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Abstract Degree distributions in protein-protein interaction (PPI) networks are believed to 
follow a power law (PL). However, technical and study biases affect the experimental procedures for 
detecting PPIs. For instance, cancer-associated proteins have received disproportional attention. 
Moreover, bait proteins in large-scale experiments tend to have many false-positive interaction part-
ners. Studying the degree distributions of thousands of PPI networks of controlled provenance, we 
address the question if PL distributions in observed PPI networks could be explained by these biases 
alone. Our findings are supported by mathematical models and extensive simulations, and indi-
cate that study bias and technical bias suffice to produce the observed PL distribution. It is, hence, 
problematic to derive hypotheses about the topology of the true biological interactome from the 
PL distributions in observed PPI networks. Our study casts doubt on the use of the PL property of 
biological networks as a modeling assumption or quality criterion in network biology.

Editor's evaluation
This manuscript makes an important contribution to the understanding of protein-protein interaction 
(PPI) networks by challenging the widely held assumption that their degree distributions uniformly 
follow a power law. The authors present convincing evidence that biases in study design, such as 
data aggregation and selective research focus, may contribute to the appearance of power-law-like 
distributions. While the power law assumption has already been questioned in network biology, the 
methodological rigor and correction procedures introduced here help to advance our understanding 
of PPI network structure.

Introduction
Barabasi and Albert, 1999 proposed in the late 1990s that naturally occurring networks have a 
commonality: The distribution of their node degrees ‍k‍ (i. e. the number of interactions each node 
is participating in) tends to follow a PL distribution ‍P(k) ∝ k−α

‍. For ‍2 < α < 3‍, this distribution is 
scale-free, as its variance diverges with increasing network size. An important consequence of this 
assumed long-tail distribution of the node degrees is that it explains the existence of hub nodes with 
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many connections (which are unlikely to occur under other statistical models), contrasting a large 
number of lowly connected nodes. Another feature of PL-distributed networks is their small world 
property, where a small network diameter leads to relatively high resilience against random perturba-
tions (Cohen et al., 2000). This commonality in the topology of real-world networks is considered a 
universal law, as it seems to describe common features of such diverse networks such as food webs, 
metabolic networks, the internet, and (PPI) networks (Jeong et al., 2001; Barabási and Oltvai, 2004; 
Yook et al., 2004).

With respect to PPI networks, the PL property is typically explained with biological considerations: 
Protein families that are involved in general biological processes such as protein folding, gene regu-
lation, or post-translational modifications are very promiscuous and bind to a large number of other 
proteins, whereas the majority of proteins show few interactions (Nobeli et  al., 2009). Moreover, 
it is crucial for the emergence of the PL property that, in the evolution of networks, ‘new vertices 
attach preferentially to sites that are already well connected’ (Barabasi and Albert, 1999). It has been 
suggested that, in the evolution of PPI networks, such preferential attachment can be explained via 
gene duplication and subsequent mutation (Pastor-Satorras et al., 2003).

Today, the assumption that PPI networks show a PL distribution has been codified in textbooks 
(Barabási and Pósfai, 2016) and training material (Millán, 2016). This has had an important implica-
tions on the network biology field: Some studies use PL fittings as quality criteria for their measured 
networks Stelzl et al., 2005; others use topological protein properties ex- or implicitly for predicting 
disease genes (Xu and Li, 2006; Janyasupab et al., 2021). Further examples are the co-expression 
module inference tools WGCNA (Zhang and Horvath, 2005; Langfelder and Horvath, 2008) and 
CEMiTool (Russo et al., 2018). In these tools, the assumption that biological networks are PL-dis-
tributed directly informs the automated choice of hyper-parameters used to prune or transform the 
co-expression matrices, i.e., the hyper-parameters are chosen such that the resulting degree distribu-
tions yield good PL fits. Since WGCNA is extremely widely used (more than 17,000 citations according 
to Google Scholar as of February 2024), the PL assumption has hence potentially shaped the results 
reported in thousands of studies.

Even though it was reported that PL properties of networks across disciplines often lack statistical 
support or mechanistic backing (Stumpf and Porter, 2012), the assumption that PPI networks are 
PL-distributed has become mainstream in the network biology field. With respect to PPI networks, 
critical voices have been raised since the 2000s. Broadly, these studies can be categorized in two 
groups. Firstly, various studies exist that challenge the correctness of the claim that empirical PPI 
networks are scale-free or PL-distributed (Pržulj et al., 2004; Tanaka et al., 2005; Khanin and Wit, 
2006; Lima-Mendez and van Helden, 2009; Przulj et al., 2010; Broido and Clauset, 2019): In some 
of these studies, goodness-of-fit tests are used to show that, in some empirical PPI networks, PL distri-
butions actually do not provide a good fit of the empirical degree distributions (Tanaka et al., 2005; 
Khanin and Wit, 2006; Lima-Mendez and van Helden, 2009; Broido and Clauset, 2019). In others, 
networks are simulated using random network generation models that do and do not yield PL-dis-
tributed networks, and it is then argued that the simulated non-PL networks are often more similar to 
empirical PPI networks than the simulated PL networks (Pržulj et al., 2004; Przulj et al., 2010).

Second, there are studies which concede (at least for the sake of the argument) that empirical PPI 
networks are PL-distributed, but challenge that this is sufficient evidence to conclude that the same 
holds for the ground truth interactome (Stumpf et al., 2005; Han et al., 2005; Deeds et al., 2006): 
In some of these studies, it is argued that (dis-)appearance of PLs in empirical PPI networks may be 
artifacts of sampling from the full interactome (Stumpf et al., 2005; Han et al., 2005). In another 
study, a physical network generation model is presented, which allows us to explain the emergence of 
PLs in empirical PPI networks as an artifact of technical biases in yeast-2-hybrid (Y2H) screens (Deeds 
et al., 2006).

In this work, we aim to rekindle interest in a critical assessment of the assumption that PPI networks 
are PL-distributed and posit biased research interest in proteins as another possible non-biological 
explanations (Figure 1A). Based on data from more than 40,000 affinity purification-mass spectrom-
etry (AP-MS) and Y2H studies, we argue that the emergence of PL distributions in empirical PPI 
networks can be explained by a combination of the following three factors:

•	 Study bias in the selection of the tested proteins: PPIs are typically detected using a Y2H screen 
studies, where individually selected protein pairs or libraries can be tested as bait and prey, or 

https://doi.org/10.7554/eLife.99951
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via AP-MS, where one or several bait proteins are tested against a large number of preys. In 
particular AP-MS experiments are sensitive to study bias, where already overstudied proteins 
such as oncogenes or tumor suppressors are tested more frequently than others (Schaefer 
et al., 2015).

•	 False positives in the experimental techniques used for measuring PPIs: We know that biases 
of the experimental procedures used to infer networks can affect the resulting topology (Peel 
et al., 2022). This is particularly relevant for PPI networks, which are based on techniques with 
an estimated false positive rate of up to 80% (Berggård et al., 2007).

•	 Aggregation of the results of single experiments: Today, researchers in the network biology 
field mainly rely on aggregated PPI networks obtained from databases such as HIPPIE (Alanis-
Lobato et al., 2017), BioGRID (Oughtred et al., 2021), IID (Kotlyar et al., 2022), or STRING 
(Szklarczyk et al., 2021). We show that, in combination with study bias and a non-zero false 
positive rate, such aggregation can lead to PL distributions in empirical PPI networks even if the 
measured ground truth interactome has a radically different topology.

To do so, we show that only a subset of networks exhibit a node degree distribution following a PL. 
We then systematically test if the PL property arises simply by aggregating studies (Figure 1B), as is 
common practice in PPI databases. Next, we test if the node degree distribution still follows a PL if we 
account for the bias introduced by bait proteins. Furthermore, we test to which extent accounting for 
such biases changes the functional enrichment of highly promiscuous hub proteins, where we expect 
that heavily studied disease-related proteins show reduced enrichment whereas functions carried 
out by proteins known to be promiscuous should show increased enrichment (Figure 1C). We then 
show mathematically that, given PL-distributed bait usage, PL-distributed PPI networks can emerge 
through aggregated AP-MS testing even if node degrees are binomially distributed in the unknown 
ground truth interactome (Figure 1D). Finally, we simulate the measurement process of observed 
PPI networks under study bias for different false negative and false positive rates, given hypothetical 
PL-distributed and binomially distributed ground truth interactomes (Figure  1E). Using ‍K ‍-nearest 
neighbors (‍K ‍-NN) classification in the space of degree distributions of the simulated PPI networks, we 

Figure 1. Study overview. (A) We seek to answer the question of how much we can learn about the topology of ground truth networks from the 
topology of observed and aggregated protein-protein interaction (PPI) networks and how much-biased measurements might impact the observed 
power law (PL) degree distribution. (B) To answer this question we decompose aggregated, observed networks into single study-networks and 
investigate their individual degree distributions. We then ask how much the aggregation process of those single studies into larger networks could 
explain the PL property of the observed network. (C) We aim to identify true hub proteins by applying different types of normalization strategies, which 
reveals that disease-associated functions disappear that are likely associated with hub proteins because of their inflated testing frequency due to the 
study bias. (D) Starting from the empirical observation that bait usage is PL-distributed, we mathematically show that, in such a scenario, a PL-distributed 
observed PPI network can emerge even if the ground truth is binomially distributed. (E) Finally, we simulated the measurement of observed aggregated 
PPI networks under study bias from ground truth networks with either PL or binomial degree distribution.

https://doi.org/10.7554/eLife.99951
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then quantify to which extent the degree distributions of observed PPI networks allow us to derive 
conclusions about the topology of the true biological interactome. Overall, our results indicate that 
technical and study bias can indeed largely explain the fact that observed PPI networks tend to be 
PL-distributed. This implies that it is problematic to derive hypotheses about the degree distribution 
and emergence of the true biological interactome from the fact that node degrees in observed PPI 
networks tend to be PL-distributed.

Results
Less than one in three study-specific protein-protein interaction 
networks are power law distributed
Mosca et al., 2021 recently showed that aggregated observed PPI networks generally show a node 
degree distribution following the PL. To confirm this, we aggregated a large human PPI network 
consisting of 41,862 studies and a total of 471,693 unique interactions among 17,865 proteins. We 
tested if the resulting degree distribution follows a PL by quantifying the plausibility of a goodness-
of-fit test as described before (Clauset et al., 2009). We observed that the resulting degree distri-
bution can be approximated by a PL distribution (‍p = 0.35‍; where ‍p ≥ 0.1‍ is by convention (Clauset 
et al., 2009) indicative of a PL distribution; Figure 2A).

An interesting question is if the PL property is inherent to single PPI networks or if it possibly 
arises through the aggregation process. To investigate this, we next tested for the PL property of the 
constituting single studies. We observed that when considering networks of size 200 or larger, there 
were approximately 3.5 times as many non-PL-distributed networks as compared to PL-distributed 
networks (Figure 2B). The ratio reduces to 1 when also small networks were considered. However, 
we reasoned that this is likely an artifact of the relatively poor fit of the degree distribution for small 
networks: The majority of networks have a small size (Figure 2—figure supplement 1) and those 
small networks that are not filtered out (see Methods), are typically classified as PL-distributed. E. g., 
84% of the 739 single-study networks with at most 20 PPIs (a network size which we consider unlikely 
to lead to reasonable degree distribution fits) are classified as PL-distributed. This suggests that for 
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Figure 2. A large aggregated PPI network shows PL behavior while individual studies often do not. (A) The black dots represent the degree distribution 
of our aggregated network and the red line corresponds to the fitted power law (PL) distribution with parameters ‍kmin = 278‍ and ‍α = 3.3‍ in a log-log 
scale. (B) Plot of the ratio between the number of non-PL and PL studies with more than a certain number of protein-protein interactions (PPIs specified 
in the ‍x‍-axis).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Histogram of protein-protein interaction (PPI) number per study in the aggregated network.

https://doi.org/10.7554/eLife.99951


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Blumenthal, Lucchetta et al. eLife 2024;0:e99951. DOI: https://doi.org/10.7554/eLife.99951 � 5 of 25

network sizes where it is possible to reliably fit degree distributions, the non-PL networks largely 
outnumber PL networks.

The power law property is associated with research interest
We next systematically tested if the PL property of networks can emerge from aggregating non-PL 
networks. We, therefore, randomly merged non-PL networks (1000 times 100, 200, and 300 non-PL 
studies). As shown in Figure 3A, we obtained more than 50% of PL aggregated networks after the 
aggregation of non-PL studies. In particular, the more studies we merged, the greater the fraction of 
PL studies (from 53 to 83%), demonstrating that the PL property can emerge from the aggregation of 
non-PL networks.

We observed a good correlation between the number of times a protein has been tested for 
interaction partners as a bait protein and its degree (‍r = 0.57‍, ‍p < 10−16

‍; Pearson correlation test) in 
agreement with what has been previously described (Schaefer et al., 2015). This raises the question 
whether the PL property of the merged network could have been inherited from a potential bias in 
the number of times proteins have been tested for interaction partners. Indeed, we observed that the 
bait usage distribution follows a PL (‍p = 0.34‍; Figure 3B). To test if the bait usage distribution could 
impact the observed degree distribution, we randomly subsampled networks for which we have bait 
information 3000 times (1000 times 50, 100, and 150 non-PL studies). For each resulting aggregated 
network, we fitted PL distributions to both the bait usage distribution and the degree distribution. We 
observed a significant association between finding that if one of the distributions follows a PL distri-
bution the other one would tend to do so as well (‍p = 0.04‍; one-sided Fisher’s exact test). To more 
broadly investigate the association between the PL property and research interest in proteins, we also 
counted the numbers of publications indexed in PubMed linked to different human genes. Again, the 
obtained distribution follows a PL (‍p = 0.23‍; Figure 3C).

Power law distributed research interest can explain the power law 
property of protein-protein interaction networks
The descriptive findings summarized in the previous paragraphs indicate that the PL property in 
aggregated PPI networks may reflect biases in the PPI measurement process, instead of capturing the 
topology of the ground truth interactome. In particular, analyses of the proteins’ bait usage counts 
(Figure 3B) as well as their coverage by publications indexed in PubMed (Figure 3C) revealed that 
protein research is itself PL-distributed.
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Figure 3. Aggregating more PPI networks increases the mean probability of obtaining a PL fit, potentially due to bait usage and study biases. 
(A) Distribution of p-values obtained through the aggregation of 100, 200, and 300 random non-power law (PL) studies. The numbers on the top of 
each boxplot represent the fraction of PL networks obtained among the 1000 tests. The dotted red line represents the limit of significance (i.e. 0.1); 
above the line, the PL hypothesis is plausible. (B) The black points correspond to the bait usage distribution and the red line corresponds to the fitted 
PL distribution (in a log-log scale) with parameters ‍kmin = 8‍ and ‍α = 3.13‍. (C) The number of publications indexed in PubMed associated with different 
human genes follows a PL distribution (‍kmin = 201‍ and ‍α = 2.53‍).
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In the following, we mathematically establish that, given PL-distributed bait usage, the degree 
distribution of an observed PPI network ‍Gobs‍ measured via repeated AP-MS testing has to be 
expected to be PL-distributed, even if the underlying ground truth interactome ‍G‍ has a radically 
different topology or does not even contain any interaction at all, with observed interactions only 
being the result of a small false positive error rate. Technically speaking, we establish this fact for the 
following range of possible interactomes: It is valid for any ground truth interactome ‍G‍ that is a sparse 

Erdős-Rényi (ER) graph ‍Hp‍ with ‍n‍ nodes, which arises by choosing each of the 
‍

(
n
2

)

‍
 possible edges with 

a small edge probability ‍p ∈ O(n−1)‍ uniformly at random (Erdős and Rényi, 1959). The degree distri-
bution of these graphs is known to follow a binomial distribution, not a PL. We show that a small false 
positive rate ‍FPR ∈ O(n−1)‍ and selection bias via a PL-distributed bait usage will result in an expected 
degree distribution in ‍Gobs‍ that follows a PL. More precisely, we show the following Proposition 1 (see 
Methods for proofs).

Proposition 1. Let ‍Gobs = (V, Eobs)‍ be an observed PPI network on ‍n = |V|‍ nodes, which is constructed 
via aggregated AP-MS testing of the unknown ground truth interactome ‍G = (V, E)‍ as follows: Each 
protein ‍u ∈ V ‍ is selected ‍b(u)‍ times as bait, and each time ‍u‍ is selected, all of its possible connections 

‍{uv | v ∈ V}‍ are tested. An edge ‍uv‍ is added to ‍Eobs‍ if it is tested positive at least once. The individual 
AP-MS studies have fixed false-positive and false-negative rates FPR and FNR. Then, if ‍G‍ is an ER 
graph with edge probability ‍p‍, the expected degrees of ‍Gobs‍ are PL-distributed, following the bait 
usage distribution ‍b‍, if ‍FPR ∈ O(n−1)‍ and ‍p ∈ O(n−1)‍ are small and ‍n ≫ 1‍ is large. In particular, this 
remains true for ‍p = 0‍, where the ground truth is the empty graph.

Proposition 1 demonstrates that we may observe a PL degree distribution in ‍Gobs‍, even if the 
ground truth ‍G‍ does not have such a distribution. Proposition 1 does of course not prove that the 
ground truth network does not follow a PL distribution. However, it demonstrates that stronger argu-
ments than just a PL-distributed observed network ‍Gobs‍ are necessary. To exemplify Proposition 1, we 
simulated the simplified aggregated AP-MS testing protocol assumed by Proposition 1, using the real-
world distribution ‍b‍ obtained from IntAct (Figure 3B), an empty ground truth interactome ‍G = H0‍, 

Figure 4. Exemplification of Proposition 1 for an empty ground truth interactome, a small positive error rate, and 
the real-world bait distribution ‍b‍ obtained from IntAct. The simulated observed degree distribution is power law 
(PL)-distributed with parameters ‍kmin = 64‍ and ‍α = 3.63‍.

https://doi.org/10.7554/eLife.99951
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and parameters ‍n = 16777‍ (numbers of proteins in IntAct) and ‍FPR = 1/1700‍ (such that the expected 
number of edges in ‍Gobs‍ matches the number of PPIs retrieved from IntAct). Figure  4 shows the 
obtained degree distribution of ‍Gobs‍. The observed degrees are PL-distributed (‍p = 0.35‍), although 
the underlying ground truth interactome ‍G‍ is empty.

The power law property often vanishes when correcting for bait usage
We focused on the 27 single-study networks with PL distribution that consisted of more than 200 PPIs 
(as our initial analysis suggested that the ratio between non-PL and PL studies converges from this 
value) and for which we had bait and prey information. We observed that the ratio between baits and 
preys usage varied largely across those studies (Figure 5B), resulting in some studies with a symmetric 
design (i. e. relatively similar number of baits and preys) and some with rather asymmetric design (i. 
e. big differences in the numbers of baits and preys). We hypothesized that strongly uneven bait vs. 
prey usage may contribute to the PL property by inflating the degree of a few proteins, effectively 
favouring them to become hub proteins. To test this hypothesis, we attempted to correct this bias to 
check whether it is possible to transform PL networks into non-PL networks, solely by correcting for 

Figure 5. After correcting for bait or prey usage, a third of the PL networks lose the PL property. (A) Scheme to illustrate how the degree is recalculated 
when the number of baits is smaller than the number of preys. (B) Distribution of the size balance (ratio between the number of baits and preys, see 
Equation 2 for details) among the 27 power law (PL) studies. (C) Distribution of the size balance in the nine studies that switch from PL to non-PL and 
the 18 studies whose degree distributions remain PL-distributed after the correction.

https://doi.org/10.7554/eLife.99951
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study bias. To this end, we recomputed the degree distribution by only considering the number of 
interactions formed by the larger set (either baits or preys, see Methods for details and Figure 5A for 
a graphical visualization).

We observed that in 9 out of the 27 cases, we turned PL degree distributions into non-PL degree 
distributions by applying this correction. We observed that symmetry scores for networks that changed 
from PL to non-PL were significantly smaller (‍p = 0.038‍, one-sided Wilcoxon test; Figure 5C), demon-
strating that the bait-to-prey ratio has a considerable influence on the PL property.

Accounting for study bias reveals functionally meaningful hub proteins
The described observations make it critically important to understand how far the degree distribution 
of proteins is inflated by study bias: To what extent is the degree of proteins with a high degree in the 
aggregated PPI networks not primarily an indication of proteins with a higher number of interactions, 
but mainly a result of more frequent testing due to their relevance in disease or other assumed impor-
tance in cellular systems? We hence asked if we could reveal the true identity of hub proteins. To this 
end, we employed three different strategies:

•	 We computed the degree using only interactions formed by preys in AP-MS studies (with more 
than 100 PPIs) and identified those with the largest degree (similar to the previous section and 
visualized in Figure 5A; prey hubs).

•	 We normalized the degree in our initial aggregated network by the number of times the 
proteins have been used as bait and identified the proteins with the highest normalized degree 
(normalized hubs).

•	 We computed the degree distribution within one single study (HuRI Luck et al., 2020) that aims 
to provide a study-bias-free, near-proteome-scale map of the human interactome. We refer to 
the proteins with the highest degree in this network as Y2H hubs.

We then tested the top 50 hubs for functional (Gene Ontology) and disease gene (Disease 
Ontology) enrichment. Interestingly, we observed that the prey hubs are most strongly enriched 
for ‘protein folding’ and ‘chaperone-mediated protein folding’ (Figure 6A, Figure 6—source data 
1). The majority of genes in these categories are chaperones whose function is to mediate protein 
folding. Since the majority of human proteins require assistance in folding by chaperones (Fink, 1999), 
they might indeed be true hub proteins. As chaperones compose 10% of the cellular proteome mass 
in humans (Finka and Goloubinoff, 2013), we were concerned that the enrichment of chaperones 
among the prey hubs could be an artifact of a detection bias of AP-MS toward highly abundant 
proteins. To rule out this possibility, we retrieved MS quantifications of human proteins in different 
tissues (Jiang et al., 2020) and performed a Gene Ontology enrichment analysis on sets of the most 
abundant protein (of different sizes). None had chaperones among the top-enriched terms (Figure 6—
figure supplement 1), suggesting that the enrichment among prey hubs was not simply an artifact of 
protein abundance. Similarly, pathway enrichment analysis (Figure 6—figure supplement 2) showed 
protein folding among the top enriched pathways.

The disease gene enrichment analysis confirms the previous observation that uncorrected hubs are 
associated with many different types of diseases (Figure 6—source data 1), in particular with cancer 
(Figure 6B). Prey hubs exhibit an enrichment of diseases related to the nervous system (though much 
weaker as compared to the enrichment of cancer among the uncorrected hubs). In contrast, normal-
ized and Y2H hubs do not show any significant enrichment in diseases, challenging the idea that 
disease genes per se have a higher connectivity in PPI networks.

We were surprised to find several nervous system diseases enriched among the prey hubs. Many 
of the prey hubs related to nervous system diseases were in fact chaperones. To test if the enrich-
ment of nervous system diseases were caused by the chaperones, we retrieved the proteins of 
the most strongly enriched disease classes (schizophrenia and psychotic disorder) and tested if 
chaperones were enriched among those proteins (Figure  6—figure supplement 3). Indeed, we 
found a significant enrichment (‍p < 0.05‍, one-sided Fisher test) in both cases, suggesting that chap-
erones might cause the observed disease enrichment among true hubs toward the nervous system 
diseases. This is likely because protein misfolding is a hallmark of many nervous system diseases 
(Tittelmeier et al., 2020; Nucifora et al., 2019) and indeed chaperones play a role in the preven-
tion of misfolding.

https://doi.org/10.7554/eLife.99951


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Blumenthal, Lucchetta et al. eLife 2024;0:e99951. DOI: https://doi.org/10.7554/eLife.99951 � 9 of 25

Similarity of simulated to observed networks does not depend on the 
topology of ground truth network
To further assess if the PL property in aggregated PPI networks might be due to biases in the PPI 
measurement process, we simulated the measurement of observed aggregated PPI networks under 
preferential interaction testing (see Methods for details). We parameterized our simulator with four 
hyper-parameters: The test method (AP-MS or Y2H testing), the false positive, and the false nega-
tive rates of the test method, and the acceptance threshold ‍γ ∈ [0, 1]‍ (our simulator includes a PPI 

‍(u, v)‍ into the simulated aggregated network if it has been detected at least once and the fraction 
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Figure 6. Gene set enrichment analysis of hub proteins after bias correction yields biologically plausible terms that differ from uncorrected analysis. 
(A) Gene ontology enrichment analysis of the top 50 corrected (prey hubs, normalized hubs, and Y2H hubs) and non-corrected hubs (uncorrected 
aggregated network hubs). (B) Disease ontology enrichment analysis of the top 50 corrected and non-corrected hubs. The numbers in parentheses 
represent the number of hubs included in the reference databases, and the ‘Gene ratio’ represents the fraction of hubs included in the corresponding 
(gene or disease ontology) term. If a column is empty, it means there are no significant terms.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Detailed results of gene set enrichment analysis.

Figure supplement 1. Gene Ontology enrichment analysis results of the top-200, top-500, top-1000, top-2000, and top-3000 most abundant proteins.

Figure supplement 2. Reactome enrichment analysis of the top 50 corrected and uncorrected hubs.

Figure supplement 3. Overlaps between chaperones and genes related with, respectively, schizophrenia and psychotic disorders.

https://doi.org/10.7554/eLife.99951
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of positive simulated experiments that test for ‍(u, v)‍ exceeds ‍γ‍). For each hyper-parameter setup, 
we simulated 50 hypothetical ground truth networks generated with the Barabasi-Albert (BA) model 
(Barabasi and Albert, 1999) and 50 hypothetical ground truth networks generated with the ER model. 
In BA networks, node degrees are PL-distributed; in ER networks, they follow a binomial distribution. 
Subsequently, we simulated the detection of the PPIs in the hypothetical ground truth networks via 
aggregated PPI testing under study bias.

For each hyper-parameter setup, we hence obtained sets ‍GBA‍, and ‍GER‍ which each contains 50 
simulated aggregated PPI networks that have emerged from, respectively, PL-distributed (‍GBA‍) and 
binomially distributed (‍GER‍) hypothetical ground truth networks. We then asked if the degree distri-
bution of the empirical aggregated PPI network ‍GIntAct‍ obtained from IntAct is more similar to the 
degree distributions of the simulated aggregated networks contained in ‍GBA‍ than to the degree distri-
butions of the networks contained in ‍GER‍. If so, this would indicate that the unknown true biological 
interactome underlying ‍GIntAct‍ is more likely to be PL- than binomially distributed. To answer this 
question, we computed earth mover’s distances between the degree distribution of ‍GIntAct‍ and the 
degree distributions of the networks contained in ‍GBA‍ and ‍GER‍. Using these distances, we computed a 
signed relative sum of distance differences ‍∆SOD ∈ [−1, 1]‍ (Equation 13), which is negative if ‍GIntAct‍’s 
degree distribution is more similar to the degree distributions of the networks in ‍GBA‍ than to the 
degree distributions of the networks in ‍GER‍. Moreover, we used the earth mover’s distances between 

‍GIntAct‍’s degree distributions and the degree distributions of the networks in ‍GBA‍ and ‍GER‍ to predict via 
‍K ‍-NN classification if ‍GIntAct‍ is more likely to have emerged from a PL-distributed or from a binomially 
distributed true biological interactome (see Equation 14 and Equation 15 for details and Figure 7 
for a conceptual visualization).

The results of our simulation studies for AP-MS testing are shown in Figure 8. When comparing 
the empirical network ‍GIntAct‍ to hypothetical PL-distributed and binomially distributed ground truth 
networks, we observe that ‍GIntAct‍’s degree distribution is much more similar to the degree distribu-
tions of the PL-distributed networks (Figure 8A). This is not surprising, given that ‍GIntAct‍ is itself PL-dis-
tributed (Figure 8—figure supplement 1A). However, the picture changes when looking at the sums 
of distances between ‍GIntAct‍ and the simulated aggregated networks: Already for very small false posi-
tive rates, the gain in similarity between ‍GIntAct‍ and networks emerging from PL-distributed ground 
truth networks vanishes. For ‍γ = 0‍ (each PPI detected by at least one simulated study is included in the 
aggregated network), the tipping point lies between ‍FPR = 0.00625‍ and ‍FPR = 0.0125‍ (Figure 8B); for 

‍γ = 0.5‍ (a PPI is included in the aggregated network only if it is detected by the majority of the simu-
lated studies that test for it), it lies between ‍FPR = 0.0125‍ and ‍FPR = 0.025‍ (Figure 8C). By increasing 
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Figure 7. Conceptual overview of simulated aggregated protein-protein interaction (PPI) testing under study bias and downstream analyses to assess 
if the empirical aggregated PPI network ‍GIntAct‍ obtained from IntAct is more likely to have emerged from a power law (PL)-distributed than from a 
binomially distributed true biological interactome. The colored dots in the gray area represent degree distributions; dissimilarity between degree 
distributions is quantified using the earth mover’s distance.
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‍γ‍ and keeping only consensus PPIs in our simulated networks, we can hence slightly improve the 
robustness of our simulated PPI network measurement process w. r. t. the false positive rate of the PPI 
detection method.

‍K ‍-NN classification-based probabilities for ‍GIntAct‍ having emerged from a PL-distributed or a bino-
mially distributed ground truth interactome for false positive rates just below and just above the 
tipping points are shown in Figure 8D to Figure 8G: For false positive rates below the tipping points, 
a PL-distributed ground truth interactome is clearly the more likely origin of ‍GIntAct‍, independently of 
the parameter ‍K ‍ used for the ‍K ‍-NN classification. For false positive rates above the tipping points and 

Figure 8. Simulations show that, in the presence of study bias and small non-zero false positive rates in affinity purification-mass spectrometry (AP-MS) 
studies, binomially and PL-distributed ground truth interactomes are equally likely origins of observed aggregated PPI networks. (A) Histogram of earth 
mover’s distances between the degree distribution of the observed protein-protein interaction (PPI) network ‍GIntAct‍ obtained via aggregation of all AP-
MS studies annotated in IntAct and the degree distributions of 50 PL-distributed and 50 binomially distributed hypothetical ground truth networks. (B, 
C) Signed relative differences ‍∆SOD ∈ [−1, 1]‍ between the sum of distances between the degree distribution of ‍GIntAct‍ and degree distributions of 
networks simulated from, respectively, power law (PL)-distributed and binomially distributed hypothetical ground truth networks, given different choices 
of the hyper-parameters FPR, FNR, and ‍γ ‍. Negative values of ‍∆SOD‍ indicate that ‍GIntAct‍ is more similar to simulated networks emerging from PL-
distributed hypothetical ground truths; positive values are indicative of the opposite scenario. (D-G) ‍K ‍-NN classification-based probabilities that ‍GIntAct‍ 
emerged from a PL-distributed or from a binomially distributed ground truth interactome. (D, E) Probabilities just before the tipping points in the false 
positive rate. (F, G) Probabilities just after the tipping points.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Degree distributions of all affinity purification-mass spectrometry (AP-MS) and yeast-2-hybrid (Y2H) studies annotated in IntAct.

Figure supplement 2. Results of simulation study for yeast-2-hybrid (Y2H) testing.

https://doi.org/10.7554/eLife.99951
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‍K ≥ 18‍, binomially distributed and PL-distributed interactomes are roughly equally probable origins 
of ‍GIntAct‍. With smaller ‍K ‍, the estimated probabilities are actually larger for binomially distributed 
ground truth networks.

If the estimated AP-MS false positive rates of 10 to 40% (Armean et al., 2013) are only remotely 
realistic, they clearly exceed the tipping points between ‍0.625‍% and ‍2.5‍% uncovered by our simula-
tion study. The results summarized above hence indicate that the observed PL behavior of empirical 
PPI networks obtained via aggregation of AP-MS studies tells us very little about the topology of the 
ground truth interactome and is even compatible with binomially distributed node degrees in the 
ground truth interactome.

The results for simulated Y2H testing (Figure 8—figure supplement 2) are very similar to the ones 
for AP-MS testing. The only difference is that we observe even smaller tipping points. A likely expla-
nation for this is that, unlike the PPI network obtained by aggregating all AP-MS studies annotated 
in IntAct, the PPI network obtained by aggregating all Y2H studies is itself not PL-distributed (Figure 
8—figure supplement 1B). For both simulated AP-MS and simulated Y2H testing, the false negative 
rate did not have a strong effect on the results (see small row-wise variances in the heatmaps shown 
in Figure 8, Figure 8—figure supplement 2).

Discussion
It is widely believed that the PL behavior of PPI networks arose through evolution, where frequent 
gene duplication events have led to protein copies that retain the original interaction partners. As one 
can mathematically prove, such a model eventually leads to a scale-free network (Chung et al., 2003). 
Recently, doubts have emerged that PPI networks are truly scale-free (Broido and Clauset, 2019). 
Furthermore, it was shown that active module discovery methods perform equally well on real and 
random networks in which the node degree is preserved (Lazareva et al., 2021). Such methods, which 
are typically applied to PPI networks to extract disease modules in the form of subnetworks, thus do 
not benefit from the interactions of the network but merely learn from the node degree, suggesting 
that study bias may be driving these analyses.

Here, we offer an alternative explanation, demonstrating that the PL behavior of PPI networks may 
emerge through a combination of biases. Firstly, we show that typically used experimental designs 
display an asymmetry between bait and prey proteins, which may contribute to the PL property. 
Second, we find that the current practice of aggregating study-based PPI networks tends to introduce 
a PL behavior of the node degree distribution that is not found in the individual studies. Based on the 
observation that bait usage counts are PL-distributed, we suspect that aggregating studies emphasize 
study bias, over-representing proteins frequently used as bait. We show that correcting such biases 
by the three described methods leads to the emergence of alternative hub proteins that drive the 
network. Thirdly, we mathematically show that, given PL-distributed bait usage, PL-distributed node 
degrees in observed PPI networks measured via aggregated AP-MS testing can emerge even if the 
ground truth interactome is an (empty) ER graph. Fourthly, we show through simulation that, already 
for very small false positive rates, binomially distributed ground truth networks generated with the ER 
model are equally likely origins for aggregated observed PPI networks as PL-distributed ground truth 
networks generated with the BA model. This finding is robust across different parameters for the false 
positive, the false negative, and the study acceptance rate.

It is important to note that the aggregated AP-MS testing model underlying our theoretical results 
(Proposition 1) is simplified in that we assume study bias to act only on the baits. More precisely, 
we assume that, in the individual studies, a bait is always tested against the entire proteome. In 
reality, this is not the case for at least three reasons: Firstly, possible interaction partners of a bait are 
restricted to the proteins expressed in the employed cell line. Second, several inherent properties 
of proteins correlate with their degrees. E.g., when considering only the subset of AP-MS studies in 
the here described network, the mass of a protein and its abundance are positively correlated with 
its degree (‍p < 10−16

‍; Spearman correlation test; Appendix 1—figure 1). Third, some studies use 
targeted proteomics approaches that restrict a priori which peptides can be detected. Moreover, our 
theoretical results are obtained by modeling the ground truth network as an ER graph, although it is 
of course very unlikely that this model correctly describes the biological interactome. We chose the 
ER model for Proposition 1 because ER graphs are extremely different from PL-distributed networks, 
and we wanted to show that, even for such radically different ground truths, PL-distributed bait usage 

https://doi.org/10.7554/eLife.99951
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and non-zero false positive rates can lead to PLs in the observed PPI networks. We hypothesize that 
similar results could be obtained for more realistic non-PL models such as random geometric graphs 
(Pržulj et al., 2004; Przulj et al., 2010) but do not provide a formal proof for this here.

Similarly, also the design of our simulation study is based on two major simplifications: First, we 
only consider ER and BA networks as possible models for the ground truth interactome, although 
most likely none of the two models fully captures the topology of the unknown true biological inter-
actome. Here, this simplification serves as a conceptual framework which allows us to address the 
question on the origin of the PL behavior of observed PPI networks via ‍K ‍-NN classification. Second, 
our simulator assumes that study bias affects the emergence of aggregated observed PPI networks via 
a direct feedback loop (high-degree proteins are preferentially sampled for experimental testing). In 
reality, the feedback loop is much less direct: Study bias in the emergence of aggregated PPI networks 
is not only mediated via studies reporting PPIs but also and primarily via more indirect pathways 
such as over-representation of genes encoding highly studied proteins in gene annotation databases 
(Haynes et al., 2018). It is hence likely that real-world repeated PPI testing is slightly less sensitive to 
the experimental false positive rates than suggested by our simulations. However, in view of the huge 
margin between the uncovered tipping points (0.0625 to 2.5%) and the estimated false positive rates 
in AP-MS and Y2H testing (10–40% according to Armean et al., 2013), our conclusion remains valid 
that the topologies of observed PPI networks have little inferential value w. r. t. the unknown ground 
truth interactome.

Some analyses in the study focus on the two most commonly used PPI detection methods AP-MS 
and Y2H, both of which rely on the selection of bait proteins to identify interacting partners. Our 
findings demonstrate that the frequency with which proteins are tested as bait significantly influences 
the degree distribution of the aggregated human PPI network. An additional complexity arising in 
AP-MS studies is that more than two interaction partners can be detected. These ‍n‍-ary interactions 
are commonly transformed into binary interactions using either the spoke model, which reports all 
interactions with the bait protein (as used by IntAct, for example), or the matrix expansion model, 
which reports all pairwise interactions. Both expansion models can, in principle, introduce false posi-
tives and it would be interesting to consider the effect of the expansion model choice on the PL 
property in future work.

Combined, Y2H and AP-MS account for more than 70% of all reported interactions in the network 
used here. Other, less commonly used methods such as protein structure-based approaches also 
depends on bait protein selection. Conversely, cross-linking mass spectrometry (XL-MS) does not 
require bait protein selection. XL-MS employs chemical cross-linkers on protein complexes within 
human cellular lysates, with mass spectrometry (MS) subsequently identifying peptides in close spatial 
proximity. Given its low assumed error rates and lack of study bias if applied to a proteome-wide scale, 
XL-MS has the potential to more accurately represent the true topology of the human PPI network. 
However, XL-MS studies have focused on specific complexes, organelles, or compartments through 
sample fractionation or purification (Graziadei and Rappsilber, 2022), likely introducing through 
those choices a similar type of bias that influences the observed degree distribution. Hence, a biased 
choice is applied and will affect the overall degree distribution in a similar manner as exemplified with 
other experimental methods here.

We point out several strategies that could help to reduce biases of PPI networks. Employing tech-
niques that can detect PPIs with an FDR as low as 1% (Lenz et al., 2021) would considerably reduces 
the technical bias in detecting PPIs. Our study suggests a tipping point in the FPR at which study bias 
can no longer be tolerated, but this may in reality be higher or lower than what we anticipate here. 
It is thus not clear how robust techniques need to be to entirely avoid that study bias distorts the 
topology of observed PPI networks. However, even the use of an error-free technique would not miti-
gate pre-existing study bias, which is not just ingrained into existing PPI networks but also indirectly 
influences the choice of bait and prey proteins used in future studies. An alternative strategy is thus 
to systematically and objectively study PPIs without prior evidence for the relevance of a protein, a 
strategy currently followed by the HuRI project (Luck et al., 2020). Our results indicate that also the 
aggregation of non-PL studies tends to lead to networks with PL property, possibly because study bias 
present in individual studies is magnified in this process. In view of this, an interesting question for the 
future will be if the aggregation of study-bias-free studies such as HuRI will still favor the emergence 
of the PL property.

https://doi.org/10.7554/eLife.99951
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Finally, there are also cost-effective ways to assess and address biases in PPI networks. For instance, 
we could show that the problem of study bias can be partially mitigated by relying on the information 
of prey proteins alone. An interesting observation we made was that accounting for this bias revealed 
a different set of hub proteins enriched for protein folding rather than disease genes. Further work 
will be needed to establish if true hub proteins exist in the PPI network and what their role is. For 
instance, it was previously claimed (Han et al., 2004) — and controversially discussed (Agarwal et al., 
2010) — that the correlation of gene expression values between hub nodes with their interaction 
partners follow a bimodal distribution, leading to the distinction of the party (high correlation) and 
date (low correlation) hubs. In the future, it would be interesting to study if the ratio of party and date 
hubs changes when considering prey degree only. We also encourage the field to report negative 
interactions, since these could be used to define a reasonable study acceptance rate (ratio of positive 
and negative interactions, ‍λ‍ in our simulation) to limit the distorting effect of the FPR, whereas, in the 
current practice, even unique false positive interactions may be added to the aggregated PPI network.

In conclusion, our analysis supports the alternative hypothesis that the PL behavior observed in 
aggregated observed PPI networks cannot be treated per se as biologically motivated as the gene 
duplication model suggests. We face the issue that we currently have no means to reliably disen-
tangle study and experimental bias in the node degree distribution. Our attempts to remove this bias 
led to differing results depending on the type of normalization we used. In all three cases, disease-
associated proteins were demoted. Only the prey hub normalization revealed a significant functional 
enrichment where proteins such as chaperones that are involved in protein folding have been signifi-
cantly enriched. While these results seem plausible, we cannot prove that this normalization indeed 
corrects for all conceivable forms of bias. Our results hence suggest that further work is needed to 
either perform additional studies that avoid known sources of bias or to develops a robust normaliza-
tion that removes known biases from existing networks.

Methods
Analyzed protein-protein interaction networks
We retrieved human PPIs from IntAct (Orchard et al., 2014) (version of 2022-02-03 on https://ftp.ebi.​
ac.uk/pub/databases/intact/2022-02-03/psimitab/) and HIPPIE (Alanis-Lobato et al., 2017) (version 
2.2 on http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/download.php). 78% of the interactions 
in IntAct are annotated with the information of which protein within the pair was used as a bait and 
which as a prey during the experimental determination of the interaction. To increase the total number 
of studies, we expanded the IntAct interactions by merging with HIPPIE. After that, we downloaded 
a list of all 20,401 human proteins from UniProt (Consortium, 2023) (only reviewed entries from 
Swiss-Prot/UniProt, https://www.uniprot.org/uniprotkb?facets=model_organism%3A9606&query=​
reviewed%3Atrue, version from December 13, 2022). We kept only interactions where both the 
proteins are in this list resulting in a network consisting of 471,693 interactions and 17,865 proteins 
were detected by 41,862 studies.

Testing the power law property of empirical distributions
In order to test if sequences of the proteins’ node degrees or bait usages (numbers of times the 
proteins have been tested as a bait) are PL-distributed, we used the poweRlaw R package Gillespie, 
2015 (version 0.70.6). The package implements methods proposed by Clauset et al., 2009. It esti-
mates the best-fitting PL distribution to the data of the form

	﻿‍ p(k) ∝ k−α,‍� (1)

where ‍α > 1‍ is the scaling exponent, ‍k ≥ kmin‍ is the degree or the bait usage sequence, and ‍kmin ≥ 1‍ 
is the cutoff above which the PL distribution is fit to the data. The package estimates the ‍kmin‍ via a 
minimization of the Kolmogorov–Smirnov (KS) statistic and uses a maximum likelihood estimator to 
choose ‍α‍. Subsequently, it carries out a goodness-of-fit test between the empirical data and the 
fitted PL model. Here, the KS statistic between the fitted model and the empirical distributions is 
compared to KS statistics between the fitted model and synthetic distributions sampled from the 
fitted model. Then, a p-value can be computed as the fraction of distances between the fitted model 
and the synthetic distributions that exceed the distance between the fitted model and the empirical 
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distribution. Following the convention introduced by Clauset et al., 2009, we consider the PL distri-
bution a plausible model for the empirical data if the p-value of the goodness-of-fit test exceeds ‍0.1‍. 
In the poweRlaw R package, the p-value can be computed with the bootstrap_p function, which we 
ran with 100 (default parameter) bootstrap simulations.

We tested the PL property for each single study included in our aggregated network. We discarded 
studies where the used method failed to estimate the ‍kmin‍ and hence could not test the PL hypoth-
esis. Moreover, we filtered out studies for which more than 10% of the 100 bootstrapping simula-
tions failed to produce meaningful results (as pointed out in the documentation of the poweRlaw 
package, this can occasionally happen if all values in the synthetically sampled distribution are below 

‍kmin‍). We applied those exclusion criteria to any analysis that required a PL computation. After these 
two filtering steps, the remaining studies are 1427 in total, of which 986 are PL-distributed (‍p ≥ 0.1‍, 
goodness-of-fit test).

We retrieved the PubMed IDs in which each gene has been studied from PubMed (Sayers et al., 
2022) (gene2pubmed file, downloaded on April 19, 2023 from https://ftp.ncbi.nih.gov/gene/DATA/) 
and we selected studies carried out only in human genes (114,548 in total). We calculated how many 
publications are associated with each gene and after we tested the resulting distribution for its PL 
property.

Aggregation of study-specific protein-protein interaction networks
In order to investigate if the PL property arises through the aggregation process, we randomly aggre-
gated 100, 200, and 300 non-PL studies (of 441 in total) 1000 times and we tested the PL hypothesis 
of the degree distribution after the aggregation. We used a similar randomization strategy to test 
if there is an association between the degree and the bait usage distribution: We considered only 
non-PL studies with bait annotations (184 in total) and we randomly merged 50, 100, and 150 studies 
1000 times. For each aggregated network, we tested the PL property of the degree and bait usage 
distribution. We used the one-sided Fisher’s exact test to analyse any significant association between 
the two distributions.

Computing the degree distributions based on baits or prey only
To assess if the asymmetry in experimental design (i.e. number of baits and preys) affects the PL prop-
erty, we focused on the 27 single-study networks with PL distribution, having more than 200 inter-
actions (we removed one study with less than 10 bait-prey-annotated interactions) and for which we 
had bait and prey information. For each of them, we recalculated the degree distribution as follows: 
If, in the study under consideration, the number of baits is smaller than the number of preys, we only 
counted those interactions ‍(u, v)‍ for the degree of ‍u‍ where ‍u‍ was tested as a prey. Like this, the degree 
of a protein only depends on interactions where it was tested as a prey not where it was tested as a 
bait. If a protein has been tested only as prey, its degree does not change. For studies with less prey 
than baits, we proceeded conversely and only counted ‍(u, v)‍ for the degree of ‍u‍ if ‍u‍ has been tested 
as a bait. In other words, we recomputed the degrees as the prey-degree for studies with fewer baits 
than preys and as the bait-degree for studies with fewer preys than baits.

After the degree recalculation, we computed the size balance between the number of baits and 
preys, which is defined as follows:

	﻿‍

Size balance =





nbait/nprey if nbait ≤ nprey

nprey/nbait if nbait > nprey
‍�

(2)

In order to test if the asymmetric design has an effect on PL property, we compared the size 
balances of studies that switch from PL to non-PL with the size balances of studies for which also the 
recomputed degree distributions are PL-distributed, using the one-sided Wilcoxon test.

Functional and disease properties of proteins
We performed functional and disease enrichment analyses of the top 50 hubs detected by the three 
strategies proposed to reveal the true hub proteins (prey hubs, normalized hubs, and Y2H hubs) and 
the top 50 hubs of our aggregated network. We used the enrichGO function of the clusterProfiler 
R package (Wu et al., 2021) (version 4.4.4) and the enrichDO function of the DOSE R package (Yu 

https://doi.org/10.7554/eLife.99951
https://ftp.ncbi.nih.gov/gene/DATA/
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et al., 2015) (version 3.22.1) to perform the Gene and Disease Ontology analyses, respectively. We 
also performed pathway enrichment analyses (Reactome-based) using the enrichPathway function of 
the ReactomePA R package (Yu and He, 2016) (version 1.40). We used the FDR method to correct 
p-values and we took into account only terms with a ‍q‍-value ‍< 0.05‍. For each enrichment analysis, we 
used the entire lists of genes from which we retrieved our hypothetical true hubs and all the genes in 
our aggregated network as background genes.

To investigate the biological functions of the most abundant human proteins, we retrieved protein 
abundance data from GTEx (Jiang et  al., 2020) (https://gtexportal.org/home/downloads/egtex/​
proteomics), consisting of 201  samples from 32 normal human tissues. We removed proteins with 
more than 50% of NA values across all the samples (resulting in 8104 proteins), and we calculated the 
median abundance for each protein. We ordered the proteins according to the median (descending 
order) to perform the Gene Ontology enrichment analysis of the most abundant proteins (of different 
set sizes). We used the FDR method to correct p-values and we took into account only terms with a 
q-value <0.05. To test if there is a significant enrichment of chaperones among nervous system disease 
genes (in particular for schizophrenia and psychotic disorder), we retrieved the chaperone classifica-
tion from UniProt and nervous system disease-related genes from Disease Ontology (Schriml et al., 
2019) database using the DOSE R package (Yu et al., 2015).

To study the link between degree and protein properties, we used GTEx expression data and 
protein mass information from UniProt (by querying the web service provided at https://www.uniprot.​
org/id-mapping with the UniProt IDs of all proteins within our aggregated network).

Proof of proposition 1
We start with useful facts on edge probabilities. We begin by noting the lower and upper bounds 
on edge probabilities, based on the probability ‍p(u,v)‍ of an edge ‍uv‍ occurring with ‍v‍ as bait, and the 
probability ‍p(v,u)‍ of ‍uv‍ occurring with ‍v‍ as prey.

Lemma 1. For any ground truth graph ‍G‍ and an observed PPI network ‍Gobs = (V, Eobs)‍, the proba-
bility ‍puv‍ that an edge ‍uv‍ occurs in ‍Gobs‍ satisfies the following chain of inequalities.

	﻿‍ p(u,v) ≤ puv ≤ p(u,v) + p(v,u).‍� (3)

Proof. We have ‍puv = p(u,v) + p(v,u) − Pr[(u, v) ∈ Eobs ∧ (v, u) ∈ E obs]‍. This immediately yields the 
second inequality ‍puv ≤ p(u,v) + p(v,u)‍ because the last term is upper bounded by 0. Because of 

‍p(v,u) ≥ Pr[(u, v) ∈ Eobs ∧ (v, u) ∈ Eobs]‍, we have ‍p(u,v) ≤ puv‍. This proves the first inequality. □
Note that these preceding statements apply independent of specific assumptions on the involved 

graphs. In the following, we will focus on more specific settings to demonstrate how non-PL distribu-
tions (such as in ER graphs) can give rise to observed PL distributions.

Lemma 2. If ‍G = (V, E)‍ is an ER graph ‍Hp‍, then the probability ‍puv‍ that the edge ‍uv‍ occurs in the 
observed PPI network ‍Gobs‍ subject to the bait distribution ‍b‍, false negative rate FNR, and false positive 
rate FPR is

	﻿‍
puv = Pr[uv ∈ Eobs] = p ·

(
1 − FNRb(u)+b(v)

)
+ (1 − p) ·

(
1 − (1 − FPR)b(u)+b(v)

)
.
‍� (4)

Proof. Because ‍G‍ is an ER graph with edge probability ‍p‍, we have ‍Pr[uv ∈ E] = p‍ and 

‍Pr[(u, v) /∈ E] = 1 − p‍. We distinguish two cases:

•	 Case (i): ‍uv ∈ E‍, which occurs with a probability of ‍p‍. The edge ‍uv‍ is tested 
‍b(u) + b(v)‍ times; ‍b(u)‍ times with ‍u‍ as bait and ‍b(v)‍ times with ‍v‍ as bait. The proba-
bility that ‍uv‍ is not tested positive in any of these tests is ‍FNRb(u)+b(v)‍. Thus, we have 

‍Pr[uv ∈ Eobs | uv ∈ E] = 1 − Pr[uv /∈ Eobs | uv ∈ E] = 1 − FNRb(u)+b(v)
‍.

•	 Case (ii): ‍uv /∈ E‍, which occurs with a probability of ‍1 − p‍. Then the probability that ‍uv‍ 
is not tested positive is ‍(1 − FPR)b(u)+b(v)

‍ and the probability that ‍uv‍ is tested positive is 

‍Pr[uv ∈ Eobs | uv /∈ E] = 1 − Pr[uv /∈ Eobs | uv /∈ E] = 1 − (1 − FPR)b(u)+b(v)
‍.

Combined, this yields 
‍
Pr[(u, v) ∈ Eobs] = p ·

(
1 − FNRb(u)+b(v)

)
+ (1 − p) ·

(
1 − (1 − FPR)b(u)+b(v)

)
‍
, as 

claimed. □
As a special case, this implies the following statement about edges occurring purely because of the 

bait degree of one of its vertices:

https://doi.org/10.7554/eLife.99951
https://gtexportal.org/home/downloads/egtex/proteomics
https://gtexportal.org/home/downloads/egtex/proteomics
https://www.uniprot.org/id-mapping
https://www.uniprot.org/id-mapping
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Lemma 3. If ‍G = (V, E)‍ is an ER graph ‍Hp‍, then the probability ‍p(u,v)‍ that some edge ‍uv‍ in the 
observed PPI network ‍Gobs = (V, Eobs)‍ occurs as the consequence of testing with ‍u‍ as prey and ‍v‍ as 
bait is

	﻿‍
p(u,v) = Pr[(u, v) ∈ Eobs] = p ·

(
1 − FNRb(v)

)
+ (1 − p) ·

(
1 − (1 − FPR)b(v)

)
‍� (5)

Now we consider the case that ‍G‍ is an ER graph with small ‍p‍ and small FPR. For FPR sufficiently 
small, i.e., ‍a · FPR ∈ o(1)‍, the classic first-order binomial approximation of the respective edge proba-
bilities work out as follows:

	﻿‍ (1 − FPR)a ≈ 1 − a · FPR‍� (6)

With this simplification, we can express the expected degree of nodes as follows:
Lemma 4. Assume that ‍G‍ is an ER graph on ‍n‍ nodes with edge probability ‍p‍ and that FPR is small. 

Then, for each node ‍v ∈ V ‍, the expected degree satisfies

	﻿‍ (1 − p)FPR ·
(
(n − 1)b(v)

)
≤ E[deg(v)] ≤ (1 − p)

(
FPR · (n − 1)b(v)

)
+ A,‍� (7)

where 
‍
B =

∑
u∈V

b(u)
‍
 and ‍A =

(
pn + (1 − p)FPR · B

)
‍.

Proof. Exploiting linearity of expectation, Lemma 1, Lemma 2, Lemma 3, and Equation 6, the 
expected degree of a node ‍v‍ satisfies

	﻿‍

(1 − p)
(
FPR · (n − 1)b(v)

)

= (1 − p) ·
∑

u∈V\{v}

(
FPR · b(v)

)

(Equation 6)
≈ (1 − p) ·

∑
u∈V\{v}

(
1 − (1 − FPR)b(v)

)

(Lemma 3)
≤

∑
u∈V\{v}

p(u,v)

(Lemma 1)
≤ E[deg(v)]

=
∑

u∈V\{v}
puv

(Lemma 2)=
∑

u∈V\{v}

(
p ·

(
1 − FNRb(u)+b(v)

)
+ (1 − p) ·

(
1 − (1 − FPR)b(u)+b(v)

))

≤
∑

u∈V\{v}
p +

∑
u∈V\{v}

(1 − p) ·
(

1 − (1 − FPR)b(u)+b(v)
)

≤ pn + (1 − p) ·
∑

u∈V\{v}

(
1 − (1 − FPR)b(u)+b(v)

)

(Equation 6)
≈ pn + (1 − p) ·

∑
u∈V\{v}

(b(u) + b(v))FPR

= pn + (1 − p)FPR ·
(
B + (n − 2)b(v)

)

≤
(
pn + (1 − p)FPR · B

)
+ (1 − p)

(
FPR · (n − 1)b(v)

)
,

= A + (1 − p)
(
FPR · (n − 1)b(v)

)
, ‍�

as claimed. □
Under suitable choice of parameters — e.g., ‍FPR ∈ O(n−1)‍ and ‍p ∈ O(n−1)‍ — this implies that the 

expected degree of a node ‍v‍ in the observed network ‍Gobs‍ corresponds to the bait usage ‍b(v)‍ with 
some uniform additive correction corresponding to the average prey degree. For a sufficiently unbal-
anced PL distribution ‍b‍, this implies that the overall distribution remains PL distributed, as the average 
bait usage ‍n−1B‍ is dominated by larger bait usages. For instance, the following choices suffice for this 
kind of behavior:

Lemma 5. Let ‍b(v)‍ be PL-distributed with ‍α = 3.13‍ (just as the real-world bait usage distribution 
obtained from IntAct), ‍kmin = 1‍, and ‍Pr[b(v) = 0] = 0.24‍ (corresponding to the fraction of proteins from 

https://doi.org/10.7554/eLife.99951
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IntAct with ‍b(v) = 0‍). Moreover, let ‍n ≫ 1‍, ‍FPR = n−1‍, and ‍G = H0 = (V, ∅)‍ be a large ER graph with 

‍p = 0‍. Then ‍deg(v)‍ in ‍Gobs‍ is also PL-distributed with ‍α = 3.13‍.
Proof. With ‍ζ(x) :=

∑∞
k=1 k−x

‍ being Riemann’s Zeta function, we have ‍
∑∞

k=1 k−3.13 = ζ(3.13) ≈ 1.1782‍. 
Thus,

	﻿‍

Pr[b(v) = k] =





0.24 k = 0

0.76 · ζ(3.13)−1 · k−3.13 k ≥ 1
‍�

is a probability distribution following a power law with ‍α = 3.13‍. The average bait degree ‍n−1B‍ of a 
node ‍v‍ works out to

	﻿‍
E[b(v)] = 0.76 · ζ(3.13)−1

∞∑
k=1

k · k−3.13 = 0.76 · ζ(3.13)−1
∞∑
k=1

k−2.13 = 0.76 · ζ(2.13)
ζ(3.13)

≈ 0.99.
‍�

By Lemma 4, the expected degree of a node ‍v‍ in ‍Gobs‍ satisfies

	﻿‍
n − 1

n
· b(v) ≤ E[deg(v)] ≤ n − 1

n
· b(v) + A ≈ n − 1

n
· b(v) + 0.99.

‍�

Because of this uniformity, the actual distribution is tightly distributed around this expected value, 
so the expected degree distribution follows the distribution of ‍b‍, with a small additive constant that 
becomes insignificant for larger ‍b(v) = k‍. □

Similar behavior can be demonstrated for small positive ‍p‍. It is straightforward to see that, in this 
case, the additive term ‍A‍ gets increased by not more than ‍pn‍, e. g., it becomes ‍1.99‍ for ‍p = n−1

‍. In 
summary, this yields the claims from Proposition 1 both for ‍p = 0‍ and for small ‍p‍, summarized as 
follows:

Proposition 2. For an ER graph ‍G = (V, E)‍, large ‍n ≫ 1‍, small ‍FPR ∈ O(n−1)‍ and ‍p ∈ O(n−1)‍, and 
PL-distributed bait usage ‍b(v)‍ for the nodes, the expected degrees of the observed graph ‍Gobs‍ are 
PL-distributed, following the degree distribution of ‍b‍. In particular, this remains true for ‍p = 0‍, where 
the ground truth is the empty graph.

Design of simulation study
We simulated observed aggregated PPI networks ‍G

′ = (V, E′)‍ under study bias and different false 
negative rates FNR false positive rates FPR and from hypothetical ground truth networks ‍G = (V, E)‍. 
The hypothetical ground truth networks were generated using the BA model, parameterized with the 
number of nodes ‍n‍ and the number ‍mBA‍ of edges added per iteration, and the ER model, parameter-
ized with the number of nodes ‍n‍ and the number of edges ‍mER‍. The degree distributions of BA graphs 
are known to follow the power law, while node degrees in ER graphs are binomially distributed. 
Details on choices of ‍n‍, ‍mBA‍, and ‍mER‍ are provided at the end of this subsection.

We start the simulation of ‍G′‍ with a network on the nodes ‍V ‍ without any edges. Throughout the 
simulation, we add edges to the network by iteratively sampling lists of protein pairs ‍Li ⊂ V × V ‍ and 
then simulating an experiment which, for all ‍(u, v) ∈ Li‍, tests if the proteins ‍u‍ and ‍v‍ interact. The exper-
iment returns a binary flag ‍result(uv) ∈ {0, 1}‍, where 1 encodes ‘‍u‍ and ‍v‍ interact’ and 0 encodes ‘‍u‍ and ‍v‍ 
do not interact.’ The result probabilities depend on whether ‍uv‍ is an edge in the ground truth network 
‍G‍, as well as on the false negative and false positive rates:

	﻿‍

Pr[result(uv) = 1] =





1 − FNR if uv ∈ E

FPR if uv /∈ E
‍�

(8)

To simulate ‍G′‍, we maintain symmetric matrices ‍A = (au,v) ∈ NV×V
‍ and ‍B = (bu,v) ∈ NV×V

‍. The entry 

‍au,v‍ of the matrix ‍A‍ counts the number of times the proteins ‍u‍ and ‍v‍ have been tested for interaction, 
while ‍bu,v =

∑au,v
i=1 result(uv)‍ counts the number of times the experiments have returned that ‍u‍ and ‍v‍ 

interact. Both ‍au,v‍ and ‍bu,v‍ are initially set to 0 and increase during simulation. Note that we always 
have ‍bu,v ≤ au,v‍. After each simulated experiment, ‍A‍ and ‍B‍ are updated. Subsequently, we update the 
edge set of the simulated network as

https://doi.org/10.7554/eLife.99951


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Blumenthal, Lucchetta et al. eLife 2024;0:e99951. DOI: https://doi.org/10.7554/eLife.99951 � 19 of 25

	﻿‍ E′ = {uv | bu,v > 0 ∧ bu,v/au,v > γ},‍� (9)

where ‍γ ∈ [0, 1)‍ is the minimum required fraction of experiments with positive result. The simulation 
stops once we have carried out ‍N ‍ simulated experiments (see end of this subsection for details on 
choice of ‍N ‍). Note that the simulated experiments are asymmetric (i. e. ‍Li‍ is a list of ordered pairs) but 
both the hypothetical ground truth interactome ‍G‍ and the simulated observed aggregated network 
‍G′‍ are undirected.

To sample the list ‍Li‍ of protein pairs to be tested for interaction in the ‍i‍th experiment, three hyper-
parameters are required: the number of baits ‍n

bait
i ∈ N‍, the number of preys ‍n

prey
i ∈ N‍, and the test 

method ‍M ∈ {Y2H, AP-MS}‍ (which does not depend on ‍i‍). ‍Li‍ is constructed as ‍Li = Bi × Pi‍, where 

‍Bi ⊆ V ‍ and ‍Pi ⊆ V ‍ are sampled lists of baits and preys, respectively. To construct ‍Bi‍, ‍n
bait
i ‍ proteins are 

sampled without replacement from ‍V ‍. A protein ‍u ∈ V ‍ is included in ‍Bi‍ with probability

	﻿‍ Pr[u ∈ Bi] ∝ degi−1(u) + δ,‍� (10)

where ‍degi−1(u)‍ is ‍u‍’s node degree in the version of the simulated network ‍G′‍ after ‍i − 1‍ experiments 
and ‍δ > 0‍ is a hyper-parameter encoding a baseline probability (set to ‍δ = 0.01‍ in our simulation study). 

‍Pr(u ∈ Bi)‍ hence increases with increasing node degree in the simulated observed network. This leads 
to a positive feedback loop in the selection of bait proteins, which models study bias in our simulation 
study.

Since the selection of bait proteins is influenced by study bias both in AP-MS and in Y2H experi-
ments, we use Equation 10 independently of the test method ‍M ‍. In contrast to AP-MS studies, also 
preys are actively selected in Y2H studies and are thus also directly subject to study bias. Consequently, 
we construct ‍Pi‍ by sampling ‍n

prey
i ‍ proteins without replacement from ‍V ‍, where ‍u ∈ V ‍ is included in ‍Pi‍ 

with probability

	﻿‍

Pr[u ∈ Pi] ∝





1 if M = AP-MS

degi−1(u) + δ if M = Y2H
.

‍�

(11)

We carried out our simulations for ‍M ∈ {AP-MS, Y2H}‍, ‍FNR ∈ {0.0, 0.1, . . . , 0.4}‍, 

‍FPR ∈ {0.0, 0.4 · 2−7, . . . , 0.4 · 2−1, 0.4}‍, and ‍γ ∈ {0.0, 0.5}‍. The upper bound ‍0.4‍ for FNR and FPR was 
chosen based on estimates for false positive and negative rates in AP-MS and Y2H experiments found 
in the literature Armean et al., 2013. The values for ‍γ‍ were chosen to mirror a scenario where a PPI 
is included in the aggregated PPI network as soon as it is reported by at least one study (‍γ = 0.0‍), as 
well as a scenario where only those PPIs ‍(u, v)‍ are included for which the majority of studies testing 

‍(u, v)‍ report an interaction (‍γ = 0.5‍). Overall, we hence carried out simulations for 180 configurations 

‍(M, FNR, FPR, γ)‍ of free hyper-parameters.
The remaining hyper-parameters were chosen based on the sizes of observed PPI networks 

obtained for IntAct. For ‍M = AP-MS‍, we set the overall number of simulated experiments ‍N ‍ to the 
number of AP-MS studies annotated in IntAct where, for each PPI, information about the roles (bait or 
prey) of the interacting proteins is available. For each study ‍i‍, ‍n

bait
i ‍ is set to the number of unique baits 

used in the study. The number of preys ‍n
prey
i ‍ is set to the number of proteins for which an interaction 

with at least one of the ‍n
bait
i ‍ baits is reported by study ‍i‍. Here, we hence make the simplifying assump-

tion that this set equals the set of prima facie detectable preys, given the technical setup of the study 
‍i‍. To set the hyper-parameters of the hypothetical ground truth networks ‍G = (V, E)‍, we aggregated 
the PPIs from all ‍N ‍ IntAct AP-MS studies and then set ‍n‍ and ‍mER‍ to the numbers of nodes and edges 
in the aggregated network ‍GIntAct‍. To ensure that also the ground truth networks generated with the 
BA model have approximately the same number of edges as ‍GIntAct‍, we set

	﻿‍

mBA = round


n

2
−

√
n2

4
− mER




‍�
(12)

and initialized the generation of the BA graph with the star on ‍mBA + 1‍ node (default in NetworkX). With 
this initialization, the number of edges in the final BA graph equals ‍|E| = mBA + mBA · (n − (mBA + 1))‍, 
which implies ‍|E| ≈ mER‍ if ‍mBA‍ is chosen as specified in Equation 12. For ‍M = Y2H‍, the hyper-parameters 

https://doi.org/10.7554/eLife.99951
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‍N ‍, ‍n
bait
i ‍, ‍n‍, ‍mER‍, and ‍mBA‍ were chosen analogously, and ‍n

prey
i ‍ was set to the number of preys used in 

study ‍i‍ (which, unlike in AP-MS studies, are actively selected in Y2H studies).
For each configuration ‍(M, FNR, FPR, γ)‍ of free hyper-parameters, we sought to answer the ques-

tion whether, given ‍(M, FNR, FPR, γ)‍, the observed PPI network ‍GIntAct‍ is more similar to simulated 
networks that emerged from a PL-distributed or from a binomially distributed ground truth. For this, 
we simulated 50 networks ‍G′‍ from BA ground truths (which we collect in the set ‍GBA‍) and 50 networks 
‍G′‍ from ER ground truths (which we collect in the set ‍GER‍), using the simulator described above. Next, 
for each ‍G

′ ∈ GBA ∪ GER‍, we computed the earth mover’s distance ‍EMD(GIntAct, G′)‍ between the node 
degree distributions of ‍GIntAct‍ and ‍G′‍, and then computed the normalized signed difference

	﻿‍
∆SOD =

∑
G′∈GBA

EMD(GIntAct, G′) −
∑

G′∈GER
EMD(GIntAct, G′)∑

G′∈GER
EMD(GIntAct, G′) ‍�

(13)

between the sum of distances between the observed PPI network ‍GIntAct‍ and the simulated networks 
contained in ‍GBA‍ and ‍GER‍, respectively. ‍∆SOD‍ is negative if ‍GIntAct‍’s degree distribution is closer to 
the degree distributions of simulated networks which emerged from a PL-distributed ground truth 
rather than from a binomially distributed ground truth. Positive values of ‍∆SOD‍ are indicative of the 
opposite scenario.

We also addressed the question of whether the observed PPI network ‍GIntAct‍ is more likely to have 
emerged from a PL-distributed or from a binomially distributed biological interactome, using a simple 
‍K ‍-NN classifier. More specifically, we sorted the simulated networks ‍G

′ ∈ GBA ∪ GER‍ in increasing order 
w. r. t. ‍EMD(GIntAct, G′)‍, leading to a sorted list of networks ‍(G

′
j)

100
j=1‍. For varying ‍K ∈ {1, 2, . . . , 100}‍, we 

then computed

	﻿‍
Pr[GIntAct emerged from PL-distributed biological interactome] = 1

K
·

K∑
j=1

[
G′

j ∈ GBA
]
‍�

(14)

	﻿‍
Pr[GIntAct emerged from binomially distributed biological interactome] = 1

K
·

K∑
j=1

[
G′

j ∈ GER
]

,
‍�

(15)

where ‍[·]‍ is the Iverson bracket (i.e. ‍[true] = 1‍ and ‍[false] = 0‍).

Code availability
Source code to reproduce the results of the simulation study is available at https://github.com/bionet-
slab/ppi-network-simulation (copy archived at Blumenthal and Lucchetta, 2024). Source code to 
reproduce all other analyses is available at https://github.com/martaluc/powerlaw-ppi-network (copy 
archived at Lucchetta, 2023).
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Appendix 1
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Appendix 1—figure 1. Protein mass and abundance are significantly positively correlated with the node degree in 
aggregated PPI networks. (A) Spearman correlation between degree and protein mass within affinity purification-
mass spectrometry (AP-MS) studies of the aggregated network. (B) Spearman correlation between degree and 
protein abundance within AP-MS studies of the aggregated network.

https://doi.org/10.7554/eLife.99951

	Emergence of power law distributions in protein-­protein interaction networks through study bias
	Editor's evaluation
	Introduction
	Results
	Less than one in three study-specific protein-protein interaction networks are power law distributed
	The power law property is associated with research interest
	Power law distributed research interest can explain the power law property of protein-protein interaction networks
	The power law property often vanishes when correcting for bait usage
	Accounting for study bias reveals functionally meaningful hub proteins
	Similarity of simulated to observed networks does not depend on the topology of ground truth network

	Discussion
	Methods
	Analyzed protein-protein interaction networks
	Testing the power law property of empirical distributions
	Aggregation of study-specific protein-protein interaction networks
	Computing the degree distributions based on baits or prey only
	Functional and disease properties of proteins
	Proof of proposition 1
	Design of simulation study
	Code availability

	Acknowledgements
	Additional information
	﻿Funding
	Author contributions
	Author ORCIDs
	Decision letter and Author response

	Additional files
	Supplementary files

	References
	Appendix 1


