Flattop regulates basal body docking and positioning in mono- and multiciliated cells

  1. Moritz Gegg
  2. Anika Böttcher
  3. Ingo Burtscher
  4. Stefan Hasenöder
  5. Claude Van Campenhout
  6. Michaela Aichler
  7. Axel Walch
  8. Seth G. N. Grant
  9. Heiko Lickert  Is a corresponding author
  1. Helmholtz Center Munich, Germany
  2. Université libre de Bruxelles, Belgium
  3. University of Edinburgh, United Kingdom

Abstract

Planar cell polarity (PCP) regulates basal body (BB) docking and positioning during cilia formation, but the underlying mechanisms remain elusive. Here, we investigate the uncharacterized gene Flattop (Fltp) that is transcriptionally activated during PCP acquisition in ciliated tissues. Fltp knock-out mice show BB docking and ciliogenesis defects in multiciliated lung cells. Furthermore, Fltp is necessary for kinocilium positioning in monociliated inner ear hair cells. In these cells, the core PCP molecule Dishevelled 2, the BB/spindle positioning protein Dlg3 and Fltp localize directly adjacent at the apical plasma membrane, physically interact and surround the BB at the interface of the microtubule and actin cytoskeleton. Dlg3 and Fltp knock-outs suggest that both cooperatively translate PCP cues for BB positioning in the inner ear. Taken together, the identification of novel BB/spindle positioning components as potential mediators of PCP signaling might have broader implications for other cell types, ciliary disease and asymmetric cell division.

Article and author information

Author details

  1. Moritz Gegg

    Helmholtz Center Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Anika Böttcher

    Helmholtz Center Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Ingo Burtscher

    Helmholtz Center Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Stefan Hasenöder

    Helmholtz Center Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Claude Van Campenhout

    Université libre de Bruxelles, Gosselies, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  6. Michaela Aichler

    Helmholtz Center Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Axel Walch

    Helmholtz Center Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Seth G. N. Grant

    University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Heiko Lickert

    Helmholtz Center Munich, Munich, Germany
    For correspondence
    heiko.lickert@helmholtz-muenchen.de
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Jeremy Nathans, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, United States

Ethics

Animal experimentation: Mouse keeping was done at the central facilities at HMGU in accordance with the German animal welfare legislation and acknowledged guidelines of the Society of Laboratory Animals (GV-SOLAS) and of the Federation of Laboratory Animal Science Associations (FELASA). Post-mortem examination of organs was not subject to regulatory authorization.

Version history

  1. Received: July 1, 2014
  2. Accepted: October 7, 2014
  3. Accepted Manuscript published: October 8, 2014 (version 1)
  4. Version of Record published: November 6, 2014 (version 2)

Copyright

© 2014, Gegg et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,455
    Page views
  • 502
    Downloads
  • 41
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Moritz Gegg
  2. Anika Böttcher
  3. Ingo Burtscher
  4. Stefan Hasenöder
  5. Claude Van Campenhout
  6. Michaela Aichler
  7. Axel Walch
  8. Seth G. N. Grant
  9. Heiko Lickert
(2014)
Flattop regulates basal body docking and positioning in mono- and multiciliated cells
eLife 3:e03842.
https://doi.org/10.7554/eLife.03842

Share this article

https://doi.org/10.7554/eLife.03842

Further reading

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.

    1. Cell Biology
    Jurgen Denecke
    Insight

    Mapping proteins in and associated with the Golgi apparatus reveals how this cellular compartment emerges in budding yeast and progresses over time.