NF-κB oscillations translate into functionally related patterns of gene expression

  1. Samuel Zambrano
  2. Ilario De Toma
  3. Arianna Piffer
  4. Marco E Bianchi
  5. Alessandra Agresti  Is a corresponding author
  1. San Raffaele Scientific Institute, Italy
  2. San Raffaele University, Italy

Abstract

Several transcription factors (TFs) oscillate, periodically relocating between the cytoplasm and the nucleus. NF-κB, which plays key roles in inflammation and cancer, displays oscillations whose biological advantage remains unclear. Recent work indicated that NF-κB displays sustained oscillations that can be entrained -i.e. reach a persistent synchronized state through small periodic perturbations. We show here that for our GFP-p65 knock-in cells NF-κB behaves as a damped oscillator able to synchronize to a variety of periodic external perturbations with no memory. We imposed synchronous dynamics to prove that transcription of NF-κB-controlled genes also oscillates, but mature transcript levels follow 3 distinct patterns. Two sets of transcripts accumulate fast or slowly, respectively. Another set, comprising chemokine and chemokine receptor mRNAs, oscillates and resets at each new stimulus, with no memory of the past. We propose that TF oscillatory dynamics is a means of segmenting time to provide renewing opportunity windows for decision.

Article and author information

Author details

  1. Samuel Zambrano

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Ilario De Toma

    San Raffaele University, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  3. Arianna Piffer

    San Raffaele University, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Marco E Bianchi

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Alessandra Agresti

    Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
    For correspondence
    agresti.alessandra@hsr.it
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Suzanne Gaudet, Dana-Farber Cancer Institute, Harvard University, United States

Version history

  1. Received: June 1, 2015
  2. Accepted: January 13, 2016
  3. Accepted Manuscript published: January 14, 2016 (version 1)
  4. Version of Record published: March 10, 2016 (version 2)

Copyright

© 2016, Zambrano et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,325
    Page views
  • 1,101
    Downloads
  • 109
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Samuel Zambrano
  2. Ilario De Toma
  3. Arianna Piffer
  4. Marco E Bianchi
  5. Alessandra Agresti
(2016)
NF-κB oscillations translate into functionally related patterns of gene expression
eLife 5:e09100.
https://doi.org/10.7554/eLife.09100

Share this article

https://doi.org/10.7554/eLife.09100