Eco-HAB as a fully automated and ecologically relevant assessment of social impairments in mouse models of autism

Abstract

Eco-HAB is an open source, RFID-based system for automated measurement and analysis of social preference and in-cohort sociability in mice. The system closely follows murine ethology. It requires no contact between a human experimenter and tested animals, overcoming the confounding factors that lead to irreproducible assessment of murine social behavior between laboratories. In Eco-HAB, group-housed animals live in a spacious, four-compartment apparatus with shadowed areas and narrow tunnels, resembling natural burrows. Eco-HAB allows for assessment of the tendency of mice to voluntarily spend time together in ethologically relevant mouse group sizes. Custom-made software for automated tracking, data extraction, and analysis enables quick evaluation of social impairments. The developed protocols and standardized behavioral measures demonstrate high replicability. Unlike classic three-chambered sociability tests, Eco-HAB provides measurements of spontaneous, ecologically relevant social behaviors in group-housed animals. Results are obtained faster, with less manpower, and without confounding factors.

Article and author information

Author details

  1. Alicja Puścian

    Department of Neurophysiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7029-1275
  2. Szymon Łęski

    Department of Neurophysiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1764-1907
  3. Grzegorz Kasprowicz

    Center for Theoretical Physics, Polish Academy of Sciences, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  4. Maciej Winiarski

    Department of Neurophysiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  5. Joanna Borowska

    Department of Neurophysiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  6. Tomasz Nikolaev

    Department of Neurophysiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  7. Paweł M Boguszewski

    Department of Neurophysiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7210-6950
  8. Hans-Peter Lipp

    Institute of Anatomy, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  9. Ewelina Knapska

    Department of Neurophysiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
    For correspondence
    e.knapska@nencki.gov.pl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9319-2176

Funding

Swiss Contribution to the enlarged European Union (PSPB-210)

  • Alicja Puścian
  • Hans-Peter Lipp
  • Ewelina Knapska

National Science Center (2013/08/W/NZ4/00691)

  • Szymon Łęski
  • Grzegorz Kasprowicz
  • Ewelina Knapska

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Peggy Mason, University of Chicago, United States

Ethics

Animal experimentation: Animals were treated in accordance with the ethical standards of the European Union (directive no. 2010/63/UE) and Polish regulations. All experimental procedures were pre-approved by the Local Ethics Committee.

Version history

  1. Received: July 12, 2016
  2. Accepted: October 11, 2016
  3. Accepted Manuscript published: October 12, 2016 (version 1)
  4. Version of Record published: November 2, 2016 (version 2)

Copyright

© 2016, Puścian et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,124
    views
  • 505
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alicja Puścian
  2. Szymon Łęski
  3. Grzegorz Kasprowicz
  4. Maciej Winiarski
  5. Joanna Borowska
  6. Tomasz Nikolaev
  7. Paweł M Boguszewski
  8. Hans-Peter Lipp
  9. Ewelina Knapska
(2016)
Eco-HAB as a fully automated and ecologically relevant assessment of social impairments in mouse models of autism
eLife 5:e19532.
https://doi.org/10.7554/eLife.19532

Share this article

https://doi.org/10.7554/eLife.19532

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Kenneth Chiou, Noah Snyder-Mackler
    Insight

    Single-cell RNA sequencing reveals the extent to which marmosets carry genetically distinct cells from their siblings.

    1. Cell Biology
    2. Neuroscience
    Mariana I Tsap, Andriy S Yatsenko ... Halyna R Shcherbata
    Research Article

    Mutations in Drosophila Swiss Cheese (SWS) gene or its vertebrate orthologue Neuropathy Target Esterase (NTE) lead to progressive neuronal degeneration in flies and humans. Despite its enzymatic function as a phospholipase is well-established, the molecular mechanism responsible for maintaining nervous system integrity remains unclear. In this study, we found that NTE/SWS is present in surface glia that forms the blood-brain-barrier (BBB) and that NTE/SWS is important to maintain its structure and permeability. Importantly, BBB glia-specific expression of Drosophila NTE/SWS or human NTE in the sws mutant background fully rescues surface glial organization and partially restores BBB integrity, suggesting a conserved function of NTE/SWS. Interestingly, sws mutant glia showed abnormal organization of plasma membrane domains and tight junction rafts accompanied by the accumulation of lipid droplets, lysosomes, and multilamellar bodies. Since the observed cellular phenotypes closely resemble the characteristics described in a group of metabolic disorders known as lysosomal storage diseases (LSDs), our data established a novel connection between NTE/SWS and these conditions. We found that mutants with defective BBB exhibit elevated levels of fatty acids, which are precursors of eicosanoids and are involved in the inflammatory response. Also, as a consequence of a permeable BBB, several innate immunity factors are upregulated in an age-dependent manner, while BBB glia-specific expression of NTE/SWS normalizes inflammatory response. Treatment with anti-inflammatory agents prevents the abnormal architecture of the BBB, suggesting that inflammation contributes to the maintenance of a healthy brain barrier. Considering the link between a malfunctioning BBB and various neurodegenerative diseases, gaining a deeper understanding of the molecular mechanisms causing inflammation due to a defective BBB could help to promote the use of anti-inflammatory therapies for age-related neurodegeneration.