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Abstract Understanding the function of sleep requires studying the dynamics of brain activity 
across whole- night sleep and their transitions. However, current gold standard polysomnography 
(PSG) has limited spatial resolution to track brain activity. Additionally, previous fMRI studies were 
too short to capture full sleep stages and their cycling. To study whole- brain dynamics and transi-
tions across whole- night sleep, we used an unsupervised learning approach, the Hidden Markov 
model (HMM), on two- night, 16 hr fMRI recordings of 12 non- sleep- deprived participants who 
reached all PSG- based sleep stages. This method identified 21 recurring brain states and their tran-
sition probabilities, beyond PSG- defined sleep stages. The HMM trained on one night accurately 
predicted the other, demonstrating unprecedented reproducibility. We also found functionally 
relevant subdivisions within rapid eye movement (REM) and within non- REM 2 stages. This study 
provides new insights into brain dynamics and transitions during sleep, aiding our understanding of 
sleep disorders that impact sleep transitions.

eLife assessment
This important work, leveraging state- of- the- art whole- night sleep EEG- fMRI methods, advances 
our understanding of the brain states underlying sleep and wakefulness. Despite a small sample 
size, the authors present convincing evidence for substates within N2 and REM sleep stages, with 
reliable transition structure, supporting the perspective that there are more than the five canonical 
sleep/wake states.

Introduction
Given the significant number of people experiencing sleep issues in modern society, there is a 
growing need for a better understanding of human sleep and its function (The Lancet, 2022). Sleep 
is characterized by relative stationary states, each believed to serve specific functions. To charac-
terize these states, human sleep research has historically classified sleep into a set of stages using 
PSG (Berry et al., 2020; Rechtschaffen and Kales, 1968), which combines electroencephalography 
(EEG) measures of brain activity with several physiological measures. These sleep stages include the 
progressively deeper sleep stages of N1, N2, and N3 non- rapid eye movement (NREM), as well as 
REM. Stages are characterized by different patterns of cortical excitability, as a result of varying levels 
of modulatory neurotransmitters (Jones, 2020). Across a full night of sleep, these stages cyclically 
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alternate, with REM sleep typically occurring 90 min after falling asleep and becoming longer as the 
night progresses. This cycling is thought to be related to homeostasis and memory consolidation 
(Diekelmann and Born, 2010; Strauss et al., 2022). Neuroimaging studies using techniques such as 
Positron Emission Tomography (PET) and functional MRI (fMRI) have identified unique activity patterns 
for each PSG stage, contributing to our understanding of sleep’s functional role (Braun et al., 1997; 
Damaraju et al., 2020; Picchioni et al., 2013; Rué-Queralt et al., 2021; Tagliazucchi and Laufs, 
2014; Tagliazucchi and van Someren, 2017; Zhou et al., 2019).

While these PSG- guided neuroimaging studies provided new information about sleep function, our 
understanding of brain dynamics is limited by the low temporal resolution of PSG- based sleep scoring 
rules (i.e. 30 s epochs), low spatial resolution (i.e. limited EEG channels on the scalp), and the subjec-
tive visual inspection rules (Decat et  al., 2022; Himanen and Hasan, 2000; Lambert and Peter- 
Derex, 2023). Alternative to PSG- based sleep staging, applying an unsupervised learning method, 
the HMM (Stevner et al., 2019; Vidaurre et al., 2017), to sleep fMRI data can objectively model the 
time series of sleep and infer sleep brain states that recur at different points during sleep. A recent 
study demonstrated promising results in capturing NREM sleep transitions by applying HMM to rela-
tively short bouts of sleep (<1 hr) fMRI data (Stevner et al., 2019). However, because the REM stage 
typically occurs 90 min after falling asleep and lasts progressively longer over time, capturing brain 
dynamics associated with sleep cycling requires whole- night data.

In addition, given that studies on sleep stage transitions have shown promising results in diagnoses 
of various sleep disorders, including narcolepsy (Christensen et al., 2015), chronic fatigue syndrome 
(Kishi et al., 2011), and insomnia (Wei et al., 2017), it is of great interest to establish an objective 
and reliable measurement of brain states transitions within and between PSG sleep stages. To achieve 
this goal, we applied HMM to a unique and extensive dataset of EEG- fMRI concurrent recordings 
acquired over 8  hr of sleep each night for two consecutive nights (Moehlman et  al., 2019). This 
analysis revealed 21 unique brain states, surpassing the number of PSG- defined sleep stages. For 
potential application in clinical settings, we tested whether our HMM model trained using night 2 data 
can predict night 1 data. As it turned out, the identified brain states were highly consistent between 
night 1 and night 2. Furthermore, analyzing the transition probabilities between HMM states revealed 
a significant subdivision within N2 and within REM sleep stages. This data- driven, PSG- blind analysis 
of fMRI data provides reproducible brain states and their transition probabilities, potentially serving 
as a biomarker of sleep transitions in both normal and clinical settings.

Results
HMM brain states
To study brain activity representative of the entire Wake- NREM- REM- Wake sleep cycle, we analyzed 
data from concurrent whole- brain EEG- fMRI measurements on healthy, non- sleep- deprived partici-
pants (n=12, age 24±3.5, eight female) over two successive, entire nights of sleep (Moehlman et al., 
2019). This data was acquired for an independent project that included eight randomly timed acous-
tical arousals to gauge sleep depth (Moehlman et al., 2019). PSG- based sleep staging was conducted 
by a sleep technologist, utilizing data from EEG, EMG, ECG, and EOG, following the criteria outlined 
by the AASM (Berry et al., 2020).

Following data preprocessing (see Methods section for details), the fMRI time courses from voxels 
were spatially averaged within each of the 300 regions of interest (ROIs). These ROIs encompassed 
cortical, subcortical, and cerebellar areas from the Seitzman 300- ROI atlas (Seitzman et al., 2020). To 
ensure consistency and comparability, the ROI time courses were demeaned and variance- normalized 
for each participant and then concatenated along the temporal dimension. Of note, all 12 partic-
ipants exhibited at least one complete sleep cycle, encompassing all four sleep stages (N1- 3 and 
REM), during both night 1 and night 2 (Moehlman et al., 2019). This uniquely comprehensive dataset 
provided a robust foundation for our analyses.

The HMM estimated from the night 2 data encompassed a collection of whole- brain states. Each of 
these states was characterized as a multivariate Gaussian distribution, incorporating two key compo-
nents: (i) a mean activation distribution, signifying the average activity levels within each ROI when a 
state was active, and (ii) a functional connectivity (FC) matrix, representing the temporal co- variations 
among ROIs while in that state.

https://doi.org/10.7554/eLife.98739
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Furthermore, the HMM featured a transition probability matrix that detailed the likelihood of tran-
sitioning between every pair of states. Each state was accompanied by a state time course, delin-
eating the specific time points (defined by the fMRI temporal resolution of 3 s) when the state was 
active. Notably, the HMM was constructed with 21 distinct states and was devoid of any prior knowl-
edge regarding PSG staging during its estimation. For a comprehensive visual representation of the 
analytical process, please refer to Figure 1 (see the Methods section for a detailed explanation). Also, 
there is no HMM state that was participant- specific. That is, all 21 HMM states can be found in each 
participant’s fMRI time course.

HMM states show PSG stage specificity
The 21 brain states (see Figure 2B), identified solely from fMRI, exhibited a mixture of six PSG- based 
sleep stages: N1, N2, N3, REM, Wake, and an ‘Undefined’ stage for epochs that could not be confi-
dently assigned to one of the four following sleep stages: N1- 3 and REM.

To investigate the relationship between HMM states and PSG- based sleep stages, we adopted a 
‘winner- takes- all’ approach that assigned HMM states to the sleep stage where they most frequently 
occurred. Thirteen of the 21 brain states were most frequently associated with N2 sleep stages. HMM 
states 8 and 10 predominantly occurred during N3 sleep, while HMM states 6 and 19 were preva-
lent during REM sleep. HMM state 4 corresponded to the undefined sleep stage, and HMM states 
13, 16, and 20 were primarily observed during Wake. Intriguingly, none of the HMM states were 

EEG
fMRI Arousal

23:00 7:00

Sleep Stages

Slow Wave Density

Inputs: Night 2 fMRI signals
300 ROIs × (~ 5500 TRs × 12 participants)
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Figure 1. Whole- brain activity dynamic identified from functional MRI (fMRI) sleep recording using a Hidden Markov Model. (A) Participants slept 
inside a scanner from ~23:00 to ~07:00 for two consecutive nights, with concurrent EEG- fMRI recording. During each night, the fMRI experiments 
were intermittently disrupted by either acoustical arousals (eight random arousals) or spontaneous awakenings. Sleep stages and slow wave density 
were derived from EEG signals alone. (B) Hidden Markov model (HMM) was trained on the principal components of fMRI signals of night 2. Then the 
identified HMM states were generalized to night 1 fMRI signals. Finally, we studied the state- related variations in fMRI activation, FC patterns, and EEG 
measures. Notes: EEG, electroencephalographic; TR: repetition time; FC, functional connectivity; ROI, region of interest; PCA, principal component 
analysis.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Model evaluation parameters.

https://doi.org/10.7554/eLife.98739
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predominantly linked to N1 sleep. However, HMM state 11 was active for a comparable duration 
during both the N1 and N2 sleep stages. See Figure 2B.

In Figure 3—figure supplements 1 and 2, we plotted the time courses of two fMRI runs. A high 
similarity was observed between the HMM state time courses and sleep stage time courses, with the 
HMM time courses providing more detailed information.

The temporal characterization of these brain states enabled us to investigate the subtle details of 
brain dynamics within the traditional PSG- based sleep stages. The average duration, referred to as 
‘Lifetime,’ of the HMM states varied from 8.7 to 36 s. Specifically, the mean Lifetime in states asso-
ciated with N2 stages tended to be shorter compared to those linked to N3, REM, and Wake (with 
exceptions of state 13), as illustrated in Figure 3—figure supplement 3.

Sleep states as modules of HMM state transitions
The use of a data- driven approach empowered us to explore the temporal dynamics of HMM states, 
and enabled us to investigate whether the fMRI- driven HMM states reveal novel dimensions of the 
Wake- NREM- REM- Wake sleep cycle that are hidden from traditional PSG analyses. We examined the 
transition probabilities among HMM states, identifying modules of HMM states that exhibited more 
frequent transitions between each other than to other states (Stevner et al., 2019; Vidaurre et al., 
2017).

The transition probabilities of HMM brain states were organized into a 21×21 transition matrix. To 
explore the potential clustering of states with prevalent mutual transitions, a modularity analysis was 
performed on this matrix based solely on transition probabilities (see Methods section for details). 
As illustrated in Figure 3, this analysis identified five distinct transition modules, encompassing N3-, 
REM-, Wake-, and two different N2- modules. Importantly, this modularity analysis was conducted 
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Figure 2. Polysomnography (PSG)- based sleep stages and Hidden Markov model (HMM) states for each night. (A) Distribution of sleep stages for all 
12 participants during night 2. (B) Distribution of sleep stages for 21 HMM states during night 2. (C) Distribution of sleep stages for all 12 participants 
during night 1. (D) Distribution of sleep stages for 21 HMM states during night 1. The Pearson correlation coefficient between sleep stage distributions 
of HMM states during night 2 and those during night 1 is 0.94, p<0.0001.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Physiological variables associated with each Hidden Markov model (HMM) state during night 2.

Figure supplement 2. Physiological variables associated with each Hidden Markov model (HMM) state during night 1.

Figure supplement 3. Electroencephalography (EEG) power spectrum associated with each Hidden Markov model (HMM) state during night 2.

Figure supplement 4. Electroencephalography (EEG) power spectrum associated with each Hidden Markov model (HMM) state during night 1.

https://doi.org/10.7554/eLife.98739
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independently of PSG- based sleep stages. Interestingly, it revealed a natural clustering of states asso-
ciated with the same sleep stages. For instance, two HMM states, 6 and 19, both linked to REM sleep, 
were grouped within the same module.

Twelve N2- related HMM states were divided into two separate modules. The first module is char-
acterized as the light- N2 module, with higher transition probabilities to REM and Wake modules 
compared to the other module. The second module exhibited low transition probabilities to both the 
REM and Wake modules and is referred to as the deep- N2 module.

A similar duality was evident within the REM module. HMM state 19 displayed a notably higher 
transition probability to states in the Wake module compared to HMM state 6.
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Figure 3. Results of the modular analysis are based solely on transition probability between Hidden Markov model (HMM) states. Each row represents 
the transition probability of the current HMM state (y- axis) to other states (x- axis). Twenty- one HMM states were categorized into five modules (black 
boxes): from left to right, light- N2 module (states 5, 7, 9, 14, 15, 18, 21), N3 module (states 4, 8, 10), deep- N2 module (states 1, 2, 3, 12, 17), rapid 
eye movement (REM) module (states 6 and 19), and Wake module (states 11, 13, 16, 20). The pie chart under each state represents the sleep stage 
distribution for the state.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. State timecourse of Hidden Markov model (HMM) states and its associations with polysomnography (PSG) stages, variation in 
photoplethysmography (PPG) amplitude, and variations in RespRVT signals of an example run.

Figure supplement 2. State timecourse of Hidden Markov model (HMM) states and its associations with polysomnography (PSG) stages, variation in 
photoplethysmography (PPG) amplitude, and variations in RespRVT signals of a second example run.

Figure supplement 3. The mean Lifetime of 21 Hidden Markov model (HMM) states.

https://doi.org/10.7554/eLife.98739
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Within the Wake module, four HMM states were observed. State 11 was found to be linked to 
both N1 and N2 sleep stages, while the other three states (13, 16, and 20) were associated with the 
Wake stages. Further investigation revealed that state 13 typically occurred later in the night and 
later within an MRI run (see Figure 2—figure supplement 1E, F), suggesting it represents post- sleep 
wakefulness, whereas states 16 and 20 were pre- sleep wakefulness. State 13 also showed higher PPG 
variation, respiratory variation, and heart rates than states 16 and 20 (see Figure 2—figure supple-
ment 1B–D). This observation was confirmed by the transition probability matrix, that only HMM state 
13 has a lower chance of transition into N2- or N3 -related states, especially for the states within the 
light- N2 module, compared to HMM states 16 and 20.

HMM states generalize to night 1 fMRI data
Next, to test the robustness of our HMM approach, we employed a semi- supervised learning approach 
to predict night 1 data based on the model trained on night 2 data. Specifically, we maintained 
state assignments from night 2 and applied the model to night 1. The resulting model indicated that 
despite having fewer REM and N3 stages during night 1 (See Figure 2A, C), there was a significant 
correlation between the sleep stage proportions of the HMM states for night 1 and those for night 2 
(r=0.94, p<0.0001, see Figure 2B, D). Moreover, the physiological variables displayed similar patterns 
between night 1 and night 2 (see Figure 2—figure supplements 1 and 2).

fMRI activation and FC patterns of HMM states
To investigate brain activity patterns specific to individual HMM states, we calculated the spatial fMRI 
activation map and FC pattern of each HMM state relative to the averages over all HMM states. 

DMN FPN

N2-related N2-related N2-related N2-related

N2-related N2-related N2-related

N2-related N2-related

N2-relatedN2-relatedN2-related

N1/2-related

N3-related N3-related

REM-related

REM-related Wake-related Wake-related

Wake-related

Undefined-related

Figure 4. Mean functional MRI (fMRI) activation in ROIs within DMN and FPN for each Hidden Markov model (HMM) state. Bottom right panel: 
illustration of DMN (purple) and FPN (green) nodes. Note: DMN: Default Mode Network; FPN: Frontoparietal Network.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Mean functional MRI (fMRI) activation (percent signal change) for each state relative to baseline averaged over all Hidden Markov 
model (HMM) states.

Figure supplement 2. Functional connectivity (FC) patterns for each state relative to baseline averaged over all Hidden Markov model (HMM) states.

Figure supplement 3. Correlation matrix between functional connectivity (FC) patterns of each pair of Hidden Markov model (HMM) states.

https://doi.org/10.7554/eLife.98739
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Figure 4—figure supplement 1 showcases the mean fMRI activation for each state, while the associ-
ated FC patterns are depicted in Figure 4—figure supplement 2.

For mean fMRI activation, Wake- related HMM state 20 demonstrated the classic opposite activa-
tion pattern between the default- mode network (DMN) and its anti- correlated networks (ACNs), see 
Figure 4 and Figure 4—figure supplement 1. In contrast, during sleep- related HMM states, e.g., 
states 8 and 10, DMN and FPN showed the same activation direction.

For FC patterns, similar anti- correlated patterns were found (see Figure 4—figure supplement 
2). In wake- related HMM states 16 and 20, the FCs between DMN and Salience Network (SAL)/
Control Network (CON) were negative, while during N3- related HMM states 8 and 10, these FCs were 
positive.

As expected, the FC patterns between the Visual Network (VIS) and other sensory networks (Audi-
tory Network, AUD, and lateral/dorsal Somatomotor Network, lSMN/dSMN) were positive during 
wake- related HMM states but were negative during sleep- related HMM states. One notable excep-
tion was HMM state 6 (REM- related), in which VIS had a positive correlation with lSMN and AUD, 
mirroring those in wake- related states. During REM- related HMM states 6 and 19, the Basal Ganglia 
(BG) and Thalamus (THAL) had a strong positive correlation with lSMN and AUD.

When we correlated the FC patterns of each state to those of another state, the FC patterns of 
states that belong to the same module or are related to the same PSG- based sleep stages were highly 
correlated (similar to the modular results in Figure 3), see Figure 4—figure supplement 3.

Motion parameters with sleep stages
Averaged motion across six motion parameters decreased from wake to light sleep to deep sleep at 
night 2. For example, the mean (standard deviation) motion for each sleep stage is as follows, N1: 
0.043 (0.37); N2: 0.039 (0.033); N3: 0.035 (0.031); REM: 0.035 (0.032); Wake: 0.057 (0.052).

Similarly, the percentage of time points retained after censoring decreased from wake to light 
sleep to deep sleep at night 2. N1: 98.2%; N2: 99.2%; N3: 99.1%; REM: 98.7%; Wake 92.7%.

EEG spectral features across HMM states
We conducted spectral analysis for each TR and calculated the average power spectrum of Cz for 
each common EEG brainwave—Delta (0.5–4 Hz), Theta (4–8 Hz), Alpha (8–13 Hz), Beta (13–30 Hz), 
and Gamma (30–100 Hz)—across the 21 HMM states. See Figure 2—figure supplements 3 and 4 for 
night 2 and night 1 data, respectively. As expected, we found that N3- related states 8 and 10 had the 
highest Delta power on both nights. In addition, the Deep- N2 module had higher power in the Theta 
and Alpha bands compared to the Light- N2 module.

Discussion
By applying an unsupervised learning method to night 2 of two- night fMRI sleep recordings, we 
deduced 21 HMM states and their transition probabilities, independently of PSG- defined sleep stages. 
The identified HMM states showed excellent reproducibility to night 1 data in a semi- supervised 
manner, a feat not previously demonstrated. Moreover, through modular analysis focused solely on 
transition probabilities, a duality within REM- related and N2- related HMM states was found. These 
findings offer unique new information about brain sleep states and their transitions that extend 
beyond previous PSG- based research, as well as fMRI research without whole- night recordings.

Our work addressed well- known shortcomings of PSG- based sleep staging (Abeysuriya and 
Robinson, 2016; Decat et al., 2022) by integrating insights from whole- brain fMRI recordings. First 
and foremost, while traditional PSG- based sleep staging is based on 30  s epochs, HMM analysis 
allows for a state- specific duration as short as the fMRI temporal resolution (here 3 s). On average, the 
duration of HMM states is 12 s (Figure 3—figure supplement 3), suggesting a more detailed char-
acterization of brain states compared to PSG- based sleep stage analysis. Second, in terms of spatial 
resolution, the functional atlas used in our study encompassed 300 ROIs, offering a more detailed 
view of activation patterns across the entire brain, including subcortical and cerebellar regions that 
are ignored in PSG- based sleep staging. Third, our approach is mostly automated and objective, elim-
inating concerns related to inter- rater reliability issues and human error (Lambert and Peter- Derex, 
2023; Lee et  al., 2022; Rosenberg and Van Hout, 2013). Lastly, identifying transitions between 

https://doi.org/10.7554/eLife.98739
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sleep stages can pose challenges when relying solely on PSG data. In contrast, the HMM is explicitly 
designed to model these transitions between states, providing a better understanding of the dynamic 
shifts that occur throughout the sleep cycle, especially when the sleep stages transition is not linear 
from Wake to NREM to REM in the second half of night.

Previous research suggests that the analysis of sleep data at a finer temporal resolution than PSG- 
based sleep staging may be valuable. For example, distinct and recurring states of waking brain 
activity may be as brief as 100ms during wake (Baker et al., 2014; Koenig et al., 2005). In mice, rapid 
(seconds- scale) fluctuations in brain- wide neuronal spiking activity have been reported during states 
of low alertness, attributed to fluctuation in adrenergic and cholinergic neuromodulation from basal 
forebrain and locus coeruleus (Aston- Jones and Bloom, 1981; Collins et al., 2023; Kjaerby et al., 
2022; Osorio- Forero et al., 2023). Capturing second- scale changes of brain states with the analysis 
approach employed in the current study may, therefore, allow a more comprehensive investigation of 
the functional roles of sleep and shed light on the mechanisms by which these roles are accomplished.

The modular analysis, which solely relied on transition probabilities between states, uncovered a 
significant discovery. This analysis clustered HMM states into modules closely associated with PSG- 
defined sleep stages. This suggests that transition probabilities contain essential information about 
sleep states and PSG- based sleep stages. For instance, a module predominantly linked to the N3 
stage consisted of two N3- related states and one undefined state. Importantly, all three states also 
exhibited the highest slow- wave density among all states (see Figure 2—figure supplement 1A).

Within the Wake module, there were four HMM states, each representing pre- sleep wake (states 
16 and 20), post- sleep wake (state 13), and N1- 2 (state 11). The absence of a dedicated module/state 
representing the N1 stage is unsurprising, considering that N1 does not distinctly manifest as a well- 
defined sleep stage (Carskadon and Dement, 2011) and it has the lowest inter- rater reliability (0.24 
vs 0.76 overall) among all the PSG- defined sleep stages (Lee et al., 2022).

Two modules were associated with the N2 stage. One of these termed the ‘Deep- N2 module,’ 
exhibited a low likelihood of transitioning to REM and Wake while showing a slightly higher prob-
ability of transitioning to N3- related states when compared to the other module, referred to as the 
‘Light- N2 module.’ This finding aligns with previous studies (Brandenberger et  al., 2005; Decat 
et al., 2022), which separated the N2 stage into a quiet type (before the transition into the N3 stages, 
which resembles the Deep- N2 module in the current study) and an active type (preceding the transi-
tion to REM, related to the Light- N2 module).

The two REM- related states (6 and 19) within the REM module were notably different in several 
aspects. First, state 19 displayed a higher propensity for transitioning to the Wake module in contrast 
to state 6. Second, state 6 tended to occur towards the end of sleep and also late within the fMRI run 
(see Figure 2—figure supplement 1E, F). Third, in general, state 6 has a higher/stronger connections 
compared to state 19 (see Figure 4—figure supplement 2). These differences suggest an alignment 
of the HMM REM states along the previously defined microstates of REM, i.e., ‘phasic’ and ‘tonic’ 
episodes (Simor et al., 2020). Tonic REM is thought to be an intermediate state between wakefulness 
and phasic REM and is associated with a higher environmental awareness. Phasic REM occurs more 
often at the end of the night and is associated with a higher level of brain activity (Simor et al., 2020). 
Taken together, HMM state 19 might represent tonic REM given the high transition probability to 
Wake- related HMM states, while HMM state 6 might be related to phasic REM with higher FC and 
occurring later in the night.

In terms of both BOLD activation and FC patterns, a notable divergence between N3- related 
states and Wake- related states is observed in the interaction between DMN and its ACNs (SAL/
CON/FPN, etc.). It is plausible that the degree of correlation or anticorrelation between DMN and its 
ACNs is a pivotal factor influencing the transitions from wakefulness to light sleep and, subsequently, 
to deep sleep. The SAL is considered crucial for cognitive control, as it handles the perception and 
response to homeostatic demands (Menon, 2011; Peters et al., 2016; Seeley, 2019). It further acts 
as a mediator for dynamic interactions among other prominent large- scale brain networks engaged in 
externally focused attention (FPN) and internally directed self- referential cognitive processes (DMN). 
It is plausible that during sleep, the mediating function of the SAL is temporarily suspended to allow 
for its restoration. Recent findings have indicated that disruptions in SAL connections were observed 
following one night of sleep deprivation (Fang et al., 2015) or in individuals with insomnia disorder 
(Cheng et al., 2022; Li et al., 2022; Wei et al., 2020).

https://doi.org/10.7554/eLife.98739
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There are a few limitations worth mentioning. First, we made an arbitrary selection of 13 principal 
components for PCA, accounting for 40.7% of the total variance. While this percentage of explained 
variance may seem low, it was a necessary step to stabilize the fitting of the HMM in the current study. 
Notably, the trained HMM demonstrated generalization to night 1 data, validating the chosen prin-
cipal components as they encompass sufficient information about the fMRI signals. Second, while our 
study involved a relatively small number of participants (12), it included a large amount of fMRI data 
(~16 hr scan) per participant. Although the HMM trained on data from 12 participants was robust, 
the generalizability of the current results to different populations—such as healthy aging individuals 
and clinical populations—needs to be demonstrated in future studies, particularly with larger sample 
sizes and more diverse populations. Third, we chose to not include EEG features in our data- driven 
model. However, the current method is not limited to fMRI data and can be applied to EEG data. 
Given that previous data- driven studies based on EEG data have suggested that there might be more 
than five traditional sleep stages (Christensen et al., 2019; Decat et al., 2022; Koch et al., 2014), as 
well as subdivisions within these traditional sleep stages (Brandenberger et al., 2005; Decat et al., 
2022; Simor et al., 2020), future studies may apply data- driven models on both fMRI and EEG data. 
Fourth, while we selected 21 HMM brain sleep states based on model evaluation parameters in the 
current study, the exact number of sleep states is not fixed and likely depends on various sample- and 
methods- related factors, such as sample size and model setups.

There are some key differences in data acquisition and analysis that make it challenging to directly 
compare HMM states between the current study and Stevner et al., 2019. First, Stevner et al., 2019 
collected only 1- hr- long sleep data from 18 participants, whereas our current study includes 8- hr- long 
sleep data from 12 participants for two consecutive nights. As discussed in the introduction, full sleep 
cycling cannot be obtained from 1 hr long sleep due to the lack of REM stage and incomplete sleep 
cycles. Second, in Stevner et al., 2019; Figure 4e, the four wake- NREM stages had roughly the same 
duration. In contrast, in our current study (night 2, Figure 2A), the N2 stage comprises 43% of total 
sleep, which aligns with the natural N2 composition of nocturnal sleep stages. This discrepancy might 
explain the different number of N2- related states found in the two studies, with 3 out of 19 in Stevner 
et al., 2019 versus 13 out of 21 in our current study.

To summarize, we demonstrated how a data- driven analysis of an extensive sleep fMRI dataset can 
reproducibly characterize the full pattern of arousal state changes that recur during a whole night’s 
sleep. The findings underscore the advantages of the whole- night fMRI data, over the traditional PSG 
sleep staging and previous fMRI sleep studies, in achieving a fine- grained characterization of brain 
sleep states and their transitions. The successful generalization of our approach trained on night 2 to 
night 1 data shows its robustness, reliability, and objectivity across multiple nights. Our exploration of 
transitions between HMM states unveiled modules closely linked to distinct sleep stages, revealing a 
duality within N2- related modules that further dissects N2 stages into ‘light’ and ‘deep’ N2 modules. 
We identified a duality with REM- related HMM states, which resembles the 'phasic' versus 'tonic' 
REM. Additionally, we separated pre- sleep from post- sleep Wake states. Analysis of brain activation 
and FC patterns of HMM states indicated that the connections between DMN and ACNs, especially 
SAL, may play a critical role in the transition from wake to light sleep and subsequently to deep sleep. 
Collectively, this enriched comprehension of brain dynamics during nocturnal sleep holds the poten-
tial for identifying promising biomarkers associated with sleep disorders that significantly impact 
sleep- stage transitions.

Methods
Data acquisition and processing
All the data used in this study followed approved human subjects research protocols approved by 
the National Institutes of Health Combined Neuroscience Institutional Review Board (USA, Protocol 
Number 16 N- 0031), and informed consent was obtained from the participants. Data acquisition was 
conducted as part of a previously described sleep experiment (Moehlman et  al., 2019), encom-
passing two consecutive nights of concurrent fMRI- EEG data collection while participants slept inside 
a 3T Siemens Prisma MRI scanner. To ensure a consistent sleep schedule, participants were instructed 
to adhere to regular sleep patterns for two weeks before the experiments, and compliance was 

https://doi.org/10.7554/eLife.98739
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verified with wearable devices. No sleep deprivation protocols were implemented during the course 
of the study.

The fMRI data encompassed whole- brain scans consisting of 50 axial slices, captured at a spatial 
resolution of 2.5 mm (2.5 × 2.5 mm2 in- plane), with a 2.0 mm slice thickness and a 0.5 mm slice gap. 
The data was acquired at a temporal resolution of 3 s, employing a 90° flip angle and an echo time of 
36 ms. Data acquisition utilized a multi- slice echoplanar imaging approach in an interleaved manner. 
Simultaneously, EEG data was recorded at a digitization rate of 5  kHz, employing 64 channels to 
comprehensively cover the scalp. The MR- compatible EEG system used was from Brain Products 
(Gilching, Germany).

Additionally, concurrent peripheral physiological measures were acquired, including a chest belt to 
monitor respiratory chest excursion and finger skin photoplethysmography (PPG) to monitor cardiac 
rate and peripheral vascular volume. These physiological parameters were collected using a Biopac 
acquisition system with TSD200- MRI and TSD221- MRI transducers, combined with an MP 150 digi-
tizer sampling at 1 kHz, sourced from Biopac in Goleta, CA, USA. To ensure accurate synchronization, 
data collection for EEG was timed using the 10 MHz clock from the MR instrument. The Biopac device 
also recorded volume triggers from the MRI scanner to facilitate synchronization of peripheral physi-
ology recordings.

A total of 12 subjects (aged 18–35 years, including 8 females), out of 16 attempts, completed 
both nights of scanning (from 23:00 to 07:00 roughly). Throughout each night, the fMRI exper-
iments were intermittently disrupted by either acoustically stimulated or spontaneous awaken-
ings. As a consequence, a series of experimental runs was generated, with durations ranging 
from 5  min to 3  hr. Detailed fMRI, EEG, and peripheral physiological measures preprocessing 
steps can be found elsewhere (Moehlman et al., 2019; Picchioni et al., 2022). Briefly, a tailored 
version of the ‘afni_proc’ script in AFNI software was used (Cox, 1996), including outlier removal, 
detrend, RETRIOCOR (Glover et al., 2000), slice timing correction, motion correction, normaliza-
tion, registration, global signal removal, and censoring (Euclidean Norm of the first difference of 
six motion parameters exceeded 0.3). Previous analysis of the same data indicated that motion 
during extended sleep scans is comparable to the motion observed in shorter resting- state scans 
(Moehlman et  al., 2019). We also found that motion is lower during deep sleep compared to 
wake, see Results. The EEG signal underwent correction for MRI gradient and cardio- ballistic arti-
facts and was subsequently down- sampled to a rate of 250 Hz using the Analyzer software (Brain 
Vision, Morrisville, USA). The process of sleep scoring was carried out using a central electrode in 
30 s epochs, in accordance with established criteria with standard filters, and channel references 
(Berry et al., 2020). ICA cleaning and slow wave auto- detection script were applied to EEG signals 
(Betta et al., 2021; Mensen et al., 2016; Riedner et al., 2007). Sleep score, slow wave density, 
and peripheral physiological measures were resampled into a 3 s resolution aligned with the BOLD 
signal.

HMM overview
In pursuit of a data- driven approach to understanding the brain dynamics in the fMRI signals, we 
employed an HMM (Vidaurre et al., 2018; Vidaurre et al., 2017) to analyze timecourses extracted 
from 300 ROIs based on the Seitzman 300- ROI atlas (Seitzman et al., 2020). To prepare the data for 
analysis, we first standardized the participant- specific sets of 300 ROI timecourses (scaled to a mean 
of 0, and a standard deviation of 1), which were then concatenated across all participants. This stan-
dardization was performed separately for each night. This resulted in a data matrix with dimensions 
of 300 × (12 ×~5500) for each night, with approximately 5500 repetition time (TR), excluding breaks 
between runs and censored TR, accounting for 8 hr of scan time based on a 3 s TR.

The HMM inference process sought to find a sequence of recurring discrete states, each charac-
terized by a distinct statistical arrangement of data. We employed a Gaussian HMM using the Matlab 
toolbox HMM- MAR v1.0 (https://github.com/OHBA-analysis/HMM-MAR, copy archived at OHBA- 
analysis, 2024), where each state was modeled as a multivariate normal distribution encompassing 
both first- order statistics (mean activity) and second- order statistics (covariance matrix). These state 
parameters were determined collectively at the group level, while the state timecourses were indi-
vidually defined for each subject. As a result, the HMM identified periods of quasi- stationary activity, 
during which the 300 ROI timecourses displayed specific configurations of mean activity and FC.

https://doi.org/10.7554/eLife.98739
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Given the high spatial dimensionality of fMRI data, we employed principal component analysis 
(PCA) to reduce the number of parameters in the decomposition process as a common practice. This 
not only improves the signal- to- noise ratio but also enhances the overall robustness of HMM results 
(Stevner et al., 2019; Vidaurre et al., 2018; Vidaurre et al., 2017). By selecting the top 13 principal 
components, we retained 40.7% of the signal variance, resulting in a data matrix with dimensions of 
13 × (12 × ~5500). This matrix was then input into the HMM. For a more detailed overview of the 
analytical workflow, please refer to Figure 1.

Choice of the number of HMM states
Our analysis involved running the HMM across a range of model orders, specifically spanning from 4 
to 25. The assessment of each solution encompassed various summary statistics, with the most perti-
nent findings illustrated in Figure 1—figure supplement 1.

Figure 1—figure supplement 1A displays the minimum free energy plotted against the HMM 
model order. This free energy, functioning as a statistical metric, undergoes minimization in the 
Bayesian optimization process, approximating the model evidence. It encapsulates two crucial factors: 
the model’s alignment with the data and its complexity, assessed by its deviation from the prior distri-
bution. A lower value of free energy indicates a better model. The first negative peak is observed at 
K=21.

To provide insights into the temporal aspects, we defined fractional occupancy as the proportion 
of time in which an HMM state was active. In Figure 1—figure supplement 1B, C, we present the 
evolution of maximum (median) fractional occupancy across HMM states as a function of the model 
order. We observe a rapid decline in this curve for low values of K, suggesting that, as anticipated, the 
contribution of each HMM state to the total recording time decreased with an increasing number of 
states. However, this trend stabilizes at approximately K=21. This phenomenon is also mirrored in the 
development of the mean Lifetime of the HMM state, which exhibits a similar stabilization pattern at 
around K=21, as indicated in Figure 1—figure supplement 1E.

To assess the relationship between the fMRI- based HMM states and PSG- based sleep scoring, 
we conducted a multivariate analysis of variance (MANOVA). The MATLAB function manova1 was 
employed to compute Wilk’s Λ, which provides insights into how effectively the K HMM state 
timecourses can be categorized according to sleep scoring (the lower the better), as depicted in 
Figure 1—figure supplement 1D. There is a local minimum at K=21.

Taken together, we chose the model order K=21 as the number of HMM states. It should be noted 
that free energy is weighted most among those five model evaluation statistics.

Analysis and visualization of HMM transitions
The transition probability matrix, a fundamental element explicitly modeled by HMM, exhibited a 
discernible structure characterized by subnetworks of HMM states that displayed more frequent tran-
sitions among themselves than to states external to their respective subnetworks. Essentially, this 
transition matrix could be viewed as a directed graph marked by a modular organization. This char-
acteristic was effectively demonstrated by applying the transition matrix (depicted in Figure 3) to a 
modularity analysis. This modular analysis was performed using MATLAB functions sourced from the 
Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/Home; Rubinov and Sporns, 2010), 
which relies on Newman’s spectral community detection method (Leicht and Newman, 2008).

Visualizing mean fMRI activation maps and FC patterns of HMM states
The mean distributions and covariance matrices specific to each state were subsequently projected 
back onto the MNI space utilizing the mixing matrix derived from the PCA. We generated mean fMRI 
activation maps and FC patterns for every HMM state relative to the baseline averaged over all HMM 
states. For FC patterns, within- or between- network connectivities were calculated as the average 
Fisher- transformed functional connectivity between each pair of ROIs within or between networks. 
For visualization purposes, we grouped 300 ROIs into 14 networks based on the Seitzman Atlas 
(Seitzman et al., 2020). In addition, we assigned subcortical and cerebellar regions to the additional 
four Networks: Posterior hippocampus (pHIP, anterior hippocampus is included in MTL network), basal 
ganglia (BG), Thalamus (THAL), and Cerebellum (CB). Hence, a total of 18 networks were used.

https://doi.org/10.7554/eLife.98739
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Visualizing state timecourse of HMM states and its associations with 
PSG stages, PPG amplitude, and respiratory signals
Two example runs have been shown in Figure 3—figure supplements 1 and 2. These two examples 
showed how the HMM state timecourse (top panel) contained fine- grained information compared to 
the traditional PSG- based sleep stages (second panel) and also associated with PPG (third panel) and 
respiratory signals (last panel).
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