Figures and figure supplements

Electron cryo-microscopy structure of the canonical TRPC4 ion channel

Deivanayagabarathy Vinayagam et al
Figure 1. Activation of TRPC4\(\text{DR}\) by the selective activator (-)-Englerin A. (a–f) HEK293 cells heterologously expressing TRPC4\(\text{DR}\)-EGFP (a,c,e) and untransfected control cells (b,d,f) were investigated by voltage-clamp experiments in the whole-cell configuration. The membrane potentials were clamped to values ranging from \(-90\) to \(+90\) mV in the absence (a,b) and in the presence (c,d) of 50 nM (-)-Englerin A. Upon addition of 50 nM of (-)-Englerin A, the current density at \(-60\) mV increased from \(-3.1 \pm 1.9\) pA/pF (n = 6) to \(-16.7 \pm 10.7\) pA/pF (n = 6). In untransfected control cells, the current density in the absence and presence of the activator was virtually the same with values of \(-2.1 \pm 1.2\) pA/pF (V = -60 mV, n = 5) and \(-1.8 \pm 0.9\) pA/pF (V = -60 mV, n = 5) respectively. (e,f) Current-voltage curves in the absence (black squares) and in the presence (red circles) of 50 nM (-)-Englerin A. Currents were normalized to the current value in the absence of (-)-Englerin A at a membrane potential of +80 mV. Note that the measurements in the absence and in the presence of (-)-Englerin A were performed on the same cells. Shown are the normalized mean currents of 6 (e) and 5 (f) different cells. Error bars are ± SEM. The measurements were performed as described in Materials and methods.

DOI: https://doi.org/10.7554/eLife.36615.002
Figure 1—figure supplement 1. Multiple sequence alignment of TRPC4_Cre, human TRPC4 and human TRPC5. The grey-shaded regions highlight conserved residues. Helices are indicated by red bars. Domains are colored according to Figure 2b with high transparency.
DOI: https://doi.org/10.7554/eLife.36615.003
Figure 2. Structure of TRPC4_{DR}. (a) Cryo-EM density map of TRPC4_{DR} with each protomer colored differently and shown as side, bottom and bottom view. (b) Ribbon representation of the atomic model of TRPC4_{DR}. Colors are the same as in (a). (c) Topology diagram depicting the domain
organization of a TRPC4_{DR} protomer. (d) Ribbon representation of a TRPC4_{DR} protomer. Each domain is shown in a different color and labeled accordingly.

DOI: https://doi.org/10.7554/eLife.36615.004
Figure 2—figure supplement 1. Purification of TRPC4\textsubscript{DR} and negative stain EM of TRPC4\textsubscript{DR} in amphipols. (a) SDS-PAGE of the peak fraction of TRPC4\textsubscript{DR} in amphipols after size exclusion chromatography. Lane 1: molecular weight marker, lane 2: protein. (b) Size exclusion chromatography profile.
of TRPC4DR in amphipols. Peak 1, 2 and 3 correspond to the void volume, tetrameric TRPC4DR and cleaved GFP, respectively. (c) Representative negative stain electron micrograph of TRPC4DR. Scale bar, 50 nm, (d) Representative 2-D class averages. Scale bar, 10 nm. (e) 3-D reconstruction of negatively stained TRPC4DR shown in different orientations.

DOI: https://doi.org/10.7554/eLife.36615.005
Figure 2—figure supplement 2. Cryo-EM structure of TRPC4DR. (a-b) Representative digital micrograph area (a) and selected 2-D class averages (b) of TRPC4DR embedded in vitrified ice. Scale bars, 50 nm (a), and 10 nm (b). (c) The ab initio 3-D reconstruction obtained with RVIPER. (d) Angular distribution of the particles. (e) The cryo-EM density map of TRPC4DR colored according to the local resolution. (f) Fourier Shell Correlation (FSC) curve between maps from two independently refined half data sets (black). The 0.143 criterion indicates an average resolution of 3.6 Å. The grey curve shows the FSC curve between the final map versus the atomic model. (g) Representative regions of the density with fitted atomic model.

DOI: https://doi.org/10.7554/eLife.36615.006
Figure 2—figure supplement 3. Single particle processing workflow for TRPC4_{DR} structure determination.
DOI: https://doi.org/10.7554/eLife.36615.007
Figure 2—figure supplement 4. Comparison of the \(\text{Ca}^{2+}\) binding site in TRPM4 and TRPC4\(_{\text{DR}}\). (a-b) Side view of TRPM4 (a) and TRPC4\(_{\text{DR}}\) (b) shown in ribbon representation. Helices involved in \(\text{Ca}^{2+}\)-binding are shown in red. Zoomed-in view on the \(\text{Ca}^{2+}\)-binding site in TRPM4 (c) and TRPC4\(_{\text{DR}}\) (d).
Residues involved in Ca2+ binding in TRPM4 and its topologically equivalent residues in TRPC4\textsubscript{DR} are shown in stick representation. Ca2+ ion is shown as green sphere.

DOI: https://doi.org/10.7554/eLife.36615.008
Figure 2—figure supplement 5. LFW motif of the pore region and cysteines involved in disulphide bridges in the TRPC4_{DE} structure. (a) Extracellular view near the pore axis showing the loops harboring cysteine residues. The loops are shown in ribbon representation with cysteines shown in stick representation. The neighboring glutamate residue is involved in an electrostatic interaction with an arginine. (b) Zoomed-in view on the disulphide bridge region. The chain trace is shown in stick representation including the side chains. The disulphide bridge is indicated by an asterisk. Electron density in (a) and (b) is shown in wired grey mesh. (c) LFW motif region viewed along the pore axis from the extracellular side. Each protomer is colored differently. The LFW motif and interacting residues are shown in stick representation. The interface at the LFW motif is highlighted with a black dotted ellipse. (d) Zoomed-in view on the interface at the LFW motif. The density is shown in wired grey mesh with key residues highlighted.

DOI: https://doi.org/10.7554/eLife.36615.009
Figure 3. Comparison of the VSL domain of selected TRP family members with the voltage-sensing domain of the chimeric K\textsubscript{v}1.2-K\textsubscript{v}2.1 channel. (a) The voltage-sensing domain of the chimeric K\textsubscript{v}1.2-K\textsubscript{v}2.1 channel and the VSL domains of TRPC\textsubscript{C}4, TRPP1, TRPM4, TRPM8 and TRPV1 are shown in ribbon representation. The S4 helix in each case is highlighted with dark shaded color. The rest of the domains are shown in light transparent color. The residues which form the hydrophobic patch in the middle of the domain are shown in golden yellow sphere representation with light transparency. The residues involved in ion-pair interactions are shown in stick representation. (b) The structures in (a) are rotated to better view the residues important for voltage sensing in the S4 helix of the chimeric K\textsubscript{v}1.2-K\textsubscript{v}2.1 channel and topological equivalent residues of TRP channels are shown in stick representation and labeled.

DOI: https://doi.org/10.7554/eLife.36615.013
Figure 4. Lipid binding sites in the TRPC4DR structure. (a) Side and top view of the TRPC4DR structure with lipid densities highlighted in yellow against the model shown in ribbon representation. (b–c) Zoomed-in view on the cholesteryl hemisuccinate (CHS) and phosphatidic acid lipid (PA) binding sites, respectively. CHS and PA molecules are shown in yellow stick representation.

DOI: https://doi.org/10.7554/eLife.36615.014
Figure 5. Architecture of the pore domain. (a) Surface electrostatic Coulomb potential at the extracellular mouth of TRPC4DR. (b) Hydrophobic surface of the pore shown in vertical cross section. Hydrophobic patches are colored orange. (c) Ion conduction pore of TRPC4DR shown with diagonally facing protomers shown in ribbon representation. Critical residues important for gating and selection are shown in stick representation. (d) Pore radius determined along the pore axis using HOLE (Smart et al., 1996).

DOI: https://doi.org/10.7554/eLife.36615.015
Figure 6. Interaction of the TRP domain with a conserved glycine in the S4-S5 linker. (a) Ribbon overview indicating the interaction site between the TRP domain and the S4-S5 linker. Key helices are shown in different colors. The rest of the protein is shown in light grey. (b) Zoomed-in view on the interaction site with key residues labeled. The chain trace is shown in stick representation. (c) Structure-based sequence alignment of TRP family members. The conserved glycine in the M2 motif is highlighted by a red dotted box.

DOI: https://doi.org/10.7554/eLife.36615.017
Figure 7. Position of the Rib helix in TRPC4DR and TRPM4. (a-b) Side and bottom view of the atomic models of TRPC4DR (a), and TRPM4 (b). The Rib helix is highlighted in blue color and the density of the map is shown in the background with high transparency. E648 in TRPC4DR is shown in sphere representation and colored red.

DOI: https://doi.org/10.7554/eLife.36615.018
Figure 7—figure supplement 1. Predicted model of TRPC4\textsubscript{DR} interaction with IP\textsubscript{3} receptors and calmodulin. (a) Possible interaction of an IP\textsubscript{3} receptor with TRPC4\textsubscript{DR}. The putative site of interaction (Boulay et al., 1999; Tang et al., 2001) is highlighted with a yellow star. The CIRB domain of TRPC4\textsubscript{DR} is Figure 7—figure supplement 1 continued on next page.
shown in blue. The predicted interacting region of the IP$_3$ receptor is highlighted in dark color. (b) Interaction of calmodulin with the CIRB domain of TRPC4$_{DR}$. Calmodulin is shown in pink. Calcium is shown as spheres. Calmodulin has been fitted to the structure of TRPC4$_{DR}$ in analogy to the MLC-kinase peptide bound to calmodulin in the crystal structure (PDB-ID: 2LV6).

DOI: https://doi.org/10.7554/eLife.36615.019
Figure 8. Comparison of the ankyrin domain arrangement of TRPC4 and TRPA1. (a-b) Side and bottom view of the structures of TRPA1 (PDB-ID: 3J9P) (a) and TRPC4 (b) in surface representation. Each subunit is colored with unique colors. (c-d) Ribbon and cartoon representation of TRPA1 (c) and TRPC4 (d) showing two protomers in side view. The ankyrin repeats of one protomer are highlighted in brown.

DOI: https://doi.org/10.7554/eLife.36615.020
Figure 9. Comparison of the C-terminal helix architecture in TRPA1, TRPM4 and TRPC4

(a-c) Each panel shows the complete tetramer in bottom and side view on the left and the zoomed-in view of the C-terminal helix alone in bottom and side view on the right. The C-terminal helix is shown in blue with one helix highlighted in shaded dark blue.

DOI: https://doi.org/10.7554/eLife.36615.021