IRF4 haploinsufficiency in a family with Whipple’s disease

Antoine Guérin, Ph.D.,¹,² Gaspard Kerner, M.Sc.,¹,²,* Nico Marr, Ph.D.,³,*
Janet G. Markle, Ph.D.,¹,² Florence Fenollar, M.D., Ph.D.,³,⁸ Natalie Wong, B. Sc. (Hons),⁶,⁷,§
Sabri Boughorbel, Ph.D.,³,⁸ Danielle T. Avery, B. Sc.,⁶,⁷,§ Cindy S. Ma, Ph.D.,⁶,⁷,§
Salim Bougarn, Ph.D.,³,⁸ Matthieu Bouaziz, Ph.D.,¹,² Vivien Béziat, Ph.D.,¹,²
Erika Della Mina, Ph.D.,¹,² Carmen Oleaga-Quintas, M.Sc.,¹,² Tomi Lazarov, B.Sc.,⁸
Lisa Worley, B.Sc. (Hons),⁶,⁷ Tina Nguyen, B.Sc. (Hons),⁶,⁷ Etienne Patin, Ph.D.,⁹,¹⁰,¹¹
Caroline Deswarte, M.Sc.,¹,² Rubén Martinez-Barricarte, Ph.D.,⁴ Soraya Boucherit, M.D.,¹,²
Xavier Ayral, M.D.,¹² Sophie Edouard, PharmD.,⁵ Stéphanie Boisson-Dupuis, Ph.D.,¹,²,⁴
Vimel Rattina, M.Sc.,¹,² Benedetta Bigio, M.Sc.,⁴ Guillaume Vogt, Ph.D.,²
Frédéric Geissmann, M.D., Ph.D.,⁸,¹³,° Luís Quintana-Murci, Ph.D.,⁹,¹⁰,¹¹,°
Damien Chaussabel, Ph.D.,³,* Stuart G. Tangye, Ph.D.,⁶,⁷,* Didier Raoult, M.D., Ph.D.,⁵,#
Laurent Abel, M.D., Ph.D.,¹,²,⁴,°,# Jacinta Bustamante, M.D., Ph.D.,¹,²,⁴,°,#
and Jean-Laurent Casanova, M.D., Ph.D.,¹,²,⁴,°,#,¹⁵,¹⁶,²,¶

1. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM
 U1163, 75015 Paris, France, EU.
2. Paris Descartes University, Imagine Institute, 75015 Paris, France, EU.
3. Sidra Medical and Research Center, Doha, Qatar.
4. St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch,
The Rockefeller University, New York, NY 10065, USA.
5. Research Unit of Infectious and Tropical Emerging Diseases, University Aix-
 Marseille, URMITE, UM63, CNRS 7278, IRD 198, 13005 Marseille, France, EU.
6. Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW
 2010, Australia.
7. St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney NSW 2010,
 Australia.
8. Immunology Program and Ludwig Center, Memorial Sloan Kettering Cancer Center,
 New York, NY 10065, USA.
9. Human Evolutionary Genetics Unit, Department of Genomes & Genetics, Institut Pasteur,
 Paris 75015, France, EU.
10. CNRS UMR2000, 75015 Paris, France, EU.
11. Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur,
 75015 Paris, France, EU.
12. Rheumatology Unit, Cochin Hospital, 75014 Paris, France, EU.
13. Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA.
14. Center for the Study of Primary Immunodeficiencies, Assistance Publique-Hôpitaux
 de Paris, Necker Hospital for Sick Children, 75015 Paris, France, EU.
15. Pediatric Hematology and Immunology Unit, Assistance Publique-Hôpitaux de Paris,
 Necker Hospital for Sick Children, 75015 Paris, France, EU.
16. Howard Hughes Medical Institute, New York, NY 10065 USA.

*,§,°,# Equal contributions
@ Correspondence: casanova@rockefeller.edu

Keywords: Whipple’s disease, primary immunodeficiency, IRF4, haploinsufficiency

Running title: Whipple’s disease and IRF4 deficiency

Conflict of interest statement: The authors have no conflict of interest to declare.
Abstract

Most humans are exposed to *Tropheryma whipplei* (Tw). Whipple’s disease (WD) strikes only a small minority of individuals infected with Tw (<0.01%), whereas asymptomatic chronic carriage is more common (<25%). We studied a multiplex kindred, containing four WD patients and five healthy Tw chronic carriers. We hypothesized that WD displays autosomal dominant (AD) inheritance, with age-dependent incomplete penetrance. We identified a single very rare non-synonymous mutation in the four patients: the private R98W variant of IRF4, a transcription factor involved in immunity. The five Tw carriers were younger, and also heterozygous for R98W. We found that R98W was loss-of-function, modified the transcriptome of heterozygous leukocytes following Tw stimulation, and was not dominant-negative. We also found that only six of the other 153 known non-synonymous IRF4 variants were loss-of-function. Finally, we found that IRF4 had evolved under purifying selection. AD IRF4 deficiency can underlie WD by haploinsufficiency, with age-dependent incomplete penetrance.
Introduction

Whipple’s disease (WD) was first described as an intestinal inflammatory disease by George H. Whipple in 1907 (Whipple, 1907). Its infectious origin was suspected in 1961 (Yardley and Hendrix, 1961), and the causal microbe, *Tropheryma whippeli* (Tw), a Gram-positive actinomycete, was detected by PCR in 1992 (Relman et al., 1992), and cultured in 2000 (Raoult et al., 2000). Tw is probably transmitted between humans via the oro-oral or feco-oral routes. WD is a chronic condition with a late onset (mean age at onset: 55 years) (Braubach et al., 2017) affecting multiple organs. The clinical manifestations of classical WD are arthralgia, diarrhea, abdominal pain, and weight loss (Dobbins, 1987; Durand et al., 1997; Fleming et al., 1988; Mahnel et al., 2005; Maizel et al., 1970). However, about 25% of WD patients display no gastrointestinal or osteoarticular symptoms, instead presenting with cardiac and/or neurological manifestations (Durand et al., 1997; Fenollar et al., 2014; Fenollar et al., 2001; Gubler et al., 1999; Schneider et al., 2008). WD is fatal if left untreated, and relapses occur in 2 to 33% of treated cases, even after prolonged appropriate antibiotic treatment (Lagier et al., 2011; Marumganti and Murphy, 2008). WD is rare and has been estimated to affect about one in a million individuals (Dobbins, 1981; Dobbins, 1987; Fenollar et al., 2007). However, about two thousand cases have been reported in at least nine countries worldwide, mostly in North America and Western Europe (Bakkali et al., 2008; Desnues et al., 2010; Fenollar et al., 2008a; Lagier et al., 2010; Puechal, 2016; Schneider et al., 2008). Chronic asymptomatic carriage of Tw is common in the general population, and this bacterium has been detected in feces, saliva, and intestinal mucosae. The prevalence of Tw carriage in the feces has been estimated at 2 to 11% for the general population, but can reach 26% in sewer workers and 37% in relatives of patients and carriers (Amsler et al., 2003; Ehrbar et al., 1999; Fenollar et al., 2014; Fenollar et al., 2007; Maibach et al., 2002; Rolain et al., 2007; Schneider et al., 2008; Street et al., 1999).
Seroprevalence for specific antibodies against Tw in the general population varies from 50% in France to 70% in Senegal (Fenollar et al., 2009; Fenollar et al., 2014; Raoult et al., 2000; Schneider et al., 2008). At least 75% of infected individuals clear Tw primary infections, but a minority (<25%) become asymptomatic carriers, a very small proportion of whom develop WD (<0.01%) (Fenollar et al., 2008b). Tw infection is, therefore, necessary, but not sufficient, for WD development, and it is unclear whether prolonged asymptomatic carriage necessarily precedes WD. The hypothesis that WD results from the emergence of a more pathogenic clonal strain of Tw was not supported by bacterial genotyping (Li et al., 2008). WD mostly affects individuals of European origin, but does not seem to be favored by specific environments. WD is typically sporadic, but six multiplex kindreds have been reported, with cases often diagnosed years apart, suggesting a possible genetic component (Durand et al., 1997; Fenollar et al., 2007; Ponz de Leon et al., 2006). WD patients are not prone to other severe infections (Marth et al., 2016). Moreover, WD has never been reported in patients with conventional primary immunodeficiencies (PIDs) (Picard et al., 2018). This situation is reminiscent of other sporadic severe infections, such as herpes simplex virus-1 encephalitis, severe influenza, recurrent rhinovirus infection, severe varicella zoster disease, trypanosomiasis, invasive staphylococcal disease, and viral infections of the brainstem, which are caused by single-gene inborn errors of immunity in some patients (Andersen et al., 2015; Casanova, 2015a; Casanova, 2015b; Ciancanelli et al., 2015; Israel et al., 2017; Lamborn et al., 2017; Lenardo et al., 2016; Ogunjimi et al., 2017; Vanhollebeke et al., 2006; Zhang et al., 2018). We therefore hypothesized that WD might be due to monogenic inborn errors of immunity to Tw, with age-dependent incomplete penetrance.
Results

A multiplex kindred with WD

We investigated four related patients diagnosed with WD (P1, P2, P3, and P4) with a mean age at diagnosis of 58 years. They belong to a large non-consanguineous French kindred (Figure 1A). The proband (P1), a 69-year-old woman, presented with right knee arthritis in 2011, after recurrent episodes of arthritis of the right knee since 1980. Tw was detected in the synovial fluid by PCR and culture, but not in saliva, feces, or small intestine tissue by PCR. Treatment with doxycycline and hydroxychloroquine was effective. At last follow-up, in 2016, P1 was well and Tw PCR on saliva and feces was negative. P2, a second cousin of P1, is a 76-year-old woman with classical WD diagnosed at 37 years of age in 1978 by periodic acid–Schiff (PAS) staining of a small intestine biopsy specimen. She was treated with sulfamethoxazole/trimethoprim. At last follow-up, in 2016, Tw PCR on saliva and feces was positive. P3, the father of P1, is a 92-year-old man with classical WD diagnosed at 62 years of age, in 1987, based on positive PAS staining of a small intestine biopsy specimen. Long-term sulfamethoxazole/trimethoprim treatment led to complete clinical and bacteriological remission. P4, the brother of P2, is a 70-year-old man who consulted in 2015 for arthralgia of the knees and right ulna-carpal joints. PCR and culture did not detect Tw in saliva and feces, but serological tests for Tw were positive. Treatment with methotrexate and steroids was initiated before antibiotics, the effect of which is currently being evaluated. All four patients are otherwise healthy. Saliva and/or feces samples from 18 other members of the family were tested for Tw (Figure 1A; Figure 1-source data 1). Five individuals are chronic carriers (mean age: 55 years) and 13 tested negative (mean age: 38 years). Nine additional relatives could not be tested. The distribution of WD in this kindred was suggestive of an AD trait with incomplete clinical penetrance.
A private heterozygous missense IRF4 variant segregates with WD

We analyzed the familial segregation of WD by genome-wide linkage (GWL), using information from both genome-wide single-nucleotide polymorphism (SNP) microarrays and whole-exome sequencing (WES) (Belkadi et al., 2016). Multipoint linkage analysis was performed under an AD model, with a very rare disease-causing allele ($<10^{-5}$) and age-dependent incomplete penetrance. Twelve chromosomal regions linked to WD were identified on chromosomes 1 (x3), 2, 3, 6, 7, 8, 10, 11, 12 and 17, with a LOD score close (>1.90) to the maximum expected value (1.95) (Figure 1-figure supplement 1A). These regions covered 27.18 Mb and included 263 protein-coding genes. WES data analysis for these 263 genes identified 54 heterozygous non-synonymous coding variants common to all four WD patients (Figure 1-source data 2). Only one, a variant of the Interferon regulatory factor (IRF) 4 gene encoding a transcription factor from the IRF family (Ikushima et al., 2013), located in a 200 kb linked region on chromosome 6 (Figure 1-figure supplement 1A, 1B), was very rare, and was even found to be private [not found in the gnomAD database, http://gnomad.broadinstitute.org, or in our in-house WES database (HGID)], whereas all other variants had a frequency >0.001, which is inconsistent with the frequency of WD and our hypothesis of a very rare ($<10^{-5}$) deleterious heterozygous allele. The variant is a c.292 C>T substitution in exon 3 of IRF4, replacing the arginine residue in position 98 with a tryptophan residue (R98W) (Figure 1A, 1B, 1C). IRF4 is a transcription factor with an important pleiotropic role in innate and adaptive immunity, at least in a few strains of inbred mice (Shaffer et al., 2009). Mice heterozygous for a null Irf4 mutation have not been studied, but homozygous null mice have various T- and B-cell abnormalities and are susceptible to both Leishmania and lymphocytic choriomeningitis virus (Klein et al., 2006; Lohoff et al., 2002; Mittrucker et al., 1997; Suzuki et al., 2004; Tamura et al., 2005; Tominaga et al., 2003). We
confirmed the IRF4 R98W mutation by Sanger sequencing genomic DNA from the blood of the four WD patients (Figure 1C). Thirteen relatives of the WD patients were WT/WT at the IRF4 locus, and 10 of these relatives (77%) tested negative for Tw carriage. Eight other relatives were heterozygous for the IRF4 R98W mutation, five of whom (62.5%) were Tw carriers (mean age: 55 years) (Figure 1A; Figure 1-source data 1). Overall, 12 individuals from the kindred, including the four patients, the five chronic carriers of Tw, two non-carriers of Tw and one relative not tested for Tw, were heterozygous for IRF4 R98W (Figure 1A; Figure 1-source data 1). The familial segregation of the IRF4 R98W allele was therefore consistent with an AD pattern of WD inheritance with incomplete clinical penetrance. Chronic Tw carriage also followed an AD mode of inheritance.

R98W is predicted to be loss-of-function, unlike most other IRF4 variants

The R98 residue in the DNA-binding domain (DBD) of IRF4 is highly conserved in the 12 species for which IRF4 has been sequenced (Figure 1B, 1D). It has been suggested that this residue is essential for IRF4 DNA-binding activity, because the R98A-C99A double mutant is loss-of-function (Brass et al., 1999; Escalante et al., 2002). The R98W mutation is predicted to be damaging by multiple programs (Kircher et al., 2014); it has a CADD score of R98W (26.5), well above the mutation significance cutoff (MSC) of IRF4 (11.125) (Figure 2) (Itan et al., 2016; Kircher et al., 2014). The R98W variant was not present in the gnomAD database or our in-house HGID database of more than 4,000 WES from patients with various infectious diseases. The mutant allele was not found in the sequences for the CEPH-HGDP panel of 1,052 controls from 52 ethnic groups, or in 100 French controls, confirming that this variant was very rare, probably private to this kindred. Therefore, the minor allele frequency (MAF) of this private allele is <4x10^-6. Moreover, the IRF4 gene has a gene damage index (GDI) of 2.85, a neutrality index score of 0.15 (Itan et al., 2015), and a purifying selection f
parameter of 0.32 (among the <10% of genes in the genome subject to the greatest constraint; Figure 2-figure supplement 1), strongly suggesting that IRF4 has evolved under purifying selection (i.e., strong evolutionary constraints) (Eilertson et al., 2012). Biologically disruptive heterozygous mutations of IRF4 are therefore likely to have clinical effects. We identified 156 other high-confidence heterozygous non-synonymous coding or splice variants of IRF4 (Figure 2-source data 1) in public (gnomAD: 153 variants, all with MAF<0.009) and HGID (3 variants) databases: 147 were missense variants (two of which were also found in the homozygous state: p.S149N and p.A370V), four were frameshift indels leading to premature stop codons (p.W27YfsTer50, p.W74GfsTer28, p.Y152LeufsTer60, and S160RfsTer11), three were in-frame indels (p.E46del, p.G279_H280del, and S435del), one was a nonsense variant (p.R82*), one was an essential splice variant (c.403+2T>C), and two were missense variants found only in a non-canonical transcript predicted to undergo nonsense-mediated decay (p.L406P and p.R407W). Up to 150 of the 156 variants are predicted to be benign, whereas only six were predicted to be potentially loss-of-function (LOF) according to the gnomAD database classification (the four frameshift indels, the nonsense variant, and the essential splice variant). Comparison of the CADD score and MAF of these IRF4 variants showed R98W to have the second highest CADD score of the four variants with a MAF < 4 x10^{-6} (Figure 2). These findings suggest that the private heterozygous IRF4 variant of this kindred is biochemically deleterious, unlike most other rare (MAF<0.009) non-synonymous variants in the general population, 150 of 156 of which were predicted to be benign (Lek et al., 2016).

R98W is loss-of-function, unlike most other previously observed IRF4 variants

We first characterized IRF4 R98W production and function in vitro, in an overexpression system. We assessed the effect of the IRF4 R98W mutation on IRF4 levels by
transiently expressing WT or mutant R98W in HEK293T cells. IRF4 R98A-C99A, which is LOF for DNA binding (Brass et al., 1999), was included as a negative control. In total cell extracts, mutant IRF4 proteins were more abundant than the WT protein, and had the expected molecular weight (MW) of 51 kDa, as shown by western blotting (Figure 3A). The R98 residue has been shown to be located in a nuclear localization signal, the complete disruption of which results in a loss of IRF4 retention in the nucleus (Lau et al., 2000). We therefore analyzed the subcellular distribution of IRF4 WT and R98W proteins, in total, cytoplasmic, and nuclear extracts from transiently transfected HEK293T cells. The R98W mutant was more abundant than the WT protein in total cell and cytoplasmic extracts, but these proteins were similarly abundant in nuclear extracts (Figure 3B). We performed luciferase reporter assays to assess the ability of the mutant IRF4 protein to induce transcription from interferon-stimulated response element (ISRE) motif-containing promoters. Unlike the WT protein, both R98W and R98A-C99A failed to activate the (ISRE)_3 promoter (Figure 3C). We also assessed the ability of IRF4 to induce transcription from an (AP-1)-IRF composite element (AICE) motif-containing promoter (Li et al., 2012). Both R98W and R98A-C99A failed to activate the AICE promoter, WT protein (Figure 3D). Moreover, we observed no dominant-negative effect of the IRF4 R98W protein, with either the ISRE or AICE motif-containing promoter (Figure 3-figure supplement 1A, 1B). We assessed the ability of R98W to bind DNA, in an electrophoretic mobility shift assay (EMSA) (Figure 3E, 3F). Signal specificity was assessed by analyzing both supershift with an IRF4-specific antibody and by competition with an unlabeled competitor probe. The R98W mutation abolished IRF4 binding to the ISRE cis element (Figure 3E), and binding of the IRF4-PU.1 complex to interferon composite elements (EICEs) containing both IRF4 and PU.1 recognition motifs (Brass et al., 1999) (Figure 3F). The R98W allele of IRF4 is therefore LOF for both DNA binding and the induction of transcription. We then tested 153 of the other 156
IRF4 variants: 150 variants previously described in the gnomAD database and three variants found in the HGID database. The essential splice variant and the two variants present only in a non-canonical transcript were not tested. All the variants tested were normally expressed (two with a higher MW), except for the five predicted LOF variants tested (the epitope of the antibody being at the C-terminus of IRF4) (Figure 3-figure supplement 2, 3). Transfection with the five predicted LOF plasmids was efficient, as assessed by cDNA amplification and sequencing (data not shown). When tested for (ISRE)₃ promoter activation, the five stop-gain or frameshift variants predicted to be LOF in the gnomAD database (very rare variants, MAF< 6x10⁻⁶) were found to be LOF. We also showed that among all the non-synonymous coding variants tested, only one rare very rare (MAF 9x10⁻⁶) inframe deletion of one amino acid (E46del) reported in the gnomAD database, was hypomorphic, and another variant from our in-house WES database (G279_H280 del, private to one family) was LOF (Figure 3-figure supplement 4, 5). The cumulative frequency of these seven LOF (n=6) or hypomorphic (n=1) variants was <4x10⁻⁵, fully consistent with the frequency of WD (occurring only in adults chronically infected with Tw). Overall, our data show that the R98W IRF4 allele is LOF, like only six other very rare non-synonymous IRF4 coding variants of the 153 variants tested. Moreover, R98W is not dominant negative.

AD IRF4 deficiency phenotypes in heterozygous EBV-B cells

We investigated the cellular phenotype of heterozygosity for the R98W allele in EBV-transformed B-cell lines (EBV-B cells) from patients. We performed reverse transcription-quantitative polymerase chain reaction (RT-qPCR) on EBV-B cells from P1, P3, two healthy heterozygous relatives (IRF4 WT/R98W), four healthy IRF4-WT homozygous relatives, and seven healthy unrelated controls. We also investigated 25 unrelated WD patients with Tw
carriage. We sequenced all IRF4 coding exons for these patients, who were found to be WT. They were also found to have an intact IRF4 cDNA structure and normal IRF4 protein levels in EBV-B cells (data not shown). Cells from individuals heterozygous for the R98W mutation (patients and healthy carriers) had higher IRF4 mRNA levels than those from WT homozygous relatives, unrelated WD cohort patients and EBV-B cells from healthy unrelated controls (Figure 4A). We compared the relative abundances of WT and R98W IRF4 mRNA in EBV-B cells from heterozygous carriers of the mutation, by performing TA-cloning experiments on P1, P3, one healthy heterozygous relative, one relative homozygous for WT IRF4, and two previously tested healthy unrelated controls. In heterozygous carriers of the mutation (patients and healthy relatives) the R98W mutation was present in 48.1%-60% of the total IRF4 mRNA, whereas the rest was WT (Figure 4B). We evaluated the levels and distribution of IRF4 protein by western blotting on EBV-B cells from P1, P2, P3, one healthy heterozygous relative, three healthy homozygous WT relatives and five unrelated healthy individuals. As in transfected HEK293T cells, IRF4 protein levels were high both in total cell extract and even more so in cytoplasmic extracts of EBV-B cells from heterozygous carriers (Figure 4-figure supplement 1A, 1B). By contrast, IRF4 protein levels in EBV-B cell nuclei were similar in heterozygous carriers and controls (Figure 4-figure supplement 1C). As IRF4 is a transcription factor, we then analyzed the steady-state transcriptome of EBV-B cells from three healthy homozygous WT relatives and three WT/R98W heterozygotes (P1, P3, VI.6). We identified 37 protein-coding genes as differentially expressed between subjects heterozygous for IRF4 and those homozygous WT for IRF4 (18 upregulated and 19 downregulated; data not shown). We identified no marked pathway enrichment based on these genes. EBV-B cells from individuals heterozygous for IRF4 had a detectable phenotype, in terms of IRF4 production and function, consistent with AD IRF4 deficiency underlying WD.
AD IRF4 deficiency phenotypes in heterozygous leukocytes

We assessed IRF4 levels in peripheral mononuclear blood cells (PBMCs) from healthy controls (Figure 5-figure supplement 1). IRF4 were also expressed in CD4⁺ T cells, particularly after stimulation with activating anti-CD2/CD3/CD28 monoclonal antibody-coated (mAb-coated) beads (data not shown). We therefore assessed the IRF4 protein expression profile in CD4⁺ T cells from four healthy unrelated controls, P1 and P3, with and without (non-stimulated, NS) stimulation with activating anti-CD2/CD3/CD28 mAb-coated beads. The results were consistent with those for transfected HEK293T and EBV-B cells, as IRF4 levels were higher in activated CD4⁺ T cells from P1 and P3 than in controls, both for total cell extracts, and even more so for the cytoplasmic compartment (Figure 5A, 5B). By contrast, IRF4 levels in the nucleus were similar and, possibly, even slightly lower in patients than in controls (Figure 5C). We also investigated peripheral myeloid (Figure 5-figure supplement 1-4) and lymphoid blood cell subsets in patients (Figure 5-figure supplement 5-7; Figure 5-data source 1) which display an apparently normal development compared to healthy controls’ cells. Then, we checked for transcriptomic differences associated with genotype and/or infection, by investigating the transcriptomes of PBMCs from six IRF4-heterozygous individuals (three patients, P1-P3; and three healthy relatives, HET1-HET3) and six IRF4 WT-homozygous individuals (four healthy relatives, WT1-WT4; and two healthy unrelated controls, C1-C2) with and without *in vitro* infection with Tw, or *Mycobacterium bovis*-Bacillus Calmette-Guerin (BCG), which, like Tw, belongs to phylum Actinobacteria, for 24 hours. We performed unsupervised hierarchical clustering of the differentially expressed (DE) transcripts (infected versus uninfected) to analyze the overall responsiveness of PBMCs from individual subjects to BCG and Tw infections *in vitro*. Heterozygous individuals clearly clustered separately from homozygous WT individuals (Figure 6A), revealing a correlation between genotype and response to infection. Overall, we found that 402 transcripts from 193
unique genes were responsive to BCG infection (Figure 6-source data 1), and 119 transcripts
from 29 unique genes were responsive to Tw infection (Figure 6-source data 2) in
homozygous WT subjects, according to the criteria described in the materials and methods.
Due to the small number of Tw-responsive transcripts linked to unique genes, we were unable
to detect any pathway enrichment for this specific condition. However, we identified 24
canonical pathways as enriched after the exposure of PBMCs to BCG. We ranked these
pathways according to the difference in mean z-score between homozygous WT and
heterozygous subjects (Figure 6B). The top 10 pathways included the interferon signaling
network, the Th1 pathway network, the HMGB1 signaling network, the p38 MAPK signaling
network, the NF-κB signaling network, the dendritic cell maturation network and the network
responsible for producing nitric oxide and reactive oxygen species. These pathways were
highly ranked mostly due to IFNG and STAT1, which were strongly downregulated in IRF4
heterozygotes, particularly in P1, P2 and P3, relative to WT homozygotes. IRF4 is predicted
to bind the promoter regions of 47% of the genes identified in the BCG study (91 of 193
genes), including those of IFNG and STAT1. Subjects heterozygous for IRF4 also had lower
levels of LTA expression, and lower levels of IL2RA expression were observed specifically in
patients (GSE102862). These data suggest a general impairment of the T-cell response in
subjects heterozygous for IRF4 upon BCG infection in vitro. Moreover, the lower levels of
CD80 expression suggest a possible impairment of myeloid and/or antigen-presenting cell
function upon BCG infection in patients, but not in healthy heterozygous or homozygous WT
subjects (GSE102862). Peripheral leukocytes from IRF4-heterozygous individuals therefore
had a phenotype in terms of IRF4 production and function.

Discussion
WD was initially described as an inflammatory disease (Whipple, 1907), but was subsequently shown to be infectious (Raoult et al., 2000; Relman et al., 1992; Yardley and Hendrix, 1961). We provide evidence that WD is also a genetic disorder. We show here that, in a large multiplex kindred, heterozygosity for the private, loss-of-function R98W mutation of \textit{IRF4} underlies an AD form of WD with incomplete penetrance. The causal relationship between \textit{IRF4} genotype and WD was demonstrated as follows. First, the \textit{IRF4} R98W mutation is the only non-synonymous rare variant segregating with WD in this kindred. Second, the mutation was demonstrated experimentally to be LOF, unlike 146 of 153 other non-synonymous coding \textit{IRF4} variants in the general population. Only seven of the 153 non-synonymous coding variants identified (including the five predicted to be LOF in the gnomAD database) were found to be LOF (n=6) or hypomorphic (n=1) and they were all extremely rare (cumulative MAF <4x10^{-5}). Moreover, \textit{IRF4} has evolved under purifying selection, suggesting that deleterious heterozygous variants of this gene entail fitness costs (Barreiro and Quintana-Murci, 2010; Quintana-Murci and Clark, 2013; Rieux-Laucat and Casanova, 2014). Third, EBV-B cells and activated CD4^{+} T cells heterozygous for \textit{IRF4} R98W have a distinctive phenotype, particularly for \textit{IRF4} expression in the cytoplasm. This mutation also has a strong functional impact on gene expression in \textit{IRF4} R98W-heterozygous PBMCs stimulated with BCG or Tw. These findings unequivocally show that heterozygosity for the R98W allele of \textit{IRF4} is the genetic etiology of WD in this kindred. Although we did not find any \textit{IRF4} mutations in a pilot cohort of 25 patients with sporadic WD, these and other patients may also develop WD due to other inborn errors of immunity, possibly related to \textit{IRF4}, as suggested by the apparent genetic heterogeneity and physiological homogeneity underlying severe infectious diseases (Casanova, 2015a; Casanova, 2015b). This observation therefore extends our model, in which life-threatening infectious diseases striking otherwise
healthy individuals during primary infection can result from single-gene inborn errors of immunity.

In this kindred with AD IRF4 deficiency, haploinsufficiency was identified as the key mechanism, although IRF4 protein levels in the cytoplasmic compartment were higher in patients with the mutation than in wild-type homozygotes. The protein was not more abundant in the nucleus, where IRF4 exerts its effects on transcription. Moreover, half of the IRF4 mRNA in EBV-B cells from heterozygous subjects is WT. The total amount of IRF4 mRNA was higher in the EBV-B cells of heterozygous subjects, but the total amount of IRF4 protein in the nuclear compartment of heterozygous EBV-B and activated CD4+ T cells was similar to that in WT homozygous cells. These data suggest that no more than half the IRF4 protein in the nucleus is WT in heterozygous cells. In addition, not only is IRF4 subject to purifying selection, but the R98W mutation is itself LOF, with no detectable dominant-negative effect at cell level. Haploinsufficiency is an increasingly recognized mechanism underlying AD inborn errors of immunity (Afzali et al., 2017; Rieux-Laucat and Casanova, 2014). It is commonly due to loss-of-expression alleles, contrasting with the negative dominance typically exerted by expressed proteins, but many mutations are known to cause haploinsufficiency without actually preventing protein production (Afzali et al., 2017; Perez de Diego et al., 2010; Rieux-Laucat and Casanova, 2014). Haploinsufficiency in this kindred is not due to loss of expression of IRF4. Instead, it results from a lack of activity of the R98W IRF4 proteins present in the nucleus.

Incomplete penetrance is common in conditions resulting from haploinsufficiency. In this kindred, incomplete penetrance may result from a lack of Tw infection (in heterozygous individuals IV.5 and VI.7), or a lack of WD development in infected individuals (in heterozygous individuals III.6, IV.4, V.3, V.4, VI.6). All five chronic carriers of Tw were heterozygous for the IRF4 R98W mutation, suggesting that AD IRF4 deficiency also favors
the development of chronic Tw carriage. The five asymptomatic carriers were 24 to 82 years old, whereas the four patients were 69 to 92 years old. The impact of IRF4 R98W may therefore increase with age, initially facilitating chronic carriage in Tw-infected individuals, and subsequently predisposing chronic carriers to the development of WD. We cannot exclude the possibility that a modifier allele at another locus contributes to the development of WD in infected heterozygous individuals with IRF4 mutations. Future studies will attempt to define the cellular basis of WD in individuals with IRF4 mutations. The apparently normal development of all peripheral myeloid and lymphoid blood cell subsets studied in patients, and the selective predisposition of these individuals to WD suggest that the disease mechanism is subtle and specifically affects protective immunity to Tw, and that it may act in the gastrointestinal (GI) tract. Interestingly, the data of several public databases indicate that IRF4 RNA is expressed in the stomach, colon, and small intestine (https://www.gtexportal.org, http://biogps), and that the IRF4 protein is expressed in glandular cells from the stomach, duodenum, small intestine, and rectum (https://www.proteinatlas.org). In addition, a recent analysis of human intestinal macrophage subsets (Bujko et al., 2017) showed IRF4 RNA to be expressed in human intestinal myeloid resident cells. Further studies of GI tract-resident cells, including myeloid and lymphoid cells in particular, should make it possible to decipher the molecular and cellular mechanisms by which human IRF4 haploinsufficiency underlies WD upon infection by Tw.
Materials and Methods

Patients and family

All members of the multiplex kindred studied, the pedigree of which is shown in Figure 1A, live in France and are of French descent. Informed consent was obtained from all family members, and the study was approved by the national ethics committee.

Patient 1 (P1, proband) was born in 1948 and presented arthritis of the right knee in 2011, after recurrent episodes of arthritis of this joint associated with effusion since 1980. *Tropheryma whipplei* (Tw) was detected in synovial fluid by PCR and culture in 2011, but was not detected by PCR in saliva, feces, and small-bowel biopsy specimens. Physical examination revealed a large effusion of the right knee, limiting mobility. The fluid aspirated from this joint contained 4,000 erythrocytes/mm3 and 8,800 leukocytes/mm3, but no crystals or evidence of microbes. Synovial hypertrophy of the right knee and a narrowing of the right internal femoro-tibial joint were detected on MRI. X ray showed an extension of the right femoro-tibial joint and erosion of the posterior part of the femoro-tibial joint. However, erythrocyte sedimentation rate (ESR) (3 mm/h) and C-reactive protein (CRP) (1.8 mg/l) determinations gave negative results. P1 received methotrexate (15 mg/week) for four months, without remission. Antibiotic treatment with doxycycline (200 mg/day) was then immediately initiated. The arthralgia resolved, but right knee effusion persisted. Hydroxychloroquine was therefore added to the treatment regimen. At last follow-up, in 2016, the patient was well.

P2, a second cousin of P1, was born in 1941 and was diagnosed with classical WD and digestive problems in 1978, based on positive periodic acid–Schiff (PAS) staining of a small intestine biopsy specimen. She was treated with sulfamethoxazole/trimethoprim. At last follow-up, in 2016, Tw PCR was positive for the saliva and feces.
P3, the father of P1, was born in 1925 and was diagnosed with classical WD in 1987 on the basis of positive PAS staining of a small intestine biopsy specimen. Clinical manifestations included diarrhea, abdominal pain and weight loss. P3 displayed no extraintestinal manifestations. He was successfully treated with sulfamethoxazole/trimethoprim, with complete clinical and bacteriological remission.

P4, the brother of P2, was born in 1947 and sought medical advice in 2015 for arthralgia affecting the knees and right ulna-carpal joints. The other joints were unaffected. A culture of the joint fluid was negative for bacteria, but Tw was not sought. Tw was not detected in the saliva and feces by PCR or culture, but serological tests for Tw were positive. P4 had no rheumatoid factor, anti-cyclic citrullinated peptide antibodies (anti-CCP), or anti-nuclear antibodies. The fluid aspirated from the right knee contained 4,800 erythrocytes/mm3 and 10,900 leukocytes/mm3 (91% neutrophils and 9% lymphocytes) without crystals. Blood tests revealed an ESR of 30 mm/h and a CRP concentration of 50 mg/l, with no rheumatoid factor, anti-cyclic citrullinated peptide antibodies (anti-CCP) or anti-nuclear antibodies. An X-ray revealed a narrowing of the joint space in the knees and vertebral hyperostosis was visible. The joints of the hands were unaffected. The patient was treated with anti-inflammatory drugs, without success. Treatment with methotrexate and steroids was introduced, followed by antibiotics, the effect of which is currently being evaluated.
Saliva and/or feces samples from 18 other members of the family were checked for the presence of Tw, by a PCR specifically targeting *T. whipplei*, as previously described (Figure 1A, table 1) (Edouard et al., 2012). Five individuals were found to be chronic carriers (mean age: 55 years) and 13 were not (mean age: 38 years). Testing was not possible for nine other relatives. The overall distribution of WD in this kindred was suggestive of an AD trait with incomplete penetrance.

Genome-wide analysis

Genome-wide linkage analysis was performed by combining genome-wide array and whole-exome sequencing (WES) data (Belkadi et al., 2016). In total, nine family members were genotyped with the Genome-Wide Human SNP Array 6.0. Genotype calling was achieved with the Affymetrix Power Tools Software Package (http://www.affymetrix.com/estore/partners_programs/programs/developer/tools/powertools.a)

SNPs were selected with population-based filters (Purcell et al., 2007), resulting in the use of 905,420 SNPs for linkage analysis. WES was performed as described in the corresponding section, in four family members, P1, P2, P3 and P4. In total, 64,348 WES variants were retained after application of the following filtering criteria: genotype quality (GQ) > 40, minor read ratio (MRR) > 0.3, individual depth (DP) > 20x, retaining only diallelic variants with an existing RS number and a call rate of 100%. Parametric multipoint linkage analysis was performed with the Merlin program (Abecasis et al., 2002), using the combined set of 960,267 variants. We assumed an AD mode of inheritance, with a frequency of the deleterious allele of 10^{-5} and a penetrance varying with age (0.8 above the age of 65 years, and 0.02 below this threshold). Data for the family and for Europeans from the 1000G project were used to estimate allele frequencies and to define linkage clusters, with an r^2 threshold of 0.4.

The method used for WES has been described elsewhere (Bogunovic et al., 2012; Byun et al., 2010). Briefly, genomic DNA extracted from the patients’ blood cells was
sheared with a Covaris S2 Ultrasonicator (Covaris). An adapter-ligated library was prepared with the Paired-End Sample Prep kit V1 (Illumina). Exome capture was performed with the SureSelect Human All Exon kit (71 Mb version - Agilent Technologies). Paired-end sequencing was performed on an Illumina Genome Analyzer IIx (Illumina), generating 72- or 100-base reads. We used a BWA-MEM aligner (Li and Durbin, 2009) to align the sequences with the human genome reference sequence (hg19 build). Downstream processing was carried out with the Genome analysis toolkit (GATK) (McKenna et al., 2010) SAMtools (Li et al., 2009), and Picard Tools (http://picard.sourceforge.net). Substitution calls were made with a GATK UnifiedGenotyper, whereas indel calls were made with a SomaticIndelDetectorV2. All calls with a read coverage <2x and a Phredscaled SNP quality <20 were filtered out. Single-nucleotide variants (SNV) were filtered on the basis of dbSNP135 (http://www.ncbi.nlm.nih.gov/SNP/) and 1000 Genomes (http:browser.1000genomes.org/index.html) data. All variants were annotated with ANNOVAR (Wang et al., 2010). All IRF4 mutations identified by WES were confirmed by Sanger sequencing.

Tw detection

PCR and serological tests for Tw were performed as previously described (Fenollar et al., 2009).

Cell culture and subpopulation separation

PBMCs were isolated by Ficoll-Hypaque density centrifugation (GE Healthcare) from cytopheresis or whole-blood samples obtained from healthy volunteers and patients,
respectively. PBMCs and EBV-B cells (B-cell lines homemade transformed with EBV) were cultured in RPMI medium supplemented with 10% FBS, whereas HEK293T cells (ATCC; CRL-3216) were cultured in DMEM medium supplemented with 10% FBS. Subsets were separated by MACS, using magnetic beads conjugated with the appropriate antibody (Miltenyi Biotec) according to the manufacturer’s protocol. All cells used in this study were tested for mycoplasma contamination and found to be negative.

Site-directed mutagenesis and transient transfection

The full-length cDNA of IRF4 and PU.1 was inserted into the pcDNA™ 3.1D/V5-His-TOPO® vector with the directional TOPO expression kit (Thermo Fisher Scientific). BATF and JUN were obtained from Origene compagnie (#RC207104 and #RC209804 respectively). Constructs carrying mutant alleles were generated from this plasmid by mutagenesis with a site-directed mutagenesis kit (QuikChangeII XL; Agilent Technologies), according to the manufacturer’s instructions. HEK293T cells were transiently transfected with the various constructs, using the Lipofectamine LTX kit (Thermo Fisher Scientific) in accordance with the manufacturer’s instructions.

Cell lysis and western blotting

Total protein extracts were prepared by mixing cells with lysis buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 0.5% Triton X-100, and 2 mM EDTA) supplemented with protease inhibitors (Complete, Roche) and phosphatase inhibitor cocktail (PhoStop, Roche), 0.1 mM dithiothreitol DTT (Life Technologies), 10 µg/ml pepstatin A (Sigma, #P4265), 10 µg/ml leupeptin (Sigma, #L2884), 10 µg/ml antipain dihydrochloride (Sigma, #A6191) and incubating for 40 minutes on ice. A two-step extraction was performed to separate the
cytoplasmic and nuclear content of the cells; cells were first mixed with a membrane lysis
buffer (10 mM Hepes pH 7.9, 10 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 0.05 % NP40, 25
mM NaF supplemented with 1 mM PMSF, 1 mM DTT, 10 µg/ml leupeptin, 10 µg/ml
aprotinin) and incubated for 30 minutes on ice. The lysate was centrifuged at 10,000 x g. The
supernatant, corresponding to the cytoplasm-enriched fraction, was collected and the nuclear
pellet was mixed with nuclear lysis buffer (20 mM Hepes pH 7.9, 0.4 M NaCl, 1 mM EDTA,
1 mM EGTA, 25% glycerol supplemented with 1 mM PMSF, 1 mM DTT, 10 µg/ml
leupeptin, 10 µg/ml aprotinin). Equal amounts of protein, according to a Bradford protein
assay (BioRad, Hercules, California, USA), were resolved by SDS-PAGE in a Criterion™
TGX™ 10% precast gel (Biorad) and transferred to a low-fluorescence PVDF membrane.
Membranes were probed with unconjugated antibody: anti-IRF4 (Santa Cruz, M-17) antibody
was used at a dilution of 1:1000 and antibodies against GAPDH (Santa Cruz, FL-335),
topoiseromerase I (Santa Cruz, C-21), and/or lamin A/C (Santa Cruz, H-110) were used as
loading controls. The appropriate HRP-conjugated or infrared dye (IRDye)-conjugated
secondary antibodies were incubated with the membrane for the detection of antibody binding
by the ChemiDoc MP (Biorad) or Licor Odyssey CLx system (Li-Cor, Lincoln, Nebraska,
USA) respectively.

EMSA

Double-stranded unlabeled oligonucleotides (cold probes) were generated by
annealing in TE buffer (pH 7.9) supplemented with 33.3 mM NaCl and 0.67 mM MgCl2. The
annealing conditions were 100°C for 5 minutes, followed by cooling overnight at room
temperature. After centrifugation at 3,000 x g at 4°C for 30 minutes, the pellet was suspended
in water. We labeled 0.1 µg of cold probe in Klenow buffer supplemented with 9.99 mM
dNTP without ATP, 10 U Klenow fragment (NEB) and 50 µCi d-ATP-\(^{32}\)P, at 37°C for 60 minutes. Labeled probes were purified on Illustra MicroSpin G-25 Columns (GE Healthcare Life Sciences), according to the manufacturer’s protocol. We incubated 10 µg of nuclear protein lysate on ice for 30 minutes with a \(^{32}\)P-labeled (a-dATP) ISRE probe (5’ − gat cGG GAA AGG GAA ACC GAA ACT GAA-γ’) designed on the basis of the ISG15 promoter or the λB probe (5’- gat cGC TCT TTA TTT TCC TTC ACT TTG GTT AC-3’) described by Brass et al. in 1999 (Brass et al., 1999). For supershift assays, nuclear protein lysates were incubated for 30 minutes on ice with 2 µg of anti-IRF4 (Santa Cruz, M-17) antibody or anti-goat Ig (Santa Cruz) antibody. Protein/oligonucleotide mixtures were then subjected to electrophoresis in 12.5% acrylamide/bis-acrylamide 37.5:1 gels in 0.5% TBE migration buffer for 80 minutes at 200 mA. Gels were dried on Whatman paper at 80°C for 30 minutes and placed in a phosphor-screen cassette for five days. Radioactivity levels were analyzed with the Fluorescent Image Analyzer FLA-3000 system (Fujifilm).

Luciferase reporter assays

The (ISRE)\(_3\) reporter plasmid (pGL4.10[luc2] backbone, Promega #E6651), which contains three repeats of the ISRE sequence separated by spacers, was kindly provided by Prof. Aviva Azriel (Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology). The AICE reporter plasmid (pGL4.10[luc2] backbone, Promega #E6651) contains part of the IL23R promoter (-254 to -216). HEK293T cells were transiently transfected with the (ISRE)\(_3\) reporter plasmid (100 ng/well on a 96-well plate), the pRL-SV40 vector (Promega # E2231, 40 ng/well) and a IRF4 WT or mutant pcDNA™3.1D/V5-His-TOPO® plasmid (Invitrogen #K4900-01, 25 ng/well or the amount indicated, made up to 100 ng with empty plasmid), with the Lipofectamine LTX kit (Thermo Fisher Scientific), according to the manufacturer’s instructions. For the AICE assay, we used the same protocol,
but with the addition of \textit{BATF} and \textit{JUN} expression plasmids (25 ng/well each). Cells were used 24 h after transfection for the \textit{ISRE} assay and 48 h after transfection for the \textit{AICE} assay, with the Dual-Luciferase® 1000 assay system kit (Promega #E1980), according to the manufacturer’s protocol. Signal intensity was determined with a Victor™ X4 plate reader (Perkin Elmer). Experiments were performed in triplicate and reporter activity is expressed as fold-induction relative to cells transfected with the empty vector. Negative dominance was assessed by performing the same protocol with the following modifications: (\textit{ISRE}), reporter plasmid (100 ng/well for a 96-well plate), pRL-SV40 vector (40 ng/well) WT and mutant plasmids were used to cotransfect cells, with a constant amount of WT plasmid (25 ng/well) but various amounts of mutant plasmid (25 ng/well alone made up to 100 ng with empty plasmid or with the indicated amount, made up to 100 ng with empty plasmid) amounting to a total of 240 ng/well. For the \textit{AICE} assay, the same protocol was used, but with the addition of \textit{BATF} and \textit{JUN} expression plasmids (25 ng/well each).

\textbf{Microarrays}

For the microarray analysis of PBMCs, cells from six \textit{IRF4}-heterozygous individuals (three patients, P1-P3; and three asymptomatic relatives, HET1-HET3) and six \textit{IRF4} WT-homozygous individuals (four healthy relatives, WT1-WT4; and two healthy unrelated controls, C1-C2) were dispensed into a 96-well plate at a density of 200,000 cells/well and were infected \textit{in vitro} with live Tw at a multiplicity of infection (MOI) of 1, or with live BCG (\textit{M. bovis}-BCG, Pasteur substrain) at a MOI of 20, or were left uninfected (mock). Two wells per condition were combined 24 h post-infection for total RNA isolation with the ZR RNA Microprep™ kit (Zymo Research). For the microarray on EBV-B cells, we used 400,000 cells from three \textit{IRF4}-heterozygous mutation carriers and three WT individuals from the kindred for total RNA isolation with the ZR RNA Microprep™ kit (Zymo Research). Microarray
experiments on both PBMCs and EBV-B cells were performed with the Affymetrix Human Gene 2.0 ST Array. Raw expression data were normalized by the robust multi-array average expression (RMA) method implemented in the affy R package (Gautier et al., 2004; Irizarry et al., 2003). Normalized expression data were processed as previously described (Alsina et al., 2014) and briefly summarized here. First, fold-changes (FC) in expression between mock-infected and BCG-infected or Tw-infected conditions were calculated for each individual separately. For each set of conditions, transcripts were further filtered based on a minimal 1.5 FC in expression (up- or downregulation). In a final stage, transcripts satisfying the previous filters in at least four of the six homozygous WT individuals for each in vitro infection condition were retained for downstream analysis. We counted the differentially expressed (DE) transcripts affected by stimulation in samples from all subjects for each stimulus, and determined the mean counts for these DE transcripts in all homozygotes. The mean values obtained were then used to normalize the counts of DE transcripts, yielding an overall transcriptional responsiveness for each individual separately, and for each stimulus. This overall responsiveness of subjects to either Tw or BCG is shown as a heatmap, and individual subjects were grouped by unsupervised hierarchical clustering. Responsive transcripts were further analyzed with Ingenuity Pathway Analysis (IPA) Software, Version 28820210 (QIAGEN) (Alsina et al., 2014) for functional interpretation. In brief, the FC values for each individual and treatment were used as input data for the identification of canonical pathway enrichment (z-score cut-off set at 0.1). The activation z-score values calculated for the identified pathways were exported from IPA and used to calculate mean values and differences between WT homozygotes and heterozygotes, and for graphical representation, with Microsoft Excel and GraphPad Prism Version 7.0, respectively. The direction of the difference was not considered further. Negative mean difference values were converted into positive values before the ranking of the canonical pathways according to the difference.
between the genotypes. The microarray data used in this study have been deposited in the NCBI Gene Expression Omnibus (GEO) database, under accession number GSE102862.

IRF4 qPCR

Total RNA was prepared from the EBV-B cells of individuals heterozygous for IRF4 mutations (two patients and two asymptomatic relatives), and healthy homozygous WT relatives (n=4). We also included samples from unrelated individuals (seven healthy controls and 25 patients with Tw carriage; all IRF4 coding exons for each individual were sequenced and shown to be WT). Moreover, the 25 WD patients included in this experiment were found to have an intact IRF4 cDNA structure and normal levels of IRF4 protein production in EBV-B cells. RNA was prepared from 500,000 cells with the ZR RNA Microprep™ kit (Zymo Research), according to the manufacturer’s instructions. A mixture of random octamers and oligo dT-16 was used, with the MuLV reverse transcriptase (High-Capacity RNA-to-cDNA™ kit, Thermo Fisher Scientific), to generate cDNA. Quantitative real-time PCR was performed with the TaqMan® Universal PCR Master Mix (Thermo Fisher Scientific), the IRF4-specific primer (Hs01056533_m1, Thermo Fisher Scientific) and the endogenous human β-glucuronidase (GUSB) as a control (4326320E, Thermo Fisher Scientific). Data were analyzed by the ΔΔCt method, with normalization against GUSB.

IRF4 TA-cloning

The full-length cDNA generated from the EBV-B cells of IRF4-heterozygous and WT homozygous individuals was used for the PCR amplification of exon 3 of IRF4. The products obtained were cloned with the TOPO TA cloning kit (pCR2.1®-TOPO® TA vector, Thermo Fisher Scientific), according to the manufacturer’s instructions. They were then used to
transform chemically competent bacteria, and 100 clones per individual were Sanger-sequenced with M13 primers (forward and reverse).

CD4⁺ T-cell stimulation by activating anti-CD2/CD3/CD28 mAb-coated beads

Isolated CD4⁺ T cells from patients (P1 and P3) and from healthy unrelated controls (C1-C4) were either left unstimulated (NS) or stimulated with activating anti-CD2/CD3/CD28 mAb-coated beads (Miltenyi Biotec) for 24 h in RPMI medium supplemented with 10% FBS (24-well plate).

Differentiation and activation of in vitro monocyte-derived macrophages (MDMs)

After isolation, monocytes from P1 or two healthy unrelated controls were plated (24-well plate; 600,000 cells/well) in RPMI medium supplemented with 40% human serum (M1-like) or 10% FBS (M2-like). Differentiation cytokines (R&D Systems) were immediately added: 0.5 ng/ml rhGM-CSF (M1-like) or 20 ng/ml rhM-CSF (M2-like). Every three days, we replaced 30% of the medium with fresh complete medium supplemented with the appropriate cytokines. After 14 days of differentiation, cells were left unstimulated (NS) or were activated by incubation with 2.5 ng/ml IFN-γ (M1-like) or 50 ng/ml rh-IL-4 (M2-like) for 48 h.

MDM surface marker expression

Differentiated/activated MDMs were detached by treatment with trypsin (1.6 µg/ml) in PBS. Cells were treated with Fc receptor blocking agent (Miltenyi Biotec) and Aqua Dead Cell Stain kit (Thermo Fisher Scientific) for 1 h. They were then washed and stained for 1 h at room temperature with appropriate antibodies (see Figure 5-figure supplement 4) and
appropriate isotype controls (BD biosciences). Samples were analyzed on a Beckman Coulter Gallios flow cytometer.

Percentage of memory B cells

PBMCs from healthy unrelated controls and patients (P1, P2 and P3) were stained with antibodies against CD20, CD10 and CD27, and IgM, IgD, IgG or IgA. The percentages of transitional (CD20$^+$ CD10$^+$ CD27$^-$), naïve (CD20$^+$ CD10$^-$ CD27$^-$) and memory (CD20$^+$ CD10$^-$ CD27$^+$) B cells were determined by flow cytometry. We then assessed the IgM/IgD or IgG or IgA expression of the memory B cells, to determine the extent of Ig isotype switching in the memory compartment.

Ex vivo naïve and effector/memory CD4$^+$ T-cell stimulation

CD4$^+$ T cells were isolated as previously described (Ma et al., 2012). Briefly, cells were labeled with anti-CD4, anti-CD45RA, and anti-CCR7 antibodies, and naïve (defined as CD45RA$^+$ CCR7$^+$ CD4$^+$) T cells or effector/memory T cells (defined as CD45RA$^{-}$ CCR7$^±$ CD4$^+$) were isolated (> 98% purity) with a FACS Aria cell sorter (BD Biosciences). Purified naïve or effector/memory CD4$^+$ T cells were cultured with T-cell activation and expansion beads (anti-CD2/CD3/CD28; Miltenyi Biotec) for five days. Culture supernatants were then used to assess the secretion of IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, IL-17A, IL-17F, IFNγ and TNFα in a cytometric bead array (BD biosciences), and the secretion of IL-22, by ELISA (Peprotech).
In vitro differentiation of naïve CD4+ T cells

Naïve CD4+ T cells (CD45RA+CCR7+) were isolated (> 98% purity) from healthy unrelated controls or patients, with a FACS Aria sorter (BD Biosciences). They were cultured under polarizing conditions, as previously described (Ma et al., 2016). Briefly, cells were cultured with T-cell activation and expansion beads (anti-CD2/CD3/CD28; Miltenyi Biotec) alone or under Th1 (IL-12 [20 ng/ml; R&D Systems]) or Th17 (TGFβ, IL-1β [20 ng/ml; Peprotech], IL-6 [50 ng/ml; PeproTech], IL-21 [50 ng/ml; PeproTech], IL-23 [20 ng/ml; eBioscience], anti-IL-4 [5 μg/ml], and anti-IFN-γ [5 μg/ml; eBioscience]) polarizing conditions. After five days, culture supernatants were used to assess the secretion of the cytokines indicated, by ELISA (IL-22), or with a cytometric bead array (all other cytokines).

Key resources table

<table>
<thead>
<tr>
<th>Reagent type (species) or resource</th>
<th>Designation</th>
<th>Source or reference</th>
<th>Identifiers</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>gene (Human)</td>
<td>IRF4</td>
<td>This paper</td>
<td></td>
<td>vector backbone: pcDNA™ 3.1D/V5-His-TOPO® vector (Thermo Fisher Scientific)</td>
</tr>
<tr>
<td>gene (Human)</td>
<td>PU.1</td>
<td>This paper</td>
<td></td>
<td>vector backbone: pcDNA™ 3.1D/V5-His-TOPO® vector (Thermo Fisher Scientific)</td>
</tr>
<tr>
<td>gene (Human)</td>
<td>BATF</td>
<td>OriGene</td>
<td>RC207104</td>
<td></td>
</tr>
<tr>
<td>gene (Human)</td>
<td>JUN</td>
<td>OriGene</td>
<td>RC209804</td>
<td></td>
</tr>
<tr>
<td>strain (Tropheryma whipplei), strain background (DIG APD 25)</td>
<td>Tw</td>
<td>This paper</td>
<td>NCBI taxon: 2039</td>
<td>Obtained from "Research Unit of Infectious and Tropical Emerging Diseases, University Aix-Marseille, URMIIE, UM63, CNRS 7278, IRD 198, 13005 Marseille, France, EU". Strain isolated from mesenteric lymph node (29/01/09).</td>
</tr>
<tr>
<td>strain (Mycobacterium bovis-Bacillus Calmette-Guerin) , strain background (pasteur)</td>
<td>BCG</td>
<td>doi: 10.1084/jem.200217 69</td>
<td>NCBI taxon: 33892</td>
<td></td>
</tr>
<tr>
<td>cell line (Human)</td>
<td>HEK293T</td>
<td>ATCC</td>
<td>CRL-3216</td>
<td></td>
</tr>
<tr>
<td>Reagent type (species) or resource</td>
<td>Designation</td>
<td>Source or reference</td>
<td>Identifiers</td>
<td>Additional information</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>cell line (Human)</td>
<td>EBV-B cells</td>
<td>This paper</td>
<td></td>
<td>For each individual, purified B cells were immortalized with EBV in the laboratory</td>
</tr>
<tr>
<td>transfected construct (PGL4.10[luc2])</td>
<td>(ISRE)3 reporter plasmid,</td>
<td>This paper, backbone: Promega</td>
<td>#E6651</td>
<td>Obtained from "Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology"</td>
</tr>
<tr>
<td>transfected construct (PGL4.10[luc2])</td>
<td>AICE reporter plasmid</td>
<td>This paper, backbone: Promega</td>
<td>#E6651</td>
<td>Generated by metabion international ag</td>
</tr>
<tr>
<td>transfected construct (pRL-SV40 vector)</td>
<td>pRL-SV40 vector</td>
<td>Promega</td>
<td>#E2231</td>
<td></td>
</tr>
<tr>
<td>biological sample (Human)</td>
<td>Patients' blood samples</td>
<td>This paper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>biological sample (Human)</td>
<td>Controls' blood samples</td>
<td>This paper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>antibody</td>
<td>anti-IRF4</td>
<td>Santa Cruz</td>
<td>M-17</td>
<td>dilution: 1/1000</td>
</tr>
<tr>
<td>antibody</td>
<td>anti-GAPDH</td>
<td>Santa Cruz</td>
<td>FL-335</td>
<td>dilution: 1/1000</td>
</tr>
<tr>
<td>antibody</td>
<td>anti-topoisomerase I</td>
<td>Santa Cruz</td>
<td>C-21</td>
<td>dilution: 1/1000</td>
</tr>
<tr>
<td>antibody</td>
<td>anti-lamin A/C</td>
<td>Santa Cruz</td>
<td>H-110</td>
<td>dilution: 1/1000</td>
</tr>
<tr>
<td>antibody</td>
<td>anti-lamin A/C</td>
<td>Santa Cruz</td>
<td>H-110</td>
<td>dilution: 1/1000</td>
</tr>
<tr>
<td>antibody</td>
<td>anti-CD11b</td>
<td>Miltenyi Biotec</td>
<td># 130-110-611</td>
<td>fluorochrome: PE</td>
</tr>
<tr>
<td>antibody</td>
<td>anti-CD86</td>
<td>Miltenyi Biotec</td>
<td>#130-094-877</td>
<td>fluorochrome: PE</td>
</tr>
<tr>
<td>antibody</td>
<td>anti-CD206</td>
<td>Miltenyi Biotec</td>
<td>#130-099-732</td>
<td>fluorochrome: PE</td>
</tr>
<tr>
<td>antibody</td>
<td>anti-CD209</td>
<td>Miltenyi Biotec</td>
<td>#130-109-589</td>
<td>fluorochrome: PE</td>
</tr>
<tr>
<td>antibody</td>
<td>anti-CD21</td>
<td>BD biosciences</td>
<td></td>
<td>fluorochrome: PE; clone H1</td>
</tr>
<tr>
<td>antibody</td>
<td>anti-CD10</td>
<td>BD biosciences</td>
<td></td>
<td>fluorochrome: APC; clone HI10a</td>
</tr>
<tr>
<td>antibody</td>
<td>anti-CD27</td>
<td>BD biosciences</td>
<td></td>
<td>fluorochrome: PerCP-Cy5.5; clone L128</td>
</tr>
<tr>
<td>antibody</td>
<td>anti-IgM</td>
<td>Miltenyi</td>
<td></td>
<td>clone PJ2-22H3</td>
</tr>
<tr>
<td>antibody</td>
<td>anti-IgG</td>
<td>BD biosciences</td>
<td></td>
<td>fluorochrome: BV605; clone G18-145</td>
</tr>
<tr>
<td>antibody</td>
<td>anti-IgA</td>
<td>Miltenyi</td>
<td></td>
<td>clone IS11-8E10</td>
</tr>
<tr>
<td>antibody</td>
<td>anti-CD4</td>
<td>eBioscience</td>
<td></td>
<td>fluorochrome: Pacific blue; clone OKT4</td>
</tr>
<tr>
<td>antibody</td>
<td>anti-CD45RA</td>
<td>BD biosciences</td>
<td></td>
<td>fluorochrome: PerCP-Cy5.5, clone HI100</td>
</tr>
<tr>
<td>antibody</td>
<td>anti-CCR7</td>
<td>Sony</td>
<td></td>
<td>fluorochrome: FITC; clone G043H7</td>
</tr>
<tr>
<td>recombinant DNA reagent</td>
<td>pcDNA™ 3.1D/V5-His-TOP0® vector</td>
<td>Thermo Fisher Scientific</td>
<td>#K4900-01</td>
<td></td>
</tr>
<tr>
<td>sequence-based reagent</td>
<td>IRF4-specific primer</td>
<td>Thermo Fisher</td>
<td>#Hs01056533_m1</td>
<td></td>
</tr>
<tr>
<td>Reagent type (species) or resource</td>
<td>Designation</td>
<td>Source or reference</td>
<td>Identifiers</td>
<td>Additional information</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>sequence-based reagent</td>
<td>GUSB</td>
<td>Thermo Fisher Scientific</td>
<td>#4326320E</td>
<td></td>
</tr>
<tr>
<td>peptide, recombinant protein</td>
<td>rhGM-CSF</td>
<td>R&D System</td>
<td>#CAA26822</td>
<td></td>
</tr>
<tr>
<td>peptide, recombinant protein</td>
<td>rhM-CSF</td>
<td>R&D System</td>
<td>#NP_757350</td>
<td></td>
</tr>
<tr>
<td>peptide, recombinant protein</td>
<td>IFN-γ</td>
<td>Boehringer Ingelheim</td>
<td></td>
<td>Imukin</td>
</tr>
<tr>
<td>peptide, recombinant protein</td>
<td>rhIL4</td>
<td>R&D System</td>
<td>#P05112</td>
<td></td>
</tr>
<tr>
<td>commercial assay or kit</td>
<td>Lipofectamine LTX kit</td>
<td>Thermo Fisher Scientific</td>
<td>#15338100</td>
<td></td>
</tr>
<tr>
<td>commercial assay or kit</td>
<td>Dual-Luciferase® 1000 assay system kit</td>
<td>Promega</td>
<td>#E1980</td>
<td></td>
</tr>
<tr>
<td>commercial assay or kit</td>
<td>ZR RNA Microprep™ kit</td>
<td>Zymo research</td>
<td>#R1061</td>
<td></td>
</tr>
<tr>
<td>commercial assay or kit</td>
<td>High-Capacity RNA-to-cDNA™ kit</td>
<td>Thermo Fisher Scientific</td>
<td>#R4387406</td>
<td></td>
</tr>
<tr>
<td>commercial assay or kit</td>
<td>TOPO TA cloning kit</td>
<td>Thermo Fisher Scientific</td>
<td>#K450001</td>
<td></td>
</tr>
<tr>
<td>commercial assay or kit</td>
<td>directional TOPO expression kit</td>
<td>Thermo Fisher Scientific</td>
<td>#K4900-01</td>
<td></td>
</tr>
<tr>
<td>commercial assay or kit</td>
<td>QuikChangeII XL Site-Directed Mutagenesis Kit</td>
<td>Agilent Technologies</td>
<td>#200522</td>
<td></td>
</tr>
<tr>
<td>commercial assay or kit</td>
<td>LIVE/DEAD™ Fixable Aqua Dead Cell Stain Kit</td>
<td>Thermo Fisher Scientific</td>
<td>#L34957</td>
<td></td>
</tr>
<tr>
<td>chemical compound, drug</td>
<td>Tris</td>
<td>MP biomedicals</td>
<td>#11TRIS01KG</td>
<td></td>
</tr>
<tr>
<td>chemical compound, drug</td>
<td>HCl</td>
<td>Sigma</td>
<td>#H1758</td>
<td></td>
</tr>
<tr>
<td>chemical compound, drug</td>
<td>NaCl</td>
<td>Sigma</td>
<td>#S3014</td>
<td></td>
</tr>
<tr>
<td>chemical compound, drug</td>
<td>Triton X-100</td>
<td>Sigma</td>
<td>#T8532</td>
<td></td>
</tr>
<tr>
<td>chemical compound, drug</td>
<td>EDTA</td>
<td>MP biomedicals</td>
<td>#11EDTA05M1</td>
<td></td>
</tr>
<tr>
<td>chemical compound, drug</td>
<td>protease inhibitors Complete</td>
<td>Roche</td>
<td>#04693116001</td>
<td></td>
</tr>
<tr>
<td>chemical compound, drug</td>
<td>Phosphatase inhibitor cocktail</td>
<td>Roche</td>
<td>#04906837001</td>
<td></td>
</tr>
<tr>
<td>chemical compound, drug</td>
<td>DTT</td>
<td>Thermo Fisher Scientific</td>
<td>#20290</td>
<td></td>
</tr>
<tr>
<td>Reagent type (species) or resource</td>
<td>Designation</td>
<td>Source or reference</td>
<td>Identifiers</td>
<td>Additional information</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------------------------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>chemical compound, drug</td>
<td>pepstatin A</td>
<td>Sigma</td>
<td>#P4265</td>
<td></td>
</tr>
<tr>
<td>chemical compound, drug</td>
<td>leupeptin</td>
<td>Sigma</td>
<td>#L2884</td>
<td></td>
</tr>
<tr>
<td>chemical compound, drug</td>
<td>antipain</td>
<td>Sigma</td>
<td>#A6191</td>
<td></td>
</tr>
<tr>
<td>chemical compound, drug</td>
<td>Hepes</td>
<td>Sigma</td>
<td>#H3375</td>
<td></td>
</tr>
<tr>
<td>chemical compound, drug</td>
<td>KCl</td>
<td>Sigma</td>
<td>#P9333</td>
<td></td>
</tr>
<tr>
<td>chemical compound, drug</td>
<td>EGTA</td>
<td>Amresco</td>
<td>#0732</td>
<td></td>
</tr>
<tr>
<td>chemical compound, drug</td>
<td>NP40</td>
<td>Sigma</td>
<td>#N6507</td>
<td></td>
</tr>
<tr>
<td>chemical compound, drug</td>
<td>NaF</td>
<td>Sigma</td>
<td>#S7920</td>
<td></td>
</tr>
<tr>
<td>chemical compound, drug</td>
<td>PMSF</td>
<td>Sigma</td>
<td>#P7626</td>
<td></td>
</tr>
<tr>
<td>chemical compound, drug</td>
<td>MgCl₂</td>
<td>Sigma</td>
<td>#M8266</td>
<td></td>
</tr>
<tr>
<td>chemical compound, drug</td>
<td>Klenow fragment</td>
<td>NEB</td>
<td>#M0210S</td>
<td></td>
</tr>
<tr>
<td>chemical compound, drug</td>
<td>d-ATP-32P</td>
<td>PerkinElmer</td>
<td>#BLU012H250UC</td>
<td></td>
</tr>
<tr>
<td>chemical compound, drug</td>
<td>TBE migration buffer</td>
<td>Euromedex</td>
<td>#ET020-B</td>
<td></td>
</tr>
<tr>
<td>chemical compound, drug</td>
<td>acrylamide/bis-acrylamide 37.5:1</td>
<td>Sigma</td>
<td>#A7168</td>
<td></td>
</tr>
<tr>
<td>software, algorithm</td>
<td>affy R package</td>
<td>Gautier, Cope, Bolstad, & Irizarry, 2004; Irizarry et al., 2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>software, algorithm</td>
<td>IPA software</td>
<td>Alsina et al., 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>software, algorithm</td>
<td>Microsoft Excel</td>
<td>Microsoft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>software, algorithm</td>
<td>GraphPad Prism V7.0</td>
<td>GraphPad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>software, algorithm</td>
<td>Image studio</td>
<td>Licor</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Acknowledgments

We thank the patients and their families for participating in the study. We thank Yelena Nemirovskaya, Tatiana Kochetkov, Lahouari Amar, Cécile Patissier, Céline Desvallées, Dominick Papandrea, Mark Woollett, and Amy Gall for technical and secretarial assistance and all members of the Laboratory of Human Genetics of Infectious Diseases for helpful discussions. We acknowledge the use of the biological resources of the Imagine Institute DNA biobank (BB-33-00065). A.G. was supported by ANR-IFNPHOX (ANR-13-ISV3-0001-01), ANR-GENMSMD (ANR-16-CE17-0005-01) and the Imagine Institute. The Laboratory of Human Genetics of Infectious Diseases is supported in part by grants from the St. Giles Foundation, The Rockefeller University, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Descartes University, and the European Research Council (ERC), the Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence (ANR-10-LABX-62-IBEID) and the French National Research Agency (ANR) under the “Investments for the future” program (grant number ANR-10-IAHU-01), ANR-IFNPHOX (ANR-13-ISV3-0001-01, to J.B.), ANR-GENMSMD (ANR-16-CE17-0005-01, to J.B.). Research in the Quintana-Murci laboratory was supported by the Pasteur Institute, the Centre National de la Recherche Scientifique (CNRS), the French Government’s Investissement d’Avenir program, (ANR-10-LABX-62-IBEID), IEIHSEER (ANR-14-CE14-0008-02) and TBPATHGEN (ANR-14-CE14-0007-02), and the European Union’s Seventh Framework Program (FP/2007–2013)/ERC Grant Agreement No. 281297. S.G.T. and C.S.M. are supported by grants and fellowship awarded by the National Health and Medical Research Council of Australia (1113904, 1042925) and the Office of Health and Medical Research of the New South Wales State Government. T.N. and L.W. are supported by Australian Postgraduate Research Awards from the University of NSW.

Figure legends

Figure 1. Autosomal dominant IRF4 deficiency. A. Pedigree of the kindred, with allele segregation. Generations are designated by Roman numerals (I, II, III, IV, V and VI), and each individual is designated by an Arabic numeral (from left to right). Each symbol is divided into two parts: the upper part indicates clinical status for WD (black: affected, white: healthy, “?”: not known), the lower part indicates whether Tw was identified by PCR (in saliva, blood, feces or joint fluid) or by PAS staining on bowel biopsy specimens (gray: Tw-positive, white: Tw-negative, “?”: not tested). Whipple’s disease patients are indicated as P1, P2, P3, and P4; the proband is indicated with an arrow. Genotype status and age (for IRF4-heterozygous individuals) are reported below the symbols. Individuals whose genetic status could not be evaluated are indicated by the symbol “E?”.

B. Schematic representation of the IRF4 protein, showing the DNA-binding domain (DBD), P-rich domain, activation domain, α-helical domain, Q-rich domain, IFR association domain (IAD) and auto-inhibitory domain. The R98W substitution is indicated in red.

C. Electropherogram of IRF4 genomic DNA sequences from a healthy unrelated control (C) and the patients (P1, P2, P3, P4). The R98W IRF4 mutation leads to the replacement of an arginine with a tryptophan residue in position 98 (exon 3, c.292 C>T). The corresponding amino acids are represented above each electropherogram.

D. Alignment of the R98W amino acid in the DBD domain of IRF4 in humans and 11 other animal species. R98 is indicated in red.

Figure 1-figure supplement 1. Genome-wide linkage and whole-exome sequencing analyses. A. Genome-wide linkage analysis was performed by combining genome-wide array and whole-exome sequencing (WES) data, assuming an autosomal dominant (AD) mode of inheritance. LOD (logarithm of odds) scores are shown for the four patients considered
together. The maximum expected LOD score is 1.95, based on an AD model with incomplete
penetrance. \textit{IRF4} is located within a linkage region (LOD=1.94) on chromosome 6 (indicated
by a black arrow). \textbf{B.} A refined analysis of WES data identified \textit{IRF4} as the only protein-
coding gene carrying a rare heterozygous mutation common to P1, P2, P3 and P4 within the
linkage regions.

\textbf{Figure 1-source data 1.} \textbf{Kindred information summary.} For each subject, Tw carriage
status, \textit{IRF4} genotype, clinical status and date of birth (DOB) are reported. NA: not available;
Pos: positive; Neg: negative; Tw: \textit{Tropheryma whipplei}; WD: Whipple’s disease; E?:
genotype not assessed.

\textbf{Figure 1-source data 2.} \textbf{Non-synonymous variants within the linkage regions found in
WES data from patients.}

\textbf{Figure 2.} \textbf{Analysis in silico of }\textit{IRF4} \textbf{variants.} \textbf{A.} Minor allele frequency and combined
annotation–dependent depletion score (CADD) of all coding variants previously reported in a
public database (gnomAD) (http://gnomad.broadinstitute.org) and in our in-house (HGID)
database. The dotted line corresponds to the mutation significance cutoff (MSC) with 95%
confidence interval. The R98W variant is shown as a red square.

\textbf{Figure 2-figure supplement 1.} \textbf{List of variants and strength of purifying selection on
\textit{IRF4}.} Genome-wide distribution of the strength of purifying selection, estimated by the f
parameter (Eilertson et al., 2012), acting on 14,993 human genes. \textit{IRF4} is at the 9.4th
percentile of the distribution, indicating that it is more constrained than most human genes.
Figure 2-source data 1. 156 non-synonymous heterozygous coding or splice variants reported in the gnomAD or HGID databases. †: non-canonical transcript predicted to undergo nonsense mediated decay.

Figure 3. Molecular characterization of the R98W IRF4 mutation (loss of DNA binding).

A. HEK293T cells were transfected with the pcDNA3.1 empty vector (E) or plasmids encoding IRF4 WT, IRF4 R98W or IRF4 R98A-C99A. Total cell extracts were subjected to western blotting; the upper panel shows IRF4 levels and the lower panel shows the levels of GAPDH, used as a loading control. The results shown are representative of three independent experiments. B. (upper panel) HEK293T cells were transfected with the pcDNA3.1 empty vector (E) or plasmids encoding IRF4 WT or IRF4 R98W. Total cell (1), cytoplasmic (2) and nuclear (3) extracts were subjected to western blotting. Lamin A/C and GAPDH were used as loading controls. (lower panel) IRF4 signal intensity for R98W-transfected cells and WT-transfected cells, in various cell compartments (total, cytoplasmic and nuclear), normalized against the GAPDH signal, as shown by western blotting. The results shown are representative of three independent experiments. C. Luciferase activity of HEK293T cells cotransfected with an (ISRE)₃ reporter plasmid plus the pcDNA3.1 empty vector (E, 100 ng) and various amounts of plasmids encoding IRF4 WT or IRF4 R98W or IRF4 R98A/C99A (6.25 ng, 12.5 ng, 25 ng, 50 ng, 75 ng and 100 ng). Results are shown as the fold induction of activity relative to E-transfected cells. The red dotted line indicates mean activity for E-transfected cells. The mean and standard error of three experiments are shown. D. Luciferase activity of HEK293T cells cotransfected with an AICE reporter plasmid plus the pcDNA3.1 empty vector (E, 100 ng) and/or constant amounts of plasmids encoding BATF WT and JUN WT (25 ng each, AP-1) and/or various amounts of plasmids encoding IRF4 WT or IRF4 R98W or IRF4 R98A/C99A (6.25 ng, 12.5 ng, 18.8 ng, 25 ng, 37.5 ng and 50 ng). Results are
shown as the fold induction of activity relative to E-transfected cells. The red dotted line indicates mean activity for AP-1-transfected cells. The mean and standard error of two experiments are shown. E. Electrophoretic mobility shift assay (EMSA) with nuclear extracts of HEK293T cells transfected with the pcDNA3.1 empty vector (E), or plasmids encoding IRF4 WT or IRF4 R98W. Extracts were incubated with a 32P-labeled ISRE probe. Extracts were incubated with a specific anti-IRF4 antibody (S) to detect DNA-protein complex supershift, with an isotype control antibody (I) to demonstrate the specificity of the complex, and with no antibody (-), as a control. The results shown are representative of three independent experiments. F. EMSA of nuclear extracts of HEK293T cells transfected with the pcDNA3.1 empty vector (E), or plasmids encoding PU.1, IRF4 WT, or IRF4 R98W, or cotransfected with PU.1 and IRF4 WT or PU.1 and IRF4 R98W plasmids. Extracts were incubated with a 32P-labeled λB probe (EICE). Extracts were incubated with a specific anti-IRF4 antibody (S) to detect DNA-protein complex supershift, with an isotype control antibody (I) to demonstrate the IRF4 specificity of the complex and with no antibody (-), as a control. Experiments in the presence of excess non-radioactive probe (cold probe) demonstrated the probe specificity of the complexes. The results shown are representative of three independent experiments.

Figure 3-figure supplement 1. Functional activity of IRF4. A. Luciferase activity of HEK293T cells cotransfected with an (ISRE)$_3$ reporter plasmid plus the pcDNA3.1 empty vector (E) and plasmids encoding IRF4 WT and/or IRF4 R98W or IRF4 R98A/C99A. The amount of plasmid used for transfection (ng) is indicated on the figure. Results are showed as fold induction of activity relative to E-transfected cells. The red dotted line represents the mean activity for E-transfected cells. The mean and standard error of three experiments are shown. B. Luciferase activity of HEK293T cells cotransfected with an AICE reporter plasmid
plus the pcDNA3.1 empty vector (E) and/or constant amounts of plasmids encoding BATF WT and JUN WT (25 ng each, AP-1) and/or plasmids encoding IRF4 WT and/or IRF4 R98W or IRF4 R98A/C99A. The amounts of plasmid used for tranfection (ng) are indicated on the figure. Results are shown as the fold induction of activity relative to E-transfected cells. The red dotted line indicates mean activity for AP-1-transfected cells. The mean and standard error of two experiments are shown.

Figure 3-figure supplement 2. Protein levels of IRF4 variants previously reported in gnomAD database. HEK293T cells were transfected with the pcDNA3.1 empty vector (E), or plasmids encoding IRF4 WT, IRF4 R98W or several IRF4 variants previously reported in the gnomAD database (see Figure 3-source data 1). Total cell extracts were subjected to western blotting; the upper panel shows IRF4 levels and the lower panel shows the levels of GAPDH, used as a loading control. The results shown are representative of at least two independent experiments.

Figure 3-figure supplement 3. Protein levels of IRF4 variants from HGID database. HEK293T cells were transfected with the pcDNA3.1 empty vector (E), or plasmids encoding IRF4 WT, IRF4 R98W or IRF4 variants from the HGID database (see Figure 3-source data 1). Total cell extracts were subjected to western blotting; the upper panel shows IRF4 levels and the lower panel shows the levels of GAPDH, used as a loading control. The results shown are representative of at least two independent experiments.

Figure 3-figure supplement 4. Functional impact of IRF4 variants previously reported in gnomAD database. Luciferase activity of HEK293T cells cotransfected with an (ISRE)3 reporter plasmid plus the pcDNA3.1 empty vector (E) and plasmids encoding IRF4 WT, IRF4
R98W or several IRF4 variants previously reported in the gnomAD databases (see Figure 3-source data 1). Results are shown as the fold induction of activity relative to E-transfected cells. The red dotted line represents the mean fold induction in E-transfected cells. The results shown are the mean ± SD of at least two independent experiments.

Figure 3-figure supplement 5. Functional impact of IRF4 variants from HGID database.
Luciferase activity of HEK293T cells cotransfected with an (ISRE)₃ reporter plasmid plus the pcDNA3.1 empty vector (E) and plasmids encoding IRF4 WT, IRF4 R98W or IRF4 variants from the HGID database (see Figure 3-source data 1). Results are shown as the fold induction of activity relative to E-transfected cells. The red dotted line represents the mean fold induction in E-transfected cells. The results shown are the mean ± SD of at least two independent experiments.

Figure 4. IRF4 mRNA levels in EBV-B cells. A. Total RNA extracted from healthy unrelated controls (n=7; IRF4 WT/WT), patients diagnosed with Whipple’s disease (n=25; WT/WT for all coding exons of IRF4) not related to this kindred, healthy homozygous WT relatives (n=4, IRF4 WT/WT), patients with monoallelic IRF4 mutations (n=2; IRF4 WT/R98W) and asymptomatic heterozygous relatives with monoallelic IRF4 mutations (n=2; IRF4 WT/R98W) was subjected to RT-qPCR for total IRF4. Data are displayed as 2-ΔΔCt after normalization according to endogenous GUSB control gene expression (ΔCt) and the mean of controls (ΔΔCt). The results shown are the mean ± SD of three independent experiments. B. Calculated frequency (%) of each mRNA (WT and R98W allele) obtained by the TA-cloning of cDNA generated from EBV-B cells from healthy unrelated controls (n=2),
healthy homozygous WT relatives \((n=1)\), patients with monoallelic \(IRF4\) mutations \((n=2)\) and asymptomatic heterozygous relatives with monoallelic \(IRF4\) mutations \((n=1)\).

Figure 4-figure supplement 1. IRF4 protein levels in EBV-B cells. A.-C. (Left) Total cell (A), cytoplasmic (B) and nuclear (C) extracts from five healthy unrelated controls (C1 to C5), three homozygous WT relatives (WT1, WT2, WT3), three patients (P1 to P3) and one asymptomatic heterozygous relative from the kindred (HET1). Protein extracts from HEK293T cells transfected with the pcDNA3.1 empty vector (E), or plasmids encoding \(IRF4\) WT or \(IRF4\) R98W were used as controls for the specific band corresponding to IRF4. (Right) Representation of IRF4 signal intensity for each individual relative to the mean signal for healthy unrelated controls \((n=5)\) obtained on western blotting (Figure 4-figure supplement 1A-C left) and represented by black dotted lines, with normalization against the GAPDH signal (total, cytoplasmic extracts) or the lamin A/C signal (nuclear extracts). The results shown are representative of two independent experiments.

Figure 5. IRF4 protein levels in CD4\(^+\) T cells.

A.-C. (Left) Total-cell (A), cytoplasmic (B) and nuclear (C) extracts from CD4\(^+\) T cells from four healthy unrelated controls (C1 to C4) and two patients (P1 and P3) stimulated with activating anti-CD2/CD3/CD28 monoclonal antibody-coated beads (Stim) or left unstimulated (NS). Protein extracts from HEK293T cells transfected with the pcDNA3.1 empty vector (E) or plasmids encoding \(IRF4\) WT plasmids were used as controls for the specific band corresponding to IRF4. (Right) Representation of IRF4 signal intensity for each individual, obtained by western blotting, with normalization against the GAPDH signal (total, cytoplasmic extracts) or the topoisomerase I signal (nuclear extracts).
Total cell extracts from PBMC subpopulations (CD3⁺ T cells, CD56⁺ NK cells, CD19⁺ B cells, CD19⁺CD27⁺ memory B cells, CD19⁺CD27⁻ naive B cells, CD14⁺ monocytes) from two healthy unrelated controls were subjected to western blotting. The upper panel shows IRF4 levels and the lower panel shows the levels of GAPDH, used as a loading control. The results shown are representative of two independent experiments. We showed that IRF4 was produced in large amounts in total B lymphocytes (CD19⁺), but also in naïve and memory B lymphocytes (CD19⁺CD27⁻ and CD19⁺CD27⁺, respectively). IRF4 was less strongly expressed in CD3⁺ T lymphocytes and was not detectable in CD14⁺ monocytes or CD56⁺ natural killer (NK) cells.

Figure 5-figure supplement 2. Percentage of dendritic cells and monocyte subtypes within total PBMCs. A. Percentage of CD11c⁺, myeloid dendritic cells (mDC1 and mDC2) and plasmacytoid dendritic cells (pDCs) (left), and monocyte subtypes (right) among total PBMCs from healthy unrelated controls, a patient (P1) and a homozygous WT relative (WT1). We showed that the frequencies of these subsets in P1 were similar to those in healthy controls B. Gating strategy to define the dendritic cell and monocyte subtypes.

Figure 5-figure supplement 3. IRF4 levels in controls and patient monocyte-derived macrophages. A. IRF4 protein levels, as determined by western blotting on total cell extracts from M2-like (left panel) or M1-like (right panel) monocyte-derived macrophages (MDMs) from two healthy unrelated controls (C1 and C2) and P1, either left non-stimulated (NS) or stimulated with IL-4 (for M2-like MDMs) or IFN-γ (for M1-like MDMs). We showed that IRF4 was present in similar amounts in MDMs from P1 and healthy unrelated controls,
regardless of the differentiation or activation conditions used. B. IRF4 signal intensity for each individual relative to the mean signal for controls on western blots.

Figure 5-figure supplement 4. Surface marker levels in controls and patient monocyte-derived macrophages. A.-B. CD11b, CD86, CD206, CD209 and HLA-DR mean fluorescence intensity (MFI) for M2-MDM (C) and M1-MDM (D) from P1 and two healthy unrelated controls (C1 and C2), either left non-stimulated (NS) or stimulated with IL-4 (for M2-like MDMs) or IFN-γ (for M1-like MDMs). We showed that CD11b, CD86, CD206, CD209 and HLA-DR expression levels were similar in MDMs from P1 and healthy unrelated controls.

Figure 5-figure supplement 5. Percentage of memory B cells in PBMCs from controls and patients. PBMCs from healthy unrelated controls and patients (P1, P2 and P3) were stained with antibodies against CD20, CD10 and CD27, IgM, IgD, IgG or IgA. Percentages of memory B cells (CD20⁺ CD10⁻ CD27⁺) were determined, and the proportion of memory B cells that had undergone class switching to express IgM/IgD, IgG or IgA was then calculated. No significant differences were observed between healthy unrelated controls and patients.

Figure 5-figure supplement 6. In vitro differentiation of CD4⁺ T cells from patients and controls. Naïve and memory CD4⁺ T cells from healthy unrelated controls and patients (P2 and P3) were purified by sorting and cultured with TAE beads. The secretion of IL-2, IL-4, IL-5, IL-9, IL-10, IL-13, IL-17A, IL-17F, IL-22, IFN-γ and TNF-α was measured five days later. No significant differences were observed between healthy unrelated controls and patients.
Figure 5-figure supplement 7. *Ex vivo* cytokine production by CD4⁺ memory T cells from patients and controls.

C. Naïve CD4⁺ T cells from healthy unrelated controls and patients (P2 and P3) were stimulated with TAE beads alone or under Th1, Th2, Th17 or Tfh polarizing conditions. The production of IL-10, IL-21, IL-17A, IL-17F and IFN-γ was measured five days later, in the corresponding polarizing conditions. No significant differences were observed between healthy unrelated controls and patients.

Figure 5-source data 1. Immunophenotyping of patients (P1, P2 and P3) and a WT homozygous relative. All subjects had normal numbers and percentages of T, B, and NK cells for age.

Figure 6. Overall transcriptional responsiveness of PBMCs following *in vitro* exposure to Tw and BCG and pathway activity analysis for genes responsive to BCG exposure. A. The overall responsiveness of individual subjects following stimulation with BCG and Tw, relative to non-stimulated conditions (along the horizontal axis) is shown as a heatmap. For each individual and each stimulus, overall responsiveness was assessed on the basis of normalized counts of differentially expressed transcripts, as described in the corresponding material and methods section. Subjects were grouped by unsupervised hierarchical clustering. B. Enriched canonical pathways were ranked according to differences in mean activation z-score between genotypes (WT/WT individuals vs. WT/R98W individuals). The activation z-scores for each individual and pathway are shown as heat maps. Pathways predicted to be activated are depicted in orange, pathways predicted to be inhibited are depicted in blue. A lack of prediction concerning activation is depicted in white. Individuals are presented in columns, pathways in rows. The pathways are ranked from most different between genotypes.
(at the top of the list) to the least different (at the bottom). The differences in mean activation
z-scores between WT/WT and WT/R98W individuals for each pathway are depicted as bars to
the right of the heat maps (the direction of difference is not shown). The Ingenuity Pathway
Analysis (IPA) tool was used to generate a list of the most significant canonical pathways and
their respective activation z-scores.

Figure 6-data source 1. Differentially expressed (DE) genes found to be responsive to
BCG in homozygous WT subjects using the criteria described in the material and
methods section. Genes are grouped by up- or down- regulation and ranked in alphabetical
order.

Figure 6-data source 2. Differentially expressed (DE) genes found to be responsive to Tw
in homozygous WT subjects using the criteria described in the material and methods
section. Genes are grouped by up- or down- regulation and ranked in alphabetical order.
Figure 1 - figure supplement 1

A

Graph showing LOD scores for different chromosomes.

B

<table>
<thead>
<tr>
<th>Patients</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of coding SNVs</td>
<td>20,691 SNVs</td>
<td>22,051 SNVs</td>
<td>20,922 SNVs</td>
<td>21,821 SNVs</td>
</tr>
<tr>
<td>SNVs within linkage regions</td>
<td>345 SNVs (101 genes)</td>
<td>361 SNVs (100 genes)</td>
<td>316 SNVs (97 genes)</td>
<td>445 SNVs (113 genes)</td>
</tr>
<tr>
<td>Shared SNVs (non-synonymous)</td>
<td>54 SNVs (15 genes)</td>
<td>1 gene (IRF4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Genes with rare heterozygous SNVs (gnomAD MAF<10^{-4})
Figure 2-figure supplement 1

The figure shows a histogram with "Number of genes" on the y-axis and "f parameter" on the x-axis. The peak at "IRF4 f=0.32" is indicated by an arrow.
Figure 4

A

Relative IRF4 mRNA level (N to GUSB)

Controls (n=7) WD Cohort (n=25) WT relatives (WT/WT, n=4) Het relatives (WT/R98W, n=2) Patients (WT/R98W, n=2)

B

<table>
<thead>
<tr>
<th></th>
<th>WT allele (%)</th>
<th>R98W allele (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls (n=2)</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>WT relative</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Het relative</td>
<td>43.3</td>
<td>56.7</td>
</tr>
<tr>
<td>P1</td>
<td>51.9</td>
<td>48.1</td>
</tr>
<tr>
<td>P3</td>
<td>40</td>
<td>60</td>
</tr>
</tbody>
</table>
Figure 5-figure supplement 1

51 kDa
IRF4

37 kDa
GAPDH

C1
C2
Figure 5-figure supplement 2

A

Dendritic Cells

Monocytes

○ Unrelated Controls

● P1

○ WT1

B

Gating Strategy

<table>
<thead>
<tr>
<th>Population</th>
<th>Characterization</th>
</tr>
</thead>
<tbody>
<tr>
<td>mDC1</td>
<td>HLA-DR+, CD14-, CD16-, Lin (CD3, CD15, CD19, CD56, NKp46)-, CD11c+, CD141-, CD1c+</td>
</tr>
<tr>
<td>mDC2</td>
<td>HLA-DR+, CD14-, CD16-, Lin (CD3, CD15, CD19, CD56, NKp46)-, CD11c+, CD141+, CD1c-</td>
</tr>
<tr>
<td>pDCs</td>
<td>HLA-DR+, CD14-, CD16-, Lin (CD3, CD15, CD19, CD56, NKp46)-, CD303+</td>
</tr>
<tr>
<td>CD14+ CD16-</td>
<td>Monocytes, HLA-DR+, Lin (CD3, CD15, CD19, CD56, NKp46)-, CD14+, CD16-</td>
</tr>
<tr>
<td>CD14- CD16+</td>
<td>Monocytes, HLA-DR+, Lin (CD3, CD15, CD19, CD56, NKp46)-, CD14-, CD16+</td>
</tr>
<tr>
<td>CD14+ CD16+</td>
<td>Monocytes, HLA-DR+, Lin (CD3, CD15, CD19, CD56, NKp46)-, CD14-, CD16+</td>
</tr>
</tbody>
</table>
Figure 5-figure supplement 3

A

<table>
<thead>
<tr>
<th>RPMI + 10% FBS + M-CSF</th>
<th>RPMI + 40% HS + GM-CSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>C1</td>
</tr>
<tr>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>IL-4</td>
<td>IFNγ</td>
</tr>
<tr>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>IL-4</td>
<td>IFNγ</td>
</tr>
<tr>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>P1</td>
<td>P1</td>
</tr>
<tr>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>IL-4</td>
<td>IFNγ</td>
</tr>
</tbody>
</table>

51 kDa IRF4

37 kDa GAPDH

B

Relative IRF4 signal intensity (N to GAPDH and controls, mean)

C (n=2)
P1

NS

IL-4

IFNγ

Relative IRF4 signal intensity (N to GAPDH and controls, mean)

C (n=2)
P1

NS

IFNγ
Figure 5-figure supplement 6

B

IL-2 secretion

pg/ml

IL-5 secretion

pg/ml

IL-10 secretion

pg/ml

IL-17A secretion

pg/ml

IL-22 secretion

pg/ml

TNF-α secretion

pg/ml

IL-4 secretion

pg/ml

IL-9 secretion

pg/ml

IL-13 secretion

pg/ml

IL-17F secretion

pg/ml

IFN-γ secretion

pg/ml

Controls

Naive

Memory

P2 and P3

Naive

Memory

P2 and P3
Figure 6

A

B

Activation z-score

<table>
<thead>
<tr>
<th></th>
<th>WT/WT</th>
<th>WT/R98W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interferon Signaling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th1 Pathway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorectal Cancer Metastasis Signaling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMGB1 Signaling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aryl Hydrocarbon Receptor Signaling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type I Diabetes Mellitus Signaling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P38 MAPK Signaling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NF-κB Signaling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dendritic Cell Maturation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production of NO and ROS in Macrophages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cholecystokinin/Gastrin-mediated Signaling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-8 Signaling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LXR/RXR Activation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pancreatic Adenocarcinoma Signaling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Role of IL-17F in Allergic Inflammatory Airway Diseases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death Receptor Signaling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toll-like Receptor Signaling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osteoarthritis Pathway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-6 signaling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apoptosis Signaling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TREM1 Signaling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute Phase Response Signaling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPAR Signaling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNFR1 Signaling</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>