A cellular mechanism for inverse effectiveness in multisensory integration

Abstract

To build a coherent view of the external world, an organism needs to integrate multiple types of sensory information from different sources, a process known as multisensory integration (MSI). Previously we showed that the temporal dependence of MSI in the optic tectum of Xenopus laevis tadpoles is mediated by the network dynamics of the recruitment of local inhibition by sensory input (Felch et al., 2016). This was one of the first cellular-level mechanisms described for MSI. Here we expand this cellular level view of MSI by focusing on the principle of inverse effectiveness, another central feature of MSI stating that the amount of multisensory enhancement observed inversely depends on the size of unisensory responses. We show that non-linear summation of crossmodal synaptic responses, mediated by NMDA-type glutamate receptor (NMDARs) activation, form the cellular basis for inverse effectiveness, both at the cellular and behavioral levels.

Article and author information

Author details

  1. Torrey LS Truszkowski

    Department of Neuroscience, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Oscar A Carrillo

    Department of Neuroscience, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Julia Bleier

    Department of Neuroscience, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Carolina Ramirez-Vizcarrondo

    Department of Neuroscience, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Daniel L Felch

    Department of Neuroscience, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Molly McQuillan

    Bard College, Annandale-On-Hudson, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Christopher P Truszkowski

    Digital Services, Roger Williams University, Bristol, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Arseny S Khakhalin

    Bard College, Annandale-On-Hudson, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0429-1728
  9. Carlos D Aizenman

    Department of Neuroscience, Brown University, Providence, United States
    For correspondence
    Carlos_Aizenman@brown.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7378-7217

Funding

National Institutes of Health (NIH F31 NS09379001)

  • Torrey LS Truszkowski

National Science Foundation (NSF IOS 1353044)

  • Torrey LS Truszkowski
  • Oscar A Carrillo
  • Julia Bleier
  • Carolina Ramirez-Vizcarrondo
  • Christopher P Truszkowski
  • Carlos D Aizenman

American Physiological Society

  • Oscar A Carrillo
  • Carolina Ramirez-Vizcarrondo

Bard Summer Research Institute, Bard College

  • Molly McQuillan
  • Arseny S Khakhalin

Brown University

  • Oscar A Carrillo
  • Julia Bleier
  • Carolina Ramirez-Vizcarrondo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gary L Westbrook, Vollum Institute, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (1607000219) of Brown University.

Version history

  1. Received: January 25, 2017
  2. Accepted: March 15, 2017
  3. Accepted Manuscript published: March 18, 2017 (version 1)
  4. Accepted Manuscript updated: March 24, 2017 (version 2)
  5. Version of Record published: March 31, 2017 (version 3)

Copyright

© 2017, Truszkowski et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,201
    views
  • 423
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Torrey LS Truszkowski
  2. Oscar A Carrillo
  3. Julia Bleier
  4. Carolina Ramirez-Vizcarrondo
  5. Daniel L Felch
  6. Molly McQuillan
  7. Christopher P Truszkowski
  8. Arseny S Khakhalin
  9. Carlos D Aizenman
(2017)
A cellular mechanism for inverse effectiveness in multisensory integration
eLife 6:e25392.
https://doi.org/10.7554/eLife.25392

Share this article

https://doi.org/10.7554/eLife.25392

Further reading

    1. Cell Biology
    2. Neuroscience
    Marcos Moreno-Aguilera, Alba M Neher ... Carme Gallego
    Research Article Updated

    Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.

    1. Genetics and Genomics
    2. Neuroscience
    Kenneth Chiou, Noah Snyder-Mackler
    Insight

    Single-cell RNA sequencing reveals the extent to which marmosets carry genetically distinct cells from their siblings.