The AAA ATPase Vps4 binds ESCRT-III substrates through a repeating array of dipeptide-binding pockets.

IMPACT STATEMENT:
A 3.2 Å resolution structure of Vps4 provides a detailed model for protein substrate binding and translocation by AAA ATPases.

Han Han¹, Nicole Monroe¹, Wesley I. Sundquist*, Peter S. Shen*, Christopher P. Hill*

Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States

¹ These authors contributed equally.

* Correspondence
Wesley I. Sundquist:
E-mail: wes@biochem.utah.edu
Phone: +1-801-585-5402
Fax: +1-801-581-7959

or Peter S. Shen:
E-mail: peter.shen@biochem.utah.edu
Phone: +1-801-581-4832
Fax: +1-801-581-7959

or Christopher P. Hill:
E-mail: chris@biochem.utah.edu
Phone: +1-801-585-5536
Fax: +1-801-581-7959
Abstract

The hexameric AAA ATPase Vps4 drives membrane fission by remodeling and disassembling ESCRT-III filaments. Building upon our earlier 4.3 Å resolution cryo-EM structure (Monroe, Han et al. 2017), we now report a 3.2 Å structure of Vps4 bound to an ESCRT-III peptide substrate. The new structure reveals that the peptide approximates a β-strand conformation whose helical symmetry matches that of the five Vps4 subunits it contacts directly. Adjacent Vps4 subunits make equivalent interactions with successive substrate dipeptides through two distinct classes of side chain binding pockets formed primarily by Vps4 pore loop 1. These pockets accommodate a wide range of residues, while main chain hydrogen bonds may help dictate substrate-binding orientation. The structure supports a “conveyor belt” model of translocation in which ATP binding allows a Vps4 subunit to join the growing end of the helix and engage the substrate, while hydrolysis and release promotes helix disassembly and substrate release at the lagging end.

Introduction

The Endosomal Sorting Complexes Required for Transport (ESCRT) pathway drives multiple cellular membrane fission processes (Christ, Raiborg et al. 2017, Scourfield and Martin-Serrano 2017) through the formation of filaments comprising different subsets of related ESCRT-III family members. ESCRT-III filaments stabilize highly curved membrane necks that resolve by fission when the filaments are remodeled by Vps4 (Monroe and Hill 2016). Continued Vps4 activity removes ESCRT-III subunits and drives complete filament disassembly, thereby enabling subsequent rounds of ESCRT activity (Mierzwa, Chiaruttini et al. 2017, Schoneberg,
Lee et al. 2017).

Vps4 is monomeric or dimeric at cytoplasmic concentrations, but forms a hexamer when active and recruited to ESCRT-III filaments (Monroe, Han et al. 2014). Recruitment is mediated, at least in part, by binding of the Vps4 MIT (Microtubule interacting and transport) domains to MIM (MIT Interacting Motif) elements in the exposed tails of ESCRT-III subunits (Obita, Saksena et al. 2007, Stuchell-Brereton, Skalicky et al. 2007, Hurley and Yang 2008). Hexamerization is further promoted by the cofactor protein Vta1/LIP5 (Scott, Chung et al. 2005, Lottridge, Flannery et al. 2006, Azmi, Davies et al. 2008, Xiao, Xia et al. 2008), whose VSL domain binds adjacent Vps4 subunits at the ring periphery (Yang and Hurley 2010, Davies, Norgan et al. 2014, Monroe, Han et al. 2017, Sun, Li et al. 2017). The Vps4 N-terminal MIT domain is followed by an ~40-residue flexible linker and an ATPase cassette that comprises a large ATPase domain, small ATPase domain, and a β domain (Scott, Chung et al. 2005).

Recently reported cryo-EM structures of Vps4 at overall resolutions of 4.3 Å (Monroe, Han et al. 2017), 6.1 Å (Su, Guo et al. 2017), and 3.9 Å (Sun, Li et al. 2017) revealed similar hexameric “lock washers”, in which five of the six Vps4 subunits form a helical assembly and the sixth closes the ring. This arrangement is quite different from the packing seen in multiple Vps4 crystal structures. Although the three cryo-EM structures are similar, they prompted very different mechanistic models to explain how ESCRT-III subunits are processed. Our structure, which was visualized in complex with a substrate peptide, guided the proposal that ESCRT-III substrates bind within the hexamer pore (Monroe, Han et al. 2017), consistent with a model that ESCRT-III subunits are unfolded by translocation through the pore (Yang, Stjepanovic et al. 2015). In contrast, the observation that the Vps4 hexamer adopts “open” and “closed” states in the absence of Vta1/LIP5 and substrate, prompted the proposal that substrates are engaged by a
single ESCRT-III subunit, and that ATP hydrolysis pulls an entire ESCRT-III subunit from the filament and positions the next Vps4 subunit to remove the ensuing ESCRT-III subunit (Su, Guo et al. 2017).

We have now determined the Vps4-ESCRT-IIIpeptide complex structure at 3.2 Å resolution. This shows that the highly variable side chains of the substrate bind in an equivalent way to an array of two classes of pockets that are repeated throughout the Vps4 pore. Moreover, the ESCRT-III peptide binds in a β-strand conformation in one orientation. These insights support our earlier mechanistic proposal, which may be applicable to other AAA ATPases.

Results and discussion

Overall structure

The new reconstruction of the Vps4-Vta1-ESCRT-IIIpeptide-ADP·BeF\(_x\) complex agrees well with our earlier 4.3 Å resolution reconstruction but now has an overall resolution of 3.2 Å, which likely reflects the use of superior microscope instrumentation (see Methods). The six Vps4 subunits form a closed ring, with six Vta1 VSL domains binding around the periphery and a single ESCRT-III peptide bound in the central pore (Figure 1, Table 1, figure 1 – figure supplements 1-4, figure 1 – video supplement 1). Vps4 subunits A-E form a helix whose symmetry approximates a 60° rotation and 6.3 Å translation between adjacent subunits, and provides the binding surface for the ESCRT-III peptide. As noted previously (Monroe, Han et al. 2017), subunit E deviates slightly from the more exact helical symmetry of subunits A-D. The large domain of subunit F is disengaged from adjacent Vps4 subunits (and substrate) and appears to be transitioning between the two ends of the Vps4 helix. Subunit F and features at the
ring periphery, including the Vps4 β domains and the Vta1 VSL domains, have weak density.

Nucleotide states and subunit interfaces

Nucleotides bind primarily contacting one Vps4 subunit at a subunit interface, and with the β-phosphate and BeF$_x$ contacting two “finger” arginines, R288 and R289, from the following subunit (Figure 2, figure 2 - video supplements 1-5). The bound ADP·BeF$_x$ mimics ATP binding to subunits A, B, and C, whereas subunits D and E appear to bind ADP. The density of subunit F is too weak to reliably assess the presence of nucleotide, and it may be empty. The coordination of bound nucleotides is similar for all Vps4 subunits, and resembles binding to other ATPases (Wendler, Ciniawsky et al. 2012). ADP·BeF$_x$ coordination is essentially identical for A-C and is very similar for the ADP at subunit D, whereas displacement of subunit F results in loss of interaction with the finger arginines for the ADP at subunit E. In contrast to earlier proposals (Gonciarz, Whitby et al. 2008), the hinge angle between large and small domains does not change substantially with the bound nucleotide, being 120-121° for subunits A-D, 117° for subunit E, and 122° for subunit F.

The AB, BC, and CD interfaces are extensive, similar to each other, and include large domain contacts with adjacent large domains and small domains (Figure 2 - video supplements 6-7). Comparison of these interfaces with the DE subunit pair shows an ~8° rotation of subunit E which, nevertheless, maintains very similar contacts with the preceding D subunit and relative positions of pore loops (Figure 2 - video supplement 8). It is therefore uncertain why the AB, BC, and CD interfaces bind ATP (ADP·BeF$_x$) while the similar DE interface appears to bind ADP. Although the density seems clear, we acknowledge that assigning ADP (vs ADP·BeF$_x$) at
this site with absolute certainty will require higher resolution data. Regardless, the finding that subunit E binds ADP at the interface with subunit F further supports our mechanistic model that ATP hydrolysis at subunit D destabilizes the subunit interface to promote formation of the more open nucleotide binding site seen for subunit E (below).

In contrast to the major disruption in contacts between the large domain of subunit F and the large domains of its neighbors, contacts involving the small ATPase domains remain more similar. This is especially true for the FA interface, where the F small domain to A large domain contacts are closely superimposable with those of AB, BC, CD, and DE (Figure 2 - video supplement 9). The E small domain to F large domain contacts are mediated by the same hydrophobic contacts, albeit with a rotation of ~25° and attendant shifts of 4.5-7.5 Å. Thus, this interaction appears to be maintained throughout the reaction cycle as subunits transition from the lagging (subunit E) to the leading (subunit A) end of the Vps4 helix, and may help maintain the hexameric assembly while the hydrolysis and release of ATP disrupts the core large domain contacts that define the ESCRT-III substrate-binding site.

Interestingly, the small domain-large domain interface is the major lattice contact in all of the reported crystal structures of Vps4, which totals 22 crystallographically unique contacts (Figure 2 - video supplement 10). The archaeal Vps4 crystal contacts (Monroe, Han et al. 2014, Caillat, Macheboeuf et al. 2015) closely resemble the FA/AB/BC/CD/DE interface, while eukaryotic crystal contacts (Scott, Chung et al. 2005, Xiao, Xia et al. 2007, Gonciarz, Whitby et al. 2008, Inoue, Kamikubo et al. 2008) overlap with the EF interface, except two of the three mouse Vps4 crystal contacts (Inoue, Kamikubo et al. 2008), which are intermediate between the two states. These differences correlate with the presence of a Vps4 β domain and Vta1 cofactor in eukaryotes but not archaea, supporting the interpretation that Vta1 promotes formation and
maintenance of the closed helical substrate-binding assembly of Vps4.

Coordination of the ESCRT-III peptide

The DEIVNKVL ESCRT-III peptide is clearly defined in the new 3.2 Å map (Figure 3 – video supplement 1), with the exception of the first two side chains, D1 and E2 (Vps2 D165 and E166), which have weak density, as is typically seen for carboxylates in cryo-EM maps (Mitsuoka, Hirai et al. 1999, Baresaghi, Matthies et al. 2014, Yonekura, Kato et al. 2015, Hryc, Chen et al. 2017). The assigned peptide orientation was validated by building and refining in the reverse direction, which showed a correlation coefficient of 0.85 for the assigned orientation vs. 0.81 in the reversed orientation, and EMRinger (Barad, Echols et al. 2015) scores of 3.7 for the assigned orientation vs. 1.1 for the reversed orientation (Figure 3 – figure supplement 1).

The peptide adopts an extended conformation that resembles a canonical β-strand (phi -92° to -151°; psi 102° to 189° (-171°)) and packs closely against Vps4 subunits A-E (Figure 3, figure 3 – video supplements 2-4). Two distinct classes of side chain binding sites propagate along the pore. Odd-numbered ESCRT-III residues (D1, I3, N5, V7) bind in “class I” pockets, while the side chains of even-numbered ESCRT-III residues (E2, V4, K6, L8) bind in “class II” pockets. Class I pockets are formed by pore loop 1 residues K205 and W206, with substrate side chains sandwiched between W206 from successive subunits. The pocket is flanked by K205 from the first Vps4 subunit, which may also stabilize the ladder of W206 side chains through cation-π interactions.

The class II pockets are formed by the pore loop 1 M207 residues of successive subunits, and are flanked by pore loop 2 residues of the first Vps4 subunit and, to a greater extent, by the pore loop
2 residues of the preceding subunit. The first of these pockets, which includes M207 residues of
the A and B subunits, is incompletely formed because the pore loop 2 residues of the preceding
subunit (F) are not yet in position. The three pore loop 2 residues that most closely approach the
peptide (E245, S246, E247) do not make distinctive contacts with the ESCRT-III peptide. S246
caps the N-terminus of a Vps4 helix while E245 and E247 make non-specific contacts with
peptide side chains. The different class I and class II pockets are all essentially identical (Figure
3CD) and their exposure to the highly solvated pore explains how polar side chains can be
accommodated.

The refined model indicates that the NH groups of the even-numbered ESCRT-III peptide
residues form hydrogen bonds with the main chain O of Vps4 K205 (subunit A, B, C, and D
distances are 3.1-3.5 Å). In contrast, these distances are 3.4-4.5 Å in the model refined with the
peptide in the reverse orientation. Thus, substrate NH hydrogen bonds may help define the
substrate orientation by optimally positioning ESCRT-III side chains with respect to their
binding pockets (Figure 3E).

Model of translocation

The structure supports our earlier conveyor-belt model of substrate translocation (Monroe, Han
et al. 2017) but now includes more detail, especially of substrate binding. It is also consistent
with other recent models (Gates, Yokom et al. 2017, Monroe, Han et al. 2017, Puchades,
Rampello et al. 2017, Ripstein, Huang et al. 2017), albeit with additional molecular details. We
envision that the enzyme proceeds by transitioning of subunit configurations around the
hexameric ring, such that one step represents transitioning of subunits F, A, B, C, D, E to the
configurations of subunits A, B, C, D, E, F (Figure 4A, figure 4 - video supplement 1). Each step comprises concomitant changes in subunit interfaces at each end of the Vps4 A-E helix. At the leading end, binding of ATP allows subunit F to pack against subunit A and thereby bind the next two residues of the substrate. At the lagging end, hydrolysis of ATP and subsequent phosphate release destabilizes the interface and drives subunit E to the transitioning configuration, thereby opening the nucleotide binding site to allow exchange of ADP by ATP. In this manner, the equivalent dipeptide-binding sites formed at the interfaces of subunits A-E track with their bound dipeptides along the pore as subunits transition from the lagging end to the leading end of the helix. Thus, the pathway can be represented either as Vps4 “walking” along the substrate or as substrate being translocated through the Vps4 pore, depending upon the frame of reference.

Although our structure shows four intact dipeptide-binding sites and just one transitioning subunit, it is expected that two Vps4 subunits will be disengaged from substrate through at least part of the reaction cycle. This is because subunit E will disengage from substrate as it moves toward the F configuration while the F subunit is moving toward the substrate-binding A configuration. The specific point in the reaction cycle captured in our structure corresponds to subunit E just starting to transition toward the F state, as indicated by the deviation of the DE interface from the configuration of AB, BC, and CD, and consistent with our structural interpretation that ADP is bound to subunit D (above). The stability of this state relative to other conformations along the reaction coordinate will result from a combination of multiple factors, including the particular nucleotide (ADP·BeF₆) and ESCRT-III peptide in the complex.

Our model implies that each step translocates two amino acid residues and hydrolyses one ATP. It also explains the importance of the pore loop residues and the integral role of the class I and II
pockets, because once a substrate residue binds at the top of the Vps4 helix it does not substantially change conformation until released at the bottom of the helical conveyor belt. The model is also consistent with reports that other AAA+ ATPases bind a maximum of three or four ATP molecules (Hersch, Burton et al. 2005, Horwitz, Navon et al. 2007, Yakamavich, Baker et al. 2008, Smith, Fraga et al. 2011). Moreover, despite important structural differences, our mechanistic model is analogous to mechanisms established for translocation of DNA by the E1 helicase (Enemark and Joshua-Tor 2006) and of RNA by the Rho translocase (Thomsen and Berger 2009, Thomsen, Lawson et al. 2016).

Comparison with other AAA ATPases

Vps4 is a member of the classic clade of AAA+ ATPases, which includes the original members of the AAA ATPase family (Iyer, Leipe et al. 2004, Erzberger and Berger 2006). These proteins are hexameric protein translocases, whose conserved pore loops emanate from equivalent structural elements, although their N-terminal domains are variable and only Vps4 has a β domain. Family members are found in a variety of contexts. For example, Vps4 is a homo hexamer that forms a single ring, whereas p97/CDC48/VAT and NSF comprise two AAA ATPase cassettes that each form a hexameric ring. Others, such as HSP104/ClpB, form a double ATPase ring structure in which only one of the rings belongs to the classic clade. Still others, such as the eukaryotic proteasome ATPases, form part of a much larger complex and comprise six different, albeit related, subunits.

Sequence alignment of classic clade AAA+ ATPase family members for which structures have been reported shows that the first two of the three pore loop 1 residues that contact substrate
(Vps4 K205, W206, M207) are conserved (Figure 4 - figure supplement 1). W206 is always W, F, or Y, all of which could perform the role of sandwiching substrate side chains. The preceding K205 residue is usually K but sometimes M, which like K could flank the class I binding pocket. The more variable third residue, M207, is usually I, L or V, but there are examples of M (Vps4), A, F, K, R, and Y, all of which could provide hydrophobic sides to the class II binding pocket.

Interestingly, the following residue, G208, is invariant, presumably because it adopts phi angles (~81 to 85°) that are only favored for glycine, and helps define a conformation that can pack against pore loop 1 residues from neighboring subunits. Pore loop 2 residues are less conserved and are typically disordered in other published structures, which is consistent with the lack of distinctive roles in contacting substrate.

Our Vps4 structure superimposes closely with the recently reported structures of VAT (Ripstein, Huang et al. 2017), HSP104 (Gates, Yokom et al. 2017), and ClpB (Deville, Carroni et al. 2017), which were each determined with substrate bound in their central pores, albeit at relatively low resolutions. A very recently published 3.4 Å structure of the YME1 AAA ATPase in complex with a mixed polypeptide substrate (Puchades, Rampello et al. 2017) also presents a very similar structure and mechanism to that described here, although coordinates are not yet available. Close superposition is also seen with multiple other classic clade AAA+ ATPases that have been visualized in the absence of substrate (Figure 4B, figure 4 - video supplement 2). Notable exceptions include p97 and CDC48, whose structures display rotational rather than helical symmetry (Banerjee, Bartersghi et al. 2016, Xia, Tang et al. 2016), and ClpX and HslU, which are not members of the classic clade but share notable similarities with Vps4 and have provided leading mechanistic models for protein translocating AAA+ ATPases (Olivares, Baker et al. 2016).
In contrast to these sequential models, biochemical analyses of ClpX (Martin, Baker et al. 2005) and HslU (Baytshtok, Chen et al. 2017) have argued for stochastic mechanisms by showing that just one active ATPase subunit per hexamer can drive translocation, albeit at much reduced efficiency. A possible resolution is that a hexamer that has only one active ATPase site may allow inactive subunits to diffuse through the entire helical cycle. Thus, like a 6-cylinder engine firing on just one cylinder, a single active ATPase might drive the sequential conveyor-belt model, albeit rather poorly.

In summary, the structure shows details of substrate interactions that are provided by a repeating array of dipeptide binding sites with the ESCRT-III peptide in a unique orientation. It further supports a sequential mechanism and explains the ability to translocate polypeptides with little sequence specificity. Important future priorities include testing the generality of the structural observations, mechanistic implications, and the extent to which they may apply to other AAA+ ATPases.

Methods

Electron microscopy

Sample preparation was as described (Monroe, Han et al. 2017). Vitrified grids were loaded onto a Titan Krios (FEI) operating at 300 kV. Images were acquired using a defocus range between -1.0 to -2.2 μm. A total of 2,349 cryo-EM movies were recorded using a K2 Summit direct detector (Gatan) in counting mode with a pixel size of 1.10 Å and at a dose rate of ~7.4 e⁻/pixel/sec. Each movie was recorded as a stack of 40 frames accumulated over 10 s, totaling ~62e⁻/Å².
Cryo-EM analysis

Movie frames were aligned, dose weighted, and summed using MotionCor2 (Zheng, Palovcak et al. 2017) (Figure 1 - figure supplement 1A). CTF parameters were determined on non-dose-weighted sums using gctf (Zhang 2016). Micrographs with poor CTF cross correlation scores were excluded from downstream analyses. A total of 1,987 dose-weighted sums were used for all subsequent image processing steps. 4,429 particles were manually selected from 30 micrographs in EMAN2 using the e2boxer.py program (Tang, Peng et al. 2007) to generate preliminary 2D classes in RELION (Scheres 2012). The non-CTF-corrected class averages were used for template-based autopicking in gautomatch. A total of 599,085 particles were extracted and used as input for full CTF-corrected image processing (Figure 1 – figure supplement 1B). After multiple rounds of 2D classification, 124,743 were retained based on visual inspection of classes with high-resolution Vps4 features and used for an initial round of 3D classification. After 3D classification, 109,241 particles were used for RELION auto-refinement (Scheres 2012), which generated a 4.1 Å density map of the Hcp1-Vps4 fusion complex based on the gold-standard FSC criterion (Figure 1 – figure supplement 1D). To improve the resolution of Vps4, we performed signal subtraction of Hcp1 densities using the same approach as described previously (Bai, Rajendra et al. 2015, Monroe, Han et al. 2017) (Figure 1 – figure supplement 2). After Hcp1 signal subtraction, we performed an additional round of 3D classification, which assigned 82,225 particles into a single class with excellent Vps4 features. These particles were used for a final round of RELION auto-refinement, producing a 3.2 Å resolution density map of Vps4 (Figure 1 – figure supplement 2). B-factor sharpening of -125 Å

² was applied using an automated procedure in RELION postprocessing (Rosenthal and Henderson 2003). Local
resolutions were estimated using ResMap (Kucukelbir, Sigworth et al. 2014) (Figure 1 – figure supplement 1F).

The consensus reconstruction of the Vps4 complex revealed poor, fragmented densities for subunit F and Vta1. To improve their densities, we performed additional rounds of focused classification by generating custom soft-edged masks around their respective densities and then using RELION to classify the particles without re-alignment (Figure 1 – figure supplement 3). Particles from classes with ordered densities were used for separate RELION auto-refinement reconstructions and produced lower-resolution maps that were used for rigid-body fitting of subunit F or Vta1.

Model building, refinement and validation

Model building and refinement followed the same approach as for the earlier lower resolution structure (Monroe, Han et al. 2017). NCS restraints were applied to Vps4 subunits A-E with the exception of residues 204–208, 227-233, and 249-271 of subunit A and residues 140-158, 171-191, and 204-205 of subunit E. For subunits A, B, C, and D, the distance between Mg and the OG of 180S was restrained to 2.0 Å. No reference model was used during refinement. The refined model was assessed using MolProbity (RRID: SCR_014226) (Chen et al., 2010) and EMRinger (Barad, Echols et al. 2015). To test for overfitting, all atoms in the refined model were randomly displaced by 0.5 Å and re-refined against one of the RELION half maps. FSC curves were generated for the re-refined model against the half map used for re-refinement (FSC\textsubscript{work}) and against the other half map (FSC\textsubscript{test}). The close agreement between the two curves is consistent with lack of overfitting (Figure 1 – figure supplement 1E).
To validate the orientation of the 8-residue ESCRT-III peptide, it was built and refined in opposing conformations (Figure 3 - figure supplement 1). RSCC scores between the models and density map were determined using UCSF Chimera (Pettersen, Goddard et al. 2004). Side chain-directed model versus map calculations for the peptide were performed using EMRinger (Barad, Echols et al. 2015).

Structure deposition

The refined model comprising the Vps4 ATPase domains of subunits A-E and ESCRT-III peptide has been deposited into the PDB (RRID: SCR_012820; 6BMF). The complete model, including regions not subjected to atomic refinement such as the 12 Vta1^VSL domains and subunit F, has been deposited into the PDB (PDB ID: 6AP1) together with the sharpened Hcp1-subtracted map (RRID: SCR_003207, EMDB Accession Number EMD-8887). The unsharpened map, the 2 maps for subunit F, and the 6 maps for the Vta1VSL domain have been deposited at the EMDB (RRID: SCR_003207, EMDB Accession Number(s) EMD-8888, EMD-8889, EMD-8890, EMD-8891, EMD-8892, EMD-8893, EMD-8894, EMD-8895, EMD-8896).
Table 1

Reconstruction, Refinement, and Model Statistics of Vps4.

<table>
<thead>
<tr>
<th>Reconstruction</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle images</td>
<td>82,225</td>
</tr>
<tr>
<td>Resolution (0.143 FSC) (Å)</td>
<td>3.2</td>
</tr>
<tr>
<td>Map sharpening B-factor (Å²)</td>
<td>-125</td>
</tr>
<tr>
<td>EMDB Accession Number</td>
<td>EMD-8887</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model Refinement and validation of Vps4 subunits A-E</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PDB accession number</td>
<td>6BMF</td>
</tr>
<tr>
<td>Resolution used for refinement (Å)</td>
<td>3.2</td>
</tr>
<tr>
<td>Number of atoms</td>
<td>11033</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RMSD</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bond length (Å)</td>
<td>0.01%</td>
</tr>
<tr>
<td>Bond angles (°)</td>
<td>0.18%</td>
</tr>
<tr>
<td>Ramachandran</td>
<td></td>
</tr>
<tr>
<td>Favored (%)</td>
<td>89.53%</td>
</tr>
<tr>
<td>Allowed (%)</td>
<td>10.47%</td>
</tr>
<tr>
<td>Outlier (%)</td>
<td>0</td>
</tr>
<tr>
<td>Validation scores</td>
<td></td>
</tr>
<tr>
<td>Molprobity score / percentile (%)</td>
<td>1.83(100%)</td>
</tr>
<tr>
<td>Clashscore / percentile (%)</td>
<td>5.02(100%)</td>
</tr>
<tr>
<td>EMRinger score</td>
<td>2.04</td>
</tr>
</tbody>
</table>
1. **Han Han**

1. Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States

Contribution

HH, Formal analysis, Validation, Investigation, Visualization

Competing interests

No competing interests declared.

2. **Nicole Monroe**

1. Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States.

2. Present address: Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, United States

Contribution

NM, Formal analysis, Investigation, Visualization, Writing—review and editing

Competing interests

No competing interests declared. 0000-0001-7678-4997

3. **Wesley I Sundquist**
1. Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States

Contribution

WIS, Conceptualization, Resources, Supervision, Funding acquisition, Project administration, Writing – review and editing.

For correspondence

2. wes@biochem.utah.edu

Competing interests

WIS: Reviewing editor, eLife 0000-0001-9988-6021

4. Peter S Shen

1. Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States

Contribution

PSS, Data curation, Formal analysis, Validation, Investigation, Visualization, Writing—review and editing

For correspondence

2. peter.shen@biochem.utah.edu

Competing interests

No competing interests declared. 0000-0002-6256-6910
5. Christopher P Hill

1. Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States

Contribution

CPH, Conceptualization, Resources, Supervision, Funding acquisition, Validation, Project administration, Writing—original draft

For correspondence

2. chris@biochem.utah.edu

Competing interests

No competing interests declared. 0000-0001-6796-7740

Funding

National Institutes of Health (P50 GM082545)

• Han Han

• Nicole Monroe

• Peter S Shen

• Christopher P Hill

National Institutes of Health (Microbial Pathogenesis Training Grant T32 AI055434)

• Nicole Monroe

National Institutes of Health (R37 AI051174-16)

• Nicole Monroe
A \textbf{Acknowledgements}

Electron microscopy was performed at the National Resource for Automated Molecular Microscopy and the Simons Electron Microscopy Center located at the New York Structural Biology Center, supported by grants from NIH (GM103310, S10 OD019994) and the Simons Foundation (349247), with additional support from the Agouron Institute (F00316). We thank Zhening Zhang for assistance in data collection. The Center for High Performance Computing at the University of Utah provided computing resources. We thank James Fulcher and Michael Kay for peptide synthesis, and Frank Whitby for help with model refinement.

\textbf{Competing financial interests}

The authors declare no competing financial interests.
References

Figures

Figure 1. Overall structure of the Vps4 complex.
(A) Ribbon representation of the complex viewed from the “top” N-terminal side of Vps4 and N-terminal end of the peptide.
(B) Similar orientation as panel A showing a segmented map contoured around Vps4 and peptide.
(C) Same as panel B viewed from the side with density for subunit F removed for clarity.

Figure 1 – figure supplement 1. Cryo-EM of the Vps4 complex.
(A) Representative cryo-EM micrograph of Vps4101\textendash437-Hcp1 particles.
(BC) Representative 2D class averages, (B) before and (C) after Hcp1 signal subtraction.
(D) Gold-standard FSC of the Hcp1-subtracted particle reconstructions on independent (odd:even particles) halves of the data (blue) and FSC between the refined model and the density map (orange).
(E) Cross-validation of refined model (see Methods).
(F) Angular distribution plot based on orientation assignments in RELION and visualized in UCSF Chimera. Cylinders scaled (low to high) and colored (blue to red) proportional to number of particles in the assigned orientation.
(G) Local resolution estimates determined by ResMap (Kucukelbir, Sigworth et al. 2014).

Figure 1 – figure supplement 2. Classification and signal-subtraction scheme for the Vps4 complex. 140,958 particles were input for 3D classification. 109,241 particles were sorted into classes with good Vps4 features and used to generate a consensus reconstruction of the entire Vps4101\textendash437-Hcp1 complex at 4.1 Å resolution. Signal subtraction of Hcp1 was performed using a previously described strategy (see Methods). An additional round of 3D classification was performed using the Hcp1-subtracted particles. 82,225 particles were sorted into a single class with high-resolution Vps4 features and used to generate the final 3.2 Å Vps4 reconstruction.

Figure 1 – figure supplement 3. Focused classification of Vps4 subunit F and Vta1.
(A) Representative masking scheme for subunit F. Custom masks were generated for structurally heterogeneous features and focused 3D classification was performed using the masks. Classes with good features were used to isolate particles for additional rounds of RELION auto-refinement.
(B) Representative masking scheme for Vta1.
Figure 1 – figure supplement 4. Surface Representation. Similar orientation to Figure 1A. Shows the gaps between the subunit F large ATPase domain and its neighboring subunits, and the highly solvated channel between subunit F and the peptide.

Figure 2. Nucleotide coordination and subunit interfaces.
(A) Stereoview of a representative ADP·BeF₄ coordination shown at subunit B (BC interface). Subunits color-coded as in Figure 1.
(B) Stereoview of nucleotide-binding sites at subunits A, B, C, D, and E following superposition on the large domains of the first subunit at each interface.

Figure 3. ESCRT-III peptide conformation and coordination.
(A) Left – tilted view of a surface representation showing how the pore loop residues form an array of class I and II binding pockets through the hexamer pore. W206 and M207 from subunits A-E are highlighted. Right – Close up of the pore region.
(B) Distances between Cα atoms of the peptide and pore loop 1 W206 and M207 indicate equivalent binding in the different class I and class II pockets.
(C) Superposition of the four Class I pockets following superposition on Cα atoms of the class I pocket residues of subunits A and B.
(D) Superposition of the four Class II pockets following superposition on Cα atoms of the class II pocket residues of subunits A and B.
(E) The H-bond seen between the NH of even-numbered ESCRT-III residues and the K205 CO of Vps4 subunits A-D – here centered on the bond between ESCRT-III V4 and subunit B. The bond between E2 and subunit A is also visible.

Figure 3 – figure supplement 1. Fit of peptide to density when refined in assigned and reversed orientations. Visual inspection shows that the assigned peptide orientation is a better fit to the map than the inverted orientation. Arrowheads indicate notably poor agreement between model and map in the inverted orientation. Chimera RSCC and EMRinger scores also support the assigned orientation.

Figure 4. Mechanism of translocation.
(A) Proposed mechanism of ESCRT-III translocation by Vps4. W206 and M207 residues of the six Vps4 subunits are shown, with the peptide passing through the Vps4 hexamer. The peptide model was constructed by changing the side chains to leucine without adjusting the main chain, and building out in the N and C directions by overlapping copies of the peptide model. The proposed mechanism envisions that Vps4 progresses through states A to E while bound to
successive dipeptides of its substrate. ATP hydrolysis at subunit D destabilizes the DE interface and promotes displacement of subunit E toward the transitioning subunit F configuration, which allows displacement of ADP. Subsequent ATP binding allows subunit F to pack against subunit A, bind to the next dipeptide of ESCRT-III and assume the subunit A configuration.

(B) Conservation of helical pore loop structure in AAA ATPases. Overlap on the large ATPases of multiple AAA ATPase structures gives a similar helical arrangement of pore loop 1 residues from five subunits. (B) Top and (C) side views are shown of the ESCRT-III peptide (green) and Vps4 pore loop 1 (red) with the equivalent residues of: VAT (Ripstein, Huang et al. 2017) (pdbid 5vca), HSP104 (Gates, Yokom et al. 2017) (5vjh), NSF (Zhao, Wu et al. 2015) (3j94), human 26S proteasome (Huang, Luan et al. 2016) (5gjr), yeast 26S proteasome (Wehmer, Rudack et al. 2017) (5mp9), katanin (Zehr, Szyk et al. 2017) (5wc0, 5wcb).

Figure 4 – figure supplement 1. Structure-based alignment of pore loop 1 sequences. Pore loop 1 residues that contact the ESCRT-III peptide (red font) are shown with four flanking residues on either side.

Videos

Figure 1 - video supplement 1. Representative density. Charge density map shown over the β-sheet of the large domain of subunit B.

Figure 2 - video supplement 1. Nucleotide densities. Density shown with the refined models of ADP·BeFx (subunits A-C), and ADP (subunits D and E). A Mg^{2+} ion is modeled in subunits A-D.

Figure 2 - video supplement 2. Coordination of ADP·BeFx (ATP) at a representative subunit. Coordination of ADP·BeFx is shown at subunit B and the interface with subunit C.

Figure 2 - video supplement 3. Comparison of nucleotide coordination at subunits A, B, and C. Pairs of Vps4 subunits (AB, BC, and CD) are superposed by overlap on the P loop residues of the first subunit.

Figure 2 - video supplement 4. Comparison of nucleotide coordination at subunits A and D. Same as Video 4 but showing overlap of the ADP·BeFx at subunit A and the ADP at subunit D.
Figure 2 – video supplement 5. Comparison of nucleotide coordination at subunits A and E. Same as Video 4 but showing overlap of the ATP/ADP-BeF$_x$ at subunit A and the ADP at subunit E.

Figure 2 – video supplement 6. Interface at a representative subunit pair in the Vps4 helix. The interface between subunits A and B is highlighted. It comprises three regions: large domain to large domain, small domain to large domain, and nucleotide-mediated.

Figure 2 – video supplement 7. Comparison of AB, BC, and CD interfaces. Overlap was performed on the large ATPase domain of the first subunit in each pair.

Figure 2 – video supplement 8. Comparison of AB and DE interfaces. Overlap was performed on the large ATPase domain of the first subunit in each pair. Subunit E is rotated by 8° but maintains very similar contacts with the preceding subunit and relative position of pore loops 1 and 2.

Figure 2 – video supplement 9. Conservation of the interface between small and large domains. Small domain – large domain interfaces following overlap of subunit pairs by superposition on the large domain of the second subunit. In all cases, the surface formed by residues M348, I351, and W388 of the first subunit contact the surface formed by residues L151, F155, L158, F159, and R163 of the second subunit.

Figure 2 – video supplement 10. Similarity between the small domain - large domain interfaces and the major contacts in Vps4 crystal structures. The cryo-EM AB (same as BC, CD, DE, FA) interface and the EF interface are overlapped. Major contacts in crystal structures of archaeal Vps4 proteins overlap closely with the AB interface. Major contacts in crystal structures of eukaryotic Vps4 proteins overlap with the EF interface, except for two of the mouse Vps4 contacts, which are intermediate between the AB and EF interfaces.

Figure 3 - video supplement 1. Charge density map at the ESCRT-III peptide and pore loop 1 and 2 residues.

Figure 3 - video supplement 2. The ESCRT-III peptide spirals around the helix axis.

Figure 3 - video supplement 3. Class I side chain binding pockets.
Figure 3 - video supplement 4. Class II side chain binding pockets.

Figure 4 - video supplement 1. Model of translocation. Translocation of a peptide modeled by interpolation between the six Vps4 subunit states seen in the cryo-EM structure. The pore loop 1 W206 and M207 side chains are highlighted. The peptide residue highlighted in cyan corresponds to the odd-numbered residue that will be bound in the class 1 pocket that will be formed as subunit F packs against subunit A. The transitioning subunit (initially F) moves between the extreme positions apparent from focused classification without change in the other subunits. Other changes are coordinated in a linear interpolation with all parts of the complex, and imply that two Vps4 subunits are disengaged from substrate for much of the transition.

Figure 4 - video supplement 2. Comparison with other classic clade AAA+ ATPases. All structures are superimposed on the large ATPase domains of the five most helical subunits. Subsequent positions of pore loop 1 residues are shown for all six subunits in each structure, and then for the 5 most helical subunits.

Supplementary File 1. MolProbity report. This is for the parts of the model that were defined in charge density at a resolution that justified refinement (Subunits A-E, nucleotides, ESCRT-III peptide). Data in Table 1 are based on this report.
(A) ATP binding
ADP release
ATP hydrolysis

(B) Vps4 ESCRT-III NSF (Ring 1)
VAT (Ring 1) 26S Proteasome Activator (H. sapiens)
VAT (Ring 2) 26S Proteasome Activator (S. cerevisiae)
HSP104 (Ring 1) Katanin (Ring Conformation)
ClpB (Ring1) Katanin (Spiral Conformation)
140,958 particles post 2D-classification

36,774 particles 26.1%
37,896 particles 26.9%
34,571 particles 24.5%
31,717 particles 22.5%

109,241 particles 4.1 Å resolution
Hcp1 mask, subtraction

82,225 particles 75.3%
22,060 particles 20.2%
1,857 particles 1.7%
3,099 particles 2.8%

3.2 Å resolution
(A) Subunit F mask

(B) Vta1-AB mask

3D auto-refine

Focused 3D classification

41.7%
26.1%
6.0%
4.5%
3.3%
18.3%
61.8%
9.4%
19.7%
9.2%
Chimera RSCC: 0.85
EMRinger: 3.7

Chimera RSCC: 0.81
EMRinger: 1.1
<table>
<thead>
<tr>
<th>Protein</th>
<th>PDB ID</th>
<th>Pore Loop 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vps4 (Saccharomyces cerevisiae)</td>
<td>1XWI</td>
<td>D L V S K W M G E S E 211</td>
</tr>
<tr>
<td>VPS4B (Homo sapiens)</td>
<td></td>
<td>203 D L V S K W L G E S E 213</td>
</tr>
<tr>
<td>Vps4 (Metalloshaera sedula)</td>
<td>4D81</td>
<td>166 S I M S K W L G E A E 176</td>
</tr>
<tr>
<td>FtsH (Thermus thermophilus)</td>
<td>2DHR</td>
<td>224 D F V E M F V G V G A 234</td>
</tr>
<tr>
<td>Spastin (Drosophila melanogaster)</td>
<td>3B9P</td>
<td>551 S L T S K Y V G D G E 561</td>
</tr>
<tr>
<td>p97 ring 1 (Homo sapiens)</td>
<td>5C18</td>
<td>273 E I M S K L A G E S E 283</td>
</tr>
<tr>
<td>p97 ring 2 (Homo sapiens)</td>
<td>5C18</td>
<td>546 E L L T M W F G E S E 556</td>
</tr>
<tr>
<td>NSF ring 1 (Cricetus griseus)</td>
<td>3J94</td>
<td>289 E I L N K Y V G E S E 299</td>
</tr>
<tr>
<td>VAT ring 1 (Thermoplasma acidophilum)</td>
<td>5VCA</td>
<td>259 E I M S K Y Y G Q S E 269</td>
</tr>
<tr>
<td>VAT ring 2 (Thermoplasma acidophilum)</td>
<td>5VCA</td>
<td>536 E V L S K W V G E S E 546</td>
</tr>
<tr>
<td>HSP104 ring 1 (Saccharomyces cerevisiae)</td>
<td>5VJH</td>
<td>252 T A G A K Y K G D F E 262</td>
</tr>
<tr>
<td>ClpB ring 1 (Escherichia coli)</td>
<td>5OFO</td>
<td>256 V A G A K Y R G E F E 266</td>
</tr>
<tr>
<td>Katanin (Caenorhabditis elegans)</td>
<td>5WCB</td>
<td>261 D L S S K W R G D S E 271</td>
</tr>
<tr>
<td>PAN (Methanocaldococcus jannaschii)</td>
<td>3H4M</td>
<td>239 E L V K K F I G E G A 249</td>
</tr>
<tr>
<td>26S protease regulatory subunit 6B (Homo sapiens)</td>
<td>5GJR</td>
<td>234 E F V Q K Y L G E G P 244</td>
</tr>
<tr>
<td>26S protease regulatory subunit 10B (Homo sapiens)</td>
<td>5GJR</td>
<td>202 S I V D K Y I G E S A 212</td>
</tr>
<tr>
<td>26S protease regulatory subunit 6A (Homo sapiens)</td>
<td>5GJR</td>
<td>255 Q L V Q M F I G D G A 265</td>
</tr>
<tr>
<td>26S protease regulatory subunit 7 (Homo sapiens)</td>
<td>5GJR</td>
<td>244 E L V Q K Y V G E G A 254</td>
</tr>
<tr>
<td>26S protease regulatory subunit 4 (Homo sapiens)</td>
<td>5GJR</td>
<td>254 E L I Q K Y L G D G P 264</td>
</tr>
<tr>
<td>26S protease regulatory subunit 8 (Homo sapiens)</td>
<td>5GJR</td>
<td>218 E L V Q K F I G E G A 228</td>
</tr>
<tr>
<td>26S protease Rpt3p (Saccharomyces cerevisiae)</td>
<td>5MP9</td>
<td>241 E F V H K Y L G E G P 251</td>
</tr>
<tr>
<td>26S protease Rpt4p (Saccharomyces cerevisiae)</td>
<td>5MP9</td>
<td>250 G I V D K Y I G E S A 260</td>
</tr>
<tr>
<td>26S protease Rpt5p (Saccharomyces cerevisiae)</td>
<td>5MP9</td>
<td>250 Q L V Q M Y I G E G A 260</td>
</tr>
<tr>
<td>26S protease Rpt1p (Saccharomyces cerevisiae)</td>
<td>5MP9</td>
<td>278 E L V Q K Y V G E G A 288</td>
</tr>
<tr>
<td>26S protease Rpt2p (Saccharomyces cerevisiae)</td>
<td>5MP9</td>
<td>251 E L I Q K Y L G D G P 261</td>
</tr>
<tr>
<td>26S protease Rpt6p (Saccharomyces cerevisiae)</td>
<td>5MP9</td>
<td>217 E L V Q K Y I G E G S 227</td>
</tr>
</tbody>
</table>