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eLife Assessment
This valuable study reports machine learning models derived from large-scale data to predict the 
risk of post-stroke epilepsy. The evidence supporting the conclusions is convincing, although there 
are some validation issues (lack of cross-validation, possible bias in external validation results). The 
study may be of interest in the field of clinical neurology

Abstract
Background: Post-stroke epilepsy (PSE) is a critical complication that worsens both prognosis and 
quality of life in patients with ischemic stroke. An interpretable machine learning model was devel-
oped to predict PSE using medical records from four hospitals in Chongqing.
Methods: Medical records, imaging reports, and laboratory test results from 21,459 ischemic stroke 
patients were collected and analyzed. Univariable and multivariable statistical analyses identified key 
predictive factors. The dataset was split into a 70% training set and a 30% testing set. To address 
the class imbalance, the Synthetic Minority Oversampling Technique combined with Edited Nearest 
Neighbors was employed. Nine widely used machine learning algorithms were evaluated using rele-
vant prediction metrics, with SHAP (SHapley Additive exPlanations) used to interpret the model and 
assess the contributions of different features.
Results: Regression analyses revealed that complications such as hydrocephalus, cerebral hernia, 
and deep vein thrombosis, as well as specific brain regions (frontal, parietal, and temporal lobes), 
significantly contributed to PSE. Factors such as age, gender, NIH Stroke Scale (NIHSS) scores, 
and laboratory results like WBC count and D-dimer levels were associated with increased PSE risk. 
Tree-based methods like Random Forest, XGBoost, and LightGBM showed strong predictive perfor-
mance, achieving an AUC of 0.99.
Conclusions: The model accurately predicts PSE risk, with tree-based models demonstrating 
superior performance. NIHSS score, WBC count, and D-dimer were identified as the most crucial 
predictors.
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Introduction
Stroke is the second leading cause of death worldwide, with an annual mortality of about 5.5 million, 
and is the leading cause of disability, accounting for 50% of cases globally (Feigin et al., 2017). Isch-
emic strokes make up approximately 80% of all stroke cases (Galovic et al., 2018; Krishnamurthi 
et  al., 2013). PSE is a common complication, with studies showing that 3–30% of stroke patients 
develop epilepsy, which worsens their prognosis and quality of life (Zhao et al., 2018). PSE can exac-
erbate cognitive, psychiatric, and physical impairments caused by cerebrovascular disease and related 
conditions (Al-Sahli et al., 2023). The highest incidence of PSE occurs within the first year after an 
acute stroke, representing nearly half of all cases (Galovic et al., 2018). Therefore, early prediction 
and intervention for PSE, especially in ischemic strokes, are essential.

Currently, most studies rely on clinical data to build statistical models using survival analysis, Cox 
regression (Galovic et al., 2018; Chen et al., 2018), and multiple linear regression (Merkler et al., 
2018) to predict PSE. Last year, Lin et al., 2023 developed a radiomics-based model that outper-
formed conventional clinical models in predicting PSE related to intracerebral hemorrhage (ICH), 
suggesting that a combined radiomics-clinical model could improve individual risk assessment of PSE 
after the first ICH, facilitating early diagnosis and treatment. However, later research raised concerns 
about the use of radiomics, indicating the need for further investigation (Pszczolkowski and Law, 
2023). Overall, research on PSE prediction remains limited, with most studies focusing on specific 
risk factors (Waafi et al., 2023; Herzig-Nichtweiß et al., 2023; Lin et al., 2023; Pitkänen et al., 
2016) and building basic models, rather than proposing more comprehensive and scientifically robust 
prediction models.

Machine learning has gained recognition as a powerful tool for developing medical models, due to 
its ability to process large datasets and handle complex information. It has been increasingly applied 
in neuroscience and clinical prediction (El Naamani et al., 2024; Lu et al., 2023; Daidone et al., 
2024). Previous studies have used machine learning to explore post-stroke cognitive impairments 
(Lee et al., 2023), predict stroke and myocardial infarction risk in patients with large artery vascu-
litis (Lu et al., 2023), develop post-stroke depression models using liver function tests (Gong et al., 
2023), and predict hematoma expansion in traumatic brain injury (TBI) (He et al., 2024). Machine 
learning models can automatically capture both linear and complex nonlinear relationships between 
variables, providing insights into how different factors contribute to the prediction target—something 
traditional statistical models struggle with. However, machine learning requires large datasets and is 
prone to overfitting when sample sizes are small. The quality and quantity of input data are critical for 
the algorithm to detect patterns and make accurate predictions.

This study aims to identify key risk factors from features extracted from clinical records and test 
data of ischemic stroke patients. Using these features, a machine learning-based model will be devel-
oped to predict PSE. By leveraging early admission data, the goal is to automatically predict the like-
lihood of PSE occurrence, guiding clinical decision-making and patient care.

Results
Filling of missing data
Missing values were imputed using a Random Forest (RF) model, addressing one feature at a time. The 
imputed features included: Plt, WBC, RBC, HbA1c, CRP, TG, LDL, HDL, AST, ALT, bilirubin, albumin, 
urea, creatinine, BUA, PT, APTT, TT, INR, D-dimer, fibrinogen, CK, CK-MB, LDH, HBDH, IMA, lactate, 
anion gap, TCO2, and NIHSS (Figure 1).

Characteristics of study participants
A total of 21,459 patients were included in the study. The training set comprised 15,021 patients, with 
a PSE incidence of 4.3%. The test set consisted of 6438 patients, also with a 4.3% incidence of PSE. An 
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external validation cohort included 536 patients from three hospitals. Detailed statistical information 
on the clinical characteristics is presented in (Supplementary file 1).

Analysis indicated that patients with a higher likelihood of developing PSE had complications 
such as uremia, a history of DVT, atrial fibrillation, hyperuricemia, cerebral hernia, and hydrocephalus. 
Affected brain regions included the frontal, parietal, occipital, and temporal lobes, along with the 
cortex, subcortex, basal ganglia, and hypothalamus. General characteristics influencing risk included 
age, gender, and NIHSS. Laboratory indicators associated with a higher risk of PSE included WBC, 
HbA1c, CRP, TG, AST, ALT, bilirubin, urea, uric acid, APTT, PT, D-dimer, CK, CK-MB, LDH, HBDH, 
IMA, lactate, and anion gap. Significant p-values were also observed for fatty liver, coronary heart 
disease, hyperlipidemia, and HDL, with low or negative values linked to higher risks of secondary 
complications. Details of statistical, univariate, and multivariate regression analyses are provided in 
Supplementary file 1, Supplementary file 2, Supplementary file 3.

Performance of machine learning models
Performance indicators for the machine learning models are summarized in Supplementary file 4. The 
ROC curves, calibration curve, and decision curve analysis (DCA) are shown in Figure 2. Tree-based 
models such as RF, XGBoost, and LightGBM demonstrated the highest AUC scores, outperforming 
other models. Among them, RF achieved the highest positive predictive value (PPV) at 0.864, which 
was the most significant metric in this study. Complex machine learning algorithms outperformed 
traditional logistic regression. The calibration curve showed a Brier score of 0.006, and DCA indicated 
strong practical value in clinical decision-making. In the external validation cohort, RF achieved a 
sensitivity of 0.91 and a PPV of 0.95, confirming its strong predictive capability.

Analysis of SHAP risk factors
Figure 3 presents SHAP values, individual decision attempts, and overall decision curves. Among 
general characteristics, females had a higher PSE rate. A higher NIHSS was associated with an 

Figure 1. LASSO regression coefficient paths. The image shows the LASSO regression coefficient paths for various features related to a medical or 
research study. The x-axis shows the log of the regularization parameter alpha, and the y-axis shows the regression coefficient values. The lines in the 
plot represent the coefficient paths for different features as the regularization parameter changes. The features are labeled on the right side of the plot, 
and the most important features selected by the LASSO model are shown at the bottom of the image.

https://doi.org/10.7554/eLife.98759


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Liu, He et al. eLife 2024;13:RP98759. DOI: https://doi.org/10.7554/eLife.98759 � 4 of 14

Figure 2. Model evaluation metrics and curves. The figure shows model performance curves across six sections 
(A1, A2, A3 on the left; B1, B2, B3 on the right) for training and test sets. ROC Curve: Illustrates the trade-off 
between sensitivity and specificity, with the AUC indicating overall model performance. Calibration Curve: 
Compares predicted probabilities to actual outcomes, assessing the model’s confidence accuracy. Precision-Recall 

Figure 2 continued on next page
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increased incidence of PSE. Elevated WBC, D-dimer, CRP, AST, CK-MB, HbA1c, bilirubin, TCO2, and 
LDH levels at admission were linked to a greater likelihood of developing PSE. Conversely, lower 
levels of HBDH, Plt, and APTT were also associated with a higher risk of PSE. Specific brain regions 
did not have a significant individual effect on the outcome. Among complications, hypertension was 
more strongly associated with PSE development, while conditions such as coronary heart disease, 
diabetes, hyperlipidemia, and fatty liver were less likely to be related. A force plot for the first patient 
illustrated the influence of different features on the prediction. In this case, a prolonged APTT time 
contributed the most to PSE, followed by elevated AST levels, while a low NIHSS negatively impacted 
the final result. The decision plot aggregated model decisions to demonstrate how complex models 
generated their predictions.

Curve: Analyzes the balance between precision and recall at various thresholds, particularly useful for imbalanced 
datasets.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. ROC curve of train and test groups.

Figure supplement 2. Calibration curve of train and test groups.

Figure supplement 3. Precision-recall curve of train and test groups.

Figure 2 continued

Figure 3. Description of the SHapley Additive exPlanations (SHAP) values and feature importance. SHAP Value (Left): Displays the impact of each 
feature on the model’s predictions, with features sorted by importance. The color gradient indicates the range of feature values, from low (blue) to 
high (red). Force plot (upper right): Illustrates the contribution of individual features of the first sample to the final model output, highlighting how each 
feature value pushes the prediction away from the baseline value. Decision plot (lower right): Visualizes the cumulative impact of features on the model 
output for each sample, showing how the feature values combine to produce the final prediction.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. SHAP value of train and test groups.

Figure supplement 2. Force plot of train and test groups.

Figure supplement 3. Decision plot of train and test groups.
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Discussion
The study utilized comprehensive clinical, imaging, and laboratory data from stroke patients to 
develop a predictive model using machine learning algorithms. The model achieved an AUC above 
0.95, indicating more accurate predictions compared to traditional statistical methods. Tree-based 
ensemble models demonstrated superior predictive performance, particularly when handling large 
datasets with high-dimensional features.

During the modeling process, the extreme imbalance between negative and positive samples was 
addressed using the SMOTEENN technique, which improved model performance. SHAP analysis was 
conducted to assess model interpretability and identify the importance of different features.

According to the statistical results, age and NIHSS were treated as continuous variables. The 
results show that female patients, older individuals, and those with higher NIHSS were more likely to 
develop PSE, consistent with recent studies. Higher NIHSS, indicating more severe strokes, signifi-
cantly increased the risk of complications, ranking second only to WBC and D-dimer in predictive 
importance (Al-Sahli et al., 2023; Lin et al., 2021; Waafi et al., 2023; Zöllner et al., 2020). However, 
there are differing perspectives regarding the effect of age. Some studies (Al-Sahli et  al., 2023; 
Yamada et al., 2020) suggest that age below 65 is a high-risk factor, which aligns with this findings, 
while other studies (Lidetu and Zewdu, 2023) indicate that advanced age is the key factor. Yamada 
et al., 2020 supported the results, showing that female patients have a higher risk of complications, 
while (Waafi et al., 2023) reported that male patients are 3.325 times more likely to develop compli-
cations, contradicting these results.

Previous research indicates that patients with diabetes, dyslipidemia, hypertension, depression, 
or dementia are at higher risk of developing vascular epilepsy (Pitkänen et al., 2016). In this study, 
statistical analysis and multiple ML models examined the relationship between comorbidities and 
complications. Patients with coronary heart disease, diabetes, fatty liver, hyperlipidemia, or large 
artery stenosis or plaques (CCA and ICA) were found to be less likely to develop epilepsy. According 
to the TOAST classification, ischemic stroke is divided into five categories: large artery atheroscle-
rosis, cardioembolism, small vessel occlusion, other determined etiology, and undetermined etiology. 
Patients with multiple comorbidities often fall into the large artery atherosclerosis and cardioembo-
lism categories, which are more clearly defined and easier to treat, resulting in a lower likelihood of 
epilepsy. In contrast, strokes of undetermined etiology tend to have worse prognoses and a higher 
likelihood of leading to epilepsy. Among patients with diabetes, higher HbA1c levels indicate poor 
blood sugar control and a higher risk of complications. Better blood sugar control was associated with 
a lower overall risk of developing complications.

Lekoubou et al., 2023 reported that cortical infarction is more likely to lead to epilepsy in patients 
hospitalized with anterior circulation ischemic stroke. Lin et al., 2023 also found that factors such as 
cortical involvement and intracerebral hemorrhage volume increase the likelihood of PSE, aligning 
with the statistical result findings. Al-Sahli et al. suggested that cortical brain injury and large-area 
lesions elevate the risk of PSE (Al-Sahli et al., 2023; Yamada et al., 2020). According to the statistical 
results, both cortical and subcortical involvement were associated with an increased likelihood of PSE, 
but these regions had a smaller influence compared to other features and were not selected in LASSO 
regression.

Previous studies have identified acute infection as a risk factor for ischemic stroke (Bova et al., 
1996). CRP, which reflects inflammation levels, is an independent prognostic factor (Di Napoli et al., 
2001). Both regression and SHAP analysis of the results indicated that WBC had a significant impact 
among routine blood test parameters, even surpassing NIHSS in SHAP analysis. A high WBC may 
indicate severe inflammation or infection, as well as increased blood viscosity, predisposing patients 
to secondary complications. High RBC and low Plt counts were also associated with an increased risk 
of complications.

A large-scale study on Chinese individuals found a negative correlation between plasma HDL and 
the risk of ischemic stroke, a weak positive correlation between TG levels and stroke risk, and a strong 
correlation between LDL and apolipoprotein B levels (Sun et al., 2019). High HDL levels are linked 
to better prognosis (Bandeali and Farmer, 2012). The data analysis and model interpretation results 
align with these findings, showing that high LDL, low HDL, and elevated TG levels are more likely to 
result in PSE. This can be explained by high cholesterol and TG levels increasing blood viscosity and 
contributing to vascular sclerosis, promoting clot formation (Pitkänen et al., 2016; Gasparini et al., 
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2022; Abraira et al., 2020). Higher D-dimer levels indicate more significant brain tissue damage, 
increasing the likelihood of PSE. In general, lower APTT and fibrinogen levels are associated with 
higher PSE risk, while INR, PT, and TT have smaller impacts. Among liver function indicators, AST had 
the greatest influence on PSE. High AST, low ALT, and low albumin levels also had some impact. Ding 
et al., 2023 reported that liver enzyme subgroups defined by ALT and AST were linked to higher risks 
of adverse outcomes, consistent with this findings.

Studies have shown that renal function biomarkers such as urinary microalbumin, cystatin C, and 
creatinine are associated with higher stroke recurrence rates and poorer prognosis (Ding et al., 2023). 
In the light of statistical results, low urea levels and high uric acid levels had a negative impact (Zhang 
et al., 2023; Wang et al., 2019; Wang et al., 2021). Elevated uric acid at admission was positively 
associated with PSE, although patients with a prior diagnosis of hyperuricemia were less likely to 
develop epilepsy. Since uric acid acts as a strong antioxidant and has neuroprotective properties 
(Ng et al., 2017), patients with normal liver and kidney function and mild hyperuricemia may exhibit 
greater resilience in emergencies (Amaro et  al., 2011). However, excessively high uric acid levels 
suggest metabolic disorders and poor liver and kidney function, which are linked to a poor prognosis.

When stroke patients are admitted, cardiac enzyme tests are often performed to rule out myocar-
dial ischemia. However, studies have shown that elevated CK-MB in stroke patients may not be solely 
heart-related (Ay et al., 2002). Cardiac enzymes are important prognostic indicators (Liu et al., 2014; 
Zeng et al., 2021) and have been incorporated into stroke scores (Hijazi et al., 2016). Some studies 
have reported a higher incidence of abnormal serum cardiac enzyme levels in the acute phase of stroke. 
Although these abnormalities are not related to stroke type, they are associated with stroke severity, 
with patients exhibiting consciousness disorders having a significantly higher incidence of abnormal 
cardiac enzymes than those without such disorders (Zheng Yuan-Hui and Jian, 2009). According to 
the statistical and SHAP results, CK, CK-MB, and IMA in the cardiac enzyme profile demonstrated 
significant impact and high predictive value, though further research is needed to understand the 
specific mechanisms involved (Ng et al., 2017).

Despite incorporating extensive clinical, imaging, and laboratory data to build more accurate 
prediction models using machine learning algorithms, surpassing traditional statistical methods, there 
were several limitations in the modeling process.

Although the current study offers valuable insights, the dataset may not be fully representative, 
and the model’s generalizability requires further evaluation. The data were collected from multiple 
tertiary hospitals and included over 20,000 cases, but earlier data were lost due to hospital system 
upgrades. Consequently, the dataset primarily reflects patients diagnosed within the past five years 
and is predominantly from the Chongqing region, which may limit the model’s applicability to other 
geographic areas.

Additionally, the retrospective nature of the study led to the absence of some important predictive 
indicators. Several potentially valuable features, such as hemorheology, thromboelastography, and 
hormone levels, were missing and had to be excluded, potentially affecting the model’s accuracy. 
Including these features could further enhance the model’s predictive power.

To improve the model, it would be beneficial to incorporate additional data beyond baseline patient 
characteristics. The current analysis mainly used results from the initial examination upon admission, 
without fully leveraging information from subsequent exams. Future research could employ recurrent 
neural networks to extract features from the entire sequence of examinations more comprehensively.

To strengthen this study further, data standardization should be improved, and the number of 
cases and key indicators should continue to grow. Additionally, exploring more advanced scientific 
methods, such as deep learning, and utilizing all available data could enhance prediction accuracy.

Materials and methods
Research patients
This study retrospectively included all stroke patients admitted to Chongqing Emergency Center 
between June 2017 and June 2022 to develop the prediction model. Data from three external valida-
tion centers—Qianjiang Central Hospital, Bishan District People’s Hospital, and Yubei District Tradi-
tional Chinese Medicine Hospital—were collected between July 2022 and July 2023 to validate and 
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evaluate the model externally. The external validation cohort focused on collecting positive cases to 
accurately test the model’s ability to identify them.

Inclusion criteria included: (1) Patients aged 18–90 years at admission; (2) Diagnosed with acute 
ischemic stroke and hospitalized for treatment.

Exclusion criteria were: (1) History of stroke or transient ischemic attack (TIA); (2) History of condi-
tions such as traumatic brain injury, intracranial tumors, or cerebral vascular malformations that may 
cause epilepsy; (3) History of epilepsy or prior antiseizure medication use for seizure prevention or for 
other diseases (e.g. migraine or psychiatric disorders); (4) Death within 72 hr after stroke onset.

De-identified data from relevant patients were collected to build a multi-modal stroke patient data-
base. The study protocol was approved by the Ethics Committees of Chongqing University Center 
Hospital, Chongqing University Qianjiang Central Hospital, Bishan District People’s Hospital, and 
Yubei District Traditional Chinese Medicine Hospital.

The selection process is outlined in Figure 4. A total of 42,079 records were retrieved from the 
stroke database, and 24,733  patients were diagnosed with new-onset ischemic or lacunar stroke. 
Patients with hemorrhagic strokes (4565), a history of stroke (2154), TIA (3570), unclear-cause strokes 
(561), and those with missing essential data (6496) were excluded. Additionally, patients whose seizures 
may have been caused by other factors (such as brain tumors, intracranial vascular malformations, or 
traumatic brain injury) (865), those with a history of seizures (152), and those who died in the hospital 
(1444) were excluded. Patients lost to follow-up (those without outpatient records or unreachable 
by phone) or who died within three months of the stroke incident (813) were also excluded. In total, 
21,459 cases were included in the study.

Data collection
Relevant records and data were extracted from hospital databases. PostgreSQL was used to manage 
the data, with Structured Query Language (SQL) queries organized as follows:

1.	 General Information: This included gender, age, and NIH Stroke Scale (NIHSS) score at admission.
2.	 Comorbidities and Complications: Conditions such as uremia, deep vein thrombosis (DVT), 

diabetes mellitus, hypertension, coronary atherosclerosis, atrial fibrillation, cerebral hernia, 
hydrocephalus, hypoproteinemia, hyperuricemia, hyperlipidemia, internal carotid stenosis, and 
common carotid stenosis were recorded.

Figure 4. Slection and exclusion procedure of patients. A total of 42,079 records were retrieved from the stroke 
database, and 24,733 patients were diagnosed with ischemic or lacunar stroke with new onset. Hemorrhagic 
strokes (4565), a history of stroke (2154), TIA (3570), unclear cause strokes (561), and records with missing essential 
data (6496) were excluded. Patients whose seizures might have been caused by other factors (such as brain 
tumors, intracranial vascular malformations, or traumatic brain injury) (865), those with a seizure history (152), and 
patients who died in the hospital (1444) were also excluded. Additionally, patients lost to follow-up (those without 
outpatient records or unreachable by phone) or who died within three months of the stroke incident (813) were 
excluded. Finally, 21,459 cases were included in the study.

https://doi.org/10.7554/eLife.98759
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3.	 Brain Involvement (CT or MRI records): Involvement of cortical lobes (frontal, parietal, temporal, 
occipital, and insular) and subcortical areas (basal ganglia, internal capsule, brain stem, cere-
bellum, periventricular area, centrum semiovale, and thalamus) was noted. Cortical involvement 
was scored with each lobe contributing 1 point, and subcortical involvement was scored simi-
larly, with each area contributing 1 point.

4.	 Vascular Involvement (CTA, MRA, or DSA records): The presence of vascular stenosis or occlu-
sion in the anterior cerebral artery (ACA), middle cerebral artery (MCA), posterior cerebral 
artery (PCA), vertebral artery (VA), and basilar artery (BA) was documented.

5.	 Key Laboratory Indicators: These included blood lipid levels such as triglycerides, high-density 
lipoprotein cholesterol (HDL), and low-density lipoprotein cholesterol (LDL); liver function 
markers such as alanine transaminase (ALT), aspartate aminotransferase (AST), bilirubin, and 
albumin; renal function markers such as urea, blood uric acid (BUA), and creatinine; blood gas 
parameters such as lactate, anion gap, and total carbon dioxide (TCO2); coagulation markers 
such as international normalized ratio (INR), prothrombin time (PT), activated partial throm-
boplastin time (APTT), thrombin time (TT), D-dimer, and fibrinogen; and myocardial enzymes 
such as creatine kinase (CK), creatine kinase isoenzyme (CK-MB), lactate dehydrogenase (LDH), 
ischemic modified albumin (IMA), and α-hydroxybutyrate dehydrogenase (HBDH).

Data processing and model building
Processing of Missing Data: Laboratory indicators were recorded from the first set of tests after stroke 
admission. Indicators with more than 10% missing data were excluded. Remaining indicators with 
missing values were imputed using the random forest algorithm with default parameters. Features 
were processed in order of increasing missing data to minimize imputation complexity. During impu-
tation, missing values in other features were temporarily replaced with 0, and predicted values were 
inserted into the original feature matrix before moving to the next feature. This process continued 
until all features were complete.

Distribution of Characteristics: Univariate analysis was performed to compare the distribution of 
characteristics between PSE-negative and PSE-positive groups. The dataset was then divided into a 
training set and a test set in a 7:3 ratio.

Handling Imbalanced Data: Due to the low incidence of PSE and the small proportion of positive 
cases, positive data in the training set were augmented using the Synthetic Minority Over-sampling 
Technique combined with Edited Nearest Neighbors (SMOTEENN). The SMOTEENN method from 
the imblearn Python package was applied with default parameters, and a random seed of 42 was set 
for reproducibility.

Processing of Categorical Data: Categorical variables were transformed using one-hot encoding. 
The LASSO method was then applied to the training set to identify the most important features.

Model Building: LASSO regression was used to select the 20 most important features. Nine widely 
used machine learning methods were employed, including Naive Bayes, Logistic Regression, Decision 
Tree, Random Forest, Gradient Boosting, Multi-Layer Perceptron, XGBoost, LightGBM, and K-Nearest 
Neighbors. Hyperparameters were optimized through grid search to enhance model performance. 
Evaluation metrics included accuracy, sensitivity, specificity, F1-score, positive predictive value, and 
negative predictive value. Additionally, ROC curves, calibration curves, and decision curves were 
generated to assess model performance. An independent external validation dataset was used to 
evaluate the model’s generalizability. The SHAP algorithm was then applied to the best-performing 
model to interpret feature contributions and their clinical relevance. This approach enabled the devel-
opment of a robust machine learning model with strong predictive performance and interpretability, 
providing valuable support for clinical decision-making.

Statistical approach
PostgreSQL v15 (http://www.postgresql.org/) was used to search and extract data from the local 
database. Statistical analysis was performed using the open-source ​Scipy.​stats package in Python. The 
details of the univariate significance analysis were as follows:

The Shapiro-Wilk test was used to assess the normality of each feature’s distribution. For features 
not following a normal distribution, the Mann-Whitney U test was used to evaluate their significance in 
relation to the target variable. For features with a normal distribution, the Levene test was performed 
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to evaluate the homogeneity of variances. Features with homogeneous variances were analyzed using 
the Student’s t-test, while those with heterogeneous variances were analyzed using Welch’s t-test.

Confidence intervals for AUC values and Brier scores were calculated using 1000 bootstrap resam-
pling iterations. Binary classification thresholds for predicted probabilities were set using the maximum 
Youden index derived from the training cohort. A two-tailed p-value of less than 0.05 was considered 
statistically significant throughout the study.

All code used in this study is available at https://github.com/conanan/lasso-ml (copy archived at 
conanan, 2024).

Conclusion
An interpretable machine learning model was developed to predict the risk of PSE in hospitalized 
patients with ischemic stroke. Using a large dataset of medical records, the model demonstrated 
strong predictive performance for PSE. Key predictors identified by the model include NIHSS, D-dimer, 
lactate, and WBC, along with liver function and cardiac enzyme profile indicators. The model’s trans-
parency and interpretability can build trust among clinicians and support decision-making. While the 
results are promising, further prospective studies are necessary to validate the clinical utility of this 
tool before it can be applied in real-world settings.
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exPlanations) analysis for interpretability. It contains the original Figures 2, 3, 4, and Table 4, which 
relate to model performance and interpretation.

•  Source code 4. Cross-validation for Lasso regression. This notebook is designed to perform 
fivefold cross-validation for the Lasso regression and model construction, ensuring a robust 
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