the model to update the values of these 
weights with a reduced learning rate (see below). This initialization strategy is able to bias the resulting 
weight matrix ‍W ‍ inferred by the RTRBM to contain a strong prior towards the localized receptive fields 
of the hidden units of the cRBM.

The hyperparameters, including the total number of hidden units for the cRBM model, were 
optimized by evaluating the model’s performance over a grid of hyperparameter values using one 
dataset. This process identified the optimal hyperparameter values, which were subsequently applied 
to all recordings. In our study, the number of hidden units is fixed in the RTRBM model due to the 
use of transfer learning. Further details on the cross-validation process can be found in van der Plas 
et al., 2023.

For model training and evaluation, the functional data for each animal was divided into a train- 
and test-set. To this end, the functional recordings of each animal were subdivided into 10 segments 
of consecutive time-steps. In all cases, temporal segments 2, 6, and 7 are labeled as test sets, the 
remaining temporal segments are labeled as training sets. This data division strategy mirrors that of 
van der Plas et al., 2023. In practice, each segment was further subdivided into smaller batches of 
size ‍16 ± 4‍, enabling their computation on an Nvidia GeForce RTX 3090 24 GB GPU. This resulted on 
average in ‍243 ± 67‍ train batches and ‍104 ± 29‍ test batches. Using transfer learning, we trained each 
RTRBM for 10,000 epochs with a learning rate of ‍10−3‍. For each epoch we calculated the gradients 
for 20 batches in parallel before updating the model parameters. This strategy reduced the training 

https://doi.org/10.7554/eLife.98489
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time to a relatively short duration of 3 hr for 10,000 epochs calculated on an NVIDIA RTX3090 GPU. 
To maintain neural assemblies we enforced an L1-norm sparsity regulator with its constant set to 
‍λ = 10−6‍ (with ‍λ = 10−7‍ for two of the animals), and a reduced learning rate for the matrix ‍W ‍ by two 
orders of magnitude (i.e. 10-5).

Performance evaluation and significance testing
The performance of both the cRBM and RTRBM models after training was evaluated through inspec-
tion of the learning moments, similar to that of the simulated data (see see Performance metric 
 for more details). Furthermore, to test the significance of the difference in performance between the 
RTRBM and the cRBM, we made use of a bootstrap method. To this end, we randomly selected 1000 
neurons (‍∼ 2%‍ of the total population) and calculated the neural statistics for each model. This process 
was repeated ‍n‍ times with non-overlapping subsets such that each neuron only gets sampled once. 
For each repetition, the Spearman correlation between data and model sampled moments was calcu-
lated for each ‍⟨fk⟩model‍ (see Figure 2). We then calculated a confidence interval given by two standard 
deviations from the mean for the Spearman correlation. If the confidence intervals for the RTRBM and 
the cRBM did not overlap, the difference in performance was considered significant.

Clustering of hidden-hidden unit weights
To identify neural assemblies with similar temporal connectivity, agglomerative clustering is employed 
on the matrix ‍̂U ‍ after model training. To this end, we utilize the function AgglomerativeClustering 
from scikit-learn and use Ward’s method to evaluate the distance dendrogram (Pedregosa et al., 
2011). Clustering can be applied to the incoming (row) or outgoing (column) connections of the 
matrix ‍̂U ‍, in this work we apply it to the outgoing connections only. For fish 4, as shown in Figure 3D 
and E, a distance threshold of 20 was used to threshold the resulting distance dendrogram, which 
identified six functional clusters. Receptive fields were determined by assigning neurons to the iden-
tified clusters based on the strength of their weight (Figure 3E). Here, a strong weight is determined 
by proportional thresholding, ‍wi,j > wthr‍. Here ‍wthr‍ is set so that at least 5000 neurons have a strong 
connection towards the hidden layer. This mirrors the thresholding strategy used in Figure 3B.

Alignment of the estimated temporal weight matrix
In the context of the simulated data, the activity of the visible units are systematically generated in 
assemblies of size ‍NS

v ‍. Nevertheless, during the training process of the RTRBM, which solely relies on 
the state of the visible units, the link between each assembly and a particular hidden unit becomes 
arbitrary. This is, of course, under the assumption that all assemblies are retrieved correctly during the 
training process. Consequently, the estimated temporal weights ‍̂U ‍ can have any arbitrary ordering 
and is often not matched with that of the original matrix ‍U ‍ used to generate the data, generally 
resulting in an invalid match between both matrices. To enable a valid comparison, the ordering of the 
hidden units in the estimated matrix ‍̂U ‍ is matched to those in the original matrix ‍U ‍ by leveraging the 
learned visible-to-hidden unit weight matrix ‍̂W ‍. Here, as the assemblies of the visible units are known, 
assemblies are matched with hidden units under the assumption that an assembly of visible units is 
most linked to the hidden unit with the largest mean absolute visible-to-hidden weights between 
them (Figure 2—figure supplement 1A, left), calculated using the row-wise correlations with the 
ideal (’diagonal’) weight matrix ‍W ‍. The ordering of the hidden units can then be set such that it is 
aligned with the ordering of the assemblies of visible units. Cases where two assemblies have the 
same initially matched hidden unit are resolved by sequentially assigning assemblies by order of their 
correlation strength to the hidden unit. These cases, however, generally indicate that the assemblies 
of visible units were not correctly captured by the model.

In addition to any arbitrary ordering of hidden units in the estimated matrix ‍̂U ‍, it is possible for 
assemblies to form an inverse but correct match with a hidden unit. This means that the corresponding 
hidden unit is inactive when the corresponding assembly is active and vice versa. This phenomenon is 
enabled through the anti-symmetry of the activation function, and generally occurs when the weights 
between the assembly and the hidden unit are negative. An inverse match is identified based on the 
sign of the mean weight between the hidden unit and the matched assembly of visible units. In the 
case of an inverse match with a hidden unit, the temporal weights between this hidden unit and all 
the other units are inverted, resulting in sign switches in the estimated matrix ‍̂U ‍ (Figure 2—figure 

https://doi.org/10.7554/eLife.98489


 Research advance﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Quiroz Monnens, Peters, Hesselink et al. eLife 2024;13:RP98489. DOI: https://doi.org/10.7554/eLife.98489 � 18 of 22

supplement 1, right). In the case of two inverted hidden units, the two temporal weights between 
them are unaffected as the sign switches cancel each other out.

Together, these corrections yield an aligned estimated temporal weight matrix ‍̂U ‍ that is more 
similar to the original matrix ‍U ‍, allowing element-wise comparisons (Figure 2—figure supplement 
1B). All presented ‍̂U ‍ matrices for simulated data are aligned according to this procedure.

Performance metrics
We evaluated model performance using multiple metrics throughout this study. More specifically, we 
compared between first and second order model and data statistics for both the visible and hidden 
units and we used the MSE on the inferred states of the visible units.

Comparison of model and data statistics
The cRBM and RTRBM models are trained to optimize multiple statics. These include the mean activity 
of the visible units (neurons) ‍⟨vi⟩‍, the mean activity of the hidden units ‍⟨hµ⟩‍ and their paired interaction 

‍⟨vihµ⟩‍. Furthermore, one can evaluate the second-order statistics ‍⟨vivj⟩‍, and ‍⟨hµhν⟩‍ that are not directly 
optimized by the models.

To evaluate model performance, we take these statistics and compare then between those of 
the empirical data ‍⟨fk⟩data‍ and the model ‍⟨fk⟩model‍. Data statistics are calculated based on a withheld 
test-data set consisting of ∼30% of the data. To evaluate hidden-unit statistics for the empirical data, 
we use the expected value of ‍ht‍ conditioned on the visible unit state ‍vt‍ at time point ‍t‍ for the model 
under evaluation. Model statistics are not explicitly available and must be sampled from the model 
under study. To this end, model statistics ‍⟨fk⟩model‍ are approximated through Gibbs sampling of the 
visible and hidden unit states. For the simulated data, 15 steps of Gibbs sampling are used with a 
burn-in period of 4000 steps. This is done for 100 time points of data with a chain length of 20 time-
steps. For the zebrafish data, again 15 steps of Gibbs sampling are used with a burn-in period of 
4000 time-steps. Here 68–150 random time points in the test set were chosen each with a sampling 
chain of 14–16 time-steps. The number of time points and chain length depended on the length of 
the functional recording of a single data-batch, and was empirically chosen by comparing resulting 
performance.

In all cases, we subsequently measure correspondence between pairs of data and model statistics 

‍⟨fk⟩data‍ and ‍⟨fk⟩model‍ by evaluating their Spearman correlation.

Predictive quality
The performance of the model in predicting the activity of visible units ahead in time is assessed 
through a measure of the mean squared error (MSE) between reconstructed data and a test data set. 
The MSE is defined as

	﻿‍
MSE(t) = 1

Nv

Nv∑
i=1

(
vi(t) − v̂i(t)

)2

‍�
(15)

where ‍Nv‍ denotes the number of visible units, and ‍̂vi(t)‍ is the estimated state of visible unit ‍i‍ at time-
step ‍t‍. When predicting ‍T ‍ time-steps ahead, ‍̂vi(t)‍ implicitly depends on ‍vi(t − T)‍ as discussed above. 
As the visible units only take on binary states, the MSE is equal to the mean absolute error (MAE) and 
is also equal to 1 minus the accuracy.

For interpretability, the MSE is normalized (nMSE) such that ‍nMSE = 1‍ corresponds to a naive 
unbiased estimator and 0 to an optimal estimator when considering the MSE arising from inherent 
stochasticity.

	﻿‍
nMSE = MSE − MSEvar

MSEnaive − MSEvar ‍�
(16)

With ‍MSEnaive‍ and ‍MSEvar‍ explained below.

Determining error bounds for simulated data
For the simulated data, the model predictive performance would be directly interpretable if the model 
generating the data was completely deterministic. However, the model used in this work features 

https://doi.org/10.7554/eLife.98489
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multiple stochastic components. To gain insight into model performance for simulated data, it is thus 
necessary to infer statistically meaningful bounds on performance with respect to the generating 
model. To this end, we here describe methods used for estimating both a lower- and an upper-bound 
for the generating model used in this work.

Lower-bound estimation
As described in the methods above, the state of the visible units is sampled through a Poisson distri-
bution from the assembly activity consisting of (1) an intrinsic, time-varying firing rate, generated by 
randomly timed, Gaussian-shaped variations of firing rate, and (2) recurrent, delayed interactions of 
firing rates between the hidden populations with interaction time ‍∆tA‍. It is straightforward to estimate 
the variance in a Poisson sampling process under a known distribution of assembly traces. However, 
the intrinsic firing rates of the artificial neural assemblies are complicated to describe with theoretical 
distributions. The exact calculation of this theoretical bound is thus rather complex. Furthermore, one 
must make a distinction between an estimator with perfect knowledge of the assembly state at the 
previous time-step, an ideal estimator, and a real estimator that must approximate this assembly state, 
such as the RTRBM. A representative lower-bound thus includes this source of stochasticity.

To obtain a lower-bound that includes these notions, we turn to empirical methods. To this end, 
the assembly activity in a previous time-step is initialized to a fixed, known state. Then, the temporal 
interactions are calculated to obtain the deterministic assembly activity after an interval ‍∆tA‍ time-
steps, which are added to different samples from the intrinsic assembly activity to obtain the full 
assembly state. Poisson sampling is performed on two such states and the MSE is calculated between 
them. This corresponds to the performance of an ideal model in predicting the state of the visible 
units ahead by a time equivalent to the interaction delay, with perfect knowledge of the underlying 
dynamics, and yields sets of MSE samples incorporating all aforementioned sources of stochasticity.

For a representative distribution of the possible states, 10,000 known assembly activity states are 
randomly sampled from the original test data, which form the fixed previous time-step. Next, ‍2 × 200‍ 
random instances of the intrinsic assembly activities are added as described above per initial state, 
and samples are taken twice from each of the 200 pairs of states. As in our case ‍MSE = MAE‍ is a 
linear metric, the mean MSE is taken over all initial states and all random intrinsic states, which is our 
estimate ‍MSEvar‍ The uncertainty in this estimate is quantified as the standard error of the mean, and 
is calculated by seeing each average MSE per initial state as an estimate of the mean.

Upper-bound estimation
An upper-bound is determined through a representative naive estimator. Here, we define this 
naive estimator with the expected firing rate of each visible unit ‍P(v̂t

i = 1) =
⟨
vi
⟩
‍, such that the esti-

mator is unbiased by definition. The MSE reached by this estimator can be precisely calculated as 

‍MSEnaive =
⟨
2
⟨
vi
⟩ (

1 −
⟨
vi
⟩)⟩

‍. The choice of this unbiased estimator is especially important in the case 
of sparse activity traces as dealt with here. It is easy to see that a lower MSE is reached by the (biased) 
estimator ‍P(v̂t

i) = 0‍ with ‍MSE =
⟨
vi
⟩
‍. It is worth noting that in the context of down-sampling experi-

ments, even though all models are assessed using the same test dataset, the act of down-sampling 
yields a similar but different mean activity ‍

⟨
vi
⟩
‍, resulting in a slightly different theoretical estimate of 

the MSE of the naive unbiased estimator.
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The following previously published dataset was used:

Author(s) Year Dataset title Dataset URL Database and Identifier

van der Plas TL, 
Tubiana J, Goc GL, 
Migault G, Kunst M, 
Baier H, Bormuth V, 
Englitz B, Debrégeas 
G

2023 Data repository for Van 
der Plas, Tubiana and 
colleagues

https://​gin.​g-​node.​
org/​vdplasthijs/​
cRBM_​zebrafish_​
spontaneous_​data

G-Node, cRBM_zebrafish_
spontaneous_data
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