A Robust Transcriptional Program in Newts
Undergoing Multiple Events of Lens Regeneration
throughout their Lifespan

Konstantinos Sousounis¹, Feng Qi², Manisha C. Yadav³, José Luis Millán³, Fubito Toyama⁴, Chikafumi Chiba⁵, Yukiko Eguchi⁶+, Goro Eguchi⁶* & Panagiotis A. Tsonis¹,³*

¹Department of Biology, University of Dayton, Dayton, OH 45469-2320
²Sanford-Burnham-Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827
³Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037
⁴Graduate School of Engineering, Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585, Japan
⁵Faculty of Life and Environmental Sciences, Tsukuba University, Tennoudai 1-1-1, Tsukuba Ibaraki 305-8572, Japan
⁶National Institute for Basic Biology, National Institutes for Natural Sciences, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan

+ Deceased

*Corresponding authors. Correspondence and requests for materials should be addressed to G.E. (trend@udayton.edu) and P.A.T. (ptsonis1@udayton.edu)
Abstract

Newts have the ability to repeatedly regenerate their lens even during ageing. However, it is unclear whether this regeneration reflects an undisturbed genetic activity. To answer this question, we compared the transcriptomes of lenses, irises and tails from aged newts that had undergone 19-times lens regeneration with the equivalent tissues from young newts that had never experienced lens regeneration. Our analysis indicates that repeatedly regenerated lenses showed a robust transcriptional program comparable to young never-regenerated lenses. In contrast, the tail, that was never regenerated, showed gene expression signatures of ageing. Our analysis strongly suggests that, with respect to gene expression, the regenerated lenses have not deviated from a robust transcriptional program even after multiple events of regeneration throughout the life of the newt. In addition, our study provides a new paradigm in biology, and establishes the newt as a key model for the study of regeneration in relation to ageing.
Introduction

Newts are among the few vertebrates that possess the remarkable ability to regenerate tissues, organs and body parts, including limbs, tails and eye tissue(1). Importantly, newts appear to regenerate using cells recruited locally from the site of the insult. For example, during limb regeneration, the cells at the site of amputation, such as muscle and bone cells, dedifferentiate and then redifferentiate to reconstruct the lost part(2, 3). For this process to occur, cells from the original organ must remain to provide a source for regeneration; if the entire limb is removed, no regeneration occurs. However, regeneration of the lens is different in two key ways, providing additional experimental benefits. First, regeneration of the lens is possible following complete removal of the lens thus whole-organ regeneration occurs. Second, the lens is regenerated from a different tissue, i.e., the pigment epithelial cells (PECs) of the dorsal iris, via transdifferentiation rather than from the remaining lens tissue(4, 5). Because of these unparalleled regenerative traits, newts may provide answers that regenerative medicine is presently seeking(6). A fundamental question is whether newt regenerative ability declines with ageing or repeated insult. To answer this question, we undertook a long-term study of lens regeneration.

Using Japanese newts (Cynops pyrrhogaster), lens regeneration was followed for 16 years. During this period, lenses were removed from the same animals 18 times. Previously, it was shown that the 17 and 18 times regenerated lenses, which were obtained from the second-to-last and last collections, respectively, were virtually identical to the intact lenses removed from full-grown, 14-year-old newts produced from fertilized eggs that had never undergone a lentectomy or lens regeneration. Throughout this 16-year period, the rate and stage of regeneration was carefully evaluated, and no significant delay in the lens regeneration process was observed in any of the 18 repetitions(7). At the gross anatomical level, the experimental and control lenses were of the same size and transparency. The lens fiber organization appeared normal, with the nucleus containing primary fibers and the cortex containing secondary fibers. Most importantly, the gene expression patterns of the experimental and control lenses were very similar. The genes examined included crystallins and transcription factors that regulate crystallin expression, such as Pax-6, Sox2, MafB, Sox1, Prox-1 and Delta, all of which participate in lens development and lens fiber differentiation and are thus involved in normal lens homeostasis. The study also established that the age of the animal does not affect its regenerative capacity (see also ref (8)). The newts were estimated to be at least 14 years old at the onset of the project and thus would have been at least 30 years old at the end of the study. Because the reported lifespan of the Japanese newt is 25 years(9), this group truly represents an old population. These results raise the question as to whether the repeatedly
regenerated lens of a 30-year-old newt retains the biological signature of a 14-year-old. Especially this is of interest if one considers the relation of regeneration and ageing. To investigate this possibility, we undertook a transcriptomic analysis of lenses that had been regenerated 19 times along with appropriate controls.

Results

Samples. The Japanese newt Cynops pyrrhogaster was used in this study. The experimental and control groups of newts were as follows. The experimental group (referred to as #19 throughout) comprised 32-year-old newts whose lenses had been removed 19 times. These lenses were regenerated 19 times and removed 18 years after the start of the project. The control group (referred to as #0) consisted of 14-year-old newts that had their original lenses (i.e., non-regenerated lenses) (Figure 1). The tissue collected from the experimental group consisted of #19 lenses, #19 dorsal irises, and #19 tails (n=5 for each tissue type). The dorsal iris was sampled because this tissue gives rise to the regenerated lens, which implies that the dorsal iris had also been regenerated/replenished 19 times. The tails were included as an aged tissue that had never been regenerated. The corresponding tissues were also sampled from #0 newts. In total, 30 samples were prepared for RNA sequencing and transcriptomic analysis.

Sequencing and annotation. We generated nearly 4.5 billion reads, with approximately 150 million reads per sample. The reads were of high quality (>97% passed TAILING:30 criteria using Trimmomatic(10)) and included very few duplicates (approximately 2%, as assessed using FastUniq(11)). Trinity was used for de novo assembly of the reference transcriptome (see Methods), which was composed of 4.3 million contigs and isoforms (referred to as transcripts or genes throughout). We used NCBI BLASTx to annotate 133,503 (73,233 contigs) of the transcripts against the human reference proteome obtained from UniProt (e-value<1E-10). Remarkably, 58,331 of these transcripts were related to human transposons (43.7%). In total, we obtained 15,077 non-redundant annotations representing nearly 75% of all human genes.

Tissue-specific enriched gene expression. Reads were used to compute the relative abundance of transcripts in each sample. Transcripts that showed the most significant variability between samples are shown as a heat map (Figure 2A). To identify highly expressed genes in the three different tissues we focused only on the annotated transcripts and considered the ones with >1000 Fragment per kilobase per millions of reads (FPKM). In other words, which were the genes with the highest expression in each tissue irrespective of treatment (young or old) (Figure 2B, Supplementary file 1). As expected alpha-, beta- and gamma-crystallin genes (CRY) were found at be the highest expressed genes in lens samples. Crystallins are known to
be the major structural protein of the lens (12). The same dataset also contained the lens fiber
major intrinsic protein MIP, and phakinin (BFSP2), genes highly expressed in lenses (Figure 2B;
orange)(13, 14). Ornithine decarboxylase antizyme 1 (OAZ1), hemoglobin subunit alpha
(HBA1) and cell division control protein 42 homolog (CDC42) were the highest expressed genes
in the iris samples (Figure 2B; red). Expectedly, keratin (KRT) and ribosomal protein genes
were the ones with the highest expression in tails (Figure 2B; yellow). Keratin proteins are
known to be expressed in the skin. Six genes, 5 coding for ribosomal proteins and one for the
ferritin heavy chain, were found to be the most expressed in all tissue types (Figure 2B; purple).
In a different analysis, we identified genes exclusively or preferentially expressed in a particular
tissue, when compared with the others. We sorted genes that were adequately expressed in a
given tissue (FPKM>100) and were 100-fold more expressed in one versus the other tissues
(Figure 2C, Supplementary file 1). Genes in the lens dataset included crystallins, lens fiber
membrane intrinsic protein LIM2, filensin (BFSP1), and tudor domain-containing protein 7
(TDRD7) among others (Figure 2C; orange). LIM2, BFSP1 and TDRD7 are known to be
expressed in lenses (15-17). Iris preferentially expressed RPE-retinal G protein-coupled
receptor (RGR), a protein found in pigmented cells of the retina (Figure 2C; red)(18), while tail
samples expressed keratins, creatine kinase M-type (CKM), resistin (RETN), and alpha skeletal
muscle actin (ACTA1) (Figure 2C; yellow), proteins found in muscle, skin and adipose tissue(19,
20). Many of the genes identified by these two methods are known to be enriched in the same
or equivalent (e.g. tail to be a composition of muscle, fat, skin, and spinal cord) tissues in other
organisms including humans. These genes are also known to be involved with disease states
including lens cataracts or ageing.

Analysis of differential gene expression between #0 and #19 samples. Differential gene-
expression analysis between #0 and #19 equivalent tissues was performed using edgeR(21).
This analysis provided us with genes that their abundance changed during ageing and repetitive
lens regeneration. No genes were found to differ significantly in their expression between the
#19 and #0 lenses samples (false discovery rate (FDR) <0.05 and fold change (FC) >2;
Supplementary file 2). In the iris samples, we found 311 (54 of these annotated) genes with
FDR<0.05 and FC>2 (Figure 3A and Supplementary file 3). Even greater differences in gene
expression were observed for the tail samples. We found 4,204 (780 of these annotated) genes
with FDR<0.05 and FC >2 (Figure 3B and Supplementary file 4). In our experimental design, tail
samples were collected in order to provide a tissue that was never amputated or regenerated
from the same animals where repetitive lentectomy was performed during the last 19 years.
Gene expression comparisons between young #0 tails and old #19 tails were conducted to
prove that amphibian gene expression signatures change over time as tissues age. To begin with, we studied the roles of the differentially regulated genes in the tail samples by assigning Gene Ontology (GO) terms based on their biological processes, molecular functions and sub-cellular localization (Supplementary file 5). Enrichment analysis revealed that GO terms related to translation, electron transport chain, oxidation reduction and mitochondrion were enriched in the group of down-regulated genes in the #19 tail samples (Figure 3C; green bars; FDR<0.05, Supplementary file 5). As it will be discussed later, iris samples also showed enrichment of electron transport chain genes in the down-regulation dataset. Down-regulation of electron transport chain-associated genes is a well-established signature of ageing in many vertebrate animal models and flies (22, 23). To further illustrate this, we data-mined genes with GO terms related to ageing and/or senescence, which were differentially regulated between #0 and #19 tail samples and found 16 genes (Figure 3D). These data suggest that the transcriptomic profile of newt tails and irises changed over time and showed signs of ageing. Since we observed changes in the abundance of several genes in tail and iris samples, we next asked whether these changes were reflected in the transcriptomic complexity of these tissues. By sorting genes based on their relative abundance we plotted the percent contribution of each gene in a cumulative way (Figure 3E, Supplementary file 1). This method identifies how many genes are sharing the total transcriptomic output of each sample; for example, if 50% of the transcriptomic output is shared by 100 genes, the underlying profile is relatively simple and the line on the plot will appear flat (orange; Figure 3E). On the other hand, if 1000 genes are sharing 50% of the transcriptomic output, the profile of the tissue is more complex having a steeper line (red; Figure 3E)(24). This analysis reveals that iris is the most complex tissue followed by the tail and the lens (Figure 3E). Interestingly, #19 iris and tail samples showed slightly increased complexity versus the respective #0 samples. #19 lens samples showed the lowest increase corroborating our previous data indicating no significant changes between #0 and #19 lens samples maintaining a stable gene expression profile. Using sample correlation matrix plot we further validated our gene expression data (Figure 4A, Supplementary file 6).When the genes from the #19 lenses (EL1 to EL5) were compared with those from the #0 lenses (CL1 to CL5), a nearly uniform pattern was obtained across all 10 samples. This pattern similarity was also evidenced by the lack of segregation of the experimental and control lens samples via cladograms. These results indicate that these samples were highly correlated for their overall gene expression pattern. However, a different pattern emerged when comparing the irises and tails between the #19 and #0 groups. Areas on the sample correlation matrix plot showed the characteristic 4-boxed color pattern indicating differences in the overall correlation between #19 and #0 samples.
Similar results were obtained by using jackknifing and random 20% sampling methods (Supplementary file 7 and 8). By dissecting the within tissue correlation values and compare them, it was evident that the 5 biological replicates of each tissue had high correlation values among them (Figure 4B; solid colors and big-dotted bars). However, when comparisons are made between #0 and #19 samples (Figure 4B; small-dotted bars), the correlation drops with lens samples showing the least decrease (orange bars) compared to iris (red bars) and tail (yellow bars). We also performed a comparison between tissues and found that iris and lens tissues were the most related while lens and tail tissues the least related based on the genes expressed (Figure 4C).

Sample correlation matrix plot also revealed that sample EL4 (one from #19 old newts) did not strongly correlate with the other lens samples. The correlation values of this sample were the lowest for the within tissue comparisons performed (Supplementary file 6). However, the values were higher than the within tissue correlations of #0 and #19 in iris and tail samples. Nevertheless we wanted to test whether this sample showed signs of ageing. To accomplish that we isolated all crystallin-associated genes expressed in the EL4 sample and compared them to the average FPKM values of the other #19 lens samples (Supplementary file 9). We chose crystallin genes because crystallins are the major structural proteins of this tissue and down-regulation is often linked to disease states in humans and mice (25). Our analysis revealed that 30% of the transcripts associated with crystallin genes were deregulated in the EL4 sample. However, most of them showed higher expression in the EL4 sample than the other #19 lens samples, an expression pattern that does not match a pathological profile. For example, transcript c1474631_g1 corresponding to gamma crystallin B, a highly expressed gene in the lens, showed a more than two-fold up-regulation (Supplementary file 9). Overall, our analysis showed that EL4 had the weakest association among the #19 lens samples and #0 young control lenses, however, differences in gene expression were not strongly associated with ageing or disease.

Correction of age-regulated gene expression in the regenerating lens. Iris is the source of lens regeneration in newts. After lentectomy the whole lens is removed and dorsal iris PECs transdifferentiate to lens cells. By collecting iris tissue for RNA sequencing we studied how repetitive regeneration and ageing affected its transcriptomic profile. As mentioned earlier, 311 genes were found to be differentially affected when #0 and #19 iris samples were compared (Figure 3A, Supplementary file 3). Iris, as the cellular source of lens regeneration, should have reflected, at least in part, this deregulated profile to the regenerate. Surprisingly though, the lens samples did not have any significantly deregulated genes suggesting that the age-regulated
profile of the iris was corrected during the regeneration process. To further highlight this
differences, we compared the regulated genes by first plotting the FPKM values of #0 and #19
iris and lens samples and applying linear regression (Figure 5A, Supplementary file 10). As
expected lens FPKM values were highly correlated ($r = 0.9982$) and differed between them on
average 27% (slope; $m = 0.7293$) (Figure 5A; orange). On the other hand, iris FPKM values
were not correlated and differed completely ($r = 0.0070$, $m = 0.004$, Figure 5A; red). These data
clearly indicate that deregulation of these genes were corrected in the regenerated lens. When
the function of the annotated genes was investigated, we found that electron transport chain
was enriched in the group of genes that were down-regulated in the #19 iris samples (Figure
5B; green bars, Supplementary file 11). As indicated above, this is a well-established ageing
signature and suggests that #19 repetitive regenerated lenses did not inherit it during the
transdifferentiation process.

Overall, our results point out that repeated lens regeneration employs a robust transcriptomic
program that is maintained throughout life, an attribute not found in the never-regenerated tail
tissue from the same animals. In addition, the fact that #19 lenses did not show down-regulation
of genes related to electron transport chain, a well-established signature of ageing revealed in
#19 iris and tail samples, suggests that repeated regeneration might ameliorate age-regulated
gene changes.

Discussion

Newts have the remarkable ability to regenerate their lenses after repeated insults throughout
their lifespan. In order to gain additional insights about the molecular interactions underlying this
trait, we started by exploring highly and uniquely expressed genes in each of the tissues
collected; iris, lens and tail. We found that genes preferentially and highly expressed in lens or
tail are known to be expressed in other vertebrates. More importantly for the lens, crystallins,
phakinin, filensin, tudor domain-containing protein 7, lens fiber major intrinsic protein MIP, and
lens fiber membrane intrinsic protein LIM2 are major structural/molecular components of the
lens and linked to age-related lens diseases when deregulated(8, 17, 25-29). Thus these genes
are also good markers should the newt lens age. However, when gene expression patterns of
the #19 and #0 lenses were compared, no significant differences were found. In addition,
compared with the non-regenerated lenses from younger animals, the #19 lenses showed no
differences in size, transparency or overall fiber structure (Figure 6) and during this 18-year
experiment, cataracts were never observed in the regenerated lenses. This important result
clearly demonstrates that repeated lentectomies and ageing have no effect on lens
regeneration, development or homeostasis. In addition to the aforementioned genetic causes of
cataracts, it is well documented that lenses are severely affected by ageing with marked
changes in expression of mitochondrion electron transport chain, oxidative stress and crystallin
genes as well as alterations of the fiber structure and homeostasis leading to cataracts
Based on these observations, the newt #19 lenses show a robust transcriptional program as
they undergo multiple events of regeneration throughout their lives. Conceptually the process of
transdifferentiation might provide robustness to the process of regeneration. In relation to this, it
is interesting to note that the transdifferentiation ability of even aged human iris PECs is
retained in vitro. Previous studies have shown that such cell line from an 80-year old human is
capable of transdifferentiating to lens.

In contrast to the patterns observed in the lenses, a comparison of gene expression between
the #19 and #0 tails revealed striking differences. Thousands of genes were significantly
differentially regulated. Among the most highly deregulated genes in the #19 tail samples were
those encoding proteins that are part of the electron transport chain (Supplementary file 5).
Down-regulation of these gene-sets are part of an established ageing signature in other
vertebrates. In addition, several ageing- and senescence-related genes were found to
be deregulated in these samples. These findings indicate that the tails of the #19 newts show
clear hallmarks of ageing. These observations provide in our opinion strong evidence that a
robust transcriptional program ensues after an insult to guarantee that the regenerative ability in
newts will not be thwarted with age.

Although the differences in gene expression between the #19 and #0 tails and lenses were
pronounced, the irises showed an intermediate pattern, especially with respect to the number of
deregulated genes. Similarly to the #19 tails, #19 iris samples down-regulated electron transport
chain genes, a sign of ageing. Iris is the source of lens regeneration and ageing of this tissue
may hinder the process. Since #19 lenses are comparable to #0 and that is not the case for the
iris, there should be a mechanism that amends or corrects the profile from the source (dorsal
iris) to the regenerated tissue (lens). Supplementary file 9 lists genes shown to be differentially
regulated in the iris samples and their potential transcriptomic correction in the lens samples. All
genes that were found to differ in the iris, the source of lens regeneration, were similar in the
regenerate, the lens (Figure 5 and Supplementary files 10, 11). For instance contig
c1229960_g1 corresponding to NADH-ubiquinone oxidoreductase chain 1, shows a low
expression in the control iris samples, but it is highly expressed in the experimental iris samples.
However, the same newts with iris tissues that showed this expression profile, had regenerated
lenses with low expression of the gene, similar to that of the control iris and lens rendering the
The gene expression differences observed in the iris may also be attributed to the fact that not all dorsal iris PECs contribute to the regeneration of the lost lens. After lentectomy regeneration occurs via dedifferentiation of the lower dorsal tip of the iris. These dorsal iris PECs are either replenished, or cells migrate there from other locations in the iris. Regardless, given that repeated lentectomies always trigger lens regeneration, it is clear that not the whole dorsal iris is eventually transformed into lens cells and that cell proliferation continuously provides the dorsal iris with PECs. Consequently, some parts of the dorsal iris are regenerated and might employ a transcriptomic program similar to that of young controls. On the other hand, other cells might not have this ability and eventually age, thus reflecting the intermediate ageing profile of this tissue. Nevertheless, the cellular or transcriptomic correction of the ageing profile observed in iris to the regenerated lens should be critical for the integrity of the newly formed organ (Figure 7). Recently it has been shown that there is significant turnover of senescent cells during newt limb regeneration. This might explain why newts can regenerate repeatedly their lost structures throughout their lives(36), As such, the possibility exists that senescent cells are removed from the dorsal iris to ensure the correct process of lens regeneration.

In this study we have compared the same tissues derived from young and old animals. Thus, the differences in the expression profiles were not attributed to the histological complexity. As also discussed above, to compare the ageing status of our collected tissues, our analysis included genes (such as ones involved in electron transport chain) that are known to be expressed in the majority of cell types and deregulated during ageing. The molecular pathways related to ageing have been studied extensively in other animal models, particularly worms, flies and mice. The use of databases like AGEMAP (a gene expression database for ageing in mice) to make comparisons among species has proven informative for the ageing field. Many of the genes that are regulated during ageing have been associated with the mitochondrial electron transport chain(37-39). Another major regulatory pathway involves insulin signaling, which negatively regulates the FOXO transcription factor DAF-16. This transcription factor regulates metabolism and oxidative stress by promoting antioxidant enzymes. The up-regulation of DAF-16 could enhance longevity(40-42). Our results suggest that the patterns of ageing in newts are similar to those of other species, particularly those related to the mitochondrial electron transport chain. Thus, it is conceivable that these mechanisms might also be involved in regeneration in newts. Consequently, our 18-year-long experiments provide data that render the newt an indispensable model for addressing issues of regeneration and ageing.
Matreials and methods

Animal care, handling and surgery
All procedures were performed as described previously(43). *Cynops pyrrhogaster* was used in this study: Five 32-year-old newts whose lenses had been removed 19 times over a period of 18 years, and five 14-year-old newts that had their original lenses. Tissues collected from every newt were lenses (n=5), dorsal irises (n=5), and tails (n=5). Each tissue from every newt was appropriately labeled and placed in collection tubes.

RNA extraction
Tissues were stored in RNAlater solution (Ambion, Chicago, Illinois, USA) until RNA isolation. RNA was extracted using an RNeasy Plus Kit (Qiagen, Valencia, CA, USA) according to the manufacturer’s protocol.

Library preparation, RNA sequencing, de novo assembly, and differential gene expression
The input RNA was quantified with a Qubit fluorometric RNA HS assay (Life Technologies, Grand Island, NY, USA). The samples were then analyzed on an Agilent Bioanalyzer using an RNA Pico assay to evaluate the quality. A total of 20 ng of each sample was used to synthesize cDNA using NuGEN Ovation RNA-Seq v2 kit. Libraries were made from 100 ng of cDNA using the NuGEN Ovation Ultralow Library System and then quantified with the Qubit fluorometric DNA HS assay and the Bioanalyzer DNA HS assay. KAPA qPCR was performed to quantify and pool the libraries for sequencing. The libraries were sequenced on a HiSeq 1500 using a 2 x 75 bp high output run. Raw sequencing reads has been deposited in the NCBI's Sequence Read Archive (SRA) database (BioProject accession: PRJNA288378).

Due to the unusually large size of the samples and limited computational resources, Trinity 20140413p1 was used for this project, and we used multi-step *in silico* normalization for the sequencing reads(44). As the developer suggested, max_cov was set to 50 (personal communication). The final assembly result gave an N50 of 430, and the average contig length was 409. All assembly work was performed on PSC (Pittsburgh Supercomputing Center) Blacklight which is an SGI UV 1000cc-NUMA shared-memory system comprising 256 blades. The sixteen cores on each blade share 128Gb of local memory

After assembly, the original reads (not *in silico* normalized) were aligned to the Trinity transcripts to obtain abundance estimates using Bowtie 2(45). Then, RSEM software was used to estimate the expression levels based on the resulting alignments. After estimating abundance, we obtained the expression profiles for each sample, and the edgeR Bioconductor package was
edgeR analysis was carried out using the protocol of identifying differentially expressed features with biological replicates and counts matrix as abundance estimation pulled from RSEM as input. For the data appearing in Figures 2A and 4A differentially expressed genes (p-value<=0.001 and log2(FC)>=2 in at least one comparison pair) were used. Euclidean distance and complete linkage were used to calculate the correlation. Two subsampling methods were also applied. Jackknife resampling was first used to estimate the variance of the correlation between each pair of samples by systematically leaving out one contig expression from the expression results matrix. We also random selected 20% of contigs to make a subsample, then calculated the correlation matrix of samples. The plots are shown in the supplementary files 7 and 8.

Annotation, analysis, GO enrichment, and protein network

The de novo assembled transcriptome was annotated against the human reference proteome (e-value<1E-10) using NCBI BLASTx(46, 47). The annotated transcripts created the newt reference proteome from which all gene names were derived. Differentially regulated transcripts (FDR<0.05 and |FC|>2) were mined from the raw edgeR output files and linked to the assigned annotation using custom Perl scripts. For all the analysis using annotated transcripts we used all potential isoform annotations in the testing and reference datasets. For data appearing in Figure 2B we selected annotated transcripts expressed more than 1000 average FPKM. The Venn diagram was made with Venny (http://bioinfogp.cnb.csic.es/tools/venny/index.html) and modified with Photoshop (Adobe). For data in Figure 2C we used transcripts expressed more than 100 average FPKM in the tissue of interest and less than 100 average FPKM in the other tissues, while the fold change between them was more than 100. For Gene Ontology enrichment, the UniProt IDs of the differentially regulated gene groups were used as “gene lists” in the DAVID 6.7 online functional annotation tool(48, 49). We used the newt reference proteome as the source of background genes. We performed the enrichment analysis using the three default gene ontology categories. GO terms with FDR<0.05 were considered enriched. To mine genes related to ageing and/or senescence we search for gene names with GO terms that contain “age”, “aging”, “ageing” or “senescence” and crossed them with our gene-sets. For the transcriptomic complexity graphs in Figure 3E, we sorted average FPKM values from all annotated transcripts individually for each tissue. The percent contribution to the total transcriptomic output was computed by dividing the average FPKM of a certain transcript to the sum FPKM of all transcripts in that tissue. Then transcripts were plotted from the least to the most expressed in a cumulative way (Supplementary file 1). To investigate potential signs of ageing in the EL4 sample we performed the following: EL4 genes were considered that deviate
from the other #19 samples with the following formula: $\overline{EL} + 2 \times \sigma(EL) < EL_A < \overline{EL} - 2 \times \sigma(EL)$,
where EL is the FPKM value of EL1, EL2, EL3 and EL5. Generally, genes were considered that were expressed in the samples if their FPKM value was more than 2 (Supplementary file 9).

Linear regression analysis appearing in Figure 5A was performed with SigmaPlot 11.0 and Excel.

References

Acknowledgments

This work was supported by NIH grant EY10540 to PAT. CC was supported by KAKENHI 221S0002 and 24240062.

Competing interests

The authors declare that they have no competing interests.

Author contributions

KS performed experiments, analyzed data and co-wrote the paper. FQ performed experiments, analyzed data and co-edited the paper. MCY, JLM, FT and CC performed experiments and co-edited the paper. YE and GE initiated the original experiment of repeated lentectomies, maintained the newt colony and provided samples. PAT conceived idea, designed experiments, analyzed data and co-wrote the paper.
Figure legends

Figure 1. Experimental overview. Arrows depict the number of repeated lentectomies performed over a period of 18 years. Panel shows the process of lens regeneration that occurred after each lens removal highlighted as a single arrow. At the end of the experiment, lens, iris and tail tissues were collected from both old newts that had regenerated their lenses 19 times and young newts that had never experienced lentectomy. Di: Dorsal iris, Vi: Ventral iris, L: Lens.

Figure 2. Gene expression among tissue samples. A. Heat map constructed from the expression profiles of the 30 sequenced samples. CT, CL, CI: #0 (control) tail, lens, and iris, respectively. ET, EL, EI: #19 (experimental) tail, lens, and iris, respectively. Genes selected based on the following parameters: p-value\(<0.001 \text{ and } \log_2(\text{FC})\geq2\. Note the nearly uniform pattern between the #0 and #19 lens samples which indicates no differences between non-regenerated young lenses and repeatedly regenerated lenses from aged newts. B. Highly expressed genes in each tissue type irrespective of age. Red, orange, and yellow colors denote genes from iris, lens and tail samples respectively. Comparisons are visualized using a venn graph while non-redundant annotations are highlighted using boxes including the corresponding gene names. Purple color is used for highly expressed genes in all three samples. C. Genes that are preferentially expressed in a given tissue versus the others are denoted using the same color code as in B. The different tissues are indicated using a cartoon newt and an enlarged cross-sectioned eye.

Figure 3. Differential gene expression between #19 and #0 tissues. A. Volcano plot for the #19 versus #0 iris samples. B. Volcano plot for the #19 versus #0 tail samples. Differentially expressed genes (FDR<0.05 and FC>2) are depicted in cyan. Tail samples, which never experienced regeneration, showed the most differentially expressed genes. Iris samples, which as the source of lens regeneration have experienced some degree of regeneration/replenishment, showed a reduced number of differentially expressed genes and an intermediate ageing profile. C. Selected enriched (FDR < 0.05) GO terms in tail samples plotted based on their fold enrichment. Green-colored bars mark gene groups that are down-regulated in the #19 samples. Yellow line marks fold enrichment of 1. Electron transport chain is one of the functional group enriched in the down-regulated group, a well-documented ageing signature in other vertebrates. D. Genes selected for their role in ageing and/or senescence and plotted based on their fold change between #19 and #0 tail samples. Green and red bars mark down-regulated or up-regulated genes in #19 samples respectively. Yellow line marks log2(FC) of 1. These data provide additional evidence of ageing signs in our #19 tails samples. E. Transcriptomic complexity between #0 and #19 tissues. Red, orange, and yellow denotes iris, lens and tail samples respectively. Solid and dotted lines represent tissues from #0 and #19 newts respectively. In this graph, genes were sorted based on their expression and plotted based on their cumulative percent contribution to the overall transcriptomal output. Iris had the most complex transcriptome by having more genes contributing to the overall output (steeper line), followed by the tail and lens. Tissues from #19 newts showed slightly increased transcriptomic complexity versus their #0 counterparts (enlarged insert). Lens showed the least increase in complexity which further supports that lens regeneration is a robust process that can faithfully proceed throughout lifespan.
Figure 4. Sample correlations between the 30 samples. A. Sample correlation matrix plot. Note the uniform red color between #19 (experimental lens, EL) and #0 (control lens, CL), indicating high correlation between them. Iris and tail #0 and #19 samples segregate clearly creating a characteristic 4-box pattern in the two edges of the plot. #19 and #0 lens samples are so similar that the cladogram clusters them together. EL4 sample exhibits the least correlation among the #19 newt lenses. B. Within tissue correlation plotted as bar graphs for better visualization. Solid colored bars (inter-#0 correlations) and big-dotted bars (inter-#19 correlations) showed very high values. Intra #0 - #19 correlation values were lower except those in lens samples. These data indicate that #0 and #19 lens samples are very similar in regards to gene expression versus equivalent comparisons in iris and tail samples. C. Correlations between tissues illustrated as box plots. Iris-lens gene expression correlations were the highest followed by iris-tail and lens-tail.

Figure 5. Correction of iris-regulated gene expression in the regenerated lens. A. The 311 genes used for this analysis were differentially regulated in #0 versus #19 iris samples. Since lens is regenerated from the dorsal iris, the question arises whether or not these differences in gene expression are reflected in the regenerated lenses. Average FPKM values of these genes from iris and lens samples were plotted in the same graph. Red and orange colors mark the iris and lens respectively. Linear regression analysis revealed that lens genes are more correlated (r = 0.9982) with m = 0.7293 while iris genes are not correlated (r = 0.0070) as expected. Based on the slope (m) values (where m = 1 is the absolute perfect when #0 and #19 values are identical), these data indicate that the #0 and #19 lens FPKM values differ approximately 27% while the equivalent iris samples are completely different. B. Gene Ontology enrichment analysis of genes differentially expressed between #0 and #19 iris samples. Green and red bars denote gene groups in the down-regulated and up-regulated datasets respectively. Yellow line marks fold enrichment of 1. Note that as with the tail samples, electron transport chain is also down-regulated in these samples, a sign of ageing.

Figure 6. Lenses from #0 control (left) and #19 experimental (right) newts. Note that the size, fiber arrangement and transparency of both samples are normal.

Figure 7: Summary of results from our transcriptomic comparisons between #19 and #0 newts. A. Tail samples that had never experienced regeneration showed a marked deregulation of electron transport chain, mitochondrion, and ribosome genes, in #19 newts all signatures of ageing. On the contrary, lenses that were regenerated 19 times over a period of 18 years, showed a transcriptomic profile comparable to never-regenerated lenses from young newts. Iris showed an intermediate profile marked by deregulation of electron transport chain-related genes. B. Regeneration versus ageing in newts. Triangles indicate the amount of regeneration activity (in light blue, decreasing from left to right) and ageing signatures as found by our transcriptomic analysis (in hot pink, increasing from left to right) of sampled #19 tissues. Regeneration initiates a robust transcriptomic program that can be faithfully restarted during repeated insult with no transcriptomic deregulation or molecular signatures of ageing. In our #19 newts, lenses had been fully removed and regenerated 19 times, thus, having the highest regeneration activity and showed no signs of ageing. Iris, as the source of lens regeneration, has been regenerated/replenished after transdifferentiation to lens, thus, showing some activity and an intermediate profile (the asterisk indicates that iris is not complete regeneration). Tails were never removed or regenerated and showed the most deregulated genes and signatures of ageing compared to the young controls.
Supplementary files:

Supplementary file 1: FPKM values of all annotated transcripts and analysis of tissue expression.

Supplementary file 2: Differential gene expression between lens tissue from repeatedly regenerated lens samples from aged newts and young newts.

Supplementary file 3: Differential gene expression between aged and young iris samples.

Supplementary file 4: Differential gene expression between aged and young tail samples.

Supplementary file 5: Annotation and gene ontology analysis of differentially expressed genes in the tail samples.

Supplementary file 6: Correlation values between all samples

Supplementary file 7: Correlation plot using jackknifing method

Supplementary file 8: Correlation plot using 20% random sampling method

Supplementary file 9: Analysis of EL4 gene expression to determine signs of ageing

Supplementary file 10: Potential correction of the iris profile upon transdifferentiation to lens.

Supplementary file 11: Annotation and gene ontology analysis of differentially expressed genes in the iris samples.
Figure 2

(A) Color key

(B) Highly expressed in each tissue

(C) Tissue exclusive expression
Figure 3
Figure 4
Figure 5
Figure 6
A

Regeneration ability: Yes
Times regenerated: 0
Transcriptomic profile: Aged

#19 old newt

Iris

Lens

Regeneration ability: Yes
Times regenerated: 19*
Transcriptomic profile: Intermediate

Regeneration ability: Yes
Times regenerated: 19
Transcriptomic profile: Young

B

Old newt; 19 times lens regeneration

Ageing

Regeneration activity

Lens:
19 times removed
19 times regenerated

Iris:
19 times
transdifferentiation

Tail:
Never removed
Never regenerated

Figure 7