Abstract

We mapped the distribution of atrophy in Parkinson's Disease (PD) using MRI and clinical data from 232 PD patients and 117 controls from the Parkinson's Progression Markers Initiative. Deformation based morphometry and independent component analysis identified PD-specific atrophy in the midbrain, basal ganglia, basal forebrain, medial temporal lobe, and discrete cortical regions. The degree of atrophy reflected clinical measures of disease severity. The spatial pattern of atrophy demonstrated overlap with intrinsic networks present in healthy brain, as derived from functional MRI. Moreover, the degree of atrophy in each brain region reflected its functional and anatomical proximity to a presumed disease epicenter in the substantia nigra, compatible with a trans-neuronal spread of the disease. These results support a network-spread mechanism in PD. Finally, the atrophy pattern in PD was also seen in healthy aging, where it also correlated with the loss of striatal dopaminergic innervation.

Article and author information

Author details

  1. Yashar Zeighami

    McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Miguel Ulla

    McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Yasser Iturria-Medina

    McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Mahsa Dadar

    McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Yu Zhang

    McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Kevin Michel-Herve Larcher

    McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Vladimir Fonov

    McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Alan C Evans

    McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Douglas Louis Collins

    McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Alain Dagher

    McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
    For correspondence
    alain.dagher@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. David C Van Essen, Washington University in St Louis, United States

Ethics

Human subjects: For the Parkinson's Progression Markers Initiative (PPMI) database (www.ppmi-info.org/data)Each participating PPMI site received approval from a local research ethics committee before study initiation, and obtained written informed consent from all subjects participating in the study.For the resting state fMRI data collected in our lab, We acquired resting state fMRI in 51 healthy, right-handed volunteers.The experimental protocol was reviewed and approved by Research Ethics Board of Montreal Neurological Institute. All subjects gave informed consent.

Version history

  1. Received: April 30, 2015
  2. Accepted: September 5, 2015
  3. Accepted Manuscript published: September 7, 2015 (version 1)
  4. Version of Record published: October 8, 2015 (version 2)

Copyright

© 2015, Zeighami et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,884
    Page views
  • 1,335
    Downloads
  • 156
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yashar Zeighami
  2. Miguel Ulla
  3. Yasser Iturria-Medina
  4. Mahsa Dadar
  5. Yu Zhang
  6. Kevin Michel-Herve Larcher
  7. Vladimir Fonov
  8. Alan C Evans
  9. Douglas Louis Collins
  10. Alain Dagher
(2015)
Network structure of brain atrophy in de novo Parkinson's Disease
eLife 4:e08440.
https://doi.org/10.7554/eLife.08440

Share this article

https://doi.org/10.7554/eLife.08440

Further reading

    1. Neuroscience
    Lies Deceuninck, Fabian Kloosterman
    Research Article Updated

    Storing and accessing memories is required to successfully perform day-to-day tasks, for example for engaging in a meaningful conversation. Previous studies in both rodents and primates have correlated hippocampal cellular activity with behavioral expression of memory. A key role has been attributed to awake hippocampal replay – a sequential reactivation of neurons representing a trajectory through space. However, it is unclear if awake replay impacts immediate future behavior, gradually creates and stabilizes long-term memories over a long period of time (hours and longer), or enables the temporary memorization of relevant events at an intermediate time scale (seconds to minutes). In this study, we aimed to address the uncertainty around the timeframe of impact of awake replay by collecting causal evidence from behaving rats. We detected and disrupted sharp wave ripples (SWRs) - signatures of putative replay events - using electrical stimulation of the ventral hippocampal commissure in rats that were trained on three different spatial memory tasks. In each task, rats were required to memorize a new set of locations in each trial or each daily session. Interestingly, the rats performed equally well with or without SWR disruptions. These data suggest that awake SWRs - and potentially replay - does not affect the immediate behavior nor the temporary memorization of relevant events at a short timescale that are required to successfully perform the spatial tasks. Based on these results, we hypothesize that the impact of awake replay on memory and behavior is long-term and cumulative over time.

    1. Neuroscience
    Sydney Trask, Nicole C Ferrara
    Insight

    Gradually reducing a source of fear during extinction treatments may weaken negative memories in the long term.