The Rqc2/Tae2 subunit of the Ribosome-Associated Quality Control (RQC) complex marks ribosome-stalled nascent polypeptide chains for aggregation

  1. Ryo Yonashiro
  2. Erich B Tahara
  3. Mario H Bengtson
  4. Maria Khokhrina
  5. Holger Lorenz
  6. Kai-Chun Chen
  7. Yu Kigoshi-Tansho
  8. Jeffrey N Savas
  9. John R Yates
  10. Steve A Kay
  11. Elizabeth A Craig
  12. Axel Mogk
  13. Bernd Bukau
  14. Claudio AP Joazeiro  Is a corresponding author
  1. The Scripps Research Institute, United States
  2. University of São Paulo, Brazil
  3. University of Campinas, Brazil
  4. Zentrum für Molekulare Biologie der Universität Heidelberg, Germany
  5. Northwestern University, United States
  6. University of Wisconsin - Madison, United States

Abstract

Ribosome stalling during translation can be harmful, and is surveyed by a conserved quality control pathway that targets the associated mRNA and nascent polypeptide chain (NC). In this pathway, the ribosome-associated quality control (RQC) complex promotes the ubiquitylation and degradation of NCs remaining stalled in the 60S subunit. NC stalling is recognized by the Rqc2/Tae2 RQC subunit, which also stabilizes binding of the E3 ligase, Listerin/Ltn1. Additionally, Rqc2 modifies stalled NCs with a carboxy-terminal, Ala- and Thr-containing extension-the 'CAT tail.' However, the function of CAT tails and fate of CAT tail-modified ('CATylated') NCs has remained unknown. Here we show that CATylation mediates NC aggregation. NC CATylation and aggregation could be observed by inactivating Ltn1 or by analyzing NCs with limited ubiquitylation potential, suggesting that inefficient targeting by Ltn1 favors the Rqc2-mediated reaction. These findings uncover a translational stalling-dependent protein aggregation mechanism, and provide evidence that proteins can become marked for aggregation.

Article and author information

Author details

  1. Ryo Yonashiro

    Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Erich B Tahara

    University of São Paulo, São Paulo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  3. Mario H Bengtson

    University of Campinas, São Paulo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  4. Maria Khokhrina

    Deutsches Krebsforschungszentrum, DKFZ-ZMBH Alliance, Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Holger Lorenz

    Deutsches Krebsforschungszentrum, DKFZ-ZMBH Alliance, Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Kai-Chun Chen

    Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Yu Kigoshi-Tansho

    Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jeffrey N Savas

    Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. John R Yates

    Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Steve A Kay

    Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Elizabeth A Craig

    Department of Biochemistry, University of Wisconsin - Madison, Wisconsin, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Axel Mogk

    Deutsches Krebsforschungszentrum, DKFZ-ZMBH Alliance, Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Bernd Bukau

    Deutsches Krebsforschungszentrum, DKFZ-ZMBH Alliance, Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Claudio AP Joazeiro

    Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, United States
    For correspondence
    joazeiro@scripps.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Ivan Dikic, Goethe University Medical School, Germany

Version history

  1. Received: September 23, 2015
  2. Accepted: March 3, 2016
  3. Accepted Manuscript published: March 4, 2016 (version 1)
  4. Version of Record published: March 14, 2016 (version 2)

Copyright

© 2016, Yonashiro et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,400
    Page views
  • 1,524
    Downloads
  • 103
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ryo Yonashiro
  2. Erich B Tahara
  3. Mario H Bengtson
  4. Maria Khokhrina
  5. Holger Lorenz
  6. Kai-Chun Chen
  7. Yu Kigoshi-Tansho
  8. Jeffrey N Savas
  9. John R Yates
  10. Steve A Kay
  11. Elizabeth A Craig
  12. Axel Mogk
  13. Bernd Bukau
  14. Claudio AP Joazeiro
(2016)
The Rqc2/Tae2 subunit of the Ribosome-Associated Quality Control (RQC) complex marks ribosome-stalled nascent polypeptide chains for aggregation
eLife 5:e11794.
https://doi.org/10.7554/eLife.11794

Share this article

https://doi.org/10.7554/eLife.11794

Further reading

    1. Biochemistry and Chemical Biology
    2. Developmental Biology
    Zhi Li, Yuedi Wang ... Zeyang Zhou
    Research Article

    Imidacloprid is a global health threat that severely poisons the economically and ecologically important honeybee pollinator, Apis mellifera. However, its effects on developing bee larvae remain largely unexplored. Our pilot study showed that imidacloprid causes developmental delay in bee larvae, but the underlying toxicological mechanisms remain incompletely understood. In this study, we exposed bee larvae to imidacloprid at environmentally relevant concentrations of 0.7, 1.2, 3.1, and 377 ppb. There was a marked dose-dependent delay in larval development, characterized by reductions in body mass, width, and growth index. However, imidacloprid did not affect on larval survival and food consumption. The primary toxicological effects induced by elevated concentrations of imidacloprid (377 ppb) included inhibition of neural transmission gene expression, induction of oxidative stress, gut structural damage, and apoptosis, inhibition of developmental regulatory hormones and genes, suppression of gene expression levels involved in proteolysis, amino acid transport, protein synthesis, carbohydrate catabolism, oxidative phosphorylation, and glycolysis energy production. In addition, we found that the larvae may use antioxidant defenses and P450 detoxification mechanisms to mitigate the effects of imidacloprid. Ultimately, this study provides the first evidence that environmentally exposed imidacloprid can affect the growth and development of bee larvae by disrupting molting regulation and limiting the metabolism and utilization of dietary nutrients and energy. These findings have broader implications for studies assessing pesticide hazards in other juvenile animals.

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Pengfei Guo, Rebecca C Lim ... Hui Zhang
    Research Article Updated

    The Polycomb Repressive Complex 2 (PRC2) methylates H3K27 to regulate development and cell fate by transcriptional silencing. Alteration of PRC2 is associated with various cancers. Here, we show that mouse Kdm1a deletion causes a dramatic reduction of PRC2 proteins, whereas mouse null mutation of L3mbtl3 or Dcaf5 results in PRC2 accumulation and increased H3K27 trimethylation. The catalytic subunit of PRC2, EZH2, is methylated at lysine 20 (K20), promoting EZH2 proteolysis by L3MBTL3 and the CLR4DCAF5 ubiquitin ligase. KDM1A (LSD1) demethylates the methylated K20 to stabilize EZH2. K20 methylation is inhibited by AKT-mediated phosphorylation of serine 21 in EZH2. Mouse Ezh2K20R/K20R mutants develop hepatosplenomegaly associated with high GFI1B expression, and Ezh2K20R/K20R mutant bone marrows expand hematopoietic stem cells and downstream hematopoietic populations. Our studies reveal that EZH2 is regulated by methylation-dependent proteolysis, which is negatively controlled by AKT-mediated S21 phosphorylation to establish a methylation-phosphorylation switch to regulate the PRC2 activity and hematopoiesis.