Two Complement Receptor One alleles have opposing associations with cerebral malaria and interact with α-thalassaemia.

1

D. Herbert Opi1,2§, Olivia V. Swann2§*, Alex Macharia1, Sophie Uyoga1, Gavin Band3,
Carolyne Ndila1, Ewen M. Harrison2, Mahamadou A. Thera4, Abdoulaye K. Kone4,
Dapa A. Diallo4, Ogobara K. Doumbo4, Kirsten E. Lyke5, Christopher V. Plowe5,
Joann M. Moulds6, Mohammed Shebe1, Neema Mturi1, Norbert Peshu1, Kathryn
Maitland1,7, Ahmed Raza2, Dominic P. Kwiatkowski3,8, Kirk A. Rockett3, Thomas N.
Williams1,7$, J. Alexandra Rowe25

1Kenya Medical Research Institute-Wellcome Trust Research Programme, P. O. Box
230, Kilifi, 80108, Kenya. 2Centre for Immunity, Infection and Evolution, Institute of
Immunology and Infection Research, School of Biological Sciences, University of
Edinburgh, Edinburgh EH9 3FL, UK. 3Wellcome Trust Centre for Human Genetics,
University of Oxford, Oxford, UK. 4Malaria Research and Training Centre, Faculty of
Medicine, Pharmacy, and Dentistry, University of Bamako, BP1805 Bamako, Mali.
5Division of Malaria Research, Institute for Global Health, University of Maryland
School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA.
6Lifeshare Blood Centers, 8910 Linwood Avenue, Shreveport, LA 71106, USA.
7Department of Medicine, Imperial College, St Mary’s Hospital, Praed Street, London
W21NY, UK. 8Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA,
UK.

§ Equal contributions.

$ Equal contributions.
*Corresponding author: Dr Olivia Swann, Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, University of Edinburgh, Ashworth Laboratories, Charlotte Auerbach Rd, Edinburgh, EH9 3FL, UK. Email: olivia.swann@ed.ac.uk; Telephone: +44-1316513636

Current address for D. Herbert Opi: Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, 3004, Australia

Short title: CR1 Knops blood group polymorphisms associated with cerebral malaria
Abstract

Malaria has been a major driving force in the evolution of the human genome. In sub-Saharan African populations, two neighbouring polymorphisms in the Complement Receptor One (CR1) gene, named Sl2 and McCb, occur at high frequencies, consistent with selection by malaria. Previous studies have been inconclusive. Using a large case-control study of severe malaria in Kenyan children and statistical models adjusted for confounders, we estimate the relationship between Sl2 and McCb and malaria phenotypes, and find they have opposing associations. The Sl2 polymorphism is associated with markedly reduced odds of cerebral malaria and death, while the McCb polymorphism is associated with increased odds of cerebral malaria. We also identify an apparent interaction between Sl2 and α-thalassaemia, with the protective association of Sl2 greatest in children with normal α-globin. The complex relationship between these three mutations may explain previous conflicting findings, highlighting the importance of considering genetic interactions in disease-association studies.
Introduction

Complement Receptor One (CR1) plays a key role in the control of complement activation and the immune clearance of C3b/C4b coated immune complexes (1). CR1 is expressed on a range of cells including red blood cells (RBCs), leucocytes and glomerular podocytes (1). A number of CR1 polymorphisms have been described, including four molecular weight variants and variation in the number of CR1 molecules expressed on the surface of RBCs (reviewed by (2, 3)). Missense mutations of CR1 form the basis of the Knops blood group system of antigens, that includes the antithetical antigen pairs of Swain-Langley 1 and 2 (SI1 and SI2) and McCoy a and b (McC^a and McC^b) (4). The non-synonymous single nucleotide polymorphisms (SNPs) A4828G (rs17047661) and A4795G (rs17047660) within exon 29 of the CR1 gene give rise to the SI1/SI2 and McC^a/McC^b alleles, encoding R1601G and K1590E respectively (5) (Figure 1).

CR1 has been implicated in the pathogenesis of multiple diseases, with epidemiological and in vitro data suggesting a role in malaria (3). The SI2 and McC^b alleles occur at high frequencies only in populations of African origin (Figure 2) (6-16), which, given the historical prevalence of the malaria-causing parasite Plasmodium falciparum in sub-Saharan Africa, might suggest a possible survival advantage against malaria (17, 18). CR1 is a receptor for the invasion of RBCs by Plasmodium falciparum merozoites (19, 20) and for the formation of clusters of P. falciparum-infected RBCs (iRBCs) and uninfected RBCs, known as rosettes (17). The rosetting phenotype is associated with severe malaria in sub-Saharan Africa (21), with pathological effects likely due to the obstruction of microcirculatory blood flow (22). RBCs from donors with the high frequency African CR1 Knops mutations bind
poorly to the parasite ligand *P. falciparum* erythrocyte membrane protein-1 (PfEMP1) that mediates rosetting by iRBCs, potentially protecting against severe malaria by reducing rosetting (17). Nevertheless, epidemiological data supporting this possibility are contradictory, with some studies showing an association between *Sl* and *McC* genotypes and severe malaria (6, 15, 23) and others finding none (7, 14, 24-27). Some previous studies have not considered *Sl* and *McC* genotypes together in the same statistical model, despite their physical adjacency in the CR1 molecule, nor taken into account potential interactions with other malaria resistance genes. Given the important biological role of CR1 in malaria host-parasite interactions, we aimed to clarify the relationship between the *Sl* and *McC* alleles and severe malaria in a case-control study of Kenyan children. These investigations were supplemented with a separate longitudinal cohort study of Kenyan children, examining the associations of these alleles with uncomplicated malaria and other common childhood illnesses. Finally, we also investigated the influence of these alleles on the formation of *P. falciparum* rosettes, as a potential functional explanation for these results through *ex vivo* laboratory studies.

Results

The Sl2/Sl2 genotype is associated with protection against cerebral malaria and death in the Kenyan case-control study

Data were obtained from 5545 children enrolled in a case-control study of severe malaria (Figure 3). The general characteristics of the cases and controls are shown in Supplementary File 1A, and the characteristics of the dataset by *Sl* and *McC* genotype are shown in Supplementary File 1B. The *Sl2* and *McCb* allele frequencies (0.68 and 0.16 respectively) were comparable to other African populations (Figure 2). There
was no significant deviation from Hardy-Weinberg equilibrium for the *Sl* or *McC* genotypes among controls (Supplementary File 1C).

Using a simple logistic regression model containing only *Sl* and *McC* genotypes (referred to as the unadjusted analysis below), we found a non-significant association between the *Sl2* allele and severe malaria overall, with the *Sl2/Sl2* genotype being associated with an OR for severe malaria of 0.90 (95% CI 0.79-1.01; \(p=0.07 \)) (Supplementary File 1D). We attempted to refine this signal by fitting a more complete model to the data, including the potential confounding factors of ethnicity, location, sickle cell trait, ABO blood group and α⁺thalassaemia genotype, as well as considering possible first order interactions between terms (referred to as the full adjusted analysis below). A significant protective association was observed for *Sl2* in the recessive form (adjusted Odds Ratio (aOR) 0.78; 95% CI 0.64-0.95; \(p=0.011 \)), which was most marked for cerebral malaria (aOR 0.67; 0.52-0.87; \(p=0.006 \)) (Figure 4 and Table 1). The *Sl2/Sl2* genotype was also associated with significant protection against death from severe malaria (aOR 0.50; 0.30-0.80; \(p=0.002 \)), and death among children admitted with a specific diagnosis of cerebral malaria in the full adjusted analysis (aOR 0.44; 0.23-0.78; \(p=0.007 \)) (Figure 4 and Table 1). Unexpectedly, we observed a significant interaction between *Sl2* and α⁺thalassaemia genotype, such that the protective associations of *Sl2* were only seen in individuals of normal α-globin genotype (Figure 5). We found no evidence for an association between *Sl2* and any other clinical form of severe malaria (Table 1), or with *P. falciparum* parasite density (Figure 6).

The MeC\(^b\) allele is associated with increased susceptibility to cerebral malaria and death in the Kenyan case-control study
The unadjusted analysis showed a borderline significant association between McC^b and increased susceptibility to severe malaria overall (OR 1.17; 1.00-1.25; p=0.056, Supplementary File 1D), and significant associations with increased risk of cerebral malaria (OR 1.21; 1.05-1.39; p=0.008) and death (OR 1.34; 1.00-1.77; p=0.046, Supplementary File 1D). Similar associations were seen in the full adjusted analysis, although this only reached statistical significance for cerebral malaria (aOR 1.19; 1.10-1.38; p=0.025 (additive model), Figure 4 and Table 1). We found no association between McC^b and any other clinical form of severe malaria (Table 1 and Supplementary File 1D) or with $P. falciparum$ parasite density (Figure 6).

Analysis of haplotypic effects and genotype combinations

We considered whether the observed results for Sl and McC could be consistent with the effect of a single haplotype spanning Sl and McC, or with the effect of a specific genotype combination. Sl and McC are 33bp apart and are in linkage disequilibrium, with only three of four possible haplotypes observed in our data. We therefore reanalysed the data under a haplotype model in which the per-individual count of each of the three observed haplotypes was included as a predictor along with the potential confounding factors, as well as under a genotypic model in which the count of each of the six possible Sl/McC genotype combinations was included as a predictor (Appendix 2). These analyses suggest an additive protective association with the $Sl2/McC^a$ haplotype (aOR=0.85; 0.75-0.96; P=0.007), with broadly consistent results observed for analysis of genotype combinations (Supplementary File 1E and 1F). Thus, the opposing effects of $Sl2$ and McC^b observed above could plausibly result from the protective association of a single haplotype at the locus, although this is
difficult to distinguish from the individuals SNPs acting independently and additively based on the statistical evidence alone.

The Sl2/Sl2 genotype was associated with protection against uncomplicated malaria in the Kenyan longitudinal cohort study. We next examined the association between Sl2 and McCb alleles and uncomplicated malaria in a longitudinal prospective study of 208 Kenyan children. General characteristics of the cohort study population by Sl and McC genotypes are shown in Supplementary File 1G. After adjusting for variables known to influence malaria susceptibility, the Sl2 allele was associated with a >50% reduction in the incidence of uncomplicated malaria (additive model) (Table 2; the number of episodes, incidence and unadjusted Incidence Rate Ratios for the diseases studied in the longitudinal cohort are shown in Supplementary File 1H, 1I and 1J). Once again, a significant interaction was seen with α+ thalassaemia, such that the protective association of Sl2 was only demonstrated in children of normal α-globin genotype (Table 3). We found no significant association between the McCb allele and uncomplicated malaria (Table 2).

The McCb allele was associated with protection from common non-malarial childhood diseases in the Kenyan longitudinal cohort study. The data shown above are incompatible with malaria being the selective pressure for McCb in the Kenyan population, and suggest that other life-threatening childhood diseases may have been responsible for selection of McCb. We therefore used the same longitudinal cohort study to investigate whether the McCb and Sl2 alleles influence the risk of other childhood diseases. McCb was associated with borderline
significant protection against several common infectious diseases including LRTIs, URTIs and gastroenteritis (Table 2). *Sl2* was associated with a borderline reduced incidence of gastroenteritis (Table 2). The association of *McC* with gastroenteritis was predominantly seen in children of normal α-globin genotype, echoing the interaction seen with *Sl2* and malaria.

The *Sl2* allele was associated with reduced ex vivo rosette frequency in *P. falciparum* clinical isolates from Mali.

A previous *in vitro* study based on a culture-adapted *P. falciparum* parasite line suggested that RBC from *Sl2* genotype donors had a reduced ability to form rosettes, providing a possible mechanism for protection against severe malaria (17). *P. falciparum* clinical isolates were not available from the Kenyan case-control study to investigate this potential mechanism in that population. However, the association of *Sl* and *McC* genotypes with ex vivo *P. falciparum* rosette frequency could be examined using 167 parasite isolates from a case-control study of children with clinical malaria in Mali (21). Analysis of this small case-control study suggested a protective association between the *Sl2/Sl2* genotype and cerebral malaria (aOR 0.35, 95% CI 0.12-0.89, *p*=0.024) and the *Sl2/Sl2-McCa/MCcα* genotype combination was associated with protection against cerebral malaria (aOR 0.14, 95% CI 0.02-0.84, *p*=0.031, Appendix 1). As such, we considered samples from this population to be appropriate for testing rosetting as a potential mechanism of action. The median rosette frequency (percentage of iRBC that form rosettes) was significantly lower in *P. falciparum* isolates from malaria patients with one or more *Sl2* alleles than in isolates from *Sl1/Sl1* donors (Figure 7), whereas *McC* genotype had no significant associations with *P. falciparum* rosette frequency (Figure 7).
Discussion

The data presented here provide epidemiological evidence supporting a role for CR1 in the pathogenesis of cerebral malaria. Two neighbouring CR1 polymorphisms belonging to the Knops blood group system of antigens had opposing associations on risk of cerebral malaria. The \(SI2/SI2\) genotype was associated with protection against cerebral malaria and death, while the \(McC^b\) allele was associated with increased susceptibility (Figure 4 and Table 1). The \(SI2\) allele was also associated with significant protection against uncomplicated malaria, whereas the \(McC^b\) allele was associated with borderline protection against several common infections in Kenyan children (Table 2). The protective association of \(SI2\) against cerebral malaria, death and uncomplicated malaria was influenced by \(a^+\)thalassaemia, being most evident in children of normal \(a\)-globin genotype.

The protective association between \(SI2\) and cerebral malaria was first reported in a small case-control study from western Kenya (6), but has remained controversial, especially as most prior studies have been underpowered. Hence, our study is the first adequately powered independent sample set that replicates the protective association between \(SI2\) and cerebral malaria. Other studies found no consistent significant associations between \(SI\) genotypes and severe malaria (7, 14, 24-27), including a recent multi-centre candidate gene study that included the sample set analysed here (27). A weak association between \(McC^b\) and an increased odds ratio for cerebral malaria was shown in the multi-centre study (27).

The complex interactions between \(SI2\), \(McC^b\) and \(a^+\)thalassaemia revealed by our study provide possible reasons for the previous inconsistent findings. Although \(SI2\)
was associated with protection against cerebral malaria in our study, McC^b and
$\alpha^+\text{thalassaemia}$ both counteracted this effect. The protective association of $Sl2$ was
observed most clearly when both McC^b and $\alpha^+\text{thalassaemia}$ genotypes were included
in the statistical model, something that has not been considered in previous studies. It
is possible that some of the other discrepant genetic associations with severe malaria
(27) might result from interactions between multiple loci that vary across populations
and may not be revealed by standard analyses. Biologically, it makes sense to account
for McC genotype when investigating associations with $Sl2$ and vice versa, as the two
polymorphisms encode changes only 11 amino acids apart in the CR1 molecule
(Figure 1). The possibility that the observed association might be due to a haplotype
rather than independent effects of Sl and Mc cannot be discounted.

The interaction we describe here between $Sl2$ and $\alpha^+\text{thalassaemia}$ is reminiscent of the
epistatic interactions that have been observed between $\alpha^+\text{thalassaemia}$ and other
malaria-protective polymorphisms including sickle cell trait ($HbAS$) (28) and
haptoglobin (29). It is possible, therefore, that $\alpha^+\text{thalassaemia}$ has a broad effect on
multiple malaria-protective polymorphisms, influencing their restricted global
frequencies (30), and contributing to the discrepant outcomes of previous association
studies. Recent large genetic association studies on malaria do not include data on
$\alpha^+\text{thalassaemia}$, because the causal deletions are not typed on automated platforms
(27), instead requiring manual genotyping using labour-intensive PCR-based methods
(31). Replication of the $Sl2/\alpha^+\text{thalassaemia}$ interaction will be required, and we
suggest that $\alpha^+\text{thalassaemia}$ genotype should be included as an important confounding
variable in future malaria epidemiological studies and that efforts should continue to
discover the mechanism of protection afforded by α^+thalassaemia, which remains controversial (32-36).

We examined one possible biological mechanism by which the $SI2$ allele might influence cerebral malaria by studying *P. falciparum* rosetting, a parasite virulence factor associated with severe malaria in African children (21). Previous *in vitro* experiments showed that CR1 is a receptor for *P. falciparum* rosetting on uninfected RBCs, and that RBCs serologically typed as negative for the Sl1 antigen (likely to be from donors with $SI1/SI2$ or $SI2/SI2$ genotypes) (5) show reduced binding to the parasite rosetting ligand PfEMP1 (17). In this study, we found a significantly lower median rosette frequency in *P. falciparum* parasite isolates from Malian patients with $SI2$ genotypes compared to $SI1/SI1$ controls (Figure 4). Therefore, similar to HbC (37), blood group O (38) and RBC CR1 deficiency (39), it is possible that reduced rosetting and subsequent reduced microvascular obstruction (22) may in part explain the protective association of $SI2$ against cerebral malaria. However, given the protective association of $SI2$ with uncomplicated malaria, and the possible associations of $SI2$ and McC^b with other common childhood infections, it seems likely that the Knops polymorphisms may be associated with broader effects, for example on the complement regulatory functions of CR1. Previously, we have shown that neither cofactor activity for the breakdown of C3b and C4b nor binding to C1q are influenced by the $SI2$ and McC^b mutations (40). In addition, we can find no association between Knops genotype and CR1 clustering on erythrocytes (41, 42). However, other potential effects such as altered immune complex binding and processing or activation of the complement lectin pathway via mannose-binding lectin (43) have not yet been investigated.
Our studies have several limitations: McC^b homozygotes are relatively infrequent in Kenya, which limited our power to detect associations with McC^b in the homozygous state. Our longitudinal cohort study generated several values of borderline statistical significance for the McC^b allele which are inconclusive. Studies with larger sample sizes will be needed to examine the specific associations of McC^b on assorted childhood diseases. Another limitation is that our functional (Mali) and epidemiological (Kenya) studies were conducted in different populations. The mechanisms of rosetting and associations with malaria severity are thought to be similar across sub-Saharan Africa (44), suggesting that data collected in either location are likely to be comparable. Furthermore, examination of a small set of cerebral malaria cases and controls from Mali suggests a protective association between $Sl2/Sl2$ genotype and cerebral malaria also occurs in this setting (Appendix 1). Ideally, future epidemiological and functional studies of specific polymorphisms on malaria should be conducted within a single population, although this remains logistically challenging.

In conclusion, we show that two high frequency CR1 polymorphisms have opposing associations with cerebral malaria and death in Kenyan children. While the $Sl2$ allele may have reached high frequency in African populations by conferring a protective advantage against cerebral malaria, our data suggest that McC^b arose due to a survival advantage afforded against other non-malarial infections (9, 10). $Sl2$ may in part protect against cerebral malaria by reducing rosetting, but additional effects seem likely. Further work is needed to examine both the epidemiological effects of the Knops polymorphisms on diverse childhood diseases, and the biological effects of the
Sl2 and McCb polymorphisms on CR1 function. Future epidemiological studies should account for the effect of α⁺thalassaemia on the associations between Sl2 and McCb on malaria and other infectious diseases.

Materials and methods

Datasets studied

This study uses data from a Kenyan case-control study of severe malaria, with samples collected between 2001 and 2010, a Kenyan longitudinal cohort study, with samples collected between 1998 and 2001 and a Malian case-control study performed between July 2000 and December 2001. Historic datasets (i.e. >10 years old) are widely used in genetic epidemiological studies of malaria due to the logistical challenges of sample collection in malaria endemic countries and the changing epidemiological patterns of disease.

The Kenyan study area

All epidemiological and clinical studies in Kenya were carried out in the area defined by the Kilifi Health and Demographic Surveillance System (KHDSS), with Kilifi County Hospital (KCH) serving as the primary point of care (45). Malaria transmission is seasonal in this region following the long and short rains. An Entomological Inoculation Rate (EIR) of up to 50 infective bites per person per year was measured in the late 1990s (46), but transmission has since declined (47).

The Kenyan case-control study
Between January 2001 and January 2008, children aged <14 years who were admitted to KCH with severe malaria were recruited as cases, as described previously (27), except that children who were resident outside the KHDSS were excluded (Figure 3). Severe malaria was defined as the presence of blood-film positive *P. falciparum* infection complicated by one or more of the following features: cerebral malaria (CM) (a Blantyre coma score (BCS) of <3) n=943; severe malarial anaemia (SMA) (haemoglobin concentration of <5g/dl) n=483; respiratory distress (RD) (abnormally deep breathing) n=522 or “other severe malaria” (no CM, SMA or RD but other features including prostration (BCS 3 or 4), hypoglycaemia and hyperparasitaemia) n=318. Controls (n=3829) consisted of children 3-12 months of age who were born consecutively within the KHDSS study area between August 2006 and September 2010 and were recruited to an ongoing genetic cohort study (48). As such, controls were representative of the general population in terms of ethnicity and residence but not of age. The use of controls who are considerably younger than cases differs from the classical structure of a case-control study. However, this method (using cord blood or infant samples as controls) has been widely used in African genetic association studies (eg. (49-51)), and is the most logistically feasible way of collecting sufficiently large numbers of control samples in many sub-Saharan African settings.

Sample processing and quality control for the Kenyan case-control study

The *Sl* and *McC* polymorphisms were originally typed as part of a larger study by Rockett et al. (27), which included case-control data from 12 global sites. In Kenya, 0.5ml blood samples were collected into EDTA tubes and DNA extracted using Qiagen DNeasy blood kits (Qiagen, Crawley, UK). DNA was stored at -20 °C and shipped frozen to Oxford. Sample processing is described in detail in the
supplementary methods of Rockett et al. (27). Briefly, samples underwent a whole-
genome amplification step using Primer-Extension Pre-Amplification. Genotyping
was performed using SEQUENOM® iPLEX® Gold with 384 samples processed per
chip. In Rockett et al.’s study, samples were typed for 73 SNPs; 55 of these SNPs
were chosen on the basis of a known association with severe malaria, 3 SNPs were
used to confirm gender and the remaining 15 SNPs to aid quality control. Samples
were excluded if they did not have clinical data for gender or if genotypic gender of
the sample did not match clinical gender. Samples were included if they were
successfully genotyped for more than 90% of 65 “analysis” SNPs. The Kenyan
samples studied by Rockett et al. originally comprised 2741 cases of severe malaria
and 4183 controls. After the quality control of both phenotypic and genotypic data
described above, 2268 cases and 3949 controls were analysed by Rockett et al. (27).

Comparison between this study and Rockett et al. (27)

The 2268 Kenyan cases and 3949 controls that were analysed by Rockett et al. (27)
were the starting point for our study. Children living outside the KHDSS were
excluded, because this allowed us to use “location” as a random effect in the final
statistical model, which greatly improved model fit. Children with missing genotypes
(S{l, M{C, sickle cell, a' thalassaemia or ABO blood group) were also excluded (Figure
3). After applying these exclusion criteria, 1,716 severe malaria cases and 3829
community controls were available for analysis.

Hence, the number of severe malaria cases differs between our study and
Rockett et al. (27) due to differing exclusion criteria. The inclusion of the severe
malaria cases who lived outside the KHDSS into our statistical models did not alter
the findings of our analysis (Supplementary File 1K). In both our study and Rockett et
al. (27), the control samples were identical and all came from within the KHDSS. Our study has 120 fewer controls than Rockett et al. (27) due to missing genotypes, because we only used controls for whom full $Sl, McC, \text{sickle cell genotype,}$ $\alpha^+\text{thalassaemia genotype and ABO blood group data were available.}$

Our analytical methods differed from Rockett et al. (27), in that we included both Sl and McC in the same statistical model and adjusted for confounders, whereas Rockett et al. examined each SNP independently.

The Kenyan longitudinal cohort study

This study has been described in detail previously (52). Briefly, this study was established with the aim of investigating the immuno-epidemiology of uncomplicated clinical malaria and other common childhood diseases in the northern part of the KHDSS study area, approximately 15km from KCH (53). The study was carried out between August 1998 and August 2001 involving children aged 0-10 years recruited either at the start of the study or at birth when born into study households during the study period. They were actively followed up on a once-weekly basis for both malaria and non-malaria related clinical events. In addition, on presentation with illnesses, cohort members were referred to a dedicated outpatient clinic for more detailed diagnostic tests. The cohort was monitored for the prevalence of asymptomatic $P. falciparum$ infection through four cross-sectional surveys carried out in March, July and October 2000 and June 2001. Exclusion criteria included migration from the study area for more than 2 months, the withdrawal of consent and death. Uncomplicated clinical malaria was defined as fever (axillary temperature of $>37.5^\circ\text{C}$) in association with a $P. falciparum$ positive slide at any density. The most common non-malaria related clinical events reported during the study period included
upper respiratory tract infections (URTIs), lower respiratory tract infections (LRTIs),
gastroenteritis, helminth infections and skin infections, as defined in detail previously
(53). Malaria negative fever was defined as an axillary temperature of >37.5°C in
association with a slide negative for *P. falciparum*. This analysis includes 208
children aged <10 years for whom full *Sl, McC, sickle cell genotype, α-thalassaemia*
genotype and ABO blood group data were available.

The Malian case-control study

This study has been described in detail previously (54). Briefly, between July 2000
and December 2001, children ranging from 1 month–14 years of age were recruited
into a case-control study in the Bandiagara region in East Central Mali, an area of
intense and seasonal *P. falciparum* malaria infection. In order to address the specific
question of whether the *Sl2/Sl2* genotype is associated with protection against cerebral
malaria in Mali, only the subset of children suffering strictly-defined cerebral malaria
(a BCS of <3, with other obvious causes of coma excluded, n=34) or uncomplicated
malaria (n=184, symptomatic children with *P. falciparum* parasitaemia and an
axillary temperature ≥37.5°C, in the absence of other clear cause of fever), and for
whom *Sl* and *McC* genotyping was available were analysed.

Ex vivo rosetting

The rosette frequency (percentage of mature infected erythrocytes forming rosettes
with two or more uninfected erythrocytes) of *P. falciparum* isolates from patients
recruited into the Mali case-control study was determined by microscopy after short
term culture (24–48 hours), as described in detail previously (21). Of the 209 isolates
studied previously (21), 167 were successfully genotyped for the *Sl* and *McC* alleles
and are analysed here. The rosetting assays were performed before we genotyped the study participants, excluding observer bias. The rosette frequency of parasites from hosts with differing \(Sl \) and \(McC \) genotypes were compared by a Kruskal-Wallis test with Dunn’s multiple comparisons (Prism v6.0, Graphpad Inc, San Diego, California).

Laboratory procedures

DNA was extracted either from fresh or frozen whole blood by proprietary methods using either the semi-automated ABI PRISM® 6100 Nucleic acid prep station (Applied Biosystems, Foster City, CA, USA) or using QIAamp DNA Blood Mini Kits (Qiagen, West Sussex, United Kingdom). SNPs giving rise to the \(Sl \) and \(McC \) alleles were genotyped using either the SEQUENOM iPLEX® Gold multiplex system (Agena Biosciences, Hamburg, Germany) (Kenyan study) (27) or by an established PCR-RFLP method as described previously (Malian study) (8). Genotyping for sickle cell trait (HbAS) and the common African \(\alpha^+ \)thalassaemia variant caused by a 3.7kb deletion in the \(HBA \) gene were performed by PCR as described in detail elsewhere (31, 55).

Statistical analysis

The effects of the \(Sl \) and \(McC \) alleles were examined in genotypic, dominant, recessive and additive models of inheritance, with the best fitting model selected based on Akaike information criterion (AIC). Analyses for the Kilifi case-control study were performed in R (R Foundation for Statistical Computing, Vienna, Austria) (56) using the “ggplot2”, “lme4”, and “HardyWeinberg” packages (57-59), while analyses for the longitudinal study were performed in Stata v11.2 (StataCorp, Texas,
USA). In both studies, a p value of <0.05 was considered statistically significant. Graphs were generated using R or Prism v6.0 (Graphpad Inc, San Diego, California).

For the Kenyan case-control study, Sl and McC genotype were included together in a statistical model to examine their associations with malaria susceptibility. Odds Ratios (ORs) and 95% Confidence Intervals (CI) were generated using mixed effect logistic regression analysis both with and without adjustment for ethnicity and location of residence as random effects, and sickle cell genotype, α+thalassaemia genotype, and ABO blood group (O or non-O) as fixed effects (variables which have been associated with malaria susceptibility in multiple previous studies on this population) (24, 27-29, 38, 53, 60, 61). The ethnicity variable was compressed from 28 categories to four; Giriama (n=2728), Chonyi (n=1800), Kauma (n=588) and other (n=429). Binary parameterization of the α+thalassaemia variable was used, i.e. comparing those children with no α+thalassaemia alleles against those with one or more α+thalassaemia alleles. This division was chosen in accordance with a previous report showing that both heterozygous and homozygous α+thalassaemia genotypes are associated with protection against severe malaria and death in the Kilifi area (62). 2000 bootstrapped iterations were run to give 95% CIs and p values.

For the Kenyan longitudinal cohort study, Incidence Rate Ratios (IRRs) and 95% CIs were generated using a random effects Poisson regression model that took into account within-person clustering. Data were examined with and without adjustment for confounding by McC genotype (for Sl analyses), Sl genotype (for McC analyses) sickle cell genotype, α+thalassaemia genotype, ABO blood group, ethnic group, season (defined as 3 monthly blocks), and age in months as a continuous variable.
For the Malian case-control study, ORs and 95% CIs were computed using mixed effect logistic regression analysis with adjustment for location of residence as a random effect and age, ABO blood group (O or non-O) and ethnicity (Dogon or non-Dogon) as fixed effects. α^+thalassaemia genotyping was not available for the Malian study and sickle cell trait is extremely uncommon in this population, therefore neither variable was included in the model. 2000 bootstrapped iterations were run to give adjusted ORs.

Corrections for multiple comparisons were not performed, instead all adjusted odds ratios, confidence intervals and p values have been clearly reported. This approach has been repeatedly advocated, particularly when dealing with biological data (63-67). A detailed description of the Malian dataset is given in Appendix 1, and a detailed description of the statistical model fitting for the Kenyan studies is given in Appendix 2.

Ethical statement

Written informed consent was obtained from the parents or legal guardians of all participants. The Kenyan studies received ethical approval from the Kenya Medical Research Institute National Ethical Review Committee (approval number SCC1192 for the case-control study and SCC3149 for the longitudinal cohort study), and the Malian studies received ethical approval from the University of Bamako and the University of Maryland (approval number #0899139), and were conducted in accordance with the Declaration of Helsinki.
Acknowledgments

We thank Johnstone Makale, Metrine Tendwa and Emily Nyatichi for laboratory support and all staff involved with data and sample collection at the Kilifi County Hospital, the KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya and the Bandiagara Malaria Project Team, Bandiagara, Mali. We also thank the study participants and their parents for consenting to this study. This paper was published with permission from the Director of the Kenya Medical Research Institute (KEMRI).

Funding

This work was funded by the Wellcome Trust through Senior Research Fellowships awarded to JAR (grant no 084226) and TNW (grant nos 091758, 202800), through core support to the KEMRI-Wellcome Trust Programme (grant no 203077) and through a sub-grant from a Wellcome Trust Strategic Award (grant no 084538) to DHO. OVS is funded by the Wellcome Trust through the Edinburgh Clinical Academic Tract (ECAT) scheme (grant no 101910/Z/13/Z). The work was partially funded by the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement 242095 and by the UK Medical Research Council (G0600718). MalariaGEN is supported by the Wellcome Trust (WT077383/Z/05/Z) and by the Foundation for the National Institutes of Health (566) as part of the Bill & Melinda Gates Grand Challenges in Global Health Initiative. The Resource Centre for Genomic Epidemiology of Malaria is supported by the Wellcome Trust (090770/Z/09/Z). Support was also provided by the Medical Research Council (G0600718). The Wellcome Trust also provides core awards to the Wellcome Trust Centre for Human Genetics (090532/Z/09/Z) and to the Wellcome Trust Sanger Institute (098051). DK also receives support from the Medical Research Council.
(G19/9). The Mali study was supported by contract no. N01-AI-85346 from the National Institutes of Health.

Role of funding source
The funders played no role in study design, analyses, interpretation or submission.

Declaration of interests
The authors declare no conflicts of interest.
References

Figure Legends

Figure 1. Diagram of the most common Complement Receptor 1 size variant (CR1*1).

Adapted from Schmidt et al., 2015 (3) and Krych-Goldberg et al., 2002 (2). The ectodomain of CR1 is composed of 30 Complement Control Protein (CCP) domains which are organized into four “Long Homologous Repeats” (LHR). The single nucleotide polymorphisms determining the Sl and McC antigens of the Knops blood group system are found in CCP 25 in LHR-D (red). Various functions have been mapped to different regions of CR1, including Site 1 (decay accelerating activity for C3 convertases; binding of the complement component C4b and the *P. falciparum* invasion ligand PfRH4), and Site 2 (cofactor activity for Factor I; binding of C3b and C4b and *P. falciparum* rosetting). LHR-D is thought to bind C1q and Mannose Binding lectin (MBL), but the specific binding sites have not been mapped. TM, transmembrane region; CYT, cytoplasmic tail.

Figure 2. Global distribution of the CR1 Knops Sl and McC alleles

Figure 3. Patient inclusion flow chart for the Kenyan case-control study
Figure 4. The SL2 and MCCb alleles have opposing associations with cerebral malaria (CM) and death. Forest plot showing the associations between SL and MCC polymorphisms and severe malaria in Kilifi, Kenya. Filled boxes: adjusted Odds Ratios (aOR) for the SL2 genotype in the recessive form (i.e. SL2/SL2 vs all other SL genotypes). Open boxes: MCCb in the additive form (i.e. change in odds ratio with each additional MCCb allele). SL and MCC genotype were included together in a statistical model to examine their associations with malaria susceptibility. aORs displayed are adjusted for ethnicity, location of residence, sickle cell genotype, α+ thalassaemia genotype and ABO blood group. An interaction term between SL genotype and α+ thalassaemia is included in the model. Model outputs following 2000 bootstrapped iterations are shown.

Figure 5. The protective association of SL2 with cerebral malaria and death is only evident in children with normal α-globin. Interaction plots showing the interaction between SL (recessive) and α+ thalassaemia for the proportion of children suffering (A) cerebral malaria and (B) death. For α+ thalassaemia status, 0 = wild type α-globin; 1 = heterozygote or homozygote for α+ thalassaemia. For SL (recessive) status, 0 = SI1/SI1 or SI1/SI2 genotype; 1 = SI2/SI2 genotype.

Figure 6. Parasite densities by SL and MCC genotypes. Geometric mean parasite densities in the Kenyan case-control study (severe malaria) and longitudinal disease cohort study (uncomplicated malaria and asymptomatic parasitaemia) by A) SL genotypes and B) MCC genotypes. The data on severe malaria includes 1695 children: (SI1/SI1 (175), SI1/SI2 (793), SI2/SI2 (727) and MCCa/MCCa (1167), MCCc/MCCb (478) and MCCb/MCCb (50). The data on uncomplicated malaria includes 162 children: (SI1/SI1 (16), SI1/SI2 (75), SI2/SI2 (71) contributing 124, 488 and 461 episodes respectively and MCCa/MCCa (107), MCCc/MCCb (49) and MCCb/MCCb (6) contributing 699, 349 and 25 episodes respectively. The data on
asymptomatic parasitaemia includes 57 children: (Sl1/Sl1 (5), Sl1/Sl2 (26), Sl2/Sl2 (26) contributing 6, 35 and 35 episodes respectively and McCa/McCa (34), McCa/McCb (20) and McCb/McCb (3) contributing 47, 25 and 4 episodes respectively. Differences in parasite densities by genotype were tested by linear regression analysis with adjustment for HbAS, age as a continuous variable and ABO blood group in the severe malaria cases, HbAS and season (defined into 3-monthly blocks) in the uncomplicated malaria samples and HbAS and ABO blood group in the asymptomatic parasitaemia samples. Data were adjusted for within-person-clustering of events in the uncomplicated malaria and asymptomatic parasitaemia studies. Bars represent 95% confidence intervals.

Figure 7. The Sl2 allele is associated with reduced \textit{ex vivo} rosette frequency of \textit{P. falciparum} clinical isolates. Parasite isolates were collected from 167 malaria patients in Mali and matured in culture for 12-24 hours before assessment of rosette frequency (percentage of infected erythrocytes forming rosettes with two or more uninfected erythrocytes). Red bars show the median rosette frequency and interquartile range (IQR) for each genotype. (A) Rosetting by patient Sl genotype. Sl1/Sl1 (n=22, median 20.0, IQR 8.3-36.5), Sl1/Sl2 (n=82, median 4.0, IQR 0-20.3), Sl2/Sl2 (n=63, median 5.0, IQR 0-17.0); *p<0.05, Kruskal Wallis with Dunn’s multiple comparison test; (B) Rosetting by McC genotype. McCa/McCa (n=81, median 9.0, IQR 0-22.0), McCa/McCb (n=73, median 6.0, IQR 0-20.0), McCb/McCb (n=13, median 4.0, IQR 1-14.5); not significant, Kruskal Wallis with Dunn’s multiple comparison test.
Table 1: Adjusted Odds Ratios (aOR) for severe malaria by \textit{SI2} (recessive) and \textit{McC} (additive) genotype in Kenya

<table>
<thead>
<tr>
<th>Clinical Outcome</th>
<th>\textit{SI2} aORs (95% CI)a</th>
<th>\textit{SI2} p value</th>
<th>\textit{McC} aORs (95% CI)</th>
<th>\textit{McC} p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>All severe malariab (n=1716)</td>
<td>0.78 (0.64-0.95)</td>
<td>0.011</td>
<td>1.10 (0.97-1.25)</td>
<td>0.108</td>
</tr>
<tr>
<td>CMb (n=943)</td>
<td>0.67 (0.52-0.87)*</td>
<td>0.006</td>
<td>1.19 (1.02-1.38)</td>
<td>0.025</td>
</tr>
<tr>
<td>Severe without CM (n=674)</td>
<td>1.00 (0.76-1.30)</td>
<td>0.994</td>
<td>0.98 (0.82-1.17)</td>
<td>0.811</td>
</tr>
<tr>
<td>Died (n=180)b</td>
<td>0.50 (0.30-0.80)*</td>
<td>0.002</td>
<td>1.31 (0.95-1.72)</td>
<td>0.086</td>
</tr>
<tr>
<td>Died with CM (n=131)</td>
<td>0.44 (0.23-0.78)*</td>
<td>0.007</td>
<td>1.34 (0.94-1.88)</td>
<td>0.104</td>
</tr>
<tr>
<td>Died without CM (n=42)</td>
<td>0.73 (0.18-2.30)</td>
<td>0.636</td>
<td>1.00 (0.48-1.94)</td>
<td>0.940</td>
</tr>
<tr>
<td>SMA† (n=483)</td>
<td>0.76 (0.55-1.05)</td>
<td>0.099</td>
<td>0.96 (0.78-1.17)</td>
<td>0.688</td>
</tr>
<tr>
<td>SMA without CM (n=223)</td>
<td>0.82 (0.51-1.26)</td>
<td>0.366</td>
<td>0.91 (0.67-1.20)</td>
<td>0.553</td>
</tr>
<tr>
<td>Died with SMA† (n=56)</td>
<td>0.65 (0.21-1.67)</td>
<td>0.374</td>
<td>1.35 (0.77-2.20)</td>
<td>0.229</td>
</tr>
<tr>
<td>RD§ (n=522)</td>
<td>0.81 (0.59-1.10)</td>
<td>0.181</td>
<td>1.12 (0.92-1.35)</td>
<td>0.225</td>
</tr>
<tr>
<td>RD without CM (n=192)</td>
<td>1.06 (0.66-1.68)</td>
<td>0.805</td>
<td>1.07 (0.80-1.43)</td>
<td>0.615</td>
</tr>
<tr>
<td>Died with RD§ (n=73)</td>
<td>0.39 (0.14-0.88)*</td>
<td>0.027</td>
<td>1.01 (0.59-1.61)</td>
<td>0.948</td>
</tr>
</tbody>
</table>

aAdjusted Odds Ratios (aOR) and 95% Confidence Intervals (CI) are presented for the \textit{SI2} genotype in the recessive form (i.e. \textit{SI2/SI2} vs all other \textit{SI} genotypes) and \textit{McC} genotype in the additive form (i.e. change in aOR with each additional \textit{McC} allele). \textit{SI} and \textit{McC} genotype were included together in a statistical model to examine their associations with malaria susceptibility. aORs displayed are adjusted for ethnicity, location of residence, sickle cell genotype, \textit{α} thalassaemia genotype and ABO blood group. An interaction term between \textit{SI} genotype and \textit{α} thalassaemia was included in the model. Model outputs following 2000 bootstrapped iterations are shown.
99 children (7 of whom died) were severe malaria cases whose CM status was not recorded, hence these children are included in the numbers for “All severe malaria” and “Died” but not in “with CM” or “without CM” categories.

*Models that showed significant evidence of interaction between Sl2 and α-thalassaemia.

CM, cerebral malaria (*P. falciparum* infection with a Blantyre coma score of <3)

SMA, severe malarial anaemia (*P. falciparum* infection with Hb < 5 g/dl)

34/56 cases who died with SMA also had CM.

RD, respiratory distress (*P. falciparum* infection with abnormally deep breathing)

56/73 cases who died with RD also had CM.
Table 2: Adjusted Incidence Rate Ratios (aIRR) for uncomplicated malaria and non-malarial diseases in Kenya by Sl and Mc genotype#

<table>
<thead>
<tr>
<th>Clinical Outcomes</th>
<th>Sl2 aIRRs§ (95% CI)</th>
<th>p value</th>
<th>McCα aIRRs (95% CI)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncomplicated malaria</td>
<td>0.49 (0.34-0.72)*</td>
<td><0.001 4</td>
<td>1.24 (0.90-1.70)</td>
<td>0.184 1</td>
</tr>
<tr>
<td>All non-malaria clinical visits</td>
<td>1.13 (0.96-1.32)</td>
<td>0.140 1</td>
<td>0.76 (0.61-0.96)*</td>
<td>0.020 4</td>
</tr>
<tr>
<td>LRTI†</td>
<td>1.09 (0.81-1.47)</td>
<td>0.561 1</td>
<td>0.39 (0.16-0.96)</td>
<td>0.040 1</td>
</tr>
<tr>
<td>URTI¶</td>
<td>1.21 (0.98-1.50)</td>
<td>0.073 1</td>
<td>0.79 (0.63-0.99)</td>
<td>0.047 3</td>
</tr>
<tr>
<td>Gastroenteritis</td>
<td>0.66 (0.43-1.03)</td>
<td>0.066 2</td>
<td>0.55 (0.31-0.97)*</td>
<td>0.038 2</td>
</tr>
<tr>
<td>Skin infection</td>
<td>1.33 (0.79-2.26)</td>
<td>0.285 2</td>
<td>0.42 (0.16-1.13)</td>
<td>0.086 1</td>
</tr>
<tr>
<td>Helminth infection</td>
<td>1.98 (0.83-4.71)</td>
<td>0.122 2</td>
<td>0.68 (0.43-1.07)</td>
<td>0.094 4</td>
</tr>
<tr>
<td>Malaria negative fever</td>
<td>0.83 (0.58-1.18)</td>
<td>0.293 2</td>
<td>1.03 (0.80-1.33)</td>
<td>0.828 3</td>
</tr>
</tbody>
</table>

*Data were collected from 22 Sl1/Sl1, 94 Sl1/Sl2 and 92 Sl2/Sl2 individuals during 49.4, 213.8 and 188.8 cyfu (child-years of follow-up) respectively and 137 McCα/McCα, 63 McCα/McCβ and 8 McCβ/McCβ individuals during 294.5, 143.2 and 14.3 cyfu respectively. Both Sl2 and McCβ alleles were tested for their association with the disease outcomes of interest using Poisson regression in the recessive, dominant, heterozygous and additive models. The best fitting models as examined using the Akaike information criterion (AIC) were used in the final analysis that included adjustment for McC genotype (for Sl analyses), Sl genotype (for McC analyses) α⁺thalassaemia and sickle cell genotype, ABO blood group, season (divided into 3 monthly blocks), ethnicity, age as a continuous variable and within-person clustering of events.

§aIRRs: adjusted Incidence Rate Ratios

*Models that showed significant evidence of interaction between either Sl2 or McCβ and α⁺thalassaemia.

†LRTI: Lower Respiratory Tract Infection

¶URTI: Upper Respiratory Tract Infection
Table 3. Incidence of uncomplicated malaria by Sl genotype and α-thalassaemia status in the Kenyan longitudinal cohort study

<table>
<thead>
<tr>
<th></th>
<th>Sl1/Sl1</th>
<th>Sl1/Sl2</th>
<th>Sl2/Sl2</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of episodes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All samples</td>
<td>124</td>
<td>493</td>
<td>461</td>
</tr>
<tr>
<td>Normal α globin</td>
<td>73</td>
<td>238</td>
<td>77</td>
</tr>
<tr>
<td>Heterozygous α+thalassaemia</td>
<td>32</td>
<td>209</td>
<td>302</td>
</tr>
<tr>
<td>Homozygous α+thalassaemia</td>
<td>19</td>
<td>46</td>
<td>82</td>
</tr>
</tbody>
</table>

Incidence = number of episodes per child-year of follow up (cyfu). Data were collected from 22 Sl1/Sl1, 94 Sl1/Sl2 and 92 Sl2/Sl2 individuals during 49.4, 213.8 and 188.8 child-years of follow-up respectively.
Appendix 1. Validation of the Mali case-control study as a source of samples to examine the effect of Knops genotype on *P. falciparum* rosetting

Appendix 2. Detailed statistical methods

Supplementary File 1. Additional tables.

A. General characteristics for the Kenyan case-control study.

B. Characteristics for the Kenyan case-control study by *Sl* and *McC* genotype.

C. Hardy Weinberg equilibrium calculations for controls in the Kenyan case-control study.

D. Unadjusted odds ratios for clinical outcomes for the Kenyan case-control study.

E. *Sl* and *McC* combined genotypes and adjusted odds ratios for cerebral malaria in the Kenyan case-control study.

F. *Sl* and *McC* combined genotypes and adjusted odds ratio for death in the Kenyan case-control study.

G. General characteristics of the Kenyan longitudinal cohort study population by *Sl* and *McC* genotypes.

H. Incidence of common childhood diseases by *Sl* genotypes in the Kenyan longitudinal cohort study.

I. Incidence of common childhood diseases by *McC* genotypes in the Kenyan longitudinal cohort study.

J. Unadjusted Incidence Rate Ratios (IRR) for uncomplicated malaria and non-malarial diseases in the Kenyan longitudinal cohort study by *Sl* and *McC* genotype.

K. Reanalysis of Kenyan case-control study including children who lived outside of the KHDSS study area.

L. Adjusted Odds Ratios for different genetic models for the *Sl* polymorphism in the Kenyan case-control study.

M. Adjusted Odds Ratios for different genetic models for the *McC* polymorphism in the Kenyan case-control study.

N. Investigation of the sickle trait/α-thalassaemia negative epistatic interaction and the *Sl2/α*-thalassaemia interaction by clinical outcome in the Kenyan case-control study.

O. Reanalysis of the Kenyan case-control study excluding all children with one or more sickle cell alleles.

P. Raw data for the combined sickle trait, α-thalassaemia and *Sl* genotype by clinical outcome in the Kenyan case-control study.
Q. Correlations between the sickle cell, α-thalassaemia, Sl2 and McCb variants in the Kenyan case-control study.

R. Adjusted incidence Rate Ratios (IRRs) for Sl disease associations in the longitudinal cohort study by genetic models of inheritance

S. Adjusted incidence rate ratios for McC disease associations in the longitudinal cohort study by genetic models of inheritance
Appendix 1. Validation of the Mali case-control study as a source of samples to examine the effect of Knops genotype on *P. falciparum* rosetting

The *Sl2/Sl2* genotype is associated with protection against cerebral malaria in Mali

To determine if the Mali case-control study was a suitable source of samples to examine the effect of Knops genotype on *P. falciparum* rosetting (21), we examined whether there was any evidence to suggest that the association of the *Sl2/Sl2* genotype with cerebral malaria also occurred in Mali. To do this, we examined the cerebral malaria cases (n=34) and uncomplicated malaria controls (n=184) from a case-control study (Appendix 1-Figure 1) (54). General characteristics of the cases and controls are shown in Appendix 1-Table 1 and general characteristics by *Sl* and *McC* genotype are shown in Appendix 1-Table 2 below.

A mixed effect logistic regression analysis with adjustment for location of residence as a random effect and age, ABO blood group (O or non-O) and ethnicity (Dogon or non-Dogon) as fixed effects showed a protective association of the *Sl2/Sl2* genotype (recessive model) against cerebral malaria (aOR 0.35, 95% CI 0.12-0.89, p=0.024). *McC^b* (additive model) did not show a statistically significant association with increased odds of cerebral malaria (aOR 1.53, 95% CI 0.77-3.20, p=0.212). *Sl2/Sl2-McCa/McCa* was the only combined *Sl/Mcc* genotype to be significantly associated with protection (aOR 0.14, 95% CI 0.02-0.84, p=0.031). *α* thalassaemia genotype data were not available for the Mali samples to test for interaction. Therefore, given that the data do suggest a protective association between *Sl2/Sl2* genotype and cerebral malaria in Mali, we considered samples from this population to be appropriate for testing rosetting as a potential mechanism of action.

Appendix 1 – Figure legend.

Appendix 1 – Figure 1. Patient inclusion flow-chart for the Mali case-control study
Appendix 1-Table 1: General characteristics for cases and controls in the Mali case-control study

<table>
<thead>
<tr>
<th></th>
<th>Controls (Uncomplicated malaria)</th>
<th>Cases (Cerebral malaria)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mali</td>
<td>n = 184</td>
<td>n = 34</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>90 (49 %)</td>
<td>17 (50 %)</td>
<td>0.920</td>
</tr>
<tr>
<td>Females</td>
<td>94 (51 %)</td>
<td>17 (50 %)</td>
<td></td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dogon</td>
<td>161 (87.5 %)</td>
<td>30 (88 %)</td>
<td>1</td>
</tr>
<tr>
<td>Non-Dogon</td>
<td>23 (12.5 %)</td>
<td>4 (12 %)</td>
<td></td>
</tr>
<tr>
<td>Age in months*</td>
<td>Median (IQR) 36.5 (19-56)</td>
<td>28 (16-41)</td>
<td>0.026</td>
</tr>
</tbody>
</table>

Comparisons performed using Pearson’s χ² test except *Kruskal Wallis test
Appendix 1- Table 2. Table of Characteristics for the Malian dataset by Sl and McC genotype

<table>
<thead>
<tr>
<th>Clinical status</th>
<th>Sl1/Sl1</th>
<th>%</th>
<th>Sl1/Sl2</th>
<th>%</th>
<th>Sl2/Sl2</th>
<th>%</th>
<th>p value</th>
<th>McCa/Mcc</th>
<th>%</th>
<th>McCb/Mcc</th>
<th>%</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncomplicated malaria</td>
<td>19</td>
<td>10.3</td>
<td>78</td>
<td>42.4</td>
<td>87</td>
<td>47.3</td>
<td></td>
<td>103</td>
<td>56.0</td>
<td>61</td>
<td>33.2</td>
<td>10.9</td>
</tr>
<tr>
<td>CM</td>
<td>5</td>
<td>14.7</td>
<td>19</td>
<td>55.9</td>
<td>10</td>
<td>29.4</td>
<td>0.135a</td>
<td>16</td>
<td>47.1</td>
<td>15</td>
<td>44.1</td>
<td>3</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>11</td>
<td>10.3</td>
<td>48</td>
<td>44.9</td>
<td>48</td>
<td>44.9</td>
<td></td>
<td>57</td>
<td>53.3</td>
<td>41</td>
<td>38.3</td>
<td>9</td>
</tr>
<tr>
<td>F</td>
<td>13</td>
<td>11.7</td>
<td>49</td>
<td>44.1</td>
<td>49</td>
<td>44.1</td>
<td>0.945</td>
<td>62</td>
<td>55.9</td>
<td>35</td>
<td>31.5</td>
<td>14</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
</tr>
<tr>
<td>Dogon</td>
<td>21</td>
<td>11.0</td>
<td>88</td>
<td>46.1</td>
<td>82</td>
<td>42.9</td>
<td></td>
<td>108</td>
<td>56.5</td>
<td>66</td>
<td>34.6</td>
<td>17</td>
</tr>
<tr>
<td>Non-Dogon</td>
<td>3</td>
<td>11.1</td>
<td>9</td>
<td>33.3</td>
<td>15</td>
<td>55.6</td>
<td>0.448a</td>
<td>11</td>
<td>40.7</td>
<td>10</td>
<td>37.0</td>
<td>6</td>
</tr>
<tr>
<td>Blood group</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>13</td>
<td>10.0</td>
<td>63</td>
<td>48.5</td>
<td>54</td>
<td>41.5</td>
<td></td>
<td>68</td>
<td>52.3</td>
<td>49</td>
<td>37.7</td>
<td>13</td>
</tr>
<tr>
<td>Non-O</td>
<td>11</td>
<td>12.5</td>
<td>34</td>
<td>38.6</td>
<td>43</td>
<td>48.9</td>
<td>0.355</td>
<td>51</td>
<td>58.0</td>
<td>27</td>
<td>30.7</td>
<td>10</td>
</tr>
<tr>
<td>Median age</td>
<td></td>
</tr>
<tr>
<td>Months</td>
<td>32</td>
<td>IQR 20 - 57.5</td>
<td>31</td>
<td>IQR 18 - 52</td>
<td>30</td>
<td>IQR 17 - 55</td>
<td>0.927</td>
<td>30</td>
<td>IQR 18 - 55</td>
<td>31</td>
<td>IQR 18 - 54.5</td>
<td>51</td>
</tr>
</tbody>
</table>

CM, cerebral malaria; IQR, interquartile range. Significance testing uses uncomplicated malaria as the reference group. Age: Kruskal Wallis test. a: Fisher’s exact test. All other analyses: Pearson’s χ².
Appendix 2. Detailed statistical methods

Statistical model fitting and bootstrapping for the Kenyan case-control study

Analyses for the Kilifi case-control study were performed in R (R Foundation for Statistical Computing, Vienna, Austria) (56) using the “ggplot2”, “lme4”, and “HardyWeinberg” packages (57-59). The dataset was restricted to children who were resident in the Kilifi Health and Demographic Surveillance System (KHDSS) (45) and had full genotyping data for S_I, McC, α^+ thalassaemia, sickle cell and ABO blood group. This resulted in 1716 cases and 3829 controls (Figure 3). The ethnicity variable was compressed from 28 categories to four; Giriama (n=2728), Chonyi (n=1800), Kauma (n=588) and other (n=429). Binary parameterization of the α^+ thalassaemia variable was used, i.e. comparing those children with no α^+ thalassaemia alleles against those with one or more α^+ thalassaemia alleles. This division was chosen in accordance with a previous report showing that both heterozygous and homozygous α^+ thalassaemia genotypes are associated with protection against severe malaria and death in the Kilifi area (62).

A simple unadjusted logistic regression analysis containing only the S_I and McC genotypes suggested potential associations with severe malaria (Supplementary File 1D). We attempted to refine this signal by fitting a more complete model to the data using mixed effect logistic regression analysis. The full adjusted analysis was constructed as follows:

1. Variables associated with malaria susceptibility in multiple previous studies in this population (24, 27-29, 38, 53, 60, 61) were included to give a “base model”. These variables were sickle cell genotype (as a binary variable, sickle trait vs no sickle
trait), $\alpha^+\text{thalassaemia}$ genotype (as a binary variable, one or more $\alpha^+\text{thalassaemia}$ alleles vs no $\alpha^+\text{thalassaemia}$ alleles) and ABO blood group (as a binary variable, group O vs non-group O).

2. Both Sl and McC genotype were added in the simplest form (additive).

3. All possible models for Sl were then examined (genotypic, dominant, recessive, heterozygous and additive models of inheritance, see Supplementary File 1L).

Model selection was performed using a criterion-based approach by minimizing the Akaike information criterion (AIC) and discrimination (i.e. how well a model separates individuals with and without the outcome of interest) was determined using the c-statistic (area under the receiver operator curve). The recessive model had the best overall fit for Sl across clinical outcomes.

4. The process of examining all genetic models of inheritance was then repeated for McC (Supplementary File 1M), with Sl as recessive included in each model. The additive model had the best overall fit for McC across clinical outcomes.

5. All first order interactions were explored. The interaction with the greatest effect on the AIC was included in the final model. This resulted in an interaction term between Sl^2 and $\alpha^+\text{thalassaemia}$ being incorporated into the model.

6. Finally, ethnicity and location of residence were incorporated as random effects in order to accommodate population structures which did not require quantification for this study.

The final model incorporated ethnicity and location of residence as random effects, and as fixed effects had Sl^2 in the recessive form (i.e. binary variable, Sl^2/Sl^2 vs Sl^1/Sl^1 or Sl^1/Sl^2); presence of at least one $\alpha^+\text{thalassaemia}$ allele vs no $\alpha^+\text{thalassaemia}$ alleles (binary variable); an interaction term between the Sl and $\alpha^+\text{thalassaemia}$
variables; McC^b in the additive form (i.e. impact of each additional McC^b allele); presence/absence of sickle cell trait as a binary variable; O/non-O blood group as a binary variable.

The code used for the final model was:

```r
fit = glmer(outcome ~ (1|ethnicity) + (1|location) + Sl_recessive*thalassaemia_allele + Mc + sickle_trait + non_O, data=data, family=binomial)
```

Bootstrapping was performed using the “bootMer” function in package “lme4” in R. 2000 iterations were run of each model to calculate 95% confidence intervals and p values. If models did not converge over these 2000 iterations they were inspected for singularities (i.e. a level of one of the variables having a value of 0, for example 0 cases living in Gede). If no singularities were identified, the bootstrapping was rerun using the optimiser “bobyqa” with 10^5 evaluations.

Corrections for multiple comparisons were not performed in this study, instead all adjusted odds ratios, confidence intervals and p values have been clearly reported. This approach has been repeatedly advocated, particularly when dealing with biological data (63-67). The stringency of multiple comparisons increases the risk of type II error, potentially discarding important findings. No single study can be considered conclusive and novel results will always require replication.

Exploration of alternative haplotype and combined genotype models

As one of the four possible Sl/Mc haplotype combinations was not seen ($Sl1/McC^b$), the $Sl2$ and McC^b alleles are likely to be in complete linkage disequilibrium in this
population sample (i.e. $D^* = 1$, no recombination between these two markers). This situation makes it difficult to distinguish statistically between a model where Sl and McC act independently and additively or a haplotype model. We considered the possibility that a haplotype model could provide an alternative explanation for our findings, with a separate true protective mutation being positively tagged by the $Sl2$ allele and negatively tagged by the McC^b allele. Specifically, for each sample we computed the count of each of the three possible Sl/Mc haplotypes (assuming only three haplotypes are segregating as above). We then re-fit the logistic regression model for cerebral malaria using haplotype counts as predictors, in addition to potential confounders included in the full adjusted analysis described above. This model estimates a non-zero protective effect of the $Sl2/McC^a$ haplotype (additive OR $= 0.85; 0.75-0.96; P=0.007$), but did not fit as well as the full adjusted analysis described above (AIC = 4268.5, versus 4266.8 for the full analysis).

As both Sl and Mc have sufficient structural effects to alter Knops blood group phenotype, it would appear reasonable to examine their function further before looking for other nearby mutations. In addition, no other strong effects near CR1 have been identified by GWAS studies that could explain the association. However, a haplotype model cannot be excluded as a possibility on the basis of our current data.

Exploration of the negative epistasis between sickle trait and $\alpha^+\text{thalassaemia}$

Previous studies have described a negative epistatic interaction between sickle trait and $\alpha^+\text{thalassaemia}$, reporting that $\alpha^+\text{thalassaemia}$ homozygotes who also carry the sickle trait are not protected from severe malaria (28). We wanted to ensure that an
unrecognised relationship between sickle cell trait and Sl genotype did not account for
the interaction between \(\alpha^+\)thalassaemia and Sl that we report in the current study.

Analysis of our current dataset confirmed the existence of negative epistasis between
sickle trait and \(\alpha^+\)thalassaemia in this population (Supplementary File 1N). However,
of interest, this negative epistatic interaction was only seen in the severe malaria cases
without cerebral malaria, whereas the \(\alpha^+\)thalassaemia/Sl interaction was specific to
cerebral malaria cases (Supplementary File 1N). Therefore, the two interactions
appear to be mutually exclusive.

The final adjusted analysis was also re-run on a restricted dataset which excluded the
664 children with sickle cell trait or sickle cell disease. The results of this analysis
remained unchanged and the \(\alpha^+\)thalassaemia/Sl interaction persisted without any
influence of sickle trait (Supplementary File 1O).

Sickle cell trait did not show a statistical interaction with either Sl or McC genotype.
The sickle cell mutation is far less common in the KHDSS population than the
\(\alpha^+\)thalassaemia mutation (~12% of children have one or more sickle cell alleles,
compared to ~64% with one or more \(\alpha^+\)thalassaemia alleles). As such, even in a study
as large as this one, the power to detect statistically significant interactions between
all three of sickle, \(\alpha^+\)thalassaemia and Sl genotypes is greatly reduced. However, we
found no evidence of a three way interaction between these alleles. The raw data for
the combined genotypes compromising sickle trait, \(\alpha^+\)thalassaemia and Sl for each
clinical outcome is presented in Supplementary File 1P. Correlations between sickle
cell, \(\alpha^+\)thalassaemia, Sl and McC are presented in Supplementary File 1Q.
Statistical model fitting for the longitudinal cohort study

Associations between *Sl* and *McC* and mild malaria and other non-malarial related diseases in the longitudinal cohort study were tested in Stata v11.2 (StataCorp, Texas, USA) using a random effects Poisson regression analysis that accounted for within-person clustering of events. This analysis was restricted to children under 10 years old living in the Ngerenya area in the northern part of the KHDSS study area. The analysis was carried out on the 208 children from the cohort with full genotype, ethnic group, season and age data. The model selection process first involved univariate analyses testing for disease associations for *Sl* and *McC* independently without potential confounders in genotypic, dominant, recessive, heterozygous and additive models of inheritance. Models were compared using the Akaike information criterion (AIC) for fitness, with the model displaying the minimum AIC values for each respective genotype and outcome of interest chosen as the best fitting model. The unadjusted Incident Rate Ratios and best fitting models are shown in Supplementary File 1J. For each disease outcome, the association with *Sl* genotype was then adjusted for confounding by *McC* (best genetic model chosen from the univariate analysis) and for explanatory variables previously associated with outcomes of interest: sickle cell genotype, α⁺thalassaemia genotype, ABO blood group genotype, ethnic group (Giriama, Chonyi and others), season (defined as 3 monthly blocks) and age in months as a continuous variable. AIC values were compared to identify the best fitting genetic model (Supplementary File 1R). The same process was carried out for the association of *McC* genotype with each disease outcome, with adjustment for *Sl* genotype and the other explanatory variables (Supplementary File 1S). For consistency of reporting here, the same explanatory variables are included in the statistical models for all disease outcomes in the data presented. Optimized model-
fitting for each outcome by removing explanatory variables that did not improve model fit, did not make any material difference to the results shown here.

Finally, we tested for interactions between either Sβ and MβC and α-thalassaemia (represented as normal, heterozygous and homozygous genotypes) using the likelihood ratio test with a p value of <0.05 indicating statistically significant evidence for interaction, and the appropriate interaction term included in the final model.
Knops antigens in CCP25
McC⁺/McC⁻ (K1590E)
and SI1/SI2 (R1601G)
6193 potentially eligible children

Community controls n = 3947

Community controls n = 3905

Community controls n = 3902

Community controls n = 3829

Severe malaria cases n = 1839

Severe malaria cases n = 1810

Severe malaria cases n = 1727

Severe malaria cases n = 1722

Available for final analysis

407 excluded as lived outwith KHDSS

71 excluded as S/ McC genotyping failed

86 excluded as α-thal genotyping failed

5 excluded as sickle cell genotyping failed

79 excluded as ABO blood grouping unavailable
Adjusted Odds Ratios for *Sl* and *McC* genotypes

<table>
<thead>
<tr>
<th></th>
<th>Cases</th>
<th>aOR</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>All severe malaria cases</td>
<td>1716</td>
<td>0.78</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>1716</td>
<td>1.10</td>
<td>0.108</td>
</tr>
<tr>
<td>CM case</td>
<td>943</td>
<td>0.67</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>943</td>
<td>1.19</td>
<td>0.025</td>
</tr>
<tr>
<td>Died</td>
<td>180</td>
<td>0.50</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>1.31</td>
<td>0.086</td>
</tr>
<tr>
<td>Died with CM</td>
<td>131</td>
<td>0.44</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>131</td>
<td>1.34</td>
<td>0.104</td>
</tr>
<tr>
<td>Case no CM</td>
<td>674</td>
<td>1.00</td>
<td>0.994</td>
</tr>
<tr>
<td></td>
<td>674</td>
<td>0.98</td>
<td>0.811</td>
</tr>
<tr>
<td>Died no CM</td>
<td>42</td>
<td>0.73</td>
<td>0.636</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>1.00</td>
<td>0.940</td>
</tr>
</tbody>
</table>

Cases
- □ 400
- □ 800
- □ 1200
- □ 1600

Polymorphism
- *Sl* 2
- *McC* b
A

Interaction between S12 and α+thalassaemia for cerebral malaria

Proportion with cerebral malaria

OR = 0.70
(95% CI 0.55-0.89)

OR = 0.98
(95% CI 0.82-1.18)

SI2 recessive status

B

Interaction between S12 and α+thalassaemia for death

Proportion who died

OR = 0.54
(95% CI 0.33-0.89)

OR = 1.19
(95% CI 0.81-1.76)

SI2 recessive status
Patient inclusion flow chart for Mali case-control study

674 potentially eligible children

- Uncomplicated malaria controls $n = 229$
 - Uncomplicated malaria controls $n = 187$
 - Uncomplicated malaria controls $n = 184$

- Cerebral malaria cases $n = 49$
 - Cerebral malaria cases $n = 34$

396 excluded as not uncomplicated malaria or cerebral malaria

- 57 excluded as Sl / McC genotyping failed
- 3 excluded as ABO blood grouping unavailable

Available for final analysis