TITLE

Residue proximity information and protein model discrimination using saturation-suppressor mutagenesis

AUTHORS AND AFFILIATIONS

Anusmita Sahooa, Shruti Kharea, Sivasankar Devanarayanana, Pankaj Jaina, Raghavan Varadarajana,b,1

aMolecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India; and
bJawaharlal Nehru Center for Advanced Scientific Research, Jakkur PO, Bangalore-560064, India

1To whom correspondence should be addressed: Raghavan Varadarajan, Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India. Tel: +91-80-22932612 Fax: +91-80-23600535 E-mail: varadar@mbu.iisc.ernet.in

KEYWORDS: Protein stability, Pairwise contacts, Model discrimination, Structure prediction
Data Availability Statement

In this study, a decoy set of 10,659 models (Adkar et al, 2012) of the Controller of Cell Division or Death B protein (CcdB) was used to probe the utility of the experimentally obtained contact information in model discrimination. The dataset has been uploaded to Dryad (https://datadryad.org/) and is under the process of review (doi:10.5061/dryad.3g092).
Abstract

Identification of residue-residue contacts from primary sequence can be used to guide protein structure prediction. Using *Escherichia coli* CcdB as the test case, we describe an experimental method termed saturation-suppressor mutagenesis to acquire residue contact information. In this methodology, for each of five inactive CcdB mutants, exhaustive screens for suppressors were performed. Proximal suppressors were accurately discriminated from distal suppressors based on their phenotypes when present as single mutants. Experimentally identified putative proximal pairs formed spatial constraints to recover >98% of native-like models of CcdB from a decoy dataset. Suppressor methodology was also applied to the integral membrane protein, diacylglycerol kinase A where the structures determined by X-ray crystallography and NMR were significantly different. Suppressor as well as sequence co-variation data clearly point to the X-ray structure being the functional one adopted *in-vivo*. The methodology is applicable to any macromolecular system for which a convenient phenotypic assay exists.
Introduction

Deducing the native conformation of a protein provides insight into its biological function. X-ray crystallography, NMR and more recently Cryo-EM (Bartesaghi et al, 2015; Cheng, 2015) are the major techniques used to accomplish this at atomic resolution. However, these require soluble purified protein at high concentration. In a few cases (Garbuzynskiy et al, 2005), the structures solved by different methods do not agree with each other, for various reasons. In many cases, the folded conformation is believed to be at a global free energy minimum (Anfinsen, 1973). This can be used as a guide to either deduce the structure (Havel et al, 1979) or fold a protein in-silico (Das et al, 2009; Das & Baker, 2008; Pande et al, 2003).

The structural and functional integrity of a protein requires maintenance of specific interactions during the course of evolution. Evolution allows either conservation of these interacting pairs of residues or mutation at interacting positions in a correlated manner (Godzik & Sander, 1989; Melero et al, 2014). The fitness cost of most amino acid substitutions depends on the genetic context in which they occur. Substitutions beneficial in one background can be detrimental in a different background (Breen et al, 2012; Shah et al, 2015). Interestingly, some sites are conserved not because a given amino acid is functionally irreplaceable, but rather because the right context is not available for its evolution (Wellner et al, 2013). This provides further evidence of correlation amongst mutations, i.e., epistatic interactions.

Often, the detrimental effects of a mutation can be alleviated by a second (suppressor) mutation which compensates for defects in stability, packing or function caused by the first mutation. Such correlated substitutions have been experimentally identified in attempts to screen for second-site suppressors (Araya et al, 2012; Hecht & Sauer, 1985; Machingo et al, 2001; Pakula & Sauer, 1989; Sideraki et al, 2001). Correlated mutations have also been employed to identify protein
interaction sites (Melamed et al, 2015). Two other recent studies have described a large number of second-site suppressors for the RRM2 domain of the yeast poly(A)-binding protein (Pab1) and the IgG-binding domain of protein G (GB1) respectively (Melamed et al, 2013; Olson et al, 2014). While there have been past efforts to identify compensatory mutations, a comprehensive method to explicitly identify suppressors and to distinguish suppressors that are spatially proximal from those that are distal to the site of the original inactive mutation is lacking. In the current work, we attempt to address these issues.

In addition to experimental studies to identify correlated mutations, several computational methods also exist which detect coevolution of residues in homologous sequences. Various statistical approaches which identify correlated mutations have been used to decode such evolutionary information contained in multiple homologous sequences of a protein (Gobel et al, 1994). Progressive improvement in this area has resulted in more accurate strategies such as use of a Bayesian network model (Burger & van Nimwegen, 2010), maximum entropy in DCA (Morcos et al, 2011) and EVfold (Marks et al, 2011), sparse inverse covariance estimation in PSICOV (Jones et al, 2012) and a pseudo-likelihood based approach in GREMLIN (Kamisetty et al, 2013) to predict residue-residue contacts to computationally build protein 3D structures (Marks et al, 2011; Nugent & Jones, 2012; Ovchinnikov et al, 2014; Sulkowska et al, 2012). A sparse network of coevolving residues of a protein constraining its structure, specificity and function has been examined by statistical coupling analysis of evolutionarily rich sequence data in protein families (Halabi et al, 2009). Though these methods show great promise in the area of macromolecular structure determination, the fidelity of the predictions is questionable for candidates with small protein families, where the total number of sequences is less than five times the length of the protein in case of GREMLIN (Kamisetty et al, 2013) or less than 1,000 for some of the other methods (Morcos et al, 2011). Further, stringent constraints present during
natural evolution limit the number and nature of sequences that are sampled. We propose alternative experimental methodology termed saturation suppressor mutagenesis to complement and extend residue contact information obtained from computational analyses of correlated mutations in a multiple sequence alignment.

The test protein in this study, Controller of Cell Division or Death B (CcdB) is the toxin component of the *Escherichia coli* CcdA-CcdB antitoxin-toxin system. It is a globular, dimeric protein with 101 residues per protomer, involved in maintenance of F plasmid in cells by a mechanism involving its binding to and poisoning of DNA Gyrase (Dao-Thi et al, 2005). CcdB has two primary ligands with overlapping binding sites. These are its cognate antitoxin, CcdA and its cellular target, DNA Gyrase. CcdB has ~350 homologs in its protein family, which is less than five times the length of the protein. Therefore, computational methods cannot be reliably employed to deduce correlated mutations from a multiple sequence alignment of CcdB homologs.

Using CcdB, we identify spatially proximal residues by doing an exhaustive search for suppressor mutations for a given inactive mutant (Figure 1). We subsequently use this information for protein model discrimination and structure prediction. We have previously constructed a saturation mutagenesis library of CcdB in which each residue was individually randomized. The library was screened at multiple expression levels in *E. coli* and relative activities of ~1430 individual mutants were inferred by deep sequencing (Adkar et al, 2012). It was observed that the mutational sensitivity of each residue of CcdB is related to its depth from the protein surface. Residue depth is defined as the distance of any atom/residue to the closest bulk water (Chakravarty & Varadarajan, 1999; Tan et al, 2011). An empirical parameter (RankScore) related to mutational sensitivity was defined for each residue, which could be reliably used as a proxy for the residue’s depth, provided the residue was not part of the active-
site. Active-site residues could be deduced solely from mutational sensitivity data. A brief description of the screening procedure and definitions of mutational sensitivity score and RankScore are provided in the Materials and Methods section.

In the present study, residues likely to be present at the core of CcdB were identified by their mutational sensitivity in the single mutant library (Adkar et al., 2012). Inactive mutants at five such putative buried residues were identified. Next, exhaustive second-site saturation mutagenesis libraries constructed in the background of each inactive mutant were displayed on the surface of yeast (Chao et al., 2006) and screened for binding to the CcdB ligand, DNA Gyrase, to identify suppressors. Distal and proximal suppressors could readily be distinguished based on the RankScore of the suppressor site in the original single-site saturation mutagenesis library (Adkar et al., 2012). The residue proximity information thus obtained, was used to generate spatial constraints, which were in turn able to capture the protein’s native structural features and recovered >98% of native-like models (with backbone RMSD within 2.5Å of the native structure) from a pool of decoys. Thus, high-throughput, exhaustive application of this approach, combined with ways to disentangle proximal from distal suppressors would be a useful way to identify a substantial number of distance constraints, which can be used for protein structure prediction (Marks et al., 2011).

Diacylglycerol kinase A (DgkA) is a homotrimeric integral transmembrane protein (121 residues per protomer) in *E. coli*, catalyzing the phosphorylation of diacylglycerol to phosphatidic acid. Gram-negative bacteria use this reaction product to shuttle water-soluble components to membrane-derived oligosaccharide and lipopolysaccharide in their cell envelope (Van Horn & Sanders, 2012). The protein has been captured in two distinct conformations by X-ray crystallography (PDB id 3ZE5 (Li et al., 2013)) and NMR (PDB id 2KDC (Van Horn et al., 2009)) respectively. The two structures are significantly different from each other, with ‘domain
swapping’ being the key feature of the NMR model. Each structure is characterized by several unique residue contacts. It is important to identify whether one or both these structures are present *in-vivo*. We therefore isolated inactive mutants at residues involved in differential contacts in the two structures. Next, we experimentally identified suppressors of these inactive mutants. The residue contact pairs identified via these suppressors were consistent only with the contacts found in the crystal structure, thereby suggesting that the X-ray structure represents the native, active conformer of this membrane protein *in-vivo*.
Results

Selection of parent inactive mutant. In the current work, we aimed at identifying suppressors for buried inactive non-active site residues of CcdB. Since WT CcdB is toxic to *E. coli* only cells transformed with inactive mutants will survive, thus providing a facile selection for such mutants. Relative activities of ~1430 single-site mutants of CcdB have been obtained previously from phenotypic screening of a single-site saturation mutagenesis library at multiple expression levels in *E. coli*. Deep sequencing was used to determine the identities of all surviving (inactive) mutants at each expression level (Adkar et al, 2012). An empirical parameter (RankScore) was defined for each residue (see Materials and Methods). It is related to the average mutational sensitivity (see Materials and Methods) at each position. It was observed that for non-active site positions, RankScore is proportional to residue depth.

The sequencing data from the above library was analyzed to select five inactive mutants; V5F, V18W, V20F, L36A and L83S (hereafter referred to as parent inactive mutants) at buried, non-active site residues. Several buried, non-active site residues were identified from sequencing data. Parent inactive mutants were chosen so as to include different kinds of mutations, namely large→small, small→large and hydrophobic→polar. Patterns of mutational sensitivity (MS\textsubscript{seq}) for mutants at a position were analysed to distinguish between active-site and buried mutations as described below.

Both buried and active-site residue positions possess high RankScores and high average mutational sensitivity (MS\textsubscript{seq}) values. Active-site residues can be distinguished from buried ones based on the pattern of mutational sensitivity. Mutational sensitivity (MS\textsubscript{seq}) scores were determined from the sequencing analysis of the single-site saturation library of CcdB and refer to the expression level at which partial loss of function mutants show an active phenotype.
Patterns of MS seq values for active-site, buried and exposed positions differ from each other. Representative plots are shown in Figure 1 – figure supplement 1. At buried positions, typically most aliphatic substitutions are tolerated; hence they have low MS seq values. Polar and charged residues are poorly tolerated at buried positions, thus showing high MS seq values (Figure 1 – figure supplement 1A). In contrast, mutations to aliphatic residues are often poorly tolerated at active-site residues (which are typically exposed) and have higher MS seq values (Figure 1 – figure supplement 1B). Polar and charged residues are sometimes tolerated and the average mutational sensitivity for active-site residues is typically higher than for buried residues. By analyzing the mutational sensitivity patterns at all positions, Q2, F3, Y6, S22, I24, N95, W99, G100 and I101 can be identified as putative active-site residues. These residues were identified based solely on mutational data (unpublished results). Similar mutational patterns are seen for at least two other proteins for which extensive mutational data exist, the PDZ domain (PSD95^pdz3) (McLaughlin et al, 2012) and the IgG-binding domain of protein G (GB1) (Olson et al, 2014) (unpublished results).

Recent work (Melamed et al, 2015) suggests that saturation mutagenesis in combination with evolutionary conservation data can also be used to identify residues at interaction sites. In addition to differences in mutational sensitivity patterns which are employed here to discriminate between active-site and buried residues, an important difference between active-site and buried mutations is that the former typically affect specific activity and not the level of properly folded protein, while the latter primarily affect the level of properly folded protein (Bajaj et al, 2008). Thus measurements of protein levels, and possibly sensitivity of mutant activity to chaperone overexpression (Tokuriki & Tawfik, 2009a), can also be used to distinguish between active-site and buried mutants. The average hydrophobicity and hydrophobic moment (Varadarajan et al,
180 1996) are supplementary parameters that can help distinguish between exposed, active-site and 181 buried residues.

182 **Library preparation and isolation of suppressor mutants of CcdB.** Mutations at 183 the selected non-active site positions perturb activity by reducing the amount of functional, 184 folded protein *in vivo* (Figure 1 – figure supplement 2) (Bajaj et al, 2008). In order to identify 185 residues which can compensate for the parent inactive mutant, the selected parent inactive 186 mutations described above were individually introduced into the single-site saturation 187 mutagenesis library constructed previously (Adkar et al, 2012). The resulting double mutant 188 saturation-suppressor libraries were cloned into a yeast surface display vector (pPNLS) by three 189 fragment recombination in *Saccharomyces cerevisiae* (Figure 1 – figure supplement 3). 190 Recombination yielded ~10^5 transformants for each library. Yeast surface display (Chao et al, 191 2006) and Fluorescence Activated Cell Sorting (FACS) were used as screening tools to isolate 192 populations exhibiting (i) enhanced binding to the ligand DNA Gyrase, and (ii) increased surface 193 expression relative to the corresponding parent inactive mutant. The ligand concentration was 194 decreased in subsequent rounds of sorting to increase the stringency in selection of true 195 suppressors (Supplementary File 1). The methodology used to generate the library along with the 196 use of very low (pg) amount of template DNA for PCR was effective in introducing the parent 197 inactive mutant into all members of the single-site saturation mutagenesis library. This is 198 important as the presence of even a small fraction of WT residue at the position of the parent 199 inactive mutant will rapidly lead to its selection, resulting in a high amount of false positive data. 200 Following multiple rounds of sorting (typically 3-4), over 10% of the population was shown to 201 bind significantly better to DNA Gyrase than the parent inactive mutants. Data for the L83S 202 mutant library is shown (Figure 2). At this stage, 96 individual clones for each library were
sequenced by Sanger sequencing to identify 1-3 potential suppressors for each parent inactive mutant (Table 1).

Discrimination between proximal and distal suppressors. For a pair of residues in contact, it is likely that a destabilizing substitution at one residue can be suppressed by a substitution with complementary properties at the other residue. For example, a cavity formed by a large→small substitution of a residue may be compensated by a small→large substitution of the partner residue in contact with it. Consequently, while each of the individual mutations will be destabilizing in the WT background, the pair will have increased stability and activity relative to their corresponding single mutants, thus demonstrating positive sign epistasis.

However, suppressors can be either spatially proximal or distal from the site of the original inactive mutation. In contrast to proximal suppressors, distal suppressors will typically be on the surface of protein (Bank et al, 2015) and hence the individual suppressor mutation is expected to be neutral in the WT background. Further, unlike proximal suppressors no complementarity in amino acid property relative to the parent inactive mutant is expected for a distal suppressor. In the present study, we use RankScore values to discriminate between proximal and distal suppressors. The approach is validated by mapping proximal and distal suppressors onto the known crystal structure of CcdB.

We have previously shown that the RankScore parameter correlates with residue depths derived from the crystal structure of the protein (Figure 4b of (Adkar et al, 2012)). The value for RankScore ranges between 1 to 100. For a given non-active site residue, a higher value of RankScore indicates that the residue is likely to be buried in the protein structure. All the parent inactive mutants were chosen such that they are non-active site and have a high RankScore. These residues are predicted to be buried and indeed are found to be buried in the crystal structure. It is therefore expected that positions at which local suppressors occur will also have
high depth, high RankScores and high average mutational sensitivity in the single-site saturation mutagenesis library (Figure 1A).

All the positions with low RankScores are found to be exposed on the protein structure. Hence, suppressors with RankScore=1 were classified as distal suppressors (Table 1). A RankScore of 1 is a conservative cutoff for distal suppressors, probably a cutoff of five or ten would yield similar results. The RankScore cutoff of 25 which we have chosen for proximal suppressors, clearly identifies only buried residues with depth > 5.5Å. All these residues have accessibility < 1.5%.

The PCR strategy adopted (Figure 1 – figure supplement 3) to construct the second-site suppressor mutagenesis library for screening suppressors against the parent inactive mutants of CcdB was designed to generate (i) 50% double mutants with each member containing the parent inactive mutant and a single mutant, and (ii) 50% parent inactive mutants. Sequencing data obtained was analyzed to identify proximal and distal suppressors (as discussed above). We largely obtained double mutants containing the parent inactive mutant and a suppressor, and a small fraction of the triple mutant (V5F/L36M/A81G) (Table 1). Occurrence of the triple mutant was due to selection and enrichment of an additional mutation introduced into the double mutant library likely due to PCR based errors. The selected triple mutant contained the parent inactive mutant V5F and two proximal suppressors (L36M and A81G). Overall, six residue pairs were identified, which contained the parent inactive mutant and a putative proximal suppressor (Table 1).

The shortest distance between individual members of the identified (parent inactive mutant, proximal suppressor) pairs in the structure of WT CcdB was 2.8-4.8Å (PDB id: 3VUB (Loris et al, 1999), Table 1, Figure 3B-E). This validated the methodology described above. Two residues, R10 and E11 (in the pairs L36A/R10G, L36A/E11P, V20F/E11R and V20F/E11K) were identified as locations for distal suppressors based on their low RankScore values in the single-
site saturation mutagenesis library. Mutations at E11 were observed to suppress parent inactive mutants at multiple residue positions. The shortest distances between L36-R10 and V20-E11 are 11.6Å and 18.4Å respectively. As expected, the proximal suppressors are clustered together in the protein interior while the distal ones are present on an exposed loop region (Figure 3A, Video 1).

The ability to suppress parent inactive mutants at multiple positions is indicative of the suppressor being a global suppressor. The most reliable way to identify these would be to confirm that the same putative distal suppressor is able to suppress multiple parent inactive mutants, preferably the ones which are not in contact with each other. We treated both the distal suppressors (R10 and E11) as likely global suppressors and performed experiments described in the following section to test this hypothesis.

Protein stabilization by the suppressor mutants. Identified CcdB suppressors individually conferred improved binding and thermal stability to the corresponding parent inactive mutants (Figure 4, Figure 4 – figure supplement 1, Figure 4 – figure supplement 2, Supplementary File 2). An increased affinity for DNA Gyrase for the (Parent inactive mutant, suppressor) pair relative to the parent inactive mutant alone was observed in all cases except for (L36A, M63L) and (L36A, R10G) pairs (Figure 4C), which exhibited similar affinity towards Gyrase as the parent inactive mutant L36A. However, the (Parent inactive mutant, suppressor) pairs showed higher thermal stability (T_m(L36A, M63L)=55±0.8°C, T_m(L36A, R10G)=55.1±0.4°C, T_m(L36A)=47.1±0.3°C) and increased surface expression (Figure 4A, D). Surface expression levels of proteins displayed on the yeast surface have previously been found to correlate with the protein’s stability (Shusta et al, 1999). Increased surface expression was observed for all (Parent inactive mutant, suppressor) pairs (including the distal suppressor (L36A, R10G) pair) relative to the parent inactive mutant, except for the (V20F, E11R) pair.
(Figure 4A, B). This distal suppressor pair exhibited slightly lower expression than its parent inactive mutant, V20F, but displayed enhanced activity in terms of its binding to Gyrase (Figure 4B, C).

R10G is a distal suppressor. The ability of the R10G mutation to suppress defects at other positions was examined by constructing the corresponding double mutants. Increased surface expression of R10G paired with each of V5F, V18W, L36A and L83S was seen relative to the individual parent inactive mutants (Figure 4A, B). This demonstrates that R10G likely acts as a global suppressor. E11 suppresses activity of two parent inactive mutants, L36A and V20F (L36A/E11P, V20F/E11R, V20F/E11K) and is anticipated to play a role similar to R10G.

Characterization of distal suppressors. The presence of the CcdB ligand, CcdA during thermal denaturation of CcdB, shifts the unfolding equilibrium towards the folded fraction of CcdB, resulting in an increased T_m than when monitored in its absence (Supplementary File 2, Figure 4 – figure supplement 2). This increase in T_m was observed for all mutants except R10G. L36A/R10G showed an increase of only 9°C in the presence of CcdA while other mutants showed an increase of >20°C. These observations indicated a decrease in affinity of R10G CcdB for CcdA. The distal suppressors R10G and E11R are present on an exposed loop of CcdB and contact CcdA in the crystal structure of the CcdB-CcdA complex, PDB id 3G7Z (De Jonge et al, 2009). R10 forms a hydrogen bond (2.9Å) with N69 of CcdA. Hence, mutations at R10 and E11 are likely to destabilize binding of CcdB to CcdA, consistent with our results. The suppressor mutant, R10G has an increased stability relative to WT (R10G (T_m(R10G)=74.8±0.2°C, T_m(WT)=66.8±1.0°C, Supplementary File 2, Figure 4D). However, the compromised ability to bind to its antitoxin CcdA results in increased toxicity in native contexts where CcdB and CcdA are both present. Thus, to maintain homeostasis in the system, evolutionary pressure defines a trade-off between function and stability of the protein (Schreiber et al, 1994), settling on an
optimally stable wild type protein rather than a maximally stable one. This explains why the R to G mutation is not found in naturally occurring CcdB homologs. The screen employed in this work identifies stabilizing variants which are functionally competent to bind to only one of the binding partners, DNA Gyrase, explaining the identification of the R10G like mutation. To understand the molecular mechanism(s) by which R10G rescues L36A present at the core, we examined if any long range functional interaction was predicted between the sites by the program SCA (Halabi et al, 2009). No interaction was seen although this analysis was limited by low sequence diversity of CcdB. Experimentally, we observed that R10G stabilized the WT protein and other parent inactive mutants while the E11R substitution stabilized the parent inactive mutant V20F. The large conformational flexibility of glycine (in case of R10G) might stabilize the loop harboring residue 10 by accessing conformations not accessible to other residues. Further experiments need to be done to understand the mechanism of stabilization of the parent inactive mutant V20F by E11R and to determine if E11R, like R10G also functions as a global suppressor.

ContactScore as a model discriminator. A decoy set of 10,659 models (Adkar et al, 2012) (doi:10.5061/dryad.3g092) of CcdB was used to probe the utility of the experimentally obtained contact information in model discrimination. The decoy set contained models ranging from 1.9-20.4Å (backbone RMSD relative to the crystal structure, PDB id 3VUB (Loris et al, 1999)). The models were scored based on ContactScore, which was defined as the number of times the experimentally identified residue contact pairs (6 pairs) are within a cutoff distance of 7Å of each other in a given model (Figure 5A) (see Materials and Methods). ContactScore is an integral value ranging from 0 to 6 since there are six (Parent inactive mutant, proximal suppressor) pairs. Proximal suppressor mutants are likely to have their side chains facing towards the corresponding parent inactive mutant (Figure 3B-F), and hence the side chain centroids of the
pair are likely to be closer than their corresponding Ca atoms. Results for other choices of
distances are shown in Figure 5 – figure supplement 1. The distribution of recovery of models
(defined as the percentage of models selected by the metric within a specified RMSD range, in a
pool of models) with respect to their backbone RMSD relative to the crystal structure (Figure 5 –
figure supplement 2) shows the sensitivity of ContactScore and its relevance as a metric for
model discrimination. Models satisfying all the experimental constraints i.e. ContactScore=6 are
distributed in the RMSD bin <4Å. The distribution progressively shifts towards a higher RMSD
range with decrease in the number of constraints being satisfied (ContactScore<6). This
emphasizes the sensitivity and selectivity of the metric. The correlation coefficient of a plot of
RankScore as a function of residue depth in a model, \(r_{\text{RankScore}} \) has been previously
used as a model discriminator (Adkar et al, 2012). \(r_{\text{RankScore}} = 0.6 \) for the native structure of CcdB.
Thus, models with \(r_{\text{RankScore}} \geq 0.6 \) were selected as “correctly folded models” when \(r_{\text{RankScore}} \) was used
as the metric. A comparison of the two metrics shows that ContactScore performs significantly
better than \(r_{\text{RankScore}} \), recovering 100%, 98% and 80% structures in backbone RMSD ranges 1.5-
2Å, 2-2.5Å and 2.5-3Å respectively, while the latter recovered 0%, 7% and 12% in the above
ranges (Figure 5C). ContactScore and \(r_{\text{RankScore}} \) identified 585 and 67 models respectively with
RMSD range <4Å from the decoy set (Figure 5A, B). Thus, ContactScore is able to recover 66%
of native-like models (RMSD<4Å) from the dataset as compared to only 8% by \(r_{\text{RankScore}} \).

We compared the decoy discrimination efficiency of \(r_{\text{RankScore}} \) and ContactScore with another method
which uses a simple scoring function based on residue accessibility in globular proteins (Bahadur
& Chakrabarti, 2009). The function (Rs) evaluates the deviation from the average packing
properties of all residues in a polypeptide chain corresponding to a model of its three-
dimensional structure (Bahadur & Chakrabarti, 2009). The parameter Rs was calculated (see
Materials and Methods) for the CcdB decoy set. Since Rs estimates deviation from the average Accessible Surface Area (ASA), the native structure should ideally possess the lowest value of Rs. However, when the CcdB decoy set was sorted according to the Rs values, the native structure was ranked 934th and the correlation between RMSD and Rs was seen to be only 0.3. These data demonstrate that both \(r^{\text{score}}_{\text{depth}} \) and ContactScore parameters derived from mutational data perform better than simple solvent accessibility based correlations such as the one observed above.

Application of suppressor methodology to identify the functional conformation of the membrane protein DgkA in-vivo. The structures of the integral membrane protein, DgkA solved by X-ray crystallography (Li et al, 2013) and NMR (Van Horn et al, 2009) are different from each other in important respects. The NMR structure appears to be in a domain swapped conformation relative to the crystal structure. Several pairs of differential contacts serve to discriminate the two structures, including contacts made by residues V62, M66, I67, V68 and W112 (Table 2, Supplementary File 3, Figure 6, Figure 6 – figure supplement 1, see Materials and Methods). Consequently, residues in proximity to each of these residues in the X-ray structure (PDB id 3ZE5 (Li et al, 2013)) are distant in the NMR structure (PDB id 2KDC (Van Horn et al, 2009)). Thus by constructing parent inactive mutants at the above positions and isolating corresponding suppressors, it should be possible to determine which of the two structures represents the functional conformation in-vivo. It has previously been shown (Raetz & Newman, 1978; Raetz & Newman, 1979) that cells deleted for \(dgkA \) do not grow under conditions of low osmolarity, providing a facile screen for both parent inactive mutants and their corresponding suppressors.
Each of the above five residues was individually randomized and the resulting small libraries were screened for inactive mutants. Charged and aromatic substitutions were excluded from the finally selected parent inactive mutants as these are likely to be highly destabilizing, making it difficult to isolate suppressors for such mutations. Indeed, in the case of CcdB it was more challenging to find suppressors for the aromatic parent inactive mutants (V18W, V20F), relative to other parent inactive mutants (such as L36A and L83S) (Supplementary File 1). V62Q, M66S, M66L, I67V, V68G and W112V were identified as parent inactive mutants from screening of single-site saturation mutagenesis libraries constructed at these positions. For these mutants, colonies appeared on plates only at high osmolarity (NaCl concentrations of 0.15%, 0.15%, 0.15%, 0.03%, 0.15% and 0.15% respectively) after 12 hrs of incubation at 37°C, as opposed to cells expressing WT DgkA which grew even at 0% NaCl. Second-site suppressor mutagenesis libraries in which each residue in contact with the parent inactive mutants in both NMR and crystal structures was individually randomized, (Table 2) were screened for growth under low salt conditions.

At all selected parent inactive mutants, suppressors were found only at those positions in contact with the parent inactive mutant in the X-ray structure (i.e. V62Q/A41G, M66L/V38A, M66S/G35A, I67V/I103L, I67V/A104T and V68G/A100V), (Figure 6, Figure 6 – figure supplement 2, Table 2, Video 2). The only exception was for the parent inactive mutant W112V, where no suppressors were experimentally identified, possibly due to the large change in volume for the parent inactive mutant relative to the WT residue. The data reported here are consistent results obtained from more than five independent experiments for each mutant. The results strongly suggest that the crystallized conformation is the native, functional conformation in-vivo.

Computational approaches to predict spatially proximal residues. In the recent past there have been several computational efforts to identify residues in contact, involving
analysis of correlated substitution patterns in a multiple sequence alignment of a protein. DCA (Morcos et al, 2011), PSICOV (Jones et al, 2012; Nugent & Jones, 2012), GREMLIN (Kamisetty et al, 2013), SCA (Halabi et al, 2009) and EVfold (Marks et al, 2011) analyze co-variation matrix data from a multiple sequence alignment to deduce residues in contact. The methods rank residue pairs based on a co-variation or correlation score specific to each method. The top ranked pairs which typically lie in the top L/2 pairs, where L is the length of the protein sequence (Jones et al, 2012) are predicted to be in contact. The methods perform well when the size of the multiple sequence alignment is large i.e. >5L (Kamisetty et al, 2013). DgkA (121 residues per protomer) exhibits large sequence diversity (4175 sequences in the multiple sequence alignment). Putative contact predictions by the above methods were analyzed by calculating sidechain-sidechain centroid distances between the predicted pairs using both X-ray and NMR structures of DgkA. Some high scoring, co-varying pairs predicted by DCA, GREMLIN, PSICOV and EVfold were found to be true contacts (centroid-centroid distance <7Å, Figure 7) when mapped onto the crystal structure. There were a few high scoring pairs which were either far apart in the X-ray structure (predictions by PSICOV) or were in proximity when analyzed with the NMR structure (predictions by GREMLIN, PSICOV and EVfold). However, overall sequence co-variation data are more consistent with the X-ray structure, in agreement with conclusions from suppressor mutagenesis. Of the six contacts identified from our suppressor analyses (Table 2), three (62-41, 67-104, 68-100) were predicted in the top L/2 co-varying pairs by GREMLIN, PSICOV and EVfold (Figure 7), only 67-104 was predicted by DCA and none by SCA. This suggests that natural sequence co-variation and suppressor mutagenesis can provide complementary information.

The co-variation prediction methods use a multiple sequence alignment as input. The predictions therefore are not specific to the identities of the side-chains of the residues present in the
sequence of interest at the predicted contact positions. Therefore, we also analyzed the predictions by calculating the Cα-Cα distances between the predicted pairs using both X-ray and NMR structures (Figure 7 – figure supplement 1). No side chain information is involved in these calculations. Similar results were obtained as when using the sidechain-sidechain centroid distances. Co-variation prediction becomes increasingly challenging for proteins with very few homologs. CcdB (101 residues per protomer) has only 350 sequences (<5L, where L is the length of the protein) in the multiple sequence alignment. Therefore, co-variation predictions were not carried out for CcdB.

ΔΔG calculations for local suppressors of CcdB. There is considerable interest in accurate prediction of mutational effects on the free energy of folding (Guerois et al, 2002; Kellogg et al, 2011; Shen & Sali, 2006). We therefore examined whether ΔΔG calculations could be used to rationalize the identity of the experimentally observed local suppressors. To this end the difference in stability between the (Parent inactive mutant, suppressor) pair and the parent inactive mutant for CcdB mutants was calculated. ΔΔ\(\text{G}_{\text{folding}}\) (\(\Delta\text{G}_{\text{folding}}\)Double mutant - \(\Delta\text{G}_{\text{folding}}\)Parent inactive mutant) was calculated using Rosetta v3.3 (Kellogg et al, 2011). Putative proximal suppressors were considered to arise at residues within 7Å (sidechain–sidechain centroid distance) of the parent inactive mutant. Many stable substituents were predicted (\(\Delta\text{G}_{\text{folding}}<0\), Figure 8). However, amongst the six experimentally identified stable compensatory pairs, only L36A/M63L (-3.7 kcal/mol) was predicted to be stable. The remaining five contact pairs were predicted to be either marginally stable or unstable. Several other mutations besides the experimentally determined ones were predicted to be stabilizing e.g. V5F/L16G, V18W/I90A, V20F/I90A, L36A/V54I and L83S/V18I. These might be present in the earlier rounds of sorting but are lost in later rounds due to stringent sort conditions. A marked bias for aromatic substitutions was observed in the predictions (Figure 8, substitutions underlined...
in magenta) though such aromatic substitutions were not observed experimentally. Aromatic substitutions are rigid and were found to over pack the cavity created by the parent inactive mutants in the models generated using Rosetta. Further, several of the mutations that were computationally predicted to be highly stabilizing are unlikely to be so as they are not complementary in size to the original parent inactive mutant, e.g. L36A/W61F, V5F/L16Y, V18W/I90F and V20F/I90F. If aromatic substitutions are excluded, Rosetta predictions using ΔΔG values are in reasonable qualitative agreement with experiment.

A similar analysis was done using FoldX (Guerois et al, 2002) (Figure 8 – figure supplement 1). However, these predictions were in poorer agreement with the experimental results, compared to those of Rosetta. Thus, in addition to their use in protein structure prediction, results from such suppressor analyses can also be used to benchmark and improve computational approaches to predict mutational effects on protein stability.
Discussion

Interactions at the protein core are important in determining its structure and stability. The saturation-suppressor mutagenesis methodology described here (Figure 1, Figure 1 – figure supplement 3) enabled identification of 12 residues at the hydrophobic core and their pairwise interactions (Figure 3A, F) placing important constraints on packing of the model protein CcdB. Encouragingly, proximal suppressors could be obtained for four of the five parent inactive mutants in the case of CcdB as well as DgkA. There may be mutations in the core which allow the protein to fold but are functionally defective (Figure 1 – figure supplement 2) (Roscoe et al, 2013). We eliminated such mutations as the CcdB screen required variants to both fold into a stable conformation and be functionally active to bind to Gyrase. The experimentally identified residue pairs for CcdB are in physical contact and have suppressor positions common to each other (Table 1, Figure 3B-F, Video 1). This interlinked network of residues restricts the conformational space during folding. The ContactScore metric defined above selects models satisfying the identified spatial constraints. A histogram of recovery of models with respect to backbone RMSD of the models selected by this metric shows a maximum of 100% for models with backbone RMSD <2Å, gradually decreasing to 66% for models <4Å and subsequently plateauing to 0% for models >5Å, reflecting the sensitivity and accuracy of the parameter. A high recovery is important for protein model discrimination, as typically there will be very few low RMSD models in the candidate set of predictions. The ContactScore metric also performs better than a simpler approach based on deviation of residue accessibilities in a model from their average values in a large dataset of proteins (Bahadur & Chakrabarti, 2009) though an exhaustive comparison with other metrics for model discrimination has not been carried out. The efficiency of model discrimination using the ContactScore metric will likely be a function of quality of the decoy dataset as well as the accuracy of the contacts inferred from suppressor
mutagenesis. In a dataset where very few low RMSD models are present or where not all contacts identified are true contacts, the model recovery will be lower than for the CcdB decoy dataset described here. Further, the small number of (Parent inactive mutant, suppressor) pairs identified here will not be sufficient for larger proteins, thereby affecting the model discrimination efficiency. However, most of these limitations can be overcome by identifying a higher number of (Parent inactive mutant, suppressor) pairs for the protein of interest and by combining residue contacts inferred from saturation mutagenesis with other experimental or computational constraints.

The saturation suppressor mutagenesis approach was extended to the important case of membrane proteins. Many membrane proteins adopt multiple conformations (Tokuriki & Tawfik, 2009b) and membrane mimetics used to solubilize and stabilize membrane proteins can affect their conformations (Cross et al, 2013). There are two reported structures of the integral membrane protein DgkA, one solved by X-ray crystallography (Li et al, 2013) and one by solution NMR (Van Horn et al, 2009) which differ significantly from each other. Using our suppressor methodology, we unambiguously identified six residue-residue contacts which were all present in the crystal structure but were spatially distant in the NMR structure. This suggests that the conformation of the protein in the lipidic (monoacylglycerol) cubic phase conditions (used in X-ray crystallography (Li et al, 2013)) is the functional conformer in-vivo and is not an artifact resulting from the presence of thermostabilizing mutations and minor distortions that might result from crystal contacts. Our results are also consistent with a recent reanalysis of oriented sample solid state NMR data for the protein in liquid crystalline bilayers (Murray et al, 2014) which showed better overall agreement with the crystal than with the solution NMR structure.
Broad application of suppressor methodology to systems where no structural information is available requires accurate discrimination of buried from exposed active-site residues and of distal from proximal suppressors. As discussed above, buried and active-site residues can be distinguished based on their mutational sensitivity patterns as well as from data on mutant protein levels, sensitivity to chaperone overexpression patterns (Tokuriki & Tawfik, 2009a) and residue conservation patterns (Melamed et al, 2015). Distal suppressors are likely to be on the surface (Bank et al, 2015). If the correlation of mutational sensitivity/RankScore with depth seen for CcdB holds for other globular proteins, this should allow distinction of local and global suppressors in such systems, as long as the majority of global suppressors lie on the surface. However, unambiguous distinction between global and local suppressors will likely not always be possible with a limited number of (Parent inactive mutation, suppressor) pairs. Also, in some cases, a single suppressor mutation may not be sufficient to restore the activity of a parent inactive mutant. In such cases, the network of correlating residues will be more complex and additional experimental data will be required to identify a set of mutations which will suppress a parent inactive mutant.

Unlike globular proteins, little is known about sensitivity to mutation in membrane proteins or natively unfolded proteins. Until such data becomes available it will be challenging to apply this methodology to these systems. In the case of DgkA, we had the much simpler objective of distinguishing between two possible structures. While distinguishing between global and local suppressors maybe more challenging in membrane proteins, given sufficient double mutant data, it should be straightforward because each global suppressor should suppress a much larger number of parent inactive mutants than all local suppressors. The average relative frequency of obtaining proximal versus distal suppressors is currently unknown. If a single-site saturation mutagenesis library is enriched for inactive mutants (Parent inactive mutants), subjected to
random mutagenesis and screened for suppressors, the resulting population will be enriched for
global suppressors (Bershtein et al, 2008; Bershtein et al, 2006). This is because a global
suppressor will suppress multiple parent inactive mutants. However, for a specific parent
inactive mutant, it is not obvious that global suppressors will dominate. A recent study examined
a library of the 75 amino acid RRM domain of the yeast poly-A binding protein (Melamed et al,
2013). Functional scores for 1246 single and 39,912 double mutants were obtained. Epistatic
interactions were enriched for residue pairs with short sequence spacing (<5) and short distance
(10-15Å). Another recent study reported exhaustive screening of single and double mutants of
GB1 (Olson et al, 2014). The majority of pairs displaying positive epistasis had Cβ-Cβ distances
<8Å. Both of the above studies indicate that local suppressors may occur at a higher frequency
than global ones with respect to individual parent inactive mutants but more data is required to
confirm this.

Experimental approaches discussed previously to identify second-site suppressors used random
mutagenesis and/or directed evolution to generate suppressor libraries. Although these libraries
have high diversity and mutations at multiple residue positions, they typically do not have more
than a single base substitution at any codon. It should be noted that single base changes can
sample only 39% of all possible amino acid substitutions. Hence, they do not exhaustively
sample all possible second-site suppressors for a given inactivating mutation. This is important,
since for a given parent inactive mutant there appear to be only a few local suppressors, and
these could well be absent in a library generated by conventional random mutagenesis.

Computational approaches to identify spatially proximal residues require a large number of
homologous sequences to be present (typically greater than five times the length of the protein)
(Kamisetty et al, 2013). These approaches do not work well for proteins like CcdB due to the
limited evolutionary diversity in the multiple sequence alignment. Another constraint is that the
range of substitutions sampled at a given position during natural evolution is limited by functional and stability constraints, that can be relaxed in a laboratory setting. For the protein DgkA, for which there are several sequences, the results of the five computational approaches to identify co-varying residues were more consistent with the crystal structure of DgkA than with the NMR structure. Several of the contacts identified by our suppressor approach were not identified by the sequence co-variation. Since our experimental strategy identifies only a few (Parent inactive mutant, suppressor), a direct comparison of these results with predictions by computational methods is not possible. However, our approach, provides complementary information to these existing methods, and can be usefully combined with them to guide protein structure prediction. The approach described here uses saturation-suppressor mutagenesis to identify spatially proximal residues. The library generation design adopted here for CcdB, constructs the second-site saturation library in the background of individual inactive mutants chosen from a single-site saturation mutagenesis library comprising of ~1430 mutants of CcdB (Adkar et al, 2012).

Second-site suppressors can be either proximal or distal to the mutation site. Virtually all suppressors identified in the study (for CcdB) increased the thermal stability relative to the original parent inactive mutant. Proximal suppressors are likely to ameliorate packing defects and hence restore stability. These have previously been reported to restore activity (Machingo et al, 2001), increase thermal stability and restore packing (Pakula & Sauer, 1989). Residues distant from the site have previously been found to function by either increasing global thermodynamic stability (Araya et al, 2012; Bershtein et al, 2008; Pakula & Sauer, 1989), increasing activity relative to the wild type protein without any substantial increase in stability (Hecht & Sauer, 1985) or improving foldability without much effect on the thermodynamic stability (Sideraki et al, 2001). In the present study, local suppressors could be obtained for each of the five parent
inactive mutants in CcdB and five of six parent inactive mutants in DgkA, regardless of the location and nature of the parent inactive mutant. The distal suppressor R10G in CcdB increased the T_m by 8°C, relative to WT CcdB (Supplementary File 2) which rescues the destabilized mutant L36A.

Global suppressors have been shown to often comprise of consensus/ancestral mutations (Bershtein et al, 2008). We analyzed the consensus/ancestral mutations for CcdB. The consensus sequence was obtained from a multiple sequence alignment of 350 homologs using MATLAB and the ancestral sequence was obtained using the FastML server (Ashkenazy et al, 2012). The likely global suppressors we obtained in the present study are R10G and E11(R/K/P). At R10 the ancestral and consensus amino acids are P and R respectively and at E11 they are A and N respectively. Hence, at least for these two positions, the ancestral/consensus amino acids were different from the experimentally obtained suppressors. Further experiments are required to ascertain whether the ancestral/consensus amino acids will also act as global suppressors.

Advances in the field of protein structure prediction integrate various computational approaches with distance restraints derived from cross-linking experiments and mass spectrometry (Young et al, 2000), sparse NOE data (Bowers et al, 2000; Li et al, 2003; Thompson et al, 2012), residual dipolar coupling data (Haliloglu et al, 2003; Qu et al, 2004), chemical shift data (Shen et al, 2008) from NMR experiments, co-varying residues identified from statistical analysis of genomic data (Hopf et al, 2012; Nugent & Jones, 2012; Ovchinnikov et al, 2014; Ovchinnikov et al, 2015; Sulkowska et al, 2012) to determine structure. The combination of site-directed mutagenesis or doped oligonucleotide based synthetic library generation strategies with deep sequencing has expanded our understanding of sequence, structure, function relationships (Tripathi & Varadarajan, 2014). High resolution mutational analyses using single-site saturation mutagenesis have facilitated understanding the influence of each residue on a protein’s structure,
stability, activity, specificity and fitness (Adkar et al, 2012; Fowler et al, 2010; Roscoe et al, 2013; Tripathi & Varadarajan, 2014). Expanding this landscape by integrating spatial constraints isolated from paired mutational phenotypes can greatly advance our efforts to construct highly accurate structural models especially where evolutionary information is sparse, because of the paucity of homologous sequences. Unbiased examination of all pairwise mutant combinations is currently not feasible because the large library size cannot easily be sequenced at sufficient depth using deep sequencing ($^{100}C_2 \times 400$ or 2×10^6 for a 100 residue protein (Tripathi & Varadarajan, 2014)). However, with continuous improvements in deep sequencing and mutant generation technologies this is likely to change soon. The methodology outlined here can be similarly applied to any protein or protein complex where mutation can be coupled to a phenotypic readout. In the two systems studied here, we identified intramolecular suppressors of core packing defects, and active-site mutants were excluded from the set of parent inactive mutants. However, a similar approach can be used to obtain structural information on biomolecular protein:protein complexes. In this case, single-site saturation mutagenesis libraries at active-site residues of one partner would be screened against parent inactive mutants located, at active-site residue of the other partner to identify inter-molecular suppressors. These in turn would provide constraints to build structural models of the complex.

In these proof of principle studies, mutant identities were determined after single (DgkA) or multiple (CcdB) rounds of screening, using Sanger sequencing. In the case of CcdB, residue burial was accurately inferred exclusively from mutational data. Proximal and distal suppressors could be accurately distinguished based on their mutational sensitivity when present as single mutants and all proximal suppressors were in close contact with the corresponding parent inactive mutant. For other systems it remains to be seen how well this approach will work and how many suppressors will be required for accurate model discrimination. However, as with
earlier studies using single mutant libraries (Adkar et al, 2012; Fowler et al, 2010; Tripathi & Varadarajan, 2014), enrichment of mutant pairs at each stage during selection or screening can be monitored using deep sequencing. Using this approach it will be possible to compare phenotypes of large numbers of partial loss-of-function single mutants and corresponding double mutants. This data will help distinguish local from global suppressors and provide multiple constraints to guide macromolecular structure prediction and determination. These efforts may prove beneficial in resolving the gap between protein sequence and structure and also in the isolation of mutants with improved stability and foldability, relative to WT.
Materials and Methods

A. CcdB

Screening of CcdB single-site, saturation mutagenesis library in *E. coli*. This was described in (Adkar et al, 2012). Briefly, the CcdB gene was cloned under control of the P_{BAD} promoter. Expression from this promoter is repressed by glucose and induced by arabinose in a dose-dependent manner (Guzman et al, J. Bact 1995). Since active CcdB is toxic to *E. coli*, cells expressing WT and WT-like mutants are killed even under highly repressed conditions. Partial loss of function mutants do not kill cells when expressed at low levels but show an active phenotype (cell death) when expressed at higher levels. The single-site saturation mutagenesis library was transformed into *E. coli* strain Top10pJAT and relative populations of surviving mutants at each of seven different expression levels were measured as follows. The CcdB gene from surviving colonies at each expression level was amplified and tagged with a Multiplex IDentifier sequence (MID) unique to each growth condition. The libraries were then subjected to deep sequencing.

Definition of mutational sensitivity score (MS_{seq}), RankScore and r^{score}_{depth}

A mutational sensitivity score (MS_{seq}) was defined as the MID at which cells containing the mutant protein die. It can be deduced from the number of sequencing reads as the MID at which the number of reads for a particular mutant decreases by 5-fold or more compared to the previous MID. The MS_{seq} values range from 2 to 9, two representing the least sensitive (most active) and nine the most sensitive (least active) mutants. The cumulative number of mutants active at each MS_{seq} value was calculated along with their percentage frequency in the population. Mutants with an MS_{seq} of two were assigned a rank of one (say, they constitute a% of the total mutant population). For mutants with MS_{seq} of three, a rank of a+1 was assigned (say b% of the total
mutant population). For mutants with MS$_{seq}$ of four, rank of b+1 was assigned. Similarly, ranks are assigned to the remaining mutants. RankScore is the average of assigned ranks of all the available mutants at a position. It combines the protein activity data at various expression levels. A lower RankScore indicates lower mutational sensitivity. It was shown (Adkar et al, 2012) that RankScore is correlated with residue depth in the protein structure (Loris et al, 1999). The correlation coefficient of RankScore as a function of depth is defined as $r^\text{score}_{\text{depth}}$

Construction of double mutant library. A single-site saturation mutagenesis library of CcdB (Jain & Varadarajan, 2014) was cloned in a Yeast Surface Display vector pPNLS (Bowley et al, 2007) between $SfiI$ sites. In this background, various single-site mutants were made by three fragment recombination of gapped vector and two overlapping CcdB fragments. PCR to amplify the overlapping fragments of CcdB was carried out with Phusion DNA polymerase (Finnzymes) for 15 cycles with 1-5pg template DNA. pPNLS vector containing a ~1kb stuffer sequence was digested with $SfiI$ (New England Biolabs, NEB) to remove the stuffer insert, and gel purified. The digested vector and the two CcdB fragments were transformed by three fragment homologous recombination in *Saccharomyces cerevisiae* EBY100 (Gietz & Schiestl, 2007). Yeast cells were incubated for 3hrs at 30°C in 30 ml YPD broth after transformation. The cells were washed twice with 30ml sterile water and grown in 500ml SDCAA for 32hrs at 30°C, 250 rpm. The total number of transformants was estimated by plating a small amount of the transformed cell suspension (30µl of 30ml) on an SDCAA agar plate and multiplying the number by the dilution factor. Cells representing 100 times the total transformants obtained were re-grown in 300ml SDCAA for 16-20hrs at 30°C, 250 rpm and stored in aliquots of 10^9 cells in YPD (HiMedia) containing 25% glycerol at -70°C.
Yeast Surface Display and selection of second site suppressor mutants. Inactive mutants and corresponding double mutant libraries cloned in pPNLS were displayed on the surface of yeast (Chao et al, 2006) at either 30°C (L36A, L83S parent and mutant libraries) or 20°C (V5F, V18W, V20F parent and mutant libraries) for 16hrs for all experiments related to yeast surface display described here. Binding of chicken anti-HA antibody (SIGMA, 1:300) to the HA tag at the N terminus of CcdB was used to monitor surface expression of the displayed protein. Goat anti-chicken IgG conjugated AlexaFluor-488 (Invitrogen, 1:300) was used as the secondary antibody. The cmyc tag fused to the C terminus of CcdB in the pPNLS vector was removed to enable binding of the ligand Gyrase, which has a 3xFLAG tag at its C terminus. Gyrase binding was assessed by binding of mouse anti-FLAG antibody (SIGMA, 1:300) and rabbit anti-mouse IgG conjugated AlexaFluor-633 (Invitrogen, 1:1,800) secondary antibody. ~10^7 double labeled cells from each library were sorted on a BD FACSAria-III flow cytometer (488nm, 633nm lasers for excitation and 530/30 nm, 660/20 nm bandpass filters respectively for emission) to enrich mutants which show better surface expression and binding than the reference parent inactive mutant. The concentration of Gyrase-3xFLAG used depended on the corresponding affinity of the reference inactive mutant. Equilibrium dissociation constant values (K_d) for the reference mutants were measured using a yeast surface display titration as described (Chao et al, 2006). Sorting of the libraries was carried out for multiple rounds till (i) analysis of the population grown after the final sort showed at least 10% of the population in a gate which contained 0% of the corresponding parent inactive mutant (Figure 2, panel showing L83S-lib after sort3), and (ii) there was no further improvement in signals from the enriched library with subsequent rounds of sort. The stringency of the sort was progressively increased by decreasing the concentration of Gyrase and gating the top ~1% of the population, which largely excluded the reference mutant (see Supplementary File 1).
Identification of suppressor mutants. Yeast cells harvested from 25ml saturated culture of sorted libraries were resuspended in buffer P1 (supplied with Qiagen plasmid miniprep kit) and vortexed in the presence of acid-washed glass beads (SIGMA) for 10 minutes. The suspension was incubated with Zymolyase (30U, G-Biosciences) at 37°C for 4hrs to break the cell wall. AQiagen plasmid miniprep kit was used for further downstream processing of the cells to purify the plasmid. CdbB gene inserts amplified from the libraries were cloned into the pTZ57R/T TA vector using an InsTAclone PCR cloning kit (ThermoScientific) and transformed into *E. coli* XL1-Blue cells for blue-white screening (Langley et al, 1975). The CdbB inserts from 96 randomly picked white colonies derived from each library after the final round of sorting, were sequenced by Sanger sequencing at Macrogen, Korea to identify second-site suppressors.

Purification and thermal denaturation of CdbB mutants. The *ccdb* gene initially cloned in pPNLS vector was cloned into pBAD-24 bacterial expression vector (Guzman et al, 1995) by Gibson assembly (Gibson et al, 2009). *E. coli* CSH501 cells are resistant to the toxin CdbB due to mutation in the chromosomal copy of *gyrA* which eliminates binding between CdbB and DNA Gyrase; the strain was kindly provided by Dr. M Couturier (Universite Libre de Bruxelles, Belgium). These cells, transformed with pBAD-24-CdbB plasmid were inoculated in 200ml LB medium, grown till OD₆₀₀ 0.7 at 37°C, induced with 0.2% arabinose and grown for an additional 12hrs at 18°C. The cells were harvested at 4,000 rpm for 10min at 4°C, resuspended in 25ml resuspension buffer (0.05M HEPES, pH 8.0, 1mM EDTA, 10% glycerol), containing 200µM PMSF. The cells were lysed by sonication on ice. The solution was centrifuged at 14,000 rpm, for 30 min, at 4°C. The supernatant was loaded onto the pre-equilibrated CdbA (residues 46-72) affinity column (prepared using Affigel-15, Biorad, as per instructions in the manual), and incubated for 4hrs at 4°C. The column was washed thrice with 20ml coupling buffer to remove the unbound protein and eluted with 0.2M Glycine, pH 2.5 in an equal volume of
400mM HEPES, pH 8.5 and concentrated using a Centricon centrifugal filter unit (Millipore, MW cut-off 3kDa). Fluorescence based thermal shift assay was carried out on an iCycle iQ5 Real Time Detection System (Bio-Rad, Hercules, California). 25µl of the reaction mixture containing 4µM CcdB purified protein, 25x Sypro orange dye and buffer (200mM HEPES and 100mM glycine, pH 7.5) was subjected to thermal denaturation on a 96-well iCycleriQ PCR plate, from 20°C to 90°C with an increment of 0.5°C/min. Denaturation of the protein was also carried out in the presence of 20µM CcdA peptide (residues 46-72). Sypro orange binds to the exposed hydrophobic patches of a protein, leading to an increase in observable fluorescence of the dye as the protein unfolds (Niesen et al, 2007). The data was fitted to a standard four parameter sigmoidal equation \(y = LL + \frac{(UL-LL)}{1+e^{(Tm-T)/a}} \) using SigmaPlotTMv11.0, where \(y \) is the observed fluorescence signal, \(LL \) and \(UL \) are the minimum and maximum intensities respectively during the transition, \(a \) is the slope of the transition, \(Tm \) is the melting temperature (midpoint of the thermal unfolding curve or the temperature at which 50% of the protein is unfolded) and \(T \) is the experimental temperature.

Contact score. 10,659 models for CcdB were generated as described (Adkar et al, 2012).

Each model (m) was allotted a ContactScore defined as,

\[
\text{ContactScore}_m = \sum_{i=1}^{n} S_i(x,y)
\]

where, \(S(x,y)=1 \) if the distance between the side chain centroids of residues \(x \) and \(y \) is < 7Å in the crystal structure of CcdB (PDB id 3VUB (Loris et al, 1999)) else \(S=0 \), \(n \) denotes the number of experimentally determined probable contact pairs, \((x,y) \).

Calculation of the Rs parameter

The function \((Rs) \) (Bahadur & Chakrabarti, 2009) evaluates the deviation from the average packing properties of all residues in a given structural model. Rs is calculated using the
following formula, where ASA_{xi} and $<ASA_x>$ are the accessible surface area values of residue X at position i and the average ASA of residue X in a large dataset, respectively (Bahadur & Chakrabarti, 2009).

$$R_s = \sum_{i=1}^{whole \ chain} \frac{|ASA_{xi} - <ASA_x>|}{<ASA_x>}$$

The Rs parameter was calculated for all the 10,659 models in the CcdB decoy set. The ASA was calculated using NACCESS (v2.1.1) (Hubbard, 1992).

In-silico identification of suppressor mutants using ΔΔG calculations. All 19 possible mutations were computationally introduced at residue positions whose side chain centroids were within 7Å of the side chain centroid of the chosen parent inactive mutant residues i.e. V5F, V18W, V20F, L36A and L83S. The high resolution protocol for ΔΔG calculation in Rosetta version 3.3 (Kellogg et al, 2011) was used to calculate $\Delta \Delta G_{\text{folding}}$, where,

$$\Delta \Delta G_{\text{folding}} = \Delta G_{\text{folding}}(\text{Double mutant}) - \Delta G_{\text{folding}}(\text{Parent inactive mutant})$$

Double mutants showing negative values of $\Delta \Delta G_{\text{folding}}$ were predicted to stabilize the parent inactive mutant. The following command was used:

```
~/rosetta_source/bin/ddg_monomer.linuxgccrelease -in:file:s ~/min_cst_0.5.dimer_0001.pdb -in::file:fullatom -ignore_unrecognized_res -constraints::cst_file ~/input.cst -database ~/rosetta_database/ -ddg::mut_fileresfile -ddg::iterations 50 -ddg::weight_filesoft_rep_design -ddg::local_opt_only false -ddg::min_cst true -ddg::ramp_repulsive true -ddg::sc_min_only false -ddg::mean false -ddg::min true -ddg::dump_pdb true.
```

BuildModel protocol of FoldX version 3.6 beta (Guerois et al, 2002) was also used to calculate $\Delta \Delta G_{\text{folding}}$ for mutants. The side chains of the neighboring residues were optimized in order to accommodate the mutant side chain, without allowing backbone flexibility.
B. DgkA

Identification of differential contacts. In the present study, true contacts were identified using a sidechain-sidechain centroid distance ≤7Å as the cutoff, for both X-ray and NMR structures of DgkA. The NMR structure (PDB id 2KDC) has co-ordinates for 16 poses. For the figures and distances listed in the paper we used only the first pose. However, we calculated the Root Mean Square Fluctuations (RMSF) for each residue (Cα atom) taking the average structure as the reference structure. Greater fluctuations are observed near the N-terminus of the protein (residues 1 to 33). Hence, we did not consider differential contacts within this region. Since, the region beyond the first 33 residues shows low RMS fluctuations, we report sidechain-sidechain centroid distances for residues showing differential contacts with the parent inactive mutant in the X-ray and the NMR 1st pose structure. In Supplementary File 3, we report the closest distance amongst all the 16 poses between each parent inactive mutant and all residues shortlisted in Table 2.

Residue pairs in contact in X-ray (PDB id 3ZE5(Li et al, 2013)) and NMR (PDB id 2KDC(Van Horn et al, 2009)) structures of DgkA were identified using the CMA server (Sobolev et al, 2005) (http://ligin.weizmann.ac.il/cma/) with the default parameters and threshold value of 10Å². Helix definitions mentioned in corresponding PDB header files were used to eliminate the contact pairs present in the same helix. Parent inactive mutant positions (say, “X”) were defined as residues common to the identified contact residue pair subsets in both structures, but with different partners (say, “Y”) in the two structures. The following criteria were additionally used to select X, i.e. (i) charged residues (X) were removed (ii) X and Y should not be involved in side-chain hydrogen bonding with each other (iii) X should have ≥2 contact partners in at-least one of the structures (iv) Sequence separation between X and Y, |X-Y| >30(v) |YNMR – YX-ray| >6.
Cloning, Mutagenesis and isolation of parent inactive mutants and their suppressors. The gene sequence corresponding to a cysteine-less (C46A/C113A) form of DgkA (referred as WT here)(Van Horn et al, 2009) along with an upstream 30bp RBS sequence (CTCGAGCCCGGGGTCGACGGCTCTGCGGGGC) was synthesized and cloned between KpnI and PstI sites in the pBAD-33 vector (Guzman et al, 1995), under the AraC promoter at GenScript. Selected parent inactive mutant positions were randomized by single site saturation mutagenesis using NNN codons, by inverse PCR(Jain & Varadarajan, 2014). The amplicon was purified, phosphorylated (T4 Polynucleotide Kinase, NEB), ligated (T4 DNA Ligase, NEB), transformed into E. coli TOP10 cells, plated on SB (HiMedia) containing 2% NaCl, 34µg/ml chloramphenicol and 50µg/ml kanamycin and incubated at 37°C for 12hrs. E.coli BW25113, knocked out for the chromosomal copy of the dgkA gene (Keio collection(Baba et al, 2006), id JW4002-1;F-, Δ(araD-araB)567, ΔlacZ4787(:::rrnB-3), λ-, rph-1, Δ(rhaD-rhaB)568,ΔdgkA737::kan,hsdR514)referred to as ΔdgkA, was used for screening parent inactive mutants and suppressors. Growth defective parent inactive mutants (i.e. capable of growth only in media with high osmolarity) were screened by replica plating on selective media (Wen et al, 1996) (1% tryptone, 0.5% yeast extract, 0.01% arabinose, 1.6% agar, 34µg/ml chloramphenicol and 50µg/ml kanamycin) at decreasing concentrations of NaCl (0.15%, 0.03%, 0.01%, 0.007% and 0%), at 37°C for 12-16hrs.Identities of the parent inactive mutants were confirmed by Sanger sequencing. Each parent inactive mutant was used as template to randomize corresponding potential contact partners using the inverse PCR method discussed above, to construct X-ray and NMR structure specific second-site suppressor mutagenesis libraries. Screening of the libraries was carried out on selective media at varying concentrations of NaCl (mentioned above). Probable suppressors were identified as those which appear before the appearance of the corresponding parent inactive mutant on a plate at low NaCl concentration.
(<0.15%), i.e. restore the growth defect of the parent inactive mutant. WT DgkA and the empty vector pBAD-33 were used as positive and negative controls, respectively. Second-site putative suppressors were identified by Sanger sequencing at Macrogen, Korea. Fresh transformation of individual suppressors into *E. coli*ΔdgkA strain and comparison of the phenotype with the corresponding parent inactive mutant confirmed the result from the initial screen.

Co-variation Analysis for DgkA. Alignments of homologous sequences of DgkA were constructed by the jackhammer package of HMMER 3 (http://hmmer.janelia.org/search/jackhmmer) (Finn et al, 2011) with the number of iterations set to 3, E-value cut-off 1e-6, with a search against the nr database (http://www.ncbi.nlm.nih.gov/). Duplicate rows and gaps in the target sequence were removed from the multiple sequence alignment to yield a final set of 4175 alignments. This protocol has been adopted from (Nugent & Jones, 2012). The processed multiple sequence alignment was entered as input to DCA (Morcos et al, 2011), PSICOV (Jones et al, 2012) and SCA (Halabi et al, 2009) with default parameters as mentioned in the respective software packages. Web servers for GREMLIN (http://gremlin.bakerlab.org) (Kamisetty et al, 2013) and EVfold (http://evfold.org/evfold-web/evfold.do) (Marks et al, 2011) were used for analysis. The co-variation scores estimated by the above programs were used for analysis.
Acknowledgements

We thank Prem Kumar Khushwaha for his help in cloning L36A/M63L CcdB and Chetana Baliga, Nandini Mani, Anushya P. and Farha Khan as well as other members of the RV laboratory for useful suggestions.
 References

Adkar BV, Tripathi A, Sahoo A, Bajaj K, Goswami D, Chakrabarti P, Swarnkar MK, Gokhale
RS, Varadarajan R (2012) Protein model discrimination using mutational sensitivity derived
from deep sequencing. Structure 20: 371-381

property, thermodynamic stability, revealed solely from large-scale measurements of protein

acids research 40: W580-584

Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner

Bahadur RP, Chakrabarti P (2009) Discriminating the native structure from decoys using scoring
functions based on the residue packing in globular proteins. BMC Struct Biol 9: 76

Structural correlates of the temperature sensitive phenotype derived from saturation mutagenesis
studies of CcdB. Biochemistry 47: 12964-12973

landscape. Mol Biol Evol 32: 229-238

resolution cryo-EM structure of beta-galactosidase in complex with a cell-permeant inhibitor.
Science 348: 1147-1151

shapes the fitness landscape of a randomly drifting protein. Nature 444: 929-932

Bowley DR, Labrijn AF, Zwick MB, Burton DR (2007) Antigen selection from an HIV-1 immune antibody library displayed on yeast yields many novel antibodies compared to selection from the same library displayed on phage. *Protein engineering, design & selection : PEDS* **20**: 81-90

Jones DT, Buchan DW, Cozzetto D, Pontil M (2012) PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments. *Bioinformatics* **28**: 184-190

Figure Legends

Figure 1: Strategy adopted to determine proximal residue pairs. (A) Parent inactive mutant binds cognate ligand with lower apparent affinity than Wild Type protein (WT). (Parent inactive mutant, Suppressor mutant) pair binds ligand with higher affinity than the parent inactive mutant. Refer to Figure 1 – figure supplement 3 for the PCR strategy to introduce a parent inactive mutant into the single-site saturation mutagenesis (SSM) library of CcdB. Proximal and distal suppressors can be discriminated based on the mutational sensitivity of the corresponding single mutants. (B) Yeast Surface Display is used as the screening system in case of CcdB. (C) Suppressor mutants are identified using Fluorescence Activated Cell Sorting (FACS) of the mutant library using yeast surface display. Active-site residues can be distinguished from buried ones based on the pattern of mutational sensitivity (M_{seq}). Putative active-site, buried and exposed residue positions were identified from the M_{seq} data. Representative plots are shown in Figure 1 – figure supplement 1. Possible mechanisms responsible for reduced activity of a mutant protein are described in Figure 1 – figure supplement 2.

Figure 2: Enrichment of second-site suppressor population for L83S CcdB inactive mutant following multiple rounds of Fluorescence Activated Cell Sorting (FACS). 62pM of Gyrase-3xFLAG was used in all cases for analysis. 4nM, 1nM and 0.25nM Gyrase-3xFLAG was used for the three rounds of sort respectively. The population gated in green shows the parent inactive mutant L83S, while that in magenta shows the sorted population which has higher surface expression and tighter binding to the ligand than L83S. Sort details for different libraries of CcdB are summarized in Supplementary File 1.

Figure 3: Experimentally obtained (Parent inactive mutant, suppressor) pairs mapped onto the crystal structure of CcdB (PDB id 3VUB (Loris et al, 1999)). Only the Wild Type (WT) residues
of each member of the pair are shown as structures of the mutants are not available. (A) The two monomers of the dimeric CcdB protein are shown in ribbon (dark grey) with the distal suppressors (R10 (dark blue) and E11 (light blue)) mapped on an exposed loop region while the proximal suppressors (light brown) and parent inactive mutants (dark red) are present in the core of the protein. One of the monomers of the dimeric CcdB protein has been shown in B-F for ease of visualization of the mapped parent inactive mutants and corresponding proximal suppressors. (B) Parent inactive mutant V5 and its proximal suppressors L36 and A81, (C) Parent inactive mutant V18 and its proximal suppressors M63 and I90, (D) Parent inactive mutant L36 and its proximal suppressor M63, (E) Parent inactive mutant L83 and its proximal suppressor V54 are shown. Dotted lines indicate the shortest distance between the two residues in each pair. (F) (Parent inactive mutant, proximal suppressor) pairs are clustered in the core of the protein forming an interconnected network, with side chains facing towards each other. Residues common to multiple (Parent inactive mutant, suppressor) pairs, e.g. L36 and M63, provide additional information about the network of interactions. The figure has been prepared using the UCSF Chimera package (developed by Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco (Pettersen et al, 2004)).

Figure 4: Restoration of defects in CcdB parent inactive mutants by suppressors. Proteins displayed on the yeast surface were monitored by their surface expression (abscissa) and Gyrase binding (ordinate) signals in terms of Mean Fluorescence Intensity (MFI) by Fluorescence Activated Cell Sorting (FACS). In order to express the mutant of interest prior to sorting/analysis, yeast cells were induced at (A) 30°C for more stable parent inactive mutants and their suppressor pairs or (B) at 20°C for less stable parent inactive mutants and corresponding suppressor pairs. Suppressor mutations result in enhanced ligand binding and surface expression. In each (Parent inactive mutant, suppressor) pair, parent inactive mutants and corresponding

50
proximal suppressors are denoted with the same color. Distal suppressors R10G and E11R are colored in blue in (A) and (B). MFI values averaged over two independent experiments are shown. Suppressor mutations result in increased (C) ligand affinity and (D) thermal stability. (C) K_d for Gyrase measured using yeast surface display titrations. Refer to Figure 4 – figure supplement 1 for yeast surface display titrations of parent inactive mutants and (Parent inactive mutant, suppressor) pairs. (D) Thermal melting temperatures (T_m) for parent inactive mutants in the absence and presence of second-site suppressor mutations measured using a thermal shift assay (see Materials and Methods) with purified proteins. Refer to Figure 4 – figure supplement 2 for the thermal unfolding profiles of parent inactive mutants and (Parent inactive mutant, suppressor) pairs. Error bars represent standard deviation from at least two independent experiments. The results have been summarized in Supplementary File 2.

Figure 5: Experimentally determined “ContactScore” and $r_{depth}^{RankScore}$ (Adkar et al, 2012) as model discriminators. Distribution of (A) ContactScore (CSc) and (B) $r_{depth}^{RankScore}$ as a function of backbone RMSD with respect to the crystal structure for 10,659 models of CcdB. CSc values are integers ranging from 0 to 6. Thus, models with different RMSD values (abscissa) can have the same CSc (ordinate). The Csc values for such points are randomly incremented by upto 0.7 units from their actual integral CSc value for clearer visualization. (C) Black and red bars represent recovery for CSc and $r_{depth}^{RankScore}$ respectively. CSc performs significantly better than $r_{depth}^{RankScore}$, recovering a much higher fraction of low RMSD models. The total RMSD range was divided into 0.5Å bins. Cutoff values of CSc and $r_{depth}^{RankScore}$ used were 6 and 0.6 respectively. Refer to Figure 5 – figure supplement 1 for recovery of CcdB models using Csc=6 shown for various choices of cut-off distances used to define contact. Refer to Figure 5 – figure supplement 2 for recovery of CcdB models as a function of different Csc values. These two plots demonstrate that a distance of <7Å and Csc=6 are optimal for model recovery in this system.
Figure 6: Screening of suppressors for the parent inactive mutant I67V DgkA. I67 (ball and stick in black) and inter-helical residues in contact with it in either (A) crystal (PDB id 3ZE5 (Li et al, 2013)) or (B) NMR (PDB id 2KDC (Van Horn et al, 2009)) structures of the homotrimeric DgkA are shown. Each monomer of the trimer is shown in a different color. The residues in proximity to I67 in a specific structure are shown in green, while the ones in contact in the alternate structure are highlighted in red. Differential contact pairs for other parent inactive mutants of DgkA have been shown in Figure 6 – figure supplement 1. The figure has been prepared using the UCSF Chimera package (developed by Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco(Pettersen et al, 2004)). Second-site suppressor libraries of the parent inactive mutant were constructed by randomizing each of the residue partners present in either of the two structures of the protein. Active mutants were screened on selective media at decreasing NaCl concentrations in an E. coli strain knocked out for dgkA. (C) and (D) show the phenotype of the putative suppressors isolated from the libraries at (C) 0.15% NaCl and 0.01% arabinose and (D) 0% NaCl and 0.01% arabinose. Phenotypes of suppressors corresponding to other parent inactive mutants have been shown in Figure 6 – figure supplement 2. (E) A representative plate showing the location of the variants and the controls. “(X)” and “(N)” indicate the structure from which the residue partner has been chosen i.e. either X-ray or NMR structure, respectively. Parent inactive mutant I67V, WT DgkA and the empty vector pBAD-33 act as reference, positive and negative controls, respectively. The true suppressors are anticipated to grow on the plate with low salt concentration while the parent inactive mutant and (Parent inactive mutant, non-suppressor) pairs fail to grow. Suppressors (I67V, I103L) and (I67V, A104T), which are in spatial proximity in the crystal structure restore the growth defect of the parent inactive mutant I67V, whereas the (I67V, E34L) pair which is in proximity only in the NMR structure, fails to restore the growth defect.
Figure 7: Computational analyses of co-varying residues for DgkA and comparison with experimentally determined contact residue pairs. Co-variation analyses using (A) DCA, (B) GREMLIN, (C) PSICOV, (D) SCA and (E) EVfold are shown. Residue pair side-chain centroid distances calculated from DgkA crystal (PDB id 3ZE5) and the NMR 1st pose structure (PDB id 2KDC) are shown in left (filled circles) and right (open circles) panels respectively. “au” denotes arbitrary units. Blue lines parallel to the X-axis indicate the co-variation score of the L/2th residue pair (when arranged in descending order of the score), where L is the length of the protein (L=121 for DgkA). Blue lines parallel to the Y-axis indicate a sidechain–sidechain centroid distance of 7Å between the predicted co-varying residue pairs in the corresponding structure. Experimentally determined spatially proximal (Parent inactive mutant, suppressor) contact pairs are shown in cyan. Although several computationally predicted contact pairs in the top L/2 predictions (top panel) are proximal to each other in the crystal structure, there are several predicted pairs which are far apart. Computational analyses of co-varying residues for DgkA and comparison with experimentally determined contact residue pairs using Cα-Cα distances instead of sidechain-sidechain centroid distances are shown in Figure 7 – figure supplement 1.

Figure 8: Heatmaps showing calculated values of $\Delta \Delta G_{\text{folding}}$ using Rosetta for double mutants of CcdB. All 19 mutations (X-axes) were made at positions (Y-axes) whose side chain centroids are within 7Å of the side chain centroid of the corresponding parent inactive mutant. The parent inactive mutants are indicated in bold on the top of each heatmap. For example, the bottom left corner of the first panel represents the $\Delta \Delta G$ value for the (V5F, L83G) (Parent inactive mutant, suppressor) pair. Position 199 (98+101) in the V20F heatmap refers to residue 98 of the other protomer. Wild type residues are shown in dashed boxes in single letter code. Experimentally obtained suppressors are indicated by thick black boxes. Double mutants showing negative values of $\Delta \Delta G_{\text{folding}}$ (blue shades) are ones where the putative suppressor mutation is predicted to
have a stabilizing effect on the inactive mutant. Aromatic substitutions are underlined in magenta. Residues on X-axis are grouped into the following classes, separated by thick vertical lines: (G,P), aliphatic (A,C,V,L,I,M), aromatic (H,F,Y,W), polar (S,T,N,Q) and charged (D,E,K,R). Similar analysis was performed using FoldX (Figure 8 – figure supplement 1).
Table 1. Experimentally determined (Parent inactive mutant, suppressor) pairs for CcdB occur at both spatially proximal and distal residues

<table>
<thead>
<tr>
<th>Parent inactive mutant (X)</th>
<th>Suppressor Mutant (Y)</th>
<th>ASA (%)</th>
<th>Depth (Å)</th>
<th>RankScore<sup>a</sup></th>
<th>Shortest distance<sup>b</sup> (Å)</th>
<th>Centroid-centroid distance<sup>c</sup> (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V5F<sup>d</sup></td>
<td>0</td>
<td>6.8</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L36M<sup>d,e</sup></td>
<td>0</td>
<td>7.3</td>
<td>83</td>
<td>3.9</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>A81G<sup>d,e</sup></td>
<td>32.4</td>
<td>3.9</td>
<td>26</td>
<td>2.8</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>V18W</td>
<td>0</td>
<td>9.3</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M63T<sup>e</sup></td>
<td>0.1</td>
<td>8.1</td>
<td>46</td>
<td>4.2</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>I90V<sup>e</sup></td>
<td>0.1</td>
<td>7.4</td>
<td>60</td>
<td>4.8</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>V20F</td>
<td>0</td>
<td>8.6</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E11R<sup>f</sup></td>
<td>112.7</td>
<td>3.4</td>
<td>1</td>
<td>18.4</td>
<td>22.4</td>
<td></td>
</tr>
<tr>
<td>E11K<sup>f</sup></td>
<td>112.7</td>
<td>3.4</td>
<td>1</td>
<td>18.4</td>
<td>22.4</td>
<td></td>
</tr>
<tr>
<td>L36A</td>
<td>0</td>
<td>7.3</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M63L<sup>e</sup></td>
<td>0.1</td>
<td>8.1</td>
<td>46</td>
<td>3.8</td>
<td>6.4</td>
<td></td>
</tr>
<tr>
<td>R10G<sup>f</sup></td>
<td>76.6</td>
<td>3.6</td>
<td>1</td>
<td>11.6</td>
<td>18.1</td>
<td></td>
</tr>
<tr>
<td>E11P<sup>f</sup></td>
<td>112.7</td>
<td>3.4</td>
<td>1</td>
<td>11.7</td>
<td>16.8</td>
<td></td>
</tr>
<tr>
<td>L83S</td>
<td>1.5</td>
<td>5.8</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V54L<sup>e</sup></td>
<td>0.4</td>
<td>5.7</td>
<td>28</td>
<td>3.9</td>
<td>4.5</td>
<td></td>
</tr>
</tbody>
</table>

^aRankScore for residues X or Y estimated from phenotypic screening of single-site saturation mutagenesis library of CcdB and deep sequencing (Adkar et al, 2012)

^bShortest distance between residues X and Y

^cDistance between side chain centroids of residues X and Y

^dThe suppressors (Y) were identified as a triple mutant with the parent inactive mutant (X) V5F i.e. V5F/L36M/A81G

^eSuppressor residues spatially proximal to parent inactive mutant

^fSuppressor residues distal from the parent inactive mutant
Heavy atoms of the residues are considered for calculating distances using the crystal structure of CcdB, PDB id 3VUB (Loris et al, 1999).
Table 2. Experimentally determined (Parent inactive mutant, Suppressor) pairs for DgkA are spatially close only in the corresponding crystal structure

<table>
<thead>
<tr>
<th>Parent inactive mutant position</th>
<th>Contact partners(^a) in X-ray structure(^b)</th>
<th>Contact partners(^a) in NMR structure(^c)</th>
<th>Experimentally identified (Parent inactive mutant, Suppressor) pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>M66</td>
<td>F31, G35, V38</td>
<td>A99</td>
<td>(M66L, V38A) (M66S, G35A)</td>
</tr>
<tr>
<td>I67</td>
<td>A100, I103, A104</td>
<td>F31, E34</td>
<td>(I67V, I103L) (I67V, A104T)</td>
</tr>
<tr>
<td>V68</td>
<td>A100, V101, A104</td>
<td>F31, G35</td>
<td>(V68G, A100V)</td>
</tr>
<tr>
<td>W112</td>
<td>A41, I44, L58, S61</td>
<td>-</td>
<td>(^d)</td>
</tr>
</tbody>
</table>

\(^a\) Inter-helical contact pairs (see Materials and Methods for details)

\(^b\) X-ray structure of DgkA (PDB id 3ZE5 (Li et al, 2013))

\(^c\) NMR structure of DgkA (PDB id 2KDC (Van Horn et al, 2009))

\(^d\) No inter-helical contacts

\(^d\) No suppressors for this parent inactive mutant could be isolated, probably because the large volume change in the parent inactive mutant (W112V) is difficult to compensate by a single suppressor mutation.
Video Files

Video 1a. Experimentally obtained (Parent inactive mutant, suppressor) pairs mapped onto the crystal structure of CcdB (PDB id 3VUB), related to Figure 3. aThe file has been uploaded separately.

Video 2a. Experimentally obtained (Parent inactive mutant, suppressor) pairs mapped onto the two structures of DgkA (NMR PDB id 2KDC and X-ray PDB id 3ZE5) exhibit spatial proximity only in the corresponding crystal structure. aThe file has been uploaded separately.
Supplementary Information

Supplementary Figure Legends

Figure 1 – figure supplement 1. Barplots depicting mutational sensitivity (MS seq) values of all available mutants at representative positions of CcdB. A value of zero indicates that the mutant was not obtained in the library. (A) MS seq values at two buried positions. At buried positions, typically most aliphatic substitutions are tolerated (low MS seq). Polar and charged substitutions are poorly tolerated (high MS seq). (B) MS seq values at two active-site positions. Very few substitutions are tolerated at active-site positions. Aliphatic residues are also poorly tolerated (high MS seq). (C) MS seq values at two exposed, non-active site positions. At exposed non-active site positions, almost all substitutions are tolerated and have low MS seq values with the possible exceptions of G and P.

Figure 1 – figure supplement 2. Possible mechanisms for reduced activity of a mutant protein.

1. Folding and binding equilibrium for the Wild Type (WT) protein which has low values of equilibrium dissociation constant K d and equilibrium unfolding constant K u. (2) Some mutations do not affect the folding or activity. (3) If the mutation is present at the ligand binding site then the protein is rendered inactive because of an increase in K d while K u is unchanged. (4) If the mutation at a buried site leads to the formation of a misfolded protein, then both K d and K u increase. (5) In case of a destabilizing mutation that does not perturb the native structure, K d is unchanged but K u increases. In both (4) and (5) an increase in K u results in an increase in the population of the unfolded state which is prone to aggregation and degradation, thereby resulting in a decrease in the level of folded, functional protein in vivo.

Figure 1 – figure supplement 3. Strategy to introduce an inactive mutant into all members of a Single-site Saturation Mutagenesis (SSM) library of CcdB cloned in a yeast surface display
(YSD) vector (pPNLS). Step I. CcdB gene cloned in the yeast surface display vector (pPNLS) is amplified in two segments (Set A and Set B) at the position of introduction of parent inactive mutation (PIM), using two sets of primers (arrows shown in black and red). The forward primer of Set B (arrow in red) and reverse primer of Set A (arrow in black) contain the inactive mutant codon in the middle of the primer sequence and are complementary to each other. The regions of the vector (shown in dashed black and red lines) complementary to the outside primers (dashed black and red arrows) are shown. These outside primers bind the vector >200 bases upstream and downstream of the ccdB gene and result in amplicons (A_Lib_PIM or B_Lib_PIM or A_WT_PIM or B_WT_PIM) of reasonable size (>200 bases), irrespective of the point of introduction of parent inactive mutant. Single-site saturation mutagenesis library (left) and WT CcdB (right) cloned in pPNLS vector are used as template (1-5 pg). Step II. (A_Lib_PIM and B_WT_PIM) or (A_WT_PIM and B_Lib_PIM) are recombined with the linearized vector by three fragment homologous recombination in *Saccharomyces cerevisiae* EBY100 at regions complementary to each other i.e. Vector – (Amplicon from Set A) – (Amplicon from Set B) – Vector, to assemble the CcdB mutant library. 50% of the members of the assembled library have the parent inactive mutant only, while the rest of the members carry parent inactive mutant and a single mutant (obtained from single-site saturation mutagenesis library used as template).

Figure 4 – figure supplement 1. Yeast surface display titrations of parent inactive mutants and (Parent inactive mutant, suppressor) pairs to determine K_d (dissociation constant between CcdB displayed on the yeast surface and purified Gyrase). Yeast surface display titrations of (A) Wild Type (WT), (B) R10G, (C) V5F, (D) V5F/L36M/A81G, (E) V18W, (F) V18W/M63T, (G)V18W/I90V, (H) V20F, (I) V20F/E11R, (J) L36A, (K) L36A/M63L, (L) L36A/R10G, (M) L83S, (N) L83S/V54L are shown. K_d values are mentioned in each sub-plot.
Figure 4 – figure supplement 2. Thermal stabilities of purified CcdB Wild Type (WT), R10G, parent inactive mutants and (Parent inactive mutant, suppressor) pairs measured by thermal shift assay (TSA). Thermal unfolding profiles of 4µM of purified WT and mutant proteins have been shown in absence (filled circles showing the melt data and smooth line of the same color showing the fitted melt data) and in presence (open circles showing the melt data and dashed line of the same color showing the fitted melt data) of the CcdA peptide ligand (residues 46-72) (20µM) (described in Materials and Methods). The thermal unfolding profiles for the same mutant in absence and presence of CcdA peptide (residues 46-72) are shown in the same color. Thermal unfolding curves of (A) WT (in black), V18W (in cyan) and V18W/M63T (in orange), (B) WT (in black), R10G (in red), L36A (in cyan), L36A/M63L (in green) and L36A/R10G (in orange), (C) WT (in black), L83S (in cyan) and L83S/V54L (in orange) are shown. Values of thermal melting temperatures (T_m in °C) for the mutants are shown in Supplementary File 2 and Figure 4. The (V18W, M63T) pair shows enhanced stability relative to the parent inactive mutant V18W only in the presence of CcdA. However the remaining pairs show enhanced stability relative to the parent inactive mutant both in the presence and absence of CcdA.

Figure 5 – figure supplement 1. Recovery of CcdB models using a ContactScore (CSc) value of Csc=6 shown for various choices of cut-off distances used to define contact. RMSD bin size=0.5Å. Upper limit of each bin is shown.

Figure 5 – figure supplement 2. Recovery of CcdB models as a function of different ContactScore (Csc) values using a fixed cut-off contact distance value of <7Å. High Csc values recover only low RMSD models. With decreasing CSc values, the fraction of low RMSD models decreases. RMSD bin size is 0.5Å. Upper limit of each RMSD bin is shown.

Figure 6 – figure supplement 1. Differential contact residue pairs mapped onto the structures of DgkA. Parent inactive mutant positions V62 (A, B), M66 (C, D), V68 (E, F) and W112 (G, H)
(shown in ball and stick in black) and their corresponding inter-helical contacting partners in the crystal and NMR structures have been mapped onto the (A, C, E, G) X-ray (PDB id 3ZE5 (Li et al, 2013)) and (B, D, F, H) NMR (PDB id2KDC (Van Horn et al, 2009)) structures of the homotrimeric DgkA protein (shown in ribbon with the three monomers in three different colors). The residues in proximity of the parent inactive mutants in a specific structure are shown in green, while the ones in contact in the alternate structure are highlighted in red. The figure has been prepared using the UCSF Chimera package (developed by Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco (Pettersen et al, 2004)).

Figure 6 – figure supplement 2. Screening for suppressors of parent inactive mutants of DgkA. Second-site suppressor libraries of the parent inactive mutants V62Q, M66L, M66S and V68G were constructed by individually randomizing each of the partners in both the NMR and X-ray structures of the protein. Suppressors were identified by screening on selective media at decreasing NaCl concentrations in an *E. coli* strain deleted for *dgkA*. (A,B), (D,E), (G,H) and (J,K) show the phenotype of the suppressors isolated from the libraries of V62Q, M66L, M66S and V68G, respectively at (A, D, G, J) 0.15% NaCl, 0.01% arabinose, (B,K) 0%NaCl, 0.01% arabinose and (E, H) 0.03% NaCl, 0.01% arabinose. (C, F, I, L) Representative plate photograph showing the location of the variants and the controls for the screening of suppressors of the parent inactive mutants V62Q (A,B), M66L (D,E), M66S (G,H) and V68G (J,K), respectively. “(X)” and “(N)” indicate the structure from which the residue partner has been chosen i.e. either X-ray or NMR structure, respectively. Parent inactive mutant, Wild Type (WT) DgkA and the empty vector pBAD-33 act as reference, positive and negative controls, respectively. The true suppressors are anticipated to appear before the parent inactive mutant on the plate when grown in low salt conditions. Suppressors (V62Q, A41G), (M66L, V38A), (M66S, G35A), (V68G,
A100V), which are in spatial proximity in the crystal structure restore the growth defect of the
parent inactive mutants. A similar analysis for the parent inactive mutant I67V has been shown
in Figure 6C-E. Overall, suppressors were only found at positions proximal to the parent inactive
mutant in the X-ray structure of DgkA.

Figure 7 – figure supplement 1. Computational analyses of co-varying residues for DgkA and
comparison with experimentally determined contact residue pairs using Cα-Cα distances instead
of sidechain-sidechain centroid distances. Co-variation analyses using (A) DCA, (B) GREMLIN,
(C) PSICOV, (D) SCA and (E) EVfold are shown. Residue pair Cα distances calculated from
DgkA crystal (PDB id 3ZE5) and NMR 1st pose structure (PDB id 2KDC) are shown in left
(filled circles) and right (open circles) panels respectively. “au” denotes arbitrary units. Blue
lines parallel to the X-axis indicate the co-variation score of the L/2th residue pair (when arranged
in descending order of the score), where L is the length of the protein (L=121 for DgkA). Blue
lines parallel to the Y-axis indicate a distance of 7Å between the predicted co-varying residue
pairs in the corresponding structure. Experimentally determined spatially proximal (Parent
inactive mutant, suppressor) contact pairs are shown in cyan.

Figure 8 – figure supplement 1. Heatmaps showing calculated values of ∆∆G\text{folding} using FoldX
for double mutants of CcdB. All 19 mutations (X-axes) were made at positions (Y-axes) whose
side chain centroids are within 7Å of the side chain centroid of the corresponding parent inactive
mutant. The parent inactive mutants are indicated in bold on the top of each heatmap. Position
199 (98+101) in the V20F heatmap refers to residue 98 of the other protomer. Wild type residues
are shown in dashed boxes in single letter code. Experimentally obtained contact pairs are
indicated by thick black boxes. Double mutants showing negative values of ∆∆G\text{folding} (blue
shades) are ones where the putative suppressor mutation is predicted to have a stabilizing effect
on the inactive mutant. Aromatic substitutions are underlined in magenta. Residues on the X-axis
are grouped into the following classes, separated by thick vertical lines: (G,P), aliphatic

(A,C,V,L,I,M), aromatic (H,F,Y,W), polar (S,T,N,Q) and charged (D,E,K,R).
Supplementary File 1. Summary of sort details for different libraries of CcdB

Supplementary File 2. Relative expression, binding and stabilities of parent inactive mutants and their suppressors in the case of CcdB

Supplementary File 3. Sidechain-sidechain centroid distances and shortest distances between the listed residue pairs for putative differential contacts between DgkA X-ray and NMR structures. Experimentally observed (Parent inactive mutant, suppressor) pairs are indicated in bold. Main chain atoms and hydrogen atoms are not considered in the calculations.
A

Binding of WT protein with ligand

\[\text{Ligand} + \text{WT Protein} \rightleftharpoons \text{WT Protein + ligand} \]

Step 1: Selection of buried inactive single-site mutant

\[\triangle + \text{buried inactive mutant} \rightleftharpoons \text{buried inactive mutant + ligand} \]

Step 2: Introduction of the buried inactive mutation in SSM library, and screening for a suppressor mutation (●)

\[\triangle + \text{active double mutant} \rightleftharpoons \text{active double mutant + ligand} \]

\[\triangle + \text{active double mutant} \rightleftharpoons \text{active double mutant + ligand} \]

Step 3: Proximal and distal suppressors can be distinguished based on the mutational sensitivity at the corresponding single mutants

<table>
<thead>
<tr>
<th>Mutant</th>
<th>Mutational Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buried parent inactive single mutant</td>
<td>High</td>
</tr>
<tr>
<td>Proximal suppressor</td>
<td>High</td>
</tr>
<tr>
<td>Distal suppressor</td>
<td>Low</td>
</tr>
</tbody>
</table>

B

Binding to gyrase (AlexaFluor-633)

Surface expression (AlexaFluor-488)

Gyrase

CcdB

Aga2p

Aga1p

Yeast Cell Wall

C

AlexaFluor-633 (Ligand binding)

WT protein

Suppressor mutants

Inactive mutant

AlexaFluor-488 (Surface expression)
A

B

C

D

E

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I67V/I103L (X)</td>
<td>I67V/E34L (N)</td>
<td>I67V</td>
</tr>
<tr>
<td>pBAD-33</td>
<td>WT</td>
<td>I67V/A104T (X)</td>
</tr>
</tbody>
</table>