Nanoconnectomic upper bound on the variability of synaptic plasticity

  1. Thomas M Bartol  Is a corresponding author
  2. Cailey Bromer
  3. Justin P Kinney
  4. Micheal A Chirillo
  5. Jennifer N Bourne
  6. Kristen M Harris
  7. Terrence J Sejnowski
  1. Howard Hughes Medical Institute, Salk Institute for Biological Studies, United States
  2. Massachusetts Institute of Technology, United States
  3. The University of Texas at Austin, United States
  4. University of Colorado Denver, United States

Abstract

Information in a computer is quantified by the number of bits that can be stored and recovered. An important question about the brain is how much information can be stored at a synapse through synaptic plasticity, which depends on the history of probabilistic synaptic activity. The strong correlation between size and efficacy of a synapse allowed us to estimate the variability of synaptic plasticity. In an EM reconstruction of hippocampal neuropil we found single axons making two or more synaptic contacts onto the same dendrites, having shared histories of presynaptic and postsynaptic activity. The spine heads and neck diameters, but not neck lengths, of these pairs were nearly identical in size. We found that there is a minimum of 26 distinguishable synaptic strengths, corresponding to storing 4.7 bits of information at each synapse. Because of stochastic variability of synaptic activation the observed precision requires averaging activity over several minutes.

Article and author information

Author details

  1. Thomas M Bartol

    Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States
    For correspondence
    bartol@salk.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Cailey Bromer

    Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Justin P Kinney

    Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Micheal A Chirillo

    Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jennifer N Bourne

    University of Colorado Denver, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kristen M Harris

    Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Terrence J Sejnowski

    Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Sacha B Nelson, Brandeis University, United States

Version history

  1. Received: August 11, 2015
  2. Accepted: November 29, 2015
  3. Accepted Manuscript published: November 30, 2015 (version 1)
  4. Version of Record published: January 20, 2016 (version 2)

Copyright

© 2015, Bartol et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 36,332
    Page views
  • 3,441
    Downloads
  • 165
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thomas M Bartol
  2. Cailey Bromer
  3. Justin P Kinney
  4. Micheal A Chirillo
  5. Jennifer N Bourne
  6. Kristen M Harris
  7. Terrence J Sejnowski
(2015)
Nanoconnectomic upper bound on the variability of synaptic plasticity
eLife 4:e10778.
https://doi.org/10.7554/eLife.10778

Share this article

https://doi.org/10.7554/eLife.10778

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.