Abstract

Reliably detecting unexpected sounds is important for environmental awareness and survival. By selectively reducing responses to frequently, but not rarely, occurring sounds, auditory cortical neurons are thought to enhance the brain's ability to detect unexpected events through stimulus-specific adaptation (SSA). The majority of neurons in the primary auditory cortex exhibit SSA, yet little is known about the underlying cortical circuits. We found that two types of cortical interneurons differentially amplify SSA in putative excitatory neurons. Parvalbumin-positive interneurons (PVs) amplify SSA by providing non-specific inhibition: optogenetic suppression of PVs led to an equal increase in responses to frequent and rare tones. In contrast, somatostatin-positive interneurons (SOMs) selectively reduce excitatory responses to frequent tones: suppression of SOMs led to an increase in responses to frequent, but not to rare tones. A mutually coupled excitatory-inhibitory network model accounts for distinct mechanisms by which cortical inhibitory neurons enhance the brain's sensitivity to unexpected sounds.

Article and author information

Author details

  1. Ryan Gregory Natan

    Department of Otorhinolaryngology Head and Neck Surgery, Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. John J Briguglio

    Department of Otorhinolaryngology Head and Neck Surgery, Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Laetitia Mwilambwe-Tshilobo

    Department of Otorhinolaryngology Head and Neck Surgery, Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sara Jones

    Department of Otorhinolaryngology Head and Neck Surgery, Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Mark Aizenberg

    Department of Otorhinolaryngology Head and Neck Surgery, Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ethan M Goldberg

    Department of Neurology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Maria Neimark Geffen

    Department of Otorhinolaryngology Head and Neck Surgery, Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    For correspondence
    mgeffen@med.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Andrew J King, University of Oxford, United Kingdom

Ethics

Animal experimentation: All experimental procedures are in accordance with NIH guidelines and approved by the IACUC at University of Pennsylvania (protocol number 803266).

Version history

  1. Received: July 5, 2015
  2. Accepted: October 1, 2015
  3. Accepted Manuscript published: October 13, 2015 (version 1)
  4. Accepted Manuscript updated: October 16, 2015 (version 2)
  5. Version of Record published: November 11, 2015 (version 3)

Copyright

© 2015, Natan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,591
    views
  • 1,157
    downloads
  • 124
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ryan Gregory Natan
  2. John J Briguglio
  3. Laetitia Mwilambwe-Tshilobo
  4. Sara Jones
  5. Mark Aizenberg
  6. Ethan M Goldberg
  7. Maria Neimark Geffen
(2015)
Complementary control of sensory adaptation by two types of cortical interneurons
eLife 4:e09868.
https://doi.org/10.7554/eLife.09868

Share this article

https://doi.org/10.7554/eLife.09868

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.