A dedicated visual pathway for prey detection in larval zebrafish

Abstract

Zebrafish larvae show characteristic prey capture behavior in response to small moving objects. The neural mechanism used to recognize objects as prey remains largely unknown. We devised a machine learning behavior classification system to quantify hunting kinematics in semi-restrained animals exposed to a range of virtual stimuli. Two-photon calcium imaging revealed a small visual area, AF7, which was activated specifically by the optimal prey stimulus. This pretectal region is innervated by two types of retinal ganglion cells, which also send collaterals to the optic tectum. Laser ablation of AF7 markedly reduced prey capture behavior. We identified neurons with arbors in AF7 and found that they projected to multiple sensory and premotor areas: the optic tectum, the nucleus of the medial longitudinal fasciculus (nMLF) and the hindbrain. These findings indicate that computations in the retina give rise to a visual stream which transforms sensory information into a directed prey capture response.

Article and author information

Author details

  1. Julia L Semmelhack

    Department of Genes, Circuits and Behavior, Max Planck Institute of Neurobiology, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Joseph C Donovan

    Department of Genes, Circuits and Behavior, Max Planck Institute of Neurobiology, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Tod R Thiele

    Department of Genes, Circuits and Behavior, Max Planck Institute of Neurobiology, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Enrico Kuehn

    Department of Genes, Circuits and Behavior, Max Planck Institute of Neurobiology, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Eva Laurell

    Department of Genes, Circuits and Behavior, Max Planck Institute of Neurobiology, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Herwig Baier

    Department of Genes, Circuits and Behavior, Max Planck Institute of Neurobiology, Martinsried, Germany
    For correspondence
    hbaier@neuro.mpg.de
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Ole Kiehn, Karolinska Institute, Sweden

Ethics

Animal experimentation: All animal procedures conformed to the institutional guidelines of the Max Planck Society and the local government (Regierung von Oberbayern). The protocol (55.2-1-54-2532-101-12) was approved by the Regierung Oberbayern.

Version history

  1. Received: September 23, 2014
  2. Accepted: December 8, 2014
  3. Accepted Manuscript published: December 9, 2014 (version 1)
  4. Accepted Manuscript updated: December 12, 2014 (version 2)
  5. Version of Record published: January 2, 2015 (version 3)

Copyright

© 2014, Semmelhack et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,972
    Page views
  • 1,421
    Downloads
  • 125
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Julia L Semmelhack
  2. Joseph C Donovan
  3. Tod R Thiele
  4. Enrico Kuehn
  5. Eva Laurell
  6. Herwig Baier
(2014)
A dedicated visual pathway for prey detection in larval zebrafish
eLife 3:e04878.
https://doi.org/10.7554/eLife.04878

Share this article

https://doi.org/10.7554/eLife.04878

Further reading

    1. Neuroscience
    Kiwamu Kudo, Kamalini G Ranasinghe ... Srikantan S Nagarajan
    Research Article

    Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.

    1. Cell Biology
    2. Neuroscience
    Zhenyong Wu, Grant F Kusick ... Shigeki Watanabe
    Research Article

    Despite decades of intense study, the molecular basis of asynchronous neurotransmitter release remains enigmatic. Synaptotagmin (syt) 7 and Doc2 have both been proposed as Ca2+ sensors that trigger this mode of exocytosis, but conflicting findings have led to controversy. Here, we demonstrate that at excitatory mouse hippocampal synapses, Doc2α is the major Ca2+ sensor for asynchronous release, while syt7 supports this process through activity-dependent docking of synaptic vesicles. In synapses lacking Doc2α, asynchronous release after single action potentials is strongly reduced, while deleting syt7 has no effect. However, in the absence of syt7, docked vesicles cannot be replenished on millisecond timescales. Consequently, both synchronous and asynchronous release depress from the second pulse onward during repetitive activity. By contrast, synapses lacking Doc2α have normal activity-dependent docking, but continue to exhibit decreased asynchronous release after multiple stimuli. Moreover, disruption of both Ca2+ sensors is non-additive. These findings result in a new model whereby syt7 drives activity-dependent docking, thus providing synaptic vesicles for synchronous (syt1) and asynchronous (Doc2 and other unidentified sensors) release during ongoing transmission.