Untwisting the Caenorhabditis elegans embryo

  1. Ryan Patrick Christensen  Is a corresponding author
  2. Alexandra Bokinsky
  3. Anthony Santella
  4. Yicong Wu
  5. Javier Marquina-Solis
  6. Min Guo
  7. Ismar Kovacevic
  8. Abhishek Kumar
  9. Peter W Winter
  10. Nicole Tashakkori
  11. Evan McCreedy
  12. Huafeng Liu
  13. Matthew McAuliffe
  14. William Mohler
  15. Daniel A Colon-Ramos
  16. Zhirong Bao
  17. Hari Shroff
  1. National Institutes of Health, United States
  2. Sloan-Kettering Institute, United States
  3. Yale University, United States
  4. Zhejiang University, China
  5. University of Connecticut Health Center, United States

Abstract

The nematode Caenorhabditis elegans possesses a simple embryonic nervous system comprising 222 neurons, a number small enough that the growth of each cell could be followed to provide a systems-level view of development. However, studies of single cell development have largely been conducted in fixed or pre-twitching live embryos, because of technical difficulties associated with embryo movement in late embryogenesis. We present open source untwisting and annotation software which allows the investigation of neurodevelopmental events in post-twitching embryos, and apply them to track the 3D positions of seam cells, neurons, and neurites in multiple elongating embryos. The detailed positional information we obtained enabled us to develop a composite model showing movement of these cells and neurites in an "average" worm embryo. The untwisting and cell tracking capability we demonstrate provides a foundation on which to catalog C. elegans neurodevelopment, allowing interrogation of developmental events in previously inaccessible periods of embryogenesis.

Article and author information

Author details

  1. Ryan Patrick Christensen

    National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
    For correspondence
    ryan.christensen@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
  2. Alexandra Bokinsky

    Center for Information Technology, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Anthony Santella

    Developmental Biology Program, Sloan-Kettering Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yicong Wu

    National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Javier Marquina-Solis

    Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Min Guo

    State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Ismar Kovacevic

    Developmental Biology Program, Sloan-Kettering Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Abhishek Kumar

    Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Peter W Winter

    National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Nicole Tashakkori

    National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Evan McCreedy

    Center for Information Technology, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Huafeng Liu

    State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Matthew McAuliffe

    Center for Information Technology, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. William Mohler

    Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Daniel A Colon-Ramos

    Cell Biology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Zhirong Bao

    Developmental Biology Program, Sloan-Kettering Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Hari Shroff

    National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Oliver Hobert, Columbia University, United States

Version history

  1. Received: July 14, 2015
  2. Accepted: November 25, 2015
  3. Accepted Manuscript published: December 3, 2015 (version 1)
  4. Version of Record published: February 10, 2016 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 4,462
    Page views
  • 740
    Downloads
  • 28
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ryan Patrick Christensen
  2. Alexandra Bokinsky
  3. Anthony Santella
  4. Yicong Wu
  5. Javier Marquina-Solis
  6. Min Guo
  7. Ismar Kovacevic
  8. Abhishek Kumar
  9. Peter W Winter
  10. Nicole Tashakkori
  11. Evan McCreedy
  12. Huafeng Liu
  13. Matthew McAuliffe
  14. William Mohler
  15. Daniel A Colon-Ramos
  16. Zhirong Bao
  17. Hari Shroff
(2015)
Untwisting the Caenorhabditis elegans embryo
eLife 4:e10070.
https://doi.org/10.7554/eLife.10070

Share this article

https://doi.org/10.7554/eLife.10070

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    Thomas Grandits, Christoph M Augustin ... Alexander Jung
    Research Article

    Computer models of the human ventricular cardiomyocyte action potential (AP) have reached a level of detail and maturity that has led to an increasing number of applications in the pharmaceutical sector. However, interfacing the models with experimental data can become a significant computational burden. To mitigate the computational burden, the present study introduces a neural network (NN) that emulates the AP for given maximum conductances of selected ion channels, pumps, and exchangers. Its applicability in pharmacological studies was tested on synthetic and experimental data. The NN emulator potentially enables massive speed-ups compared to regular simulations and the forward problem (find drugged AP for pharmacological parameters defined as scaling factors of control maximum conductances) on synthetic data could be solved with average root-mean-square errors (RMSE) of 0.47 mV in normal APs and of 14.5 mV in abnormal APs exhibiting early afterdepolarizations (72.5% of the emulated APs were alining with the abnormality, and the substantial majority of the remaining APs demonstrated pronounced proximity). This demonstrates not only very fast and mostly very accurate AP emulations but also the capability of accounting for discontinuities, a major advantage over existing emulation strategies. Furthermore, the inverse problem (find pharmacological parameters for control and drugged APs through optimization) on synthetic data could be solved with high accuracy shown by a maximum RMSE of 0.22 in the estimated pharmacological parameters. However, notable mismatches were observed between pharmacological parameters estimated from experimental data and distributions obtained from the Comprehensive in vitro Proarrhythmia Assay initiative. This reveals larger inaccuracies which can be attributed particularly to the fact that small tissue preparations were studied while the emulator was trained on single cardiomyocyte data. Overall, our study highlights the potential of NN emulators as powerful tool for an increased efficiency in future quantitative systems pharmacology studies.

    1. Computational and Systems Biology
    2. Neuroscience
    Domingos Leite de Castro, Miguel Aroso ... Paulo Aguiar
    Research Article Updated

    Closed-loop neuronal stimulation has a strong therapeutic potential for neurological disorders such as Parkinson’s disease. However, at the moment, standard stimulation protocols rely on continuous open-loop stimulation and the design of adaptive controllers is an active field of research. Delayed feedback control (DFC), a popular method used to control chaotic systems, has been proposed as a closed-loop technique for desynchronisation of neuronal populations but, so far, was only tested in computational studies. We implement DFC for the first time in neuronal populations and access its efficacy in disrupting unwanted neuronal oscillations. To analyse in detail the performance of this activity control algorithm, we used specialised in vitro platforms with high spatiotemporal monitoring/stimulating capabilities. We show that the conventional DFC in fact worsens the neuronal population oscillatory behaviour, which was never reported before. Conversely, we present an improved control algorithm, adaptive DFC (aDFC), which monitors the ongoing oscillation periodicity and self-tunes accordingly. aDFC effectively disrupts collective neuronal oscillations restoring a more physiological state. Overall, these results support aDFC as a better candidate for therapeutic closed-loop brain stimulation.