Figures and figure supplements

Stella modulates transcriptional and endogenous retrovirus programs during maternal-to-zygotic transition

Yun Huang et al
Figure 1. Stella M/Z KO embryos are impaired in maternal-to-zygotic transition. (A) A schematic illustration of the single-cell / embryo RNA-seq experimental setup. The total number of oocytes and embryos collected are indicated. The colour scheme represents the transition from maternal (green) to zygotic (red) transcripts. Maternal Stella is represented in green circle. (B) A score plot of the first three principal components for 66 cells using gene counts. The lower panels represent the score plots of the first two principal components using cells belonging to a specific developmental time point. The developmental time points are indicated by colour and the genotypes for Stella are indicated by shape. (C) A Venn diagram illustrating the overlap of differentially expressed genes (DEG) between WT and KO oocytes, 1-cell and 2-cell embryos (adjusted p-value<0.05) (Figure 1—source data 2). (D) The heatmap represents the log$_2$ ratio of the number of upregulated to downregulated genes in KO compared to WT at oocytes, 1-cell and 2-cell stage, belonging to a given cluster of DBTMEE (Park et al., 2015). Fisher’s exact test performed and statistically significant p-values are stated. (E) A time-series clustering of gene expression dynamics across oocyte to 2-cell embryo (see Materials and methods). (Left) Heatmap shows a cluster of WT maternal transcripts (ED), which are differentially expressed in KO samples (adjusted p-value<0.05, Figure 1—source data 3). (Right) Heatmap shows a cluster of WT zygotically activated genes (ZAG) (EU), which are differentially expressed in KO samples (adjusted p-value<0.05, Figure 1—source data 4). Also see Figure 1—figure supplements 1–2 and Figure 1—source data 1–4.

DOI: 10.7554/eLife.22345.003

The following source data is available for figure 1:

Figure 1 continued on next page
Source data 1. Gene counts for WT and KO oocyte, 1-cell and 2-cell embryos.
DOI: 10.7554/eLife.22345.004

Source data 2. List of differentially expressed genes between WT and KO samples at oocyte, 1-cell and 2-cell stage, from single cell/embryo RNA-seq analysis.
DOI: 10.7554/eLife.22345.005

Source data 3. List of maternal transcripts, WT class = ED, which are differentially expressed in KO samples.
DOI: 10.7554/eLife.22345.006

Source data 4. List of zygotically activated genes (ZAG), WT class = EU, which are differentially expressed in KO samples.
DOI: 10.7554/eLife.22345.007
Stella protein domains

A

- SAP-like domain
- Splicing-like factor
- Nuclear export signal
- Nuclear localisation signal

B

- H3K9me2 binding domain
- TET3 exclusion from maternal PN

100 amino acids

Figure 1—figure supplement 1. Stella protein domains. (A) A schematic diagram illustrating the putative Stella protein domains: SAP-like domain, splicing-like factor, nuclear export and nuclear localization signals (Aravind and Koonin, 2000; Payer et al., 2003). (B) A schematic diagram illustrating the N-terminus of Stella (amino acids 1–75) is required for H3K9me2 binding in maternal pronuclei (PN), while the C-terminus of Stella (amino acids 76–150) is required to exclude TET3 from the maternal PN (Nakamura et al., 2012).

DOI: 10.7554/eLife.22345.008
Figure 1—figure supplement 2. Quality control of single-cell / embryo RNA-seq. (A) A scatter plot of the number of reads mapped to exons against the proportion of reads mapped to mitochondrial genes. The dashed red line indicates threshold of a good quality sample if: (1) cells have a total number of reads mapped to exons greater than 500,000; (2) cells have less than 10% of the proportion of reads mapped to 37 genes on the mitochondria chromosome. All 66 samples are of good quality. (B) A score plot of the first two principle components for cells of each developmental stage. RUV = removal of unwanted variation (see Materials and methods, Figure 1—source data 1). Top panel shows samples clustering pre-RUV, and bottom panel shows samples clustering post-RUV. Each batch represents independent experiments in which samples are collected, and this is indicated by a different colour (Supplementary file 1). DOI: 10.7554/eLife.22345.009
Figure 2. Stella is associated with the activation of essential zygotic genes. (A) Revigo plots (Supek et al., 2011) of a selection of gene ontology (GO)
terms enriched in 2-cell DEG (Figure 2—source data 1). The colour of the circle represents the log_{10} p-value. Semantic space clusters GO terms of
Figure 2 continued on next page
Figure 2 continued

similar functions together. (B) A boxplot of normalised counts of genes belong to the Ribosome KEGG pathway between WT and KO across the developmental stages. Two-sided Wilcoxon rank sum test performed between WT and KO and statistically significant p-value is stated. (C and D) shows boxplots of single-embryo qRT-PCR validation of RNA-seq in WT (white) and KO (light blue) 2-cell embryos. All genes are normalised to housekeeping genes, relative to one WT embryo and log₂ transformed. (C) shows genes significantly upregulated and (D) downregulated in KO relative to WT 2-cell embryos (p<0.05 = *, p<0.01 = **, p<0.001 = *** and p<0.0001 = ****). (E) A table of the top 10 GO terms enriched in 710 genes whose expression levels are positively correlated with Dppa3 (Pearson’s correlation coefficient >0.9), identified from the genome-wide co-expression network analysis (Figure 2—source data 2). (F) Scatter plots of the expression of Snrpd1 and Snrpb2 against Dppa3. Gene expression was log₂ transformed (counts per million + 1) and Pearson’s correlation analysis was performed. Also see Figure 2—figure supplement 1 and Figure 2—source data 1–2.

The following source data is available for figure 2:

Source data 1. List of gene ontology terms enriched in differentially expressed genes between WT and KO 2-cell embryos.
DOI: 10.7554/eLife.22345.011

Source data 2. Genome-wide Dppa3 co-expression network analysis.
DOI: 10.7554/eLife.22345.012
Figure 2—figure supplement 1. Ribosome associated genes are depleted in Stella M/Z KO 2-cell embryos. Comparison of normalised counts of genes belonging to the Ribosome associated gene ontology pathway between WT (white) and KO (blue) across the developmental stages. Two-sided Wilcoxon rank sum test was performed between WT and KO samples and statistically significant p-value stated.
DOI: 10.7554/eLife.22345.013
Figure 3. TEs are mis-expressed in the absence of Stella. (A) Top panel shows boxplots of the ratio of reads mapped to TEs to total reads mapped in WT and KO oocytes, 1-cell and 2-cell embryos. The number of reads mapped to TEs are based on uniquely and multi-mapped counts (Figure 3—Figure 3 continued on next page).
Figure 3 continued

source data 2). (B) A heatmap of the relative expression of LTR, LINE and SINE in oocyte (green), 1-cell (yellow) and 2-cell embryos (red). Blue indicates higher expression and white indicates lower expression. Samples are clustered by row. (C) A score plot of the first three principal components for 66 cells using uniquely mapped TE counts (Figure 3—source data 1). The lower panels represent the score plots of the first two principal components using cells belonging to a specific developmental time point. The developmental time points are indicated by colour and the genotypes of Stella are indicated by shape. (D) A bar chart of the odds ratio of TEs up and downregulated in KO 2-cell embryos compared to WT, intersected with ‘maternal TEs’ and ‘zygotic TEs’. For maternal TEs enriched in TEs upregulated in KO 2-cell, ***p=5.35 × 10^{-6}; for zygotic TEs enriched in TEs downregulated in KO 2-cell, ***p=8.13 × 10^{-7}. (E) Bar plots showing the relative expression of TE families (LTR-ERVL, LINE1-L1 and SINE-Alu) in WT (white) and KO (light blue) oocytes, 1-cell and 2-cell embryos, data analysed from single-cell / embryo RNA sequencing. Two-sided Wilcoxon rank sum test performed between WT and KO samples and statistically significant p-values stated. (F) Top is an illustration of the structure of the full-length MuERV-L element flanked by 5’ and 3’ LTRs. Bottom is boxplots of the relative expression (counts per million) of MuERV-L Int and MT2_Mm transcript in WT (white) and KO (light-blue) oocytes, 1-cell and 2-cell embryos (p<0.05 corresponds to * and p<0.01 corresponds to **). (G) Immunofluorescence staining against MuERV-L Gag antibody in 2-cell embryos. (Left) The top panel shows bright-field, middle panel is MuERV-L Gag (green) and bottom panel are merged images of MuERV-L and DAPI, which counterstains DNA. Representative projections of z-stacks are shown for WT and KO embryos. (Right) A boxplot of the z-stack quantifications of the relative fluorescence intensity of MuERV-L Gag protein between WT and KO 2-cell embryos. Also see Figure 3—figure supplements 1–3 and Figure 3—source data 1–2.

DOI: 10.7554/eLife.22345.014

The following source data is available for figure 3:

Source data 1. Uniquely mapped transposable element (TE) counts.
DOI: 10.7554/eLife.22345.015

Source data 2. Uniquely and multi-mapped transposable element (TE) counts.
DOI: 10.7554/eLife.22345.016
Figure 3—figure supplement 1. TEs are mis-expressed in the absence of Stella. (A) Heatmaps of the relative expression of individual families of LTR, LINE and SINE elements in oocyte (green), 1-cell (yellow) and 2-cell (red) embryos. Samples are clustered by row. Blue indicated relatively high expression while white indicates relatively low expression of TEs. (B) Bar charts of relative expression of LTR elements, LINE and SINE in WT (white) and KO (light blue) oocytes, 1-cell and 2-cell embryos. Two-sided Wilcoxon rank sum test performed between WT and KO samples and statistically significant p-values are stated. (C) Validation of MuERV-L Gag antibody. (Left) IF staining of an ESC reporter line for MuERV-L – 2C::tdTomato.
Figure 3—figure supplement 1 continued

(Macfarlan et al., 2012), illustrating the MuERV-L Gag (GFP) staining overlaps well with tdTomato+ ESC. (Right) IF staining showing robust detection of MuERV-L Gag (GFP) in 2-cell embryos, while it is virtually undetectable in metaphase II (MII) oocytes. DNA is counterstained with DAPI.
DOI: 10.7554/eLife.22345.017
Figure 3—figure supplement 2. Dppa3 does not affect MuERV-L expression in mESCs. (A) Left shows histogram plots of tdTomato expression in 2C::tdTomato mESCs 48 hr and 96 hr after addition of DOX to induce Dppa3 expression. Red represents tdTomato frequency with Dppa3 over-expression (OE), while blue represents empty vector transfection control. The horizontal bars depict the expression threshold set for dtTomato and the proportion of tdTomato+ cells in each condition is stated. Right shows a bar plot of Dppa3 expression 48 hr and 96 hr after addition of DOX. Dppa3 expression is normalized to a housekeeping gene (GAPDH) and relative to empty vector sample. (B) Left shows histogram plots of tdTomato expression in 2C::tdTomato mESCs 48 hr and 96 hr after siRNA transfection. Red represents tdTomato frequency with Dppa3 siRNA, while blue represents scramble siRNA control. The bar depicts the expression threshold set for dtTomato and the proportion of tdTomato+ cells in each condition is stated. Right shows a bar plot of Dppa3 expression 48 hr and 96 hr after siRNA transfection. Dppa3 expression is normalized to a housekeeping gene (GAPDH) and relative to scramble siRNA sample.

DOI: 10.7554/eLife.22345.018
Figure 3—figure supplement 3. Quality control of TE reads mapping and normalization. (A) A bar plot of the proportion of multi-mapped TE reads (Figure 3—source data 2) which can be unambiguously assigned at the level of class (repClass), family (repFamily) and element (repName) based on the RepeatMasker annotation provided by UCSC table browser. (B) A heatmap of the expression of LTR, LINE and SINE in oocyte (green), 1-cell (yellow) and 2-cell (red) embryos based on between-sample normalization method (See Materials and methods). Samples are clustered by row.
DOI: 10.7554/eLife.22345.019
Figure 4. A positive correlation between the expression of a subset of TEs and their nearest gene. (A) A Venn diagram illustrating a significant overlap between differentially expressed genes and genes within ±20 kb of differentially expressed TEs in WT v KO 2-cell embryos. (B) A histogram of the relationship between expression of TEs and genes in 2-cell embryos. (C) Chimeric transcripts from Snrpc, GM12617, Bex6, Gbp1, Brizbp, and Rbm8a. (D) Chimeric transcript expression in 2-cell embryos. (E) One-sided Wilcoxon rank sum test.
mean number of depleted TEs in Stella M/Z KO 2-cell embryos within ±10 kb of the TSS of a group of genes. The red line represents zygotically activated genes (ZAG, n = 698) that belong to WT class EU and differentially expressed in KO samples (adjusted p-value<0.05) (Figure 1—source data 4). The grey bars represent each of 10,000 random sets of 698 genes. (C) Top is schematic illustrations of the relationship between the TE and downstream gene, where grey box represents the TE and its orientation; white box represents the gene and its orientation. Bottom is scatter plots of qRT-PCR expression in 2-cell embryos. WT (white circle) n = 19 and KO (light blue triangle) n = 17. Spearman’s correlation analysis was performed and p<0.0001 corresponds to ****. (D) Characterisation of chimeric transcripts. (Middle) A schematic illustration of the alternative splicing event that occurred between the TE and the downstream gene. SD = splice donor site and SA = splice acceptor site. The endogenous starting codon (ATG) is indicated. (Left) The PCR product of the chimeric transcript where the forward primer originates from the TE and reverse primer originates from the gene. The PCR product is significantly shorter than the annotated distances between them, confirming a splicing event. (Right) Sanger sequencing chromatographs from the PCR product for each chimeric transcript, confirming the site of chimeric junction. * Indicates a different nucleotide to annotation. (E) Box plots of single-embryo qRT-PCR of the relative expression of chimeric transcripts in WT (white) and KO (light blue) 2-cell embryos. p<0.01 corresponds to ** and p<0.001 corresponds to ***. All expression data are normalised to three housekeeping genes and relative to 1 WT embryo. Also see Figure 4—figure supplement 1.

DOI: 10.7554/eLife.22345.020
Figure 4—figure supplement 1. A subset of TEs is positively correlated with its nearest genes. (A) A histogram of Spearman’s correlation of the expression between a gene and its nearest TE within a distance of 1Mbp. The red line indicates correlation >0.7. 387 TE / gene pair correlation >0.7 while 224 TE/ gene pair correlation <−0.7. (B) (Left) A bar chart of MuERV-L int transcript expression in individual WT (white) and KO (grey) 2-cell embryos. Red star indicates 3 KO embryos expressing the lowest MuERV-L transcript (KO2,8,1) while green circle highlights KO6, the KO embryo which expresses the highest MuERV-L levels. The right panel shows a heatmap of expression of genes identified to make a chimeric junction with MuERV-L (Macfarlan et al., 2012). Heatmap is normalised by row and clustered by column.

DOI: 10.7554/eLife.22345.021
Figure 5. MuERV-L plays a functional role during pre-implantation development. (A) A schematic diagram illustrating the experimental setup. (B) Left is an illustration of the structure of the MuERV-L element (GenBank accession number: Y12713), depicting the exact site of siRNA target. Right is a table showing the MuERV-L siRNA targets and their efficiency. (C) MuERV-L pol transcript expression - 20μM. (D) MuERV-L Gag protein expression - 20μM. (E) Percentage of total embryos on Day 2, Day 3, and Day 4. (F) MuERV-L pol transcript expression - 80μM. (G) MuERV-L Gag protein expression - 80μM. (H) Percentage of total embryos on Day 2.
Figure 5 continued

showing the number of full-length MuERV-L elements targeted by MuERV-L siRNA and the number of off-targets. (C) Box plots of single-embryo qRT-PCR of MuERV-L pol transcript and (D) MuERV-L Gag protein (fluorescence) intensity in uninjected controls, 20 µM scramble siRNA or 20 µM MuERV-L siRNA injection 2-cell embryos. (Right) Representative z-stack projections of immunofluorescence (IF) staining against MuERV-L Gag in 2-cell embryos. Two-tail Wilcoxon Rank Sum Test was performed for both (C) and (D) and p<0.01 corresponds to *, not significant (n.s.) or are otherwise stated. (E) The effect of MuERV-L siRNA on developmental progression of pre-implantation embryos. (Left) Bar graphs illustrating the number of embryos observed at different stages on day 2–4 of in-vitro culture. Blue background indicates area of interest. Experiments were repeated twice and the circle dots represent the data points for each replicate. A total of n = 17, n = 58 and n = 53 embryos were analysed for uninjected, scramble and MuERV-L siRNA injections respectively. One-tailed Student’s T-test performed and there were no statistical difference between uninjected, scramble or MuERV-L siRNA injected groups. (Middle) Day five bright field images of late blastocysts injected with scramble or MuERV-L siRNA. (Right) A box plot of IF quantification of number of DAPI+ cells in the late blastocyst stage on day five injected with 20 µM of scramble (white) or MuERV-L (grey) siRNA. (F and G) are box plots of single-embryo qRT-PCR of MuERV-L pol transcript and MuERV-L Gag protein (fluorescence) intensity in uninjected control, 80 µM scramble siRNA and 80 µM MuERV-L siRNA injected 2-cell embryos. (Right) Representative z-stack projections of IF staining against MuERV-L Gag antibody in 2-cell embryos. Two-tail Wilcoxon Rank Sum Test was performed for both (F) and (G) and p<0.01 corresponds to *, not significant (n.s.) or are otherwise stated. (H) A bar graph plotting the number of embryos observed at each stage in day two in-vitro culture in uninjected embryos, 80 µM scramble (white) or MuERV-L (grey) siRNA injection. Experiments were repeated twice and the circle dots represent the data points for each replicate. A total of n = 17, n = 54 and n = 50 embryos were analysed for uninjected, scramble and MuERV-L siRNA respectively. One-tailed Student’s T-test performed. p<0.05 corresponds to * and p<0.01 corresponds to **.

DOI: 10.7554/eLife.22345.022
Figure 5—figure supplement 1. Chimeric transcript expression in MuERV-L knockdown embryos. A scatter dot plot of qRT-PCR analysis of chimeric transcripts in uninjected (circle, n = 4), 80 µM scramble siRNA (square, n = 12) and 80 µM MuERV-L siRNA (triangle, n = 8) treated 2-cell embryos. The median and interquartile range is indicated. All transcripts are normalised to housekeeping genes, relative to one uninjected embryo. Two-sided Wilcoxon rank sum test was performed and statistically significant results are stated.

DOI: 10.7554/eLife.22345.023