Crystal structure of the full Swi2/Snf2 remodeler Mot1 in the resting state

Agata Butryn¹,², Stephan Woike¹, Savera J Shetty³, David T Auble³, Karl-Peter Hopfner¹,⁴,*

¹ Gene Center and Department of Biochemistry, Ludwig Maximilian University Munich, 81377 Munich, Germany
² Current address: Diamond Light Source Limited, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
³ Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
⁴ Center for Integrated Protein Sciences Munich

* Correspondence:
Karl-Peter Hopfner
Gene Center
Feodor-Lynen-Str. 28
81377 Munich, Germany
Tel: +49 89 2180 76953
Fax: +49 89 2180 76953
Email: hopfner@genzentrum.lmu.de

Running title: Structure of Mot1

Keywords: X-ray crystallography, transcription regulation, Swi2/Snf2 remodeler
ABSTRACT

Swi2/Snf2 ATPases remodel protein:DNA complexes in all of the fundamental chromosome-associated processes. The single-subunit remodeler Mot1 dissociates TATA box-binding protein (TBP):DNA complexes and provides a simple model for obtaining structural insights into the action of Swi2/Snf2 ATPases. Previously we reported how the N-terminal domain of Mot1 it binds TBP, NC2 and DNA, but the location of the C-terminal ATPase domain remained unclear (Butryn et al., 2015). Here, we report the crystal structure of the near full-length Mot1 from *Chaetomium thermophilum*. Our data show that Mot1 adopts a ring like structure with a catalytically inactive resting state of the ATPase. Biochemical analysis suggests that TBP binding switches Mot1 into an ATP hydrolysis-competent conformation. Combined with our previous results, these data significantly improve the structural model for the complete Mot1:TBP:DNA complex and suggest a general mechanism for Mot1 action.

INTRODUCTION

Swi2/Snf2 ATPases are members of the NTP-dependent helicase/translocase superfamily 2 (SF2) and are well known as the principal ATP hydrolyzing “engines” of chromatin remodelers that govern processes such as transcription, replication, and DNA repair (Flaus et al. 2006, Narlikar, Sundaramoorthy, and Owen-Hughes 2013, Hopfner et al. 2012, Becker and Workman 2013). It is generally assumed, that the Swi2/Snf2 ATPase motor translocates on the minor groove of double-stranded DNA and that this universal core activity generates the force for the large diversity of remodeling reactions catalyzed by Swi2/Snf2 proteins (Saha, Wittmeyer, and Cairns 2002, Whitehouse et al. 2003, Zofall et al. 2006, Durr et al. 2005). However, very little is known about how groove tracking activity is converted into the diverse chemo-mechanical remodeling reactions (Hauk and Bowman 2011, Narlikar, Sundaramoorthy, and Owen-Hughes 2013, Blossey and Schiessel 2018). In the absence of substrates, remodelers have been observed in catalytically inactive resting states (Hauk et
al. 2010, Xia et al. 2016, Yan et al. 2016), but it is unclear how universal auto-inhibited resting states are. Recent work provides some insight into how Swi2/Snf2 chromatin remodelers interact with and reconfigure nucleosomal substrates (Liu et al. 2017, Farnung et al. 2017, Ayala et al. 2018, Eustermann et al. 2018, Sundaramoorthy et al. 2018). However, the architecture and chemo-mechanical mechanisms of the diverse types of remodeling reactions are not well understood for the great majority of enzymes in this class.

The single subunit remodeler Mot1 (Modifier of transcription 1) is a Swi2/Snf2 enzyme that either activates or represses transcription in a context-dependent manner by dissociating TATA box-binding protein (TBP) and Negative Cofactor 2 (NC2) from promoter DNA (Dasgupta et al. 2002, Zentner and Henikoff 2013). Mot1 is an essential Swi2/Snf2 enzyme in yeast and the Mot1-TBP-NC2 regulatory axis is highly conserved in eukaryotes. The 140-210 kDa Mot1 protein has two functional domains. The N-terminal domain (Mot1NTD) recognizes TBP while the C-terminal domain (Mot1CTD) contains the catalytic Swi2/Snf2 ATPase that binds the DNA upstream from the TATA box (Moyle-Heyrman et al. 2012). The structure of the Mot1NTD has been determined by X-ray crystallography in complex with TBP (Wollmann et al. 2011) and in complex with TBP:NC2:DNA (Butryn et al. 2015). Low-resolution negative stain electron microscopy and chemical crosslinking coupled to mass spectrometry indicated the approximate location of the Mot1CTD near the opening of the Mot1NTD horseshoe (Butryn et al. 2015). However, the orientation of the Swi2/Snf2 domain and consequently the path of DNA remained elusive. As a result, the mechanism of Mot1-mediated dissociation of TBP complexes is still not well understood.

Here we report the crystal structure of the near full Mot1 protein from Chaetomium thermophilium. Our structure reveals the location and orientation of the Swi2/Snf2 domain and, supported by mutagenesis studies, suggests a new type of resting state. Our data allow us also to derive a model for the Mot1 remodeler in complex with TBP and DNA.

RESULTS AND DISCUSSION
Architecture of CtMot1

We crystallized the near full-length Mot1 protein from *Chaetomium thermophilum*. The construct covers the entire Mot1\(^{\text{NTD}}\) and Mot1\(^{\text{CTD}}\) domains but lacks 50 amino acids from the C-terminus (Figure 1A). We determined the structure of this construct (residues 1-1836, Mot1\(^{\Delta C}\)) harboring a point mutation in the Walker B motif (E1434Q) by Se-SAD to 3.2 Å (Table 1).

The CtMot1 enzyme is a ring-shaped protein (Figure 1B). The CtMot1\(^{\text{NTD}}\) consists of 16 HEAT repeats (HR) with insertions at four sites and is similar to the much smaller *Encephalitozoon cuniculi* orthologue (EcMot1\(^{\text{NTD}}\)) with some notable differences. The helices forming the HEAT repeats are not extended in number but in length and the insertion elements into the HEAT repeats are longer. Thus, genome compaction in *E. cuniculi* did not alter the overall architecture of Mot1, which appears to be highly conserved in evolution, consistent with its critical function.

The structure reported here is the first to visualize the position and orientation of the Swi2/Snf2 ATPase domain in Mot1. The ATPase domain contains two characteristic lobes connected by a short hinge helix. Each lobe consists of a RecA-like subdomain (1A or 2A) that harbors the SF2-specific sequence motifs responsible for ATP and DNA binding as well as Swi2/Snf2-specific helical subdomains 1B, 2B, and “brace” that emanate from 1A, 2A and the C-terminus of 2A, respectively. Lobe 1 of the CtMot1\(^{\text{CTD}}\) contacts the C-terminus of CtMot1\(^{\text{NTD}}\) via HR16, a small insertion within HR12, and a ~45 amino acid linker. This highly hydrophobic surface has a total area of 2500 Å\(^2\). The tip of subdomain 1B interacts with HR1, thus lobe 1 effectively closes the ring structure of CtMot1. The architectural constraints imposed by a ring explain the conservation of HEAT elements among Mot1 proteins. Lobe 2 binds the cleft between lobe 1 and HR1/2. The ~1900 Å\(^2\) interface between lobe 2 and the remainder of CtMot1 is dominated by hydrogen bonds and salt bridges.

In some remodelers, the brace is directly followed by a “bridge” element (Hauk et al. 2010), also referred to as NegC (Clapier and Cairns 2012) or SnAC (Sen et al. 2011, Xia et
Butryn et al. 2016). While EcMot1 does not possess this element, in CtMot1 it is 64 amino acids long (residues 1822-1886). The bridge can act as a positive or negative auto-regulatory element via mechanisms that are not understood (Wang et al. 2014, Xia et al. 2016, Yan et al. 2016, Clapier and Cairns 2012, Carroll et al. 2014, Sen et al. 2011). The bridge was almost entirely omitted from our crystallization construct and the only included residues (1822-1836) together with the C-terminal expression tag are not visible in the electron density maps.

In summary, the structure reveals the architecture of the CtMot1 protein. It forms a ring-like structure in which the substrate-interacting HEAT repeat “arch” binds both lobes of the ATPase domain from opposing sites.

Apo CtMot1 adopts an auto-inhibited resting state

In all species tested (H. sapiens, S. cerevisiae, C. thermophilum, E. cuniculi), Mot1’s ATPase is robustly activated by TBP:DNA complexes, but very little if at all by DNA alone (Auble et al. 1997, Adamkewicz et al. 2000, Wollmann et al. 2011, Chicca, Auble, and Pugh 1998). Interestingly, some Mot1 species are activated by TBP alone and do not require DNA, although a more robust activation is generally observed in the presence of both DNA and TBP. This suggests that the conformation of the Mot1CTD is structurally coupled to TBP binding to the Mot1NTD and that Mot1 alone is in an inactive state (Adamkewicz et al. 2000, Moyle-Heyrman et al. 2012). Indeed, comparison of CtMot1CTD to other SF2 enzymes shows that lobe 2 is flipped ~180° from an “active” conformation in which the ATPase and DNA-binding motifs would be properly aligned, i.e. lobe 1’s motifs I-III are properly situated in the ATP-binding cleft, while lobe 2’s motifs IV-VI are situated on the outside and are fully solvent-exposed (Figure 1C). As more Swi2/Snf2 domain structures have become available, it has become evident that many show an auto-inhibited conformation with misaligned lobes 1 and 2 (Figure 1–figure supplement 1) (Durr et al. 2005, Hauk et al. 2010, Xia et al. 2016, Yan et al. 2016). For example, the DNA binding site of the Saccharomyces cerevisiae Chd1 Swi2/Snf2 domain is directly occluded by the chromodomain, providing a means of specific activation of the enzyme by interaction with a nucleosomal substrate (Hauk et al. 2010,
Farnung et al. 2017 (Figure 1–figure supplement 1A). Intriguingly, the “resting” conformation of CtMot1CTD is very similar to the crystallographic conformation of the Sulpholobus solfataricus Rad54 Swi2/Snf2 domain (Durr et al. 2005) (Figure 1D and Figure 1–figure supplement 1B). The functional relevance of the SsoRad54 Swi2/Snf2 domain conformation remained unclear because the crystallized and functionally analyzed fragment of SsoRad54 comprised only the isolated Swi2/Snf2 domain.

Although the precise orientation of lobe 2 might be additionally determined by the bridge element that is missing in the structure, our structural data suggest that the auto-inhibited resting state of CtMot1 is stabilized by the interactions between subdomain 2A and HR1/2. To test this, we mutated ion pairs (R4-D1720, R45-D1716) and a hydrophobic loop (L1658A/Y1659A) to destabilize the resting state (Figure 2A and 2B). Basal ATPase activity of the point mutants was greatly increased compared to wild-type CtMot1 (WT) and was not further stimulated by DNA and TBP (Figure 2C and Figure 2–figure supplement 1A). CtMot1ΔC did not show increased basal ATPase rates and was not activated by TBP alone. However, its ATPase activity in the presence of DNA-containing complexes exceeded that of the WT enzyme. To find out whether this elevated ATPase activity of the mutants translates into productive disruption of the substrate complexes, we performed remodeling assays. Notably, despite an increase in the ATP hydrolysis rate, the ability of CtMot1ΔC to dissociate TBP:DNA complexes was impaired (Figure 2D). Assays performed under less efficient dissociation conditions that allowed the TBP:DNA complexes to persist confirmed that all other tested mutants (L1658A/Y1659A, R4D and D1720R) indeed behaved as the WT (Figure 2–figure supplement 1B and 1C). This shows that the bridge element acts in response to TBP binding and, similarly to SnAC in Snf2 (Xia et al. 2016), ensures productive coupling of ATP hydrolysis to the remodeling reaction.

Taken together, our data show that Mot1 adopts a resting state with low catalytic activity by stabilizing lobe 2 of the Swi2/Snf2 domain in an inactive conformation relative to lobe 1. Mobilization of lobe 2 from its auto-inhibited state explains the activation of Mot1’s ATPase by TBP and TBP:DNA complexes.
Model of the Mot1:TBP:NC2:DNA complex

The new structure of the virtually complete CmMot1 protein together with prior structures enables us to provide a model for the DNA path in the Mot1-bound protein:DNA complex (Figure 3). The EcMot1NTD:TBP:NC2:DNA complex can be readily superimposed with CmMot1 through the conserved structure of the HEAT repeats. Likewise, superimposing SsoRad54:DNA with CmMot1ΔC via lobe 1 visualizes how the CmMot1 ATPase could initially contact duplex DNA since in all Snf2/Swi2 protein:substrate structures contacts between nucleic acid and the RecA1 subdomain are preserved. In the resulting model, localization and orientation of the Swi2/Snf2 domain is in full agreement with prior EM and CX-MS analyses (Butryn et al. 2015) and with biochemical studies showing that Mot1 covers two helical turns upstream from the TATA box (Darst, Wang, and Auble 2001, Sprouse, Brenowitz, and Auble 2006, Moyle-Heyrman et al. 2012). Notably, the superimposed DNA segment bound by the ATPase is an almost direct continuation of the promoter DNA fragment from the EcMot1NTD:TBP:NC2:DNA crystal structure. Assuming the generally proposed directionality of ATP dependent translocation of Swi2/Snf2 motor domains on dsDNA (Zofall et al. 2006, Saha, Wittmeyer, and Cairns 2002, Whitehouse et al. 2003), the structure of CmMot1 and the specific orientation of lobe 1 now suggests that the Swi2/Snf2 motor translocates “towards” the TATA box and TBP along the nucleic acid scaffold.

Our model of the Mot1:TBP:NC2:DNA complex suggests where the Swi2/Snf2 domain of Mot1 might engage with upstream DNA and provides new insight into how ATP hydrolysis-associated events are coupled to dissociation of protein:DNA substrates. Since processive ATP-dependent translocase activity has not been observed in biochemical studies, Mot1 could exploit short-range tracking toward TBP. Given the immediate vicinity of the Swi2/Snf2 domain to TBP, very few translocation steps could lead to the displacement of TBP by steric collision (Darst, Wang, and Auble 2001, Auble and Steggerda 1999, Butryn et al. 2015). In addition, Mot1 could simply displace TBP from DNA by overwinding or introducing other small distortions into upstream DNA (Moyle-Heyrman et al. 2012, Butryn et
al. 2015). Similar effects have been observed for other transcription factors, for which not
only binding but also dissociation rates depend on the structure of their recognition sites
affected by the presence of other factors bound nearby (Luo et al. 2014, Kim et al. 2013).
This allosteric effect can be accounted for by local changes to the major and minor groove
width (Kim et al. 2013). This scenario is plausible since changes two helical turns upstream
from the TBP binding site could have an immediate allosteric effect on severely bent and
widened TATA box (Tora and Timmers 2010).

Interestingly, while Mot1’s ATPase orientation suggests that it “pulls” DNA from TBP
and overwinds DNA at the substrate, the reverse architecture is seen for the multisubunit
INO80 remodeler: here the motor appears to pump DNA into the nucleosome and to
underwind DNA at the substrate (Eustermann et al. 2018). Thus, our results suggest that
Swi2/Snf2 proteins can use DNA translocation in different ways to disrupts protein:DNA
interfaces.

MATERIALS AND METHODS

Key resources table

<table>
<thead>
<tr>
<th>Reagent type (species) or resource</th>
<th>Designation</th>
<th>Source or reference</th>
<th>Identifiers</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>gene (Chaetomium thermophilum)</td>
<td>CtMot1</td>
<td>this paper</td>
<td>UniProtKB: G0S6C0_C HATD</td>
<td>gene cloned from a cDNA library</td>
</tr>
<tr>
<td>cell line (Escherichia coli)</td>
<td>Rosetta(DE3)</td>
<td>Novagen</td>
<td>Merck: 70954</td>
<td></td>
</tr>
<tr>
<td>cell line (Escherichia coli)</td>
<td>B843(DE3)</td>
<td>Novagen</td>
<td>Merck: 69041</td>
<td></td>
</tr>
<tr>
<td>recombinant DNA reagent</td>
<td>pETDuet-1</td>
<td>Novagen</td>
<td>Merck: 71146</td>
<td>used to express full-length CtMot1 (1-1886) and its point mutants</td>
</tr>
<tr>
<td>recombinant DNA reagent</td>
<td>pET21b</td>
<td>Novagen</td>
<td>Merck: 69741</td>
<td>used to express CtMot1 (1-1836) and CtMot1 (1-1836, E1434Q)</td>
</tr>
<tr>
<td>chemical compound, drug</td>
<td>L(+) - Selenomethionine</td>
<td>Acros Organics</td>
<td>Acros Organics: 259960010</td>
<td>42 mg/mL final concentration</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>chemical compound, drug</td>
<td>SelenoMethionine Medium Base plus Nutrient Mix</td>
<td>Molecular Dimensions</td>
<td>Molecular Dimensions: MD12-501</td>
<td></td>
</tr>
<tr>
<td>chemical compound, drug</td>
<td>Adenosine 5’- triphosphate disodium salt hydrate (ATP)</td>
<td>Sigma-Aldrich</td>
<td>Sigma: A2383-10G</td>
<td></td>
</tr>
<tr>
<td>chemical compound, drug</td>
<td>β-Nicotinamide adenine dinucleotide reduced disodium salt hydrate (NADH)</td>
<td>Sigma-Aldrich</td>
<td>Sigma: 101077350 01</td>
<td></td>
</tr>
<tr>
<td>chemical compound, drug</td>
<td>Phospho(enol) pyruvic acid monopotassium salt (PEP)</td>
<td>PanReac</td>
<td>AppliChem: A2271</td>
<td></td>
</tr>
<tr>
<td>chemical compound, drug</td>
<td>Pyruvate kinase/lactic dehydrogenase enzymes from rabbit muscle</td>
<td>Sigma-Aldrich</td>
<td>Sigma: P0294</td>
<td></td>
</tr>
<tr>
<td>software, algorithm</td>
<td>XDS</td>
<td>Kabsch 2010, doi: 10.1107/S090 744490904737 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>software, algorithm</td>
<td>PHENIX</td>
<td>Adams et al. 2010, doi:10.1107/S090744909052925</td>
<td></td>
<td></td>
</tr>
<tr>
<td>software, algorithm</td>
<td>Coot</td>
<td>Emsley et al. 2010, doi: 10.1107/S09074491007493</td>
<td></td>
<td></td>
</tr>
<tr>
<td>software, algorithm</td>
<td>ImageJ 1.51k</td>
<td>Schneider, Rasband, and Eliceiri 2012, doi: 10.1038/nmeth.2089</td>
<td>quantification of electrophoretic shift assay</td>
<td></td>
</tr>
</tbody>
</table>
Butryn et al.

<table>
<thead>
<tr>
<th>software, algorithm</th>
<th>OriginPro 2015</th>
<th>OriginLab, Northampton, MA</th>
<th>sequence-based reagent</th>
<th>48 bp dsDNA</th>
<th>Biomers</th>
<th>5′–CAGTACGGCCGGGC GCCCGGCATGGCG GCCCTATAAAAGGGG GTGGAAT–3</th>
</tr>
</thead>
<tbody>
<tr>
<td>sequence-based reagent</td>
<td>48 bp 6-FAM labelled dsDNA</td>
<td>Biomers</td>
<td>5′–CAGTACGGCCGGGC GCCCGGCATGGCG GCCCTATAAAAGGGG GTGGAAT–3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sequence-based reagent</td>
<td>36 bp dsDNA</td>
<td>Biomers</td>
<td>5′–CGGCCGGCGCCGC GCCATGGGCGGCTA TAAAAGGGGC–3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Protein purification

The sequence of the full-length Mot1 (1-1886) was isolated from the Chaetomium thermophilum cDNA library and cloned into pETDuet-1 vector (Novagen, Germany) harboring N-terminal His6 tag followed by TEV cleavage site. CtMot1ΔC (1-1836) was cloned into pET21 vector containing PreScission protease cleavage site and C-terminal His6 tag. Both constructs were expressed in Escherichia coli Rosetta(DE3) cells (Novagen) and purified using Ni2+-NTA agarose (QIAGEN, Germany). After proteolytic cleavage of the expression tags, the proteins were further purified using ion-exchange chromatography (HiTrap Q HP, GE Healthcare, Germany) and size exclusion chromatography (HiLoad 16/60 200 pg, GE Healthcare). Proteins were concentrated to ~15 mg/ml in 20mM Tris pH 7.5, 50 mM NaCl and 15% glycerol and stored at -80°C. Selenomethionine labelling of CtMot1ΔC was performed in E.coli B843 (Novagen) using SelenoMethionine Medium Base and Nutrient Mix (Molecular Dimensions, UK) supplemented with L(+)-Selenomethionine (Acros Organics, Germany) at 42 mg/L. Purification of selenium-derivatized protein was performed according to the same protocol as for the native protein.

Crystallization and structure determination
Crystals of selenomethionine-derivatized CtMot1\(^{AC}\) were grown at 20°C by streak seeding in 0.1 M Tris pH 8.9, 0.2 M ammonium acetate and 13% (w/v) PEG 3350. Plate-like crystals with average dimensions of 700 × 150 × 30 µm appeared after three days and were cryocooled in liquid nitrogen using mother liquor supplemented with butanediol at 25% final concentration. The data were collected at the European Synchrotron Radiation Facility in Grenoble, France at the peak of Se K-edge at 100K. Images were indexed, integrated, scaled, and merged in space group P2\(_1\) to 3.2 Å using XDS package (Kabsch 2010). The initial model was built manually to the experimental electron-density derived from SAD phasing using PHENIX AutoSol wizard (Adams et al. 2010). Alternating cycles of manual building using Coot (Emsley et al. 2010) and refinement with PHENIX yielded the final model (R\(_\text{work}/R_\text{free}\) of 19.0/23.8%) covering 87% of all residues.

ATPase assay

The assays were performed using an NADH-coupled assay as described (Kilianitsa, Solinger, and Heyer 2003). Reactions were performed using 2 mM phosphoenolpyruvate, 25 U/mL of pyruvate kinase/lactic dehydrogenase mix, 1 mM ATP, and 1 mM NADH at final concentrations. Test samples contained 100 nM dsDNA (5'–CAGTACGGCGGGCGCCGATGCCGCTATAAAAGGGGGTGGAAT–3' top strand), 100 nM TBP, 100 nM NC2 and 250 nM CtMot1.

Electrophoretic mobility shift assays

Electrophoretic mobility shifts were essentially performed as described (Darst, Wang, and Auble 2001) with some modifications. In the assay shown in Figure 2D, fluorescently labelled dsDNA (40 nM, 5'–CAGTACGGCGGGCGCCGATGCCGCTATAAAAGGGGGTGGAAT–3' top strand) with 6-FAM label on the 5' end of the reverse strand) was incubated with TBP (10 nM) and Mot1 (25 nM) for 10 min. Unlabeled dsDNA competitor (800 nM, 5'–
CGGCCGGGCGCCCGGATGGCGGCCTATAAAAGGGC–3' top strand) was then added
directly followed by ATP addition (50 µM) for 10 minutes. Samples were loaded onto 6%
polyacrylamide gels and run at 160 V and 4° for 60 min and imaged using Typhoon FLA
9000 imager. The assays shown in Figure 2–figure supplement 1B and quantified in Figure
2–figure supplement 1C were prepared analogously, but TBP was added at a concentration
of 15 nM and ATP was added for 6 minutes before loading the reactions on the gel.

ACCESSION NUMBERS

The coordinates and structure factors were deposited in the Protein Data Bank under
accession code 6G7E.

ACKNOWLEDGEMENTS

We thank the Max-Planck Crystallization Facility (Martinsried) for crystallization trials and the
European Synchrotron Radiation Facility (Grenoble) and the Deutsches Elektronen-
Synchrotron (PETRA III, Hamburg) for beamtime and excellent support. A.B. acknowledges
support from the Integrated Analysis of Macromolecular Complexes and Hybrid Methods in
Genome Biology (DFG GRK1721) training program.

COMPETING INTERESTS

The authors declare that no competing interest exists.

REFERENCES

Adamkewicz, Joanne I., Christopher G. F. Mueller, Karin E. Hansen, Wendy A. Prud'homme,
and Jeremy Thorner. 2000. "Purification and Enzymic Properties of Mot1 ATPase, a
Regulator of Basal Transcription in the Yeast Saccharomyces cerevisiae." Journal of

Butryn et al.

FIGURE LEGENDS

Figure 1. Structure of the *Chaetomium thermophilum* Mot1.

A. Domain organization of CtMot1. The HEAT repeats are in yellow. The latch is in pink, other insertions of CtMot1NTD and the linker are in brown. RecA-like subdomains of CtMot1CTD are in orange (1A) and green (2A). Swi2/Snf2-specific insertions 1B and 2B are in dark blue. Brace and bridge elements are in light blue and red, respectively. The boundary of the crystallization construct (residue 1836) is marked with the dotted line. **B.** Cartoon representation of the structure. N- and C-termini are labelled N and C, respectively. HEAT repeats 1, 2, and 16 are labelled HR1, HR2, and HR16, respectively. Missing residues of the latch are represented by the dotted line. **C.** Surface representation of CtMot1CTD lobe 1 (orange) and 2 (green). Regions where helicase motifs are located on each lobe are colored in red. **D.** Side-by-side comparison of CtMot1CTD (top panel) and SsoRad54 (Durr et al. 2005) (bottom panel). CtMot1NTD is represented as yellow surface. If not stated otherwise, all panels have color coding as in A.

Figure 1—figure supplement 1. Auto-inhibited conformations of Swi2/Snf2 domains.

A. Comparison of inactive and active states of *Saccharomyces cerevisiae* Chd1. Left: in its nucleosome ligand-free state (PDB 3MWY, Hauk et al. 2010) the two ATPase lobes of ScChd1 are misaligned and separated due to the binding of the chromodomain (yellow surface). Right: upon the activation by binding of chromodomains to a nucleosomal substrate (here omitted), the block on lobe 2 is released, enabling proper alignment of both lobes for ATP hydrolysis (PDB 5O9G, Farnung et al. 2017). **B** Other Swi2/Snf2 domain structures representing auto-inhibited conformations: *Myceliophthora thermophila* ISWI (PDB 5JXR, Yan et al. 2016), *Myceliophthora thermophila* Snf2 (PDB 5HZR, Xia et al. 2016), *Sulpholobus solfataricus* Rad54 (PDB 1Z6A, Durr et al. 2005), and *Chaetomium thermophilum* Mot1 (PDB 6G7E, this study). All panels show the same view with respect to lobe 1, thereby highlighting distinct positions of lobe 2 in all structures. In all panels, lobe 1
and 2 are represented as cartoons color-coded as in Figure 1. Auxiliary domains adjacent to the ATPase domain are shown as yellow surfaces.

Figure 2. Analysis of CtMot1 mutants.

A. View at the interface between RecA2A (green cartoon), HR1/2 (yellow surface), and lobe 1 (orange/blue surface). Residues analyzed in this study are shown as sticks and labelled accordingly. **B.** Cartoon model showing the positions of mutations in the Mot1NTD (red spheres on yellow surface) and in lobe 2 (green spheres on green surface). Left: orientation as in the CtMot1 crystal structure. Right: CtMot1 with ATPase modeled as in the S. cerevisiae Chd1:nucleosome complex, i.e., the ATP hydrolysis-competent conformation (Farnung et al. 2017). **C.** ATPase activity of the mutants. Error bars represent standard deviations from three technical replicates. CtMot1WT is labelled as WT, CtMot1ΔC as ΔC. **D.** Electrophoretic mobility shift assay showing ATP-dependent dissociation of Mot1:TBP:DNA and TBP:DNA complexes. All CtMot1 constructs form ternary complexes with labelled DNA and TBP (M:T:D). In the presence of ATP and unlabeled competitor DNA (DNA*), wild-type CtMot1 (WT), L1658/Y1659, R4D, and D1720R mutants fully disrupt M:T:D and T:D complexes (lanes 5, 9, 11, and 13, respectively), whereas CtMot1ΔC (ΔC) is less efficient (lane 7).

Figure 2—figure supplement 1. Analysis of CtMot1 mutants.

A. ATPase activity of the CtMot1 mutants. This panel represents the same data as shown in Figure 2C but normalized against the basal activity of each CtMot1 variant. **B.** Dissociation of Mot1:TBP:DNA and TBP:DNA complexes in an electrophoretic mobility shift assay. The assay was performed analogously to the one shown in Figure 2D, but more TBP was added and ATP incubation was shorter (see Materials and Methods). These experimental conditions were chosen so that the reaction does not reach the endpoint to see the differences in dissociation catalyzed by WT versus L1658A/Y1659A, R4D, or D1720R. **C.**
Quantitation of electrophoretic mobility shift assays as shown in panel B. The bars represent the ratio between the intensity of free DNA and complex bands (Mot1:TBP:DNA and TBP:DNA) in each lane. The reaction without proteins (D) was normalized to 1. T:D - TBP:DNA, WT:T:D-Mot1^{WT}:TBP:DNA, ΔC:T:D-Mot1^{ΔC}:TBP:DNA, L1658A/Y1659A:T:D-Mot1^{L1658A/Y1659A}:TBP:DNA, R4D:T:D-Mot1^{R4D}:TBP:DNA, D1720R:T:D-Mot1^{D1720R}:TBP:DNA.

* - reactions performed in the presence of unlabeled competitor DNA. Quantitation was done using ImageJ. Data represent mean values +/- standard deviation (n=6).

Figure 3. Model of the Mot1:TBP:NC2:DNA complex. C_fMot1^{ΔC} was superimposed onto <i>E. coli</i> Mot1^{NTD}:TBP:NC2:DNA via the HEAT repeats (yellow surface). The path of the upstream DNA was determined by superimposing SsoRad54:DNA onto C_fMot1^{ΔC} via lobe 1. The TATA box strand from <i>E. coli</i> Mot1^{NTD}:TBP:NC2:DNA as well as the corresponding strand from SsoRad54:DNA are marked in gray. The non-TATA box strands are in red. Substrate proteins TBP and NC2 are represented as dark and light gray surfaces, respectively. The black arrow represents the direction in which Swi2/Snf2 domain is proposed to translocate along the DNA scaffold. C_fMot1^{CTD} is color-coded as in Figure 1.
Data collection

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>P2₁</td>
</tr>
<tr>
<td>Unit cell</td>
<td>a, b, c (Å) 93.2, 96.9, 129.7</td>
</tr>
<tr>
<td></td>
<td>α, β, γ (°) 90.0, 97.6, 90.0</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>48.7 (3.3-3.2)</td>
</tr>
<tr>
<td>Total reflections</td>
<td>239071 (10913)</td>
</tr>
<tr>
<td>Unique reflections</td>
<td>36422 (1888)</td>
</tr>
<tr>
<td>R<sub>meas</sub>, [%]</td>
<td>14.4 (88.7)</td>
</tr>
<tr>
<td>I/σI</td>
<td>11.8 (2.6)</td>
</tr>
<tr>
<td>CC<sub>1/2</sub></td>
<td>0.99 (0.79)</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>97.1 (68.8)</td>
</tr>
<tr>
<td>Redundancy</td>
<td>6.6 (5.8)</td>
</tr>
</tbody>
</table>

Refinement

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution (Å)</td>
<td>48.7 (3.3-3.2)</td>
</tr>
<tr>
<td>No. reflections</td>
<td>36410 (2930)</td>
</tr>
<tr>
<td>R<sub>work</sub></td>
<td>0.19 (0.42)</td>
</tr>
<tr>
<td>R<sub>free</sub></td>
<td>0.24 (0.42)</td>
</tr>
<tr>
<td>No. atoms</td>
<td>12390</td>
</tr>
<tr>
<td>Protein</td>
<td>12390</td>
</tr>
<tr>
<td>Ligand/ion</td>
<td>0</td>
</tr>
<tr>
<td>Water</td>
<td>0</td>
</tr>
<tr>
<td>B factors (Å²)</td>
<td>75</td>
</tr>
<tr>
<td>Protein</td>
<td>75</td>
</tr>
<tr>
<td>Ligand/ion</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>R.M.S deviations</td>
<td></td>
</tr>
<tr>
<td>Bond lengths (Å)</td>
<td>0.002</td>
</tr>
<tr>
<td>Bond angles (°)</td>
<td>0.463</td>
</tr>
<tr>
<td>Ramachandran plot</td>
<td></td>
</tr>
<tr>
<td>Favored [%]</td>
<td>97</td>
</tr>
<tr>
<td>Allowed [%]</td>
<td>3</td>
</tr>
<tr>
<td>Outliers [%]</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1. Data collection and refinement statistics for the ClMot1 structure.

* Values in parentheses are for highest-resolution shell.

SOURCE DATA FILES

Figure 2–source data 1: raw data from the ATPase activity assay used for Figure 2C and Figure 2–figure supplement 1A.

Figure 2–source data 2: raw data from quantification of electrophoretic mobility shift assay used for Figure 2–figure supplement 1B.
ScChd1
3MWY
inactive

ScChd1
5O9G
active

MtISWI
5JXR

MtSnf2
5HZR

SsoRad54
1Z6A

CtMot1
6G7E
C. Activity assay for Mot1. The ATPase activity is measured as ATPase activity per active site per minute (ATP × min⁻¹ × active site⁻¹) in the presence of TBP, DNA, and NC2. The graph shows the activity for different conditions: alone, +TBP, +TBP:DNA, and +TBP:DNA:NC2.

D. Gel electrophoresis showing the mobility shift of DNA bound to Mot1. The lanes are labeled with different combinations of WT, ΔC, Y1659A, R4D, D1720R, L1658A, and ATP.